1
|
Tang S, Xu Z, Chen C, Xie J. Effect of Different Postharvest Pre-Cooling Treatments on Quality of Water Bamboo Shoots ( Zizania latifolia) during Refrigerated Storage. PLANTS (BASEL, SWITZERLAND) 2024; 13:2856. [PMID: 39458803 PMCID: PMC11510961 DOI: 10.3390/plants13202856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/27/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024]
Abstract
Post-harvest pre-cooling of water bamboo shoots (WBS) [Zizania latifolia] can effectively delay its quality deterioration. Six types of pre-cooling treatments were used to pre-cooling post-harvest WBS, including cold slightly acidic electrolytic water pre-cooling (CSAEW), cold water pre-cooling (CWPC), vacuum pre-cooling (VPC), strong wind pre-cooling (SWPC), refrigerator pre-cooling (RPC), and fluid ice pre-cooling (FIPC). The effects of different pre-cooling treatments on the quality of refrigerated WBS were investigated. The results showed that the FIPC treatment was harmful to the storage quality of WBS, while the other five pre-cooling treatments could extend the shelf life of WBS to some extent. These pre-cooling treatments can inhibit the respiration of WBS, slow down its weight loss and lignification process, and maintain its relatively high levels of nutrient content and antioxidant activity. The CSAEW treatment outperformed other treatments in terms of bactericidal action and microbiological content control for WBS during storage. The protective effect of CSAEW treatment on the storage quality of WBS was relatively the best, and extended the shelf life of WBS by 12 days compared to the control group. This study indicated that the CSAEW pre-cooling treatment offers a new choice for pre-cooling root vegetables.
Collapse
Affiliation(s)
- Shuwen Tang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
| | - Zhongyi Xu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
| | - Chenwei Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| |
Collapse
|
2
|
Chen D, Wang Q, Yang Y, Zhang Y, Zuo P, Guo Y, Shen Z. Preservative effects of Osmanthus fragrans flower flavonoids on fresh-cut Yuluxiang pear. Heliyon 2024; 10:e29748. [PMID: 38694105 PMCID: PMC11058293 DOI: 10.1016/j.heliyon.2024.e29748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024] Open
Abstract
Osmanthus fragrans flower flavonoids (OFFF) possess superior antioxidant and antibacterial activities. However, scant information exists on the efficacy of these secondary metabolites as preservatives for fresh-cut fruits and vegetables. Here, OFFF were tested as a natural preservative for the first time in fresh-cut Yuluxiang pear (Pyrus bretschneideri Rehd.) to assess effects on fruit quality. OFFF-treated samples showed significant retention of firmness, titratable acid, soluble solid content, and weight. Moreover, OFFF maintained the original fruit color, inhibited the decline of total phenol, reducing power and 2,2-diphenyl-1-picrylhydrazyl radical scavenging power, and diminished polyphenol oxidase and peroxidase oxidase activities. Furthermore, OFFF treatment effectively inhibited microbial growth. OFFF-treated samples also displayed better sensory quality. Considering cost and effectiveness, the most suitable concentrations of OFFF extract for fresh-cut Yuluxiang pear preservation were 0.7 and 0.9 mg/mL. The results indicate that OFFF treatment may be a potent strategy to inhibit browning and enhance nutritional properties of fresh-cut pear fruit.
Collapse
Affiliation(s)
- Dixin Chen
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471000, China
| | - Qian Wang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471000, China
| | - Yingjun Yang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471000, China
| | - Yang Zhang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471000, China
| | - Peijie Zuo
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471000, China
| | - Yujie Guo
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471000, China
| | - Zhiguo Shen
- Henan Academy of Forestry, Zhengzhou, Henan, 450008, China
| |
Collapse
|
3
|
Lingait D, Rahagude R, Gaharwar SS, Das RS, Verma MG, Srivastava N, Kumar A, Mandavgane S. A review on versatile applications of biomaterial/polycationic chitosan: An insight into the structure-property relationship. Int J Biol Macromol 2024; 257:128676. [PMID: 38096942 DOI: 10.1016/j.ijbiomac.2023.128676] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/06/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023]
Abstract
Chitosan is a versatile and generous biopolymer obtained by alkaline deacetylation of naturally occurring chitin, the second most abundant biopolymer after cellulose. The excellent physicochemical properties of polycationic chitosan are attributed to the presence of varied functional groups such as amino, hydroxyl, and acetamido groups enabling researchers to tailor the structure and properties of chitosan by different methods such as crosslinking, grafting, copolymerization, composites, and molecular imprinting techniques. The prepared derivatives have diverse applications in the food industry, water treatment, cosmetics, pharmaceuticals, agriculture, textiles, and biomedical applications. In this review, numerous applications of chitosan and its derivatives in various fields have been discussed in detail with an insight into their structure-property relationship. This review article concludes and explains the chitosan's biocompatibility and efficiency that has been done so far with future usage and applications as well. Moreover, the possible mechanism of chitosan's activity towards several emerging fields such as energy storage, biodegradable packaging, photocatalysis, biorefinery, and environmental bioremediation are also discussed. Overall, this comprehensive review discusses the science and complete information behind chitosan's wonder function to improve our understanding which is much needful as well as will pave the way towards a sustainable future.
Collapse
Affiliation(s)
- Diksha Lingait
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, India
| | - Rashmi Rahagude
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, India
| | - Shivali Singh Gaharwar
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, India
| | - Ranjita S Das
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, India
| | - Manisha G Verma
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, India
| | - Nupur Srivastava
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, India.
| | - Anupama Kumar
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, India.
| | - Sachin Mandavgane
- Department of Chemical Engineering, Visvesvaraya National Institute of Technology, Nagpur 440010, India
| |
Collapse
|
4
|
Nur Hanani Z, Soo K, Zunairah WW, Radhiah S. Prolonging the shelf life of fresh-cut guava ( Psidium guajaya L.) by coating with chitosan and cinnamon essential oil. Heliyon 2023; 9:e22419. [PMID: 38107314 PMCID: PMC10724538 DOI: 10.1016/j.heliyon.2023.e22419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/07/2023] [Accepted: 11/12/2023] [Indexed: 12/19/2023] Open
Abstract
This study investigated the effect of a coating of chitosan (CH) and cinnamon essential oil (CEO; 0-1 %) on the quality attributes of fresh-cut guava (Psidium guajaya L.) during storage at 4 ± 1 °C for 17 days, with uncoated fresh-cut guava used as control. The CH coating significantly (p < 0.05) delayed changes in weight loss, firmness, colour, total soluble solids and titratable acidity compared to the control sample. Furthermore, the effects were more prominent with the incorporation of higher CEO concentrations. The bacterial, yeast and mould counts were also significantly lower (p < 0.05) in the CH-coated samples than in the control, with the coating containing 1 % CEO exhibiting the best quality preservation effect. In addition, CH and CEO coatings extended the shelf life of fresh-cut guava up to 17 days compared to the control sample (shelf life of only 3 days). In conclusion, combining CH and CEO as a coating matrix effectively preserves the quality and enhances fresh-cut guava's shelf life.
Collapse
Affiliation(s)
- Z.A. Nur Hanani
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia
- Halal Products Research Institute, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia
| | - K.L. Soo
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia
| | - W.I. Wan Zunairah
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - S. Radhiah
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia
| |
Collapse
|
5
|
Thakur B, Kaur S, Rani N, Kaur R, Upadhyay SK, Tripathi M. Exploring Microbial Contributions to Nutraceutical Production: From Natural to Designed Foods. Mol Biotechnol 2023:10.1007/s12033-023-00937-2. [PMID: 37948026 DOI: 10.1007/s12033-023-00937-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/30/2023] [Indexed: 11/12/2023]
Abstract
For ages, societies throughout the world have used fermentation as a traditional method for food processing and preservation, helping to create a wide range of staple foods and delicacies. Due to its possible health advantages, mostly attributable to the inclusion of bioactive substances known as nutraceuticals, fermented foods have attracted a lot of interest recently. This in-depth analysis examines the wide range of nutraceuticals present in fermented foods, as well as how they are made, what health benefits they may have, and how they may be used in the nutraceutical and functional food businesses. By stressing how important fermented foods are as a source of beneficial bioactive components that support human health and well-being. Numerous bioactive substances found in fermented foods have been the subject of recent scientific studies. These molecules may find use in the pharmaceutical and nutraceutical sectors. Streptococcus thermophilus, Lactobacillus gasseri, Lactobacillus delbrueckii, Lactobacillus bulgaricus, and Lactobacillus johnsonii are just a few examples of the probiotic bacteria that live in fermented foods and formulas. This review elucidates the importance of microorganisms sourced from fermented foods as potent agents for diverse nutraceuticals and their potential role in preventing various diseases whilst serving as functional food supplements.
Collapse
Affiliation(s)
- Babita Thakur
- Department of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India
| | - Sukhminderjit Kaur
- Department of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India.
| | - Nitu Rani
- Department of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India
| | - Rajinder Kaur
- Department of Plant Sciences, University of Idaho, Moscow, USA
| | - Sudhir Kumar Upadhyay
- Department of Environment Sciences, VBS Purvanchal University, Jaunpur, Uttar Pradesh, India
| | - Manikant Tripathi
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya, Uttar Pradesh, 224001, India.
| |
Collapse
|
6
|
Nguyen N, Nguyen T, Le Hong P, Ta TKH, Phan BT, Ngoc HNT, Bich HPT, Yen ND, Van TV, Nguyen HT, Ngoc DTT. Application of Coating Chitosan Derivatives (N,O-Carboxymethyl Chitosan/Chitosan Oligomer Saccharide) in Combination with Polyvinyl Alcohol Solutions to Preserve Fresh Ngoc Linh Ginseng Quality. Foods 2023; 12:4012. [PMID: 37959131 PMCID: PMC10650730 DOI: 10.3390/foods12214012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
The postharvest preservation of Ngoc Linh ginseng (NL ginseng) is essential to retain its quality and sensory values for prolonged storage. In this study, the efficacy of NL ginseng preservation by coating chitosan derivatives in combination with polyvinyl alcohol (PVA) solutions was investigated under refrigeration conditions (~3 °C; ~40% RH) for 56 days. The effect of the chitosan-based solutions, including N,O-carboxymethyl chitosan (NOCC), chitosan oligomer saccharide (COS), or chitosan (CS), and the blend solutions (NOCC-PVA or COS-PVA) on the coated NL ginsengs was observed during storage. The pH values, viscosity, and film-forming capability of the coating solutions were determined, while the visual appearance, morphology, and mechanical properties of the films formed on glass substrates as a ginseng model for coating were also observed. The appearance, skin lightness, weight loss, sensory evaluation, total saponin content (TSC), total polyphenol content (TPC), and total antioxidant capacity (TAC) of the coated NL ginsengs were evaluated. The findings showed that the observed values of the coated NL ginsengs were better than those of the non-coated samples, with the exception of the COS-coated samples, which had completely negative results. Furthermore, the NOCC-PVA solution exhibited a better preservation effect compared with the COS-PVA one based on the observed indices, except for TPC and TAC, which were not impacted by the coating. Notably, the optimal preservation time was determined to be 35 days. This study presents promising preservation technology using the coating solution of NOCC-PVA, harnessing the synergistic effect of pH 7.4 and the form-firming capacity, to maintain the shelf life, medicinal content, and sensory attributes of NL ginseng.
Collapse
Affiliation(s)
- Ngoc Nguyen
- School of Biomedical Engineering, International University, Ho Chi Minh 700000, Vietnam; (N.N.)
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Trieu Nguyen
- Shared Research Facilities, West Virginia University, Morgantown, WV 26506, USA
| | - Phu Le Hong
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
- School of Biotechnology, International University, Ho Chi Minh 700000, Vietnam
| | - Thi Kieu Hanh Ta
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
- Faculty of Materials Science and Technology, University of Science, Ho Chi Minh City 700000, Vietnam
- Center for Innovative Materials and Architectures, Ho Chi Minh 700000, Vietnam
| | - Bach Thang Phan
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
- Center for Innovative Materials and Architectures, Ho Chi Minh 700000, Vietnam
| | - Hanh Nguyen Thi Ngoc
- School of Biomedical Engineering, International University, Ho Chi Minh 700000, Vietnam; (N.N.)
| | - Hang Phung Thi Bich
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
- School of Biotechnology, International University, Ho Chi Minh 700000, Vietnam
| | - Nhi Dinh Yen
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
- School of Biotechnology, International University, Ho Chi Minh 700000, Vietnam
| | - Toi Vo Van
- School of Biomedical Engineering, International University, Ho Chi Minh 700000, Vietnam; (N.N.)
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Hiep Thi Nguyen
- School of Biomedical Engineering, International University, Ho Chi Minh 700000, Vietnam; (N.N.)
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Diep Tran Thi Ngoc
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
- School of Biotechnology, International University, Ho Chi Minh 700000, Vietnam
- Centre for Innovation and Technology Transfer, International University, Ho Chi Minh 700000, Vietnam
| |
Collapse
|
7
|
Di Mola I, Cozzolino E, Ottaiano L, Riccardi R, Spigno P, Petriccione M, Fiorentino N, Fagnano M, Mori M. Biodegradable Mulching Film vs. Traditional Polyethylene: Effects on Yield and Quality of San Marzano Tomato Fruits. PLANTS (BASEL, SWITZERLAND) 2023; 12:3203. [PMID: 37765367 PMCID: PMC10536419 DOI: 10.3390/plants12183203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
Mulching is a common practice for improving crop yield and obtaining an out-of-season production, but when made using plastic materials it can bring environmental problems due to the management and the disposal of films at the end of the cropping seasons. To increase the sustainability of this practice, recently, mulching films made with biodegradable organic materials have become more widely used. Our aim was to evaluate the effect of a biodegradable mulching film on yield and qualitative traits of the San Marzano tomato fruits over two years (2014 and 2015). Two different types of mulching were tested: (i) black biodegradable film (MB12) and (ii) black low-density polyethylene (LDPE) were compared to bare soil (BS). Both mulching films elicited a 25% increase in yield, mainly due to the significantly higher number of fruits per square meter, compared to BS. Both mulching films also elicited a 9.9% increase in total soluble solids and a 57% increase in carotenoid content, while firmness showed the highest value in BS fruits. MB12 determined the highest value of the Hunter color ratio a/b of tomato fruits, followed by LDPE, while the lowest value was recorded in BS fruits. Both mulching films elicited an increase of 9.6%, 26.0%, and 11.7% for flavonoids, polyphenols, and AsA, respectively. In 2014, the MB12 degradation started at 71 days after transplant (DAT); in 2015, at 104 DAT. Therefore, replacing polyethylene with biodegradable film would seem to be an agronomically efficient and environmentally sustainable practice.
Collapse
Affiliation(s)
- Ida Di Mola
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (I.D.M.); (L.O.); (N.F.); (M.F.); (M.M.)
| | - Eugenio Cozzolino
- Council for Agricultural Research and Economics (CREA)—Research Center for Cereal and Industrial Crops, 81100 Caserta, Italy
| | - Lucia Ottaiano
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (I.D.M.); (L.O.); (N.F.); (M.F.); (M.M.)
| | - Riccardo Riccardi
- ARCA 2010 S.c.a.r.l., Via G. Leopardi 18, 81030 Teverola, Italy; (R.R.); (P.S.)
| | - Patrizia Spigno
- ARCA 2010 S.c.a.r.l., Via G. Leopardi 18, 81030 Teverola, Italy; (R.R.); (P.S.)
| | - Milena Petriccione
- Council for Agricultural Research and Economics (CREA)—Research Center for Olive, Fruits and Citrus Crops, 81100 Caserta, Italy;
| | - Nunzio Fiorentino
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (I.D.M.); (L.O.); (N.F.); (M.F.); (M.M.)
| | - Massimo Fagnano
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (I.D.M.); (L.O.); (N.F.); (M.F.); (M.M.)
| | - Mauro Mori
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (I.D.M.); (L.O.); (N.F.); (M.F.); (M.M.)
| |
Collapse
|
8
|
Zhao J, Wang Y, Li J, Lei H, Zhen X, Gou D, Liu T. Preparation of chitosan/Enoki mushroom foot polysaccharide composite cling film and its application in blueberry preservation. Int J Biol Macromol 2023; 246:125567. [PMID: 37379940 DOI: 10.1016/j.ijbiomac.2023.125567] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/31/2023] [Accepted: 06/24/2023] [Indexed: 06/30/2023]
Abstract
In this study, the composite cling film was prepared by solution casting method using chitosan and golden mushroom foot polysaccharide as substrates, and the structure and physicochemical indexes of the composite cling film were characterized by Fourier infrared spectroscopy, X-ray diffraction, and scanning electron microscopy. The results showed that compared with single chitosan film, the composite cling film has better mechanical properties and antioxidant properties, and the barrier of UV light and water vapor is also stronger. Due to its high nutritional value, blueberry has a short shelf life due to its thin skin and poor storage resistance. Therefore, in this study, blueberry was used as the object of freshness preservation, and the single chitosan film group and the uncovered group were used as controls, and the weight loss, total bacterial colony, decay rate, respiration intensity, malondialdehyde content, hardness, soluble solids, titratable acid, anthocyanin content, and VC content of blueberry were used as freshness preservation indexes for experiments. The comprehensive results showed that the freshness preservation effect of the composite film group was significantly higher than that of the control group, with better antibacterial properties, antioxidant properties, etc., which could effectively delay fruit decay and deterioration, thus prolonging the shelf life, and thus the chitosan/Enoki mushroom foot polysaccharide composite preservation film has a high potential as a new freshness preservation material for blueberry.
Collapse
Affiliation(s)
- Jun Zhao
- College of Food Science and Engineering, Changchun University, No. 6543 Satellite Road, 130022 Changchun, China.
| | - Yue Wang
- College of Food Science and Engineering, Changchun University, No. 6543 Satellite Road, 130022 Changchun, China
| | - Junbo Li
- College of Food Science and Engineering, Changchun University, No. 6543 Satellite Road, 130022 Changchun, China
| | - Hongyu Lei
- College of Food Science and Engineering, Changchun University, No. 6543 Satellite Road, 130022 Changchun, China
| | - Xinyu Zhen
- College of Food Science and Engineering, Changchun University, No. 6543 Satellite Road, 130022 Changchun, China
| | - Dongxia Gou
- College of Food Science and Engineering, Changchun University, No. 6543 Satellite Road, 130022 Changchun, China.
| | - Tong Liu
- College of Food Science and Engineering, Changchun University, No. 6543 Satellite Road, 130022 Changchun, China.
| |
Collapse
|
9
|
Mujtaba M, Ali Q, Yilmaz BA, Seckin Kurubas M, Ustun H, Erkan M, Kaya M, Cicek M, Oner ET. Understanding the effects of chitosan, chia mucilage, levan based composite coatings on the shelf life of sweet cherry. Food Chem 2023; 416:135816. [PMID: 36893634 DOI: 10.1016/j.foodchem.2023.135816] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/05/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023]
Abstract
Sweet cherry (Prunus avium L.) fruits are prone to quality and quantity loss in shelf-life conditions and cold storage due to their short post-harvest life. Until now efforts have been made to extend the shelf life of the sweet cherry. However, an efficient and commercially scalable process remains elusive. To contribute to this challenge, here in this study, biobased composite coatings consisting of chitosan, mucilage, and levan, were applied on sweet cherry fruits and tested for postharvest parameters in both market and cold storage conditions. Results demonstrated that the shelf life of sweet cherries can be extended until the 30th day while retaining important post-harvest properties like decreased weight loss, fungal deterioration, increased stem removal force, total flavonoid, l-ascorbic acid, and oxalic acid. Given the cost-effectiveness of the polymers used, the findings of this study indicate the feasibility of extending the shelf-life of sweet cherries on a larger scale.
Collapse
Affiliation(s)
- Muhammad Mujtaba
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, Espoo FI-02044, Finland.
| | - Qasid Ali
- Department of Horticulture, Faculty of Agriculture, Akdeniz University, 07059 Antalya, Turkey
| | - Bahar Akyuz Yilmaz
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Aksaray University, 68100 Aksaray, Turkey
| | - Mehmet Seckin Kurubas
- Department of Horticulture, Faculty of Agriculture, Akdeniz University, 07059 Antalya, Turkey
| | - Hayri Ustun
- Department of Horticulture, Faculty of Agriculture, Akdeniz University, 07059 Antalya, Turkey
| | - Mustafa Erkan
- Department of Horticulture, Faculty of Agriculture, Akdeniz University, 07059 Antalya, Turkey
| | - Murat Kaya
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Aksaray University, 68100 Aksaray, Turkey
| | - Mehmet Cicek
- Department of Biology, Faculty of Arts and Sciences, Pamukkale University, 20070 Denizli, Turkey
| | - Ebru Toksoy Oner
- IBSB, Department of Bioengineering, Marmara University, RTE Campus, Istanbul, Turkey
| |
Collapse
|
10
|
Hernández-Fuentes AD, Arroyo-Aguilar JE, Gutiérrez-Tlahque J, Santiago-Saenz YO, Quintero-Lira A, Reyes-Fuentes M, López-Palestina CU. Application of Cu Nanoparticles in Chitosan-PVA Hydrogels in a Native Tomato Genotype: Evaluation of the Postharvest Behavior of the Physicochemical and Bioactive Components of the Fruits. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03044-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
11
|
Zárate-Moreno JC, Escobar-Sierra DM, Ríos-Estepa R. Development and Evaluation of Chitosan-Based Food Coatings for Exotic Fruit Preservation. BIOTECH 2023; 12:biotech12010020. [PMID: 36810447 PMCID: PMC9944848 DOI: 10.3390/biotech12010020] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/27/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Chitosan has gained agro-industrial interest due to its potential applications in food preservation. In this work, chitosan applications for exotic fruit coating, using feijoa as a case of study, were evaluated. For this, we synthetized and characterized chitosan from shrimp shells and tested its performance. Chemical formulations for coating preparation using chitosan were proposed and tested. Mechanical properties, porosity, permeability, and fungal and bactericidal characteristics were used to verify the potential application of the film in the protection of fruits. The results indicated that synthetized chitosan has comparable properties to commercial chitosan (deacetylation degree > 82%), and, for the case of feijoa, the chitosan coating achieved significant reduction of microorganisms and fungal growth (0 UFC/mL for sample 3). Further, membrane permeability allowed oxygen exchange suitable for fruit freshness and natural physiological weight loss, thus delaying oxidative degradation and prolonging shelf-life. Chitosan's characteristic of a permeable film proved to be a promising alternative for the protection and extension of the freshness of post-harvest exotic fruits.
Collapse
Affiliation(s)
- Juan Camilo Zárate-Moreno
- Grupo de Bioprocesos, Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No. 52–21, Medellín 050010, Colombia
- Grupo de Biomateriales, Programa de Bioingeniería, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No. 52–21, Medellín 050010, Colombia
| | - Diana Marcela Escobar-Sierra
- Grupo de Biomateriales, Programa de Bioingeniería, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No. 52–21, Medellín 050010, Colombia
| | - Rigoberto Ríos-Estepa
- Grupo de Bioprocesos, Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No. 52–21, Medellín 050010, Colombia
- Correspondence: ; Tel.: +57-4-2198568
| |
Collapse
|
12
|
Ricardo-Rodrigues S, Laranjo M, Agulheiro-Santos AC. Methods for quality evaluation of sweet cherry. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:463-478. [PMID: 35870155 DOI: 10.1002/jsfa.12144] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/27/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Sweet cherry (Prunus avium L.) is a highly valued fruit, whose quality can be evaluated using several objective methodologies, such as calibre, colour, texture, soluble solids content (SSC), titratable acidity (TA), as well as maturity indexes. Functional and nutritional compounds are also frequently determined, in response to consumer demand. The aim of the present review is to clarify and establish quality evaluation parameters and methodologies for the whole cherry supply chain, in order to promote easy and faithful communication among all stakeholders. The use of near-infrared spectroscopy (NIRS) as a non-destructive and expeditious method for assessing some quality parameters is discussed. In this review, the results of a wide survey to assess the most common methodologies for cherry quality evaluation, carried out among cherry researchers and producers within the framework of the COST Action FA1104 'Sustainable production of high-quality cherries for the European market', are also reported. The standardisation of quality evaluation parameters is expected to contribute to the preservation and shelf-life extension of sweet cherries, and the valorisation of the whole supply chain. For future studies on sweet cherry, we put forward a proposal regarding both sample size and the tests chosen to evaluate each parameter. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sara Ricardo-Rodrigues
- MED-Mediterranean Institute for Agriculture, Environment and Development, IIFA - Instituto de Investigação e Formação Avançada, Universidade de Évora, Évora, Portugal
| | - Marta Laranjo
- MED-Mediterranean Institute for Agriculture, Environment and Development, IIFA - Instituto de Investigação e Formação Avançada, Universidade de Évora, Évora, Portugal
| | - Ana Cristina Agulheiro-Santos
- MED-Mediterranean Institute for Agriculture, Environment and Development, IIFA - Instituto de Investigação e Formação Avançada, Universidade de Évora, Évora, Portugal
- Departamento de Fitotecnia, Escola de Ciências e Tecnologia, Universidade de Évora, Évora, Portugal
| |
Collapse
|
13
|
Cozzolino E, Di Mola I, Ottaiano L, Bilotto M, Petriccione M, Ferrara E, Mori M, Morra L. Assessing Yield and Quality of Melon ( Cucumis melo L.) Improved by Biodegradable Mulching Film. PLANTS (BASEL, SWITZERLAND) 2023; 12:219. [PMID: 36616347 PMCID: PMC9824004 DOI: 10.3390/plants12010219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Low-density polyethylene (LDPE) plastic mulching films have an important function, but at the end of their lifetime pose an economic and environmental problem in terms of their removal and disposal. Biodegradable mulching films represent an alternative to LDPE with the potential to avoid these environmental issues. In this preliminary study, we employed a biodegradable film based on Mater-Bi® (MB) in comparison with low-density polyethylene to assess their effect on the yield and particular quality traits (organoleptic and nutraceutical composition of the fruits) of muskmelon (cv Pregiato) grown on soils with different textures (clay-loam-CL and sandy loam-SL) in two private farms in South Italy. Soil temperature under the mulch was also measured. During the monitored periods, mean soil temperature under LDPE was higher (about 1.3 °C) than that under the biodegradable film and was higher in SL soil than in CL soil, at 25.5° and 24.2 °C, respectively. However, the biodegradable film was able to limit the daily temperature fluctuation, which was 1.7 °C in both soils compared with 2.3 °C recorded for LDPE. Fruit yields were higher with MB film than LDPE (+9.5%), irrespective of soil texture. MaterBi® also elicited increases in total soluble solids, polyphenols, flavonoids, and antioxidant activity compared with LDPE films: 13.3%, 22.4%, 27.2%, and 24.6%, respectively. Color parameters of flesh, namely brightness, chroma, and hue angle were better in fruits grown on LDPE. Our findings suggest that Mater-Bi® based biodegradable mulching film is a potentially valid alternative to traditional LDPE, particularly for obtaining the agronomical benefits outlined above and for promoting environmental sustainability due to its favourable biodegradable properties.
Collapse
Affiliation(s)
- Eugenio Cozzolino
- Council for Agricultural Research and Economics (CREA)—Research Center for Cereal and Industrial Crops, 81100 Caserta, Italy
| | - Ida Di Mola
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Lucia Ottaiano
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Maurizio Bilotto
- Council for Agricultural Research and Economics (CREA)—Research Center for Cereal and Industrial Crops, 81100 Caserta, Italy
| | - Milena Petriccione
- Council for Agricultural Research and Economics (CREA)—Research Center for Olive, Fruits and Citrus Crops, 81100 Caserta, Italy
| | - Elvira Ferrara
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Mauro Mori
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Luigi Morra
- Council for Agricultural Research and Economics (CREA)—Research Center for Cereal and Industrial Crops, 81100 Caserta, Italy
| |
Collapse
|
14
|
Effect of chitosan and thymol on physicochemical and qualitative properties of table grape fruits during the postharvest period. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01249-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Preparation and Characterization of Phenolic Acid-Chitosan Derivatives as an Edible Coating for Enhanced Preservation of Saimaiti Apricots. Foods 2022; 11:foods11223548. [PMID: 36429144 PMCID: PMC9689608 DOI: 10.3390/foods11223548] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
In this study, caffeic acid (CA) and chlorogenic acid (CGA) were incorporated onto chitosan (CS) using free radical grafting initiated by a hydrogen peroxide/ascorbic acid (H2O2/Vc) redox system. The structural properties of the CA (CA-g-CS) and CGA (CGA-g-CS) derivatives were characterized by UV-Vis absorption, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), nuclear magnetic resonance (NMR), and thermal stability analysis. Then, the antioxidant and antibacterial properties were evaluated, and the effect of CGA-g-CS on the postharvest quality of Saimaiti apricot was studied. It proved that phenolic acids were successfully grafted onto the CS. The grafting ratios of CA-g-CS and CGA-g-CS were 126.21 mg CAE/g and 148.94 mg CGAE/g. The antioxidation and antibacterial activities of CGA-g-CS were better than those of CA-g-CS. The MICs of CGA-g-CS against E. coli, S. aureus, and B. subtilis were 2, 1, and 2 mg/mL. The inhibitory zones of 20 mg/mL CGA-g-CS against the three bacteria were 19.16 ± 0.35, 16.33 ± 0.91, and 16.24 ± 0.05 mm. The inhibitory effects of 0.5% CGA-g-CS on the firmness, weight loss, SSC, TA, relative conductivity, and respiration rate of the apricot were superior. Our results suggest that CGA-g-CS can be potentially used as an edible coating material to preserve apricots.
Collapse
|
16
|
Al-Hilifi SA, Al-Ali RM, Al-Ibresam OT, Kumar N, Paidari S, Trajkovska Petkoska A, Agarwal V. Physicochemical, Morphological, and Functional Characterization of Edible Anthocyanin-Enriched Aloevera Coatings on Fresh Figs ( Ficus carica L.). Gels 2022; 8:gels8100645. [PMID: 36286146 PMCID: PMC9601845 DOI: 10.3390/gels8100645] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
In the present investigation, Aloe vera gel (AVG)-based edible coatings enriched with anthocyanin were prepared. We investigated the effect of different formulations of aloe-vera-based edible coatings, such as neat AVG (T1), AVG with glycerol (T2), Aloe vera with 0.2% anthocyanin + glycerol (T3), and AVG with 0.5% anthocyanin + glycerol (T4), on the postharvest quality of fig (Ficus carica L.) fruits under refrigerated conditions (4 °C) for up to 12 days of storage with 2-day examination intervals. The results of the present study revealed that the T4 treatment was the most effective for reducing the weight loss in fig fruits throughout the storage period (~4%), followed by T3, T2, and T1. The minimum weight loss after 12 days of storage (3.76%) was recorded for the T4 treatment, followed by T3 (4.34%), which was significantly higher than that of uncoated fruit (~11%). The best quality attributes, such as the total soluble solids (TSS), titratable acidity (TA), and pH, were also demonstrated by the T3 and T4 treatments. The T4 coating caused a marginal change of 0.16 in the fruit titratable acidity, compared to the change of 0.33 in the untreated fruit control after 12 days of storage at 4 °C. Similarly, the total soluble solids in the T4-coated fruits increased marginally (0.43 °Brix) compared to the uncoated control fruits (>2 °Brix) after 12 days of storage at 4 °C. The results revealed that the incorporation of anthocyanin content into AVG is a promising technology for the development of active edible coatings to extend the shelf life of fig fruits.
Collapse
Affiliation(s)
- Sawsan Ali Al-Hilifi
- Department of Food Science, College of Agriculture, University of Basrah, Basrah 61004, Iraq
- Correspondence:
| | - Rawdah Mahmood Al-Ali
- Department of Food Science, College of Agriculture, University of Basrah, Basrah 61004, Iraq
| | - Orass T. Al-Ibresam
- Department of Food Science, College of Agriculture, University of Basrah, Basrah 61004, Iraq
| | - Nishant Kumar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Sonepat 131028, India
| | - Saeed Paidari
- Department of Food Science and Technology, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 81551-39998, Iran
| | - Anka Trajkovska Petkoska
- Faculty of Technology and Technical Social Sciences, St. Kliment Ohridski University-Bitola, Dimitar Vlahov, 1400 Veles, North Macedonia
| | - Vipul Agarwal
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
17
|
Investigation of biomechanical characteristics of novel chitosan from dung beetle and its application potential on stored tomato fruit. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01540-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Effect of Edible Coating on the Quality and Antioxidant Enzymatic Activity of Postharvest Sweet Cherry (Prunusavium L.) during Storage. COATINGS 2022. [DOI: 10.3390/coatings12050581] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The effects of edible chitosan coating (0.1%, 0.3%, 0.5% and 0.75% w/v) on the changes in the quality, respiration rate, total phenolic content and anthocyanin of postharvest sweet cherry (Prunus avium L.) at 10 °C were investigated. The activities of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) were also determined. The result showed that the treatments of chitosan edible coating were effective at delaying the evolution of the parameters related to postharvest ripening, such as color and firmness, and respiration rate. The edible coatings also showed that the lower total phenolics and total antioxidant activity were maintained compared to that in the control associated with the overripening. It was suggested that the optimal quality and enhanced antioxidant enzymatic activities of postharvest cherry fruits were obtained by an edible coating of chitosan 0.5% up to 24 days at 10 °C. The chitosan edible coating could be favorable for extending shelf-life, maintaining the quality of sweet cherries.
Collapse
|
19
|
Wang H, Zhang Z, Dong Y, Wang Y. Effect of chitosan coating incorporated with Torreya grandis essential oil on the quality and physiological attributes of loquat fruit. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01391-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Changes in the quality of fruits of four sweet cherry cultivars grown under rain-shelter cultivation during storage at room temperature. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01363-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Abdelgawad KF, Awad AHR, Ali MR, Ludlow RA, Chen T, El-Mogy MM. Increasing the Storability of Fresh-Cut Green Beans by Using Chitosan as a Carrier for Tea Tree and Peppermint Essential Oils and Ascorbic Acid. PLANTS (BASEL, SWITZERLAND) 2022; 11:783. [PMID: 35336665 PMCID: PMC8954194 DOI: 10.3390/plants11060783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
The quality of fresh-cut green beans deteriorates rapidly in storage, which contributes to increased food waste and lower perceived customer value. However, chitosan (Cs) and certain plant essential oils show promise in reducing postharvest quality loss during storage. Here, the effect of Cs and the combinations of Cs + tea tree oil (TTO), Cs +x peppermint oil (PMO), and Cs + ascorbic acid (AsA) on the quality of fresh-cut green bean pods (FC-GB) is studied over a 15-d storage period at 5 °C. All four FC-GB treatments reduced weight loss and maintained firmness during storage when compared to uncoated FC-GB. Furthermore, all treatments showed higher total chlorophyll content, AsA, total phenolic compounds, and total sugars compared to the control. The best treatment for reducing microbial growth was a combination of Cs + AsA. Additionally, the combination of Cs with TTO, PMO, or AsA showed a significant reduction in the browning index and increased the antioxidant capacity of FC-GB up to 15 d postharvest.
Collapse
Affiliation(s)
- Karima F. Abdelgawad
- Vegetable Crops Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt; (K.F.A.); (A.H.R.A.)
| | - Asmaa H. R. Awad
- Vegetable Crops Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt; (K.F.A.); (A.H.R.A.)
| | - Marwa R. Ali
- Food Science Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt;
| | - Richard A. Ludlow
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Cardiff CF10 3AX, UK;
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China;
| | - Mohamed M. El-Mogy
- Vegetable Crops Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt; (K.F.A.); (A.H.R.A.)
| |
Collapse
|
22
|
Christopoulos MV, Gkatzos D, Kafkaletou M, Bai J, Fanourakis D, Tsaniklidis G, Tsantili E. Edible Coatings from Opuntia ficus-indica Cladodes Alongside Chitosan on Quality and Antioxidants in Cherries during Storage. Foods 2022; 11:699. [PMID: 35267333 PMCID: PMC8909712 DOI: 10.3390/foods11050699] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 02/04/2023] Open
Abstract
The aim of this work was to investigate the effect of edible coatings (ECs) prepared from extracts of Opuntia ficus-indica (OFI) cladodes in comparison with a commercial chitosan formulation on the quality of 'Regina' cherries packaged in macro-perforated bags and stored for up to 28 d (1 °C, 90% RH). The coating concentrations were 25% and 50% aqueous OFI extract (approximately 0.59 and 1.18% dry matter, respectively), 1% OFI alcohol insoluble polysaccharide and 1% chitosan. The variables evaluated included weight loss (WL), respiration rates (RR), peel color, firmness, microbial decay, total antioxidants (phenolics, flavonoids, anthocyanins, antioxidant capacity), individual phenolic compounds (anthocyanins, hydroxycinnamic acids, flavan-3-O-ols), and pedicel removal force. The main results show that all coatings reduced WL and RR similarly, enhanced firmness throughout storage and antioxidants after 28 d of storage compared to the controls. Among treatments, chitosan resulted in much higher peel glossiness and firmness in comparison to OFI extracts. On day 28, all ECs resulted in higher antioxidants than controls, OFI extracts resulted in higher cyaniding-3-O-rutinoside than chitosan, while 50% OFI treatment resulted in the highest catechin concentration. Therefore, OFI extracts are promising ECs for cherry storage since they exhibited no negative effect, improved quality and extended storage life by one week compared to the controls.
Collapse
Affiliation(s)
- Miltiadis V. Christopoulos
- Institute of Technology of Agricultural Product, Hellenic Agricultural Organization-DEMETER, S. Venizelou 1 Str., Lycovrissi, 14123 Attica, Greece;
| | - Dimitrios Gkatzos
- Institute of Technology of Agricultural Product, Hellenic Agricultural Organization-DEMETER, S. Venizelou 1 Str., Lycovrissi, 14123 Attica, Greece;
| | - Mina Kafkaletou
- Laboratory of Pomology, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece;
| | - Jinhe Bai
- Horticultural Research Laboratory, USDA-ARS, 2001 S. Rock Rd., Ft Pierce, FL 34945, USA;
| | - Dimitrios Fanourakis
- Laboratory of Quality and Safety of Agricultural Products, Landscape and Environment, Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University, Estavromenos, 71004 Heraklion, Greece;
| | - Giorgos Tsaniklidis
- Institute of Olive Tree, Subtropical Plants and Viticulture, Hellenic Agricultural Organization, ELGO-Dimitra, P.O. Box 2228, 71003 Heraklion, Greece;
| | - Eleni Tsantili
- Laboratory of Pomology, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece;
| |
Collapse
|
23
|
Fang H, Zhou Q, Yang Q, Zhou X, Cheng S, Wei B, Li J, Ji S. Influence of Combined Edible Coating with Chitosan and Tea Polyphenol on the Quality Deterioration and Health-promoting Compounds in Harvested Broccoli. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-021-02751-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
ZHANG W, LIN M, FENG X, YAO Z, WANG T, XU C. Effect of lemon essential oil-enriched coating on the postharvest storage quality of citrus fruits. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.125421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
| | - Mei LIN
- Zhejiang Institute of Citrus Research, China
| | - Xianju FENG
- Zhejiang Institute of Citrus Research, China
| | - Zhoulin YAO
- Zhejiang Institute of Citrus Research, China
| | - Tianyu WANG
- Zhejiang Institute of Citrus Research, China
| | - Chengnan XU
- Zhejiang Institute of Citrus Research, China
| |
Collapse
|
25
|
Li Y, Zhou Y, Wang Z, Cai R, Yue T, Cui L. Preparation and Characterization of Chitosan-Nano-ZnO Composite Films for Preservation of Cherry Tomatoes. Foods 2021; 10:foods10123135. [PMID: 34945686 PMCID: PMC8702072 DOI: 10.3390/foods10123135] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/03/2021] [Accepted: 12/15/2021] [Indexed: 01/04/2023] Open
Abstract
Chitosan is widely used as a natural preservative of fruits and vegetables, but its poor mechanical and water resistances have limited its application. Therefore, in this study, we prepared chitosan composite films by incorporating different amounts of nano-zinc oxide (nano-ZnO) to improve the mechanical properties of chitosan. We also assessed the antibacterial activity of these films against selected microorganisms. The addition of nano-ZnO improved the tensile strength (TS) and elongation at break (EAB) of the chitosan films and reduced their light transmittance. TS and EAB increased from 44.64 ± 1.49 MPa and 5.09 ± 0.38% for pure chitosan film to 46.79 ± 1.65 MPa and 12.26 ± 0.41% for a 0.6% nano-ZnO composite film, respectively. The ultraviolet light transmittance of composite films containing 0.2%, 0.4%, and 0.6% nano-ZnO at 600 nm decreased from 88.2% to 86.0%, 82.7%, and 81.8%, respectively. A disc diffusion test showed that the composite film containing 0.6% nano-ZnO had the strongest antibacterial activity against Alicyclobacillus acidoterrestris, Staphylococcus aureus, Escherichia coli, and Salmonella. In a 15-day preservation study, chitosan composite films containing 0.6% nano-ZnO maintained the soluble solid content of cherry tomatoes, effectively inhibited their respiration, and exhibited good antibacterial properties against the selected microorganisms. Overall, the prepared chitosan nano-ZnO composite film showed a good preservation effect on cherry tomatoes.
Collapse
Affiliation(s)
| | | | | | | | | | - Lu Cui
- Correspondence: Correspondence: ; Tel.: +86-29-87092486
| |
Collapse
|
26
|
Functionality of Films from Nigella sativa Defatted Seed Cake Proteins Plasticized with Grape Juice: Use in Wrapping Sweet Cherries. COATINGS 2021. [DOI: 10.3390/coatings11111383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The main aim of this work is to improve the functionality of Nigella sativa protein concentrate (NSPC) films by using grape juice (GJ). The film’s mechanical, antioxidant, and antimicrobial activities were evaluated. The obtained results showed, for the first time, that GJ at concentrations of 2%–10% (v/v) are able to act as plasticizer for the NSPC films with promising film properties. The results showed that the tensile strength and Young’s modulus of NSPC films were reduced significantly when the GJ increased. However, the NSPC films prepared with 6% GJ observed a higher elongation at break compared with other films. Moreover, the obtained films showed very interesting and promising results for their antioxidant and antimicrobial properties compared with the control films. The sweet cherries wrapped with NSPC film showed that the TSS (Brix) was significantly lower compared to the control, after 10 days of storage. However, the titratable acidity, pH value, and L* of all cherries, either wrapped or not, was not significantly different in all storage times. On the other hand, hue angle was significantly lower after 10 days of storage at −18 °C compared with control films. GJ has a multi-functional effect for protein-based films as plasticizer, antioxidant, and antimicrobial function.
Collapse
|
27
|
Saleem MS, Anjum MA, Naz S, Ali S, Hussain S, Azam M, Sardar H, Khaliq G, Canan İ, Ejaz S. Incorporation of ascorbic acid in chitosan-based edible coating improves postharvest quality and storability of strawberry fruits. Int J Biol Macromol 2021; 189:160-169. [PMID: 34411616 DOI: 10.1016/j.ijbiomac.2021.08.051] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 11/26/2022]
Abstract
Recent postharvest studies have shown that adding an antioxidative agent in a polysaccharide-based edible coating reduces postharvest losses and extends the shelf life of a coated fruit. Therefore, the effect of addition of ascorbic acid (AA, 1%) in chitosan-based coating (CH, 1%) on strawberry fruits under cold storage conditions at 4 ± 1 °C and 85 ± 5% RH was investigated for 15 days. It was observed that addition of AA in CH coating reduced weight loss, decay percentage, malondialdehyde content and hydrogen peroxide compared to CH alone. The combined CH + AA application also suppressed fruit softening by reducing cell wall degrading enzymes (i.e. polygalacturonase, cellulase and pectin methyl esterase) activities. In addition, AA incorporation catalyzed ROS scavenging enzymes (i.e. ascorbate peroxidase, catalase, peroxidase and superoxide dismutase) activities. CH + AA treatment also maintained fruit quality by conserving higher total soluble solids, titratable acidity, ascorbic acid content, total phenolics and antioxidant activity. Sensory quality (color, taste, glossiness and overall acceptability) of fruits coated with CH + AA treatment was also stable during storage. Conclusively, the combined CH + AA application is an effective approach to maintain the postharvest quality of strawberry fruits under cold storage.
Collapse
Affiliation(s)
| | - Muhammad Akbar Anjum
- Department of Horticulture, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Safina Naz
- Department of Horticulture, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Sajid Ali
- Department of Horticulture, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Sajjad Hussain
- Department of Horticulture, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Azam
- Institute of Horticultural Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Hasan Sardar
- Department of Horticulture, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Ghulam Khaliq
- Department of Horticulture, Faculty of Agriculture, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Balochistan, Pakistan
| | - İhsan Canan
- Department of Horticulture, Faculty of Agriculture and Natural Sciences, Abant İzzet Baysal University, Bolu 14030, Turkey
| | - Shaghef Ejaz
- Department of Horticulture, Bahauddin Zakariya University, Multan 60800, Pakistan.
| |
Collapse
|
28
|
Improving Fruit Quality, Bioactive Compounds, and Storage Life of Date Palm (Phoenix dactylifera L., cv. Barhi) Using Natural Elicitors. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7090293] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
“Barhi” date fruit is highly appreciated and widely consumed at the Bisr stage (first edible stage) of maturity. However, maintaining its quality for long periods of time after harvest and throughout marketing is a substantial challenge. Therefore, the objective of this study was to investigate the effects of preharvest spray treatments of 1% chitosan (Ch) in conjunction with 3% calcium chloride (Ca) and 2 mM salicylic acid (SA) on “Barhi” fruit’s shelf life, quality, and phytochemical composition at harvest and during cold storage. All treatments significantly delayed the ripening and decay of “Barhi” dates compared to controls. Ch treatment, followed by Ch + SA and Ch + SA + Ca, showed the lowest weight loss. Ch + Ca, Ch + SA + Ca, and Ch + SA treatments showed significantly lower levels of total soluble solids (TSS) compared to the control fruit. Ch + Ca and Ch + Ca + SA treatments showed no decayed fruit after 60 days of cold storage. At the end of storage time, the Ca treatment, followed by Ch + Ca + SA, showed the greatest total phenolic (TPC), flavonoids (TFC), and tannin (TTC) contents. Ch + SA + Ca, Ch + SA, and Ch showed significantly higher antioxidant and antimicrobial activities compared to controls. Based on these findings, these treatments may be recommended to prolong the shelf life of “Barhi” date fruit.
Collapse
|
29
|
Synergistic Effect of Preharvest Spray Application of Natural Elicitors on Storage Life and Bioactive Compounds of Date Palm (Phoenix dactylifera L., cv. Khesab). HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7060145] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite the immense capabilities of the date palm, maintaining the fruit’s quality, marketability, and shelf life is still a challenge. This study aimed to assess the synergistic effect of a preharvest spray application of a natural elicitor chitosan, (Ch) 1% alone and in combination with salicylic acid (SA) 2 mM and calcium chloride (Ca) 3%; (Ch,SA, Ca,Ch+Ca, Ch+SA, Ch+SA+Ca), on the quality parameters, storage life, and bioactive compounds content of date fruit from ‘Khasab’ cultivar during cold storage for 60 days. The obtained results revealed that all treatments significantly retard senescence/decay of the fruit compared to the control. Ch+SA treated fruit followed by Ch, and Ch+SA+Ca had the lowest weight loss, color change, and the least decay after 60 days of storage. Ch+Ca, SA, Ca treated fruit had significantly lower levels of total soluble solids and highest total phenolic, tannins, and flavonoids contents compared to the control fruit. Antioxidant activities were found in all treatments, with significantly higher effect in Ch+SA+Ca and Ch+SA compared to the control. Our results provide an evidence for a synergistic effect of elicitors combination to extend the shelf life of date fruit during cold storage by preserving its quality and decreasing senescence/decay and recommend it as a promising strategy.
Collapse
|
30
|
Jannatizadeh A, Aminian‐Dehkordi R, Razavi F. Effect of exogenous melatonin treatment on
Aspergillus
decay, aflatoxin B1 accumulation and nutritional quality of fresh “Akbari” pistachio fruit. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Abbasali Jannatizadeh
- Department of Horticultural Science Imam Khomeini International University Qazvin Iran
| | - Roghayeh Aminian‐Dehkordi
- Department of Genetics and Plant Breeding Faculty of Agriculture and Natural Resources Imam Khomeini International University Qazvin Iran
| | - Farhang Razavi
- Department of Horticulture Faculty of Agriculture University of Zanjan Zanjan Iran
| |
Collapse
|
31
|
The Role Of Browning Enzymes In Cherries. ACTA INNOVATIONS 2021. [DOI: 10.32933/actainnovations.38.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cherries contain significant amounts of important nutrients and bioactive food components including fibre, polyphenols, carotenoids, vitamin C, potassium. They are also good source of tryptophan, serotonin, and melatonin. Beside the fact that cherries are considered as an excellent source of numerous nutrients and they also present a low caloric content. These facts lead to their increasing popularity in the human diet. Numerous studies suggest that their regular consumption has a positive effect on health and the well-being of individuals. Another bioactive food components found in cherries are enzymes. The interest in research about enzymes in cherries is not so significant as for other compounds like polyphenols or vitamins. However, number of studies were carried out to characterise enzymes and their function in cherries especially with relation to extending their shelf life. The aim of this work is to give a brief overview of latest research on browning enzymes, softening enzymes and glutathione S-transferase.
Collapse
|
32
|
Effect of Edible Carboxymethyl Chitosan-Gelatin Based Coating on the Quality and Nutritional Properties of Different Sweet Cherry Cultivars during Postharvest Storage. COATINGS 2021. [DOI: 10.3390/coatings11040396] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sweet cherry has many cultivars with different storability and nutritional properties. To reveal the reasons for the differences in storability among cultivars and improve the quality of sweet cherries, the surface microstructure of four representative sweet cherry cultivars (Red Light, Ranier, Red Agate, Friendship) epidermis and peduncle at harvest were examined and the effects of carboxymethyl chitosan-gelatin (CMCS-GL) based edible coating incorporating CaCl2 and ascorbic acid (AA) (AA-CaCl2-CMCS-GL) on the quality and nutritional characteristics of sweet cherry were evaluated. Results showed there were significant differences in the wax distribution of the epidermis and the number of stomata on the peduncle surface between four cultivars of sweet cherries at harvest, which was closely related to fruit decay ratio during storage. AA-CaCl2-CMCS-GL coating delayed the onset of decay and the fruit decay ratio in coated groups (3.0%–15.3%) was significantly lower than in control groups (17.7%–63.0%) after 33 d storage. The coating also helped to maintain the quality and nutritional characteristics of four sweet cherry cultivars, including reducing weight loss, maintaining better skin color, peduncle freshness, higher fruit firmness, titratable acidity, AA, total phenolics content, total anthocyanins concentration, and antioxidant capacity. These results suggested that AA-CaCl2-CMCS-GL coating could be considered as a new preservation method for improving postharvest quality and nutritional properties of different sweet cherry cultivars.
Collapse
|
33
|
Adiletta G, Di Matteo M, Petriccione M. Multifunctional Role of Chitosan Edible Coatings on Antioxidant Systems in Fruit Crops: A Review. Int J Mol Sci 2021; 22:2633. [PMID: 33807862 PMCID: PMC7961546 DOI: 10.3390/ijms22052633] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 03/02/2021] [Indexed: 12/02/2022] Open
Abstract
Chitosan-based edible coatings represent an eco-friendly and biologically safe preservative tool to reduce qualitative decay of fresh and ready-to-eat fruits during post-harvest life due to their lack of toxicity, biodegradability, film-forming properties, and antimicrobial actions. Chitosan-based coatings modulate or control oxidative stress maintaining in different manner the appropriate balance of reactive oxygen species (ROS) in fruit cells, by the interplay of pathways and enzymes involved in ROS production and the scavenging mechanisms which essentially constitute the basic ROS cycle. This review is carried out with the aim to provide comprehensive and updated over-view of the state of the art related to the effects of chitosan-based edible coatings on anti-oxidant systems, enzymatic and non-enzymatic, evaluating the induced oxidative damages during storage in whole and ready-to-eat fruits. All these aspects are broadly reviewed in this review, with particular emphasis on the literature published during the last five years.
Collapse
Affiliation(s)
- Giuseppina Adiletta
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy; (G.A.); (M.D.M.)
| | - Marisa Di Matteo
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy; (G.A.); (M.D.M.)
| | - Milena Petriccione
- CREA-Centre for Olive, Fruit and Citrus Crops, Via Torrino 3, 81100 Caserta, Italy
| |
Collapse
|
34
|
Gutiérrez-Jara C, Bilbao-Sainz C, McHugh T, Chiou BS, Williams T, Villalobos-Carvajal R. Effect of Cross-Linked Alginate/Oil Nanoemulsion Coating on Cracking and Quality Parameters of Sweet Cherries. Foods 2021; 10:449. [PMID: 33670567 PMCID: PMC7922150 DOI: 10.3390/foods10020449] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/06/2021] [Accepted: 02/09/2021] [Indexed: 11/16/2022] Open
Abstract
The cracking of sweet cherries causes significant crop losses. Sweet cherries (cv. Bing) were coated by electro-spraying with an edible nanoemulsion (NE) of alginate and soybean oil with or without a CaCl2 cross-linker to reduce cracking. Coated sweet cherries were stored at 4 °C for 28 d. The barrier and fruit quality properties and nutritional values of the coated cherries were evaluated and compared with those of uncoated sweet cherries. Sweet cherries coated with NE + CaCl2 increased cracking tolerance by 53% and increased firmness. However, coated sweet cherries exhibited a 10% increase in water loss after 28 d due to decreased resistance to water vapor transfer. Coated sweet cherries showed a higher soluble solid content, titratable acidity, antioxidant capacity, and total soluble phenolic content compared with uncoated sweet cherries. Therefore, the use of the NE + CaCl2 coating on sweet cherries can help reduce cracking and maintain their postharvest quality.
Collapse
Affiliation(s)
- Camilo Gutiérrez-Jara
- Food Engineering Department, Universidad del Bío-Bío, P.O. Box 447, Av. Andrés Bello 720, Chillán 3800708, Chile;
| | - Cristina Bilbao-Sainz
- Western Regional Research Center, United States Department of Agriculture, Albany, CA 94710, USA; (C.B.-S.); (T.M.); (B.-S.C.); (T.W.)
| | - Tara McHugh
- Western Regional Research Center, United States Department of Agriculture, Albany, CA 94710, USA; (C.B.-S.); (T.M.); (B.-S.C.); (T.W.)
| | - Bor-Sen Chiou
- Western Regional Research Center, United States Department of Agriculture, Albany, CA 94710, USA; (C.B.-S.); (T.M.); (B.-S.C.); (T.W.)
| | - Tina Williams
- Western Regional Research Center, United States Department of Agriculture, Albany, CA 94710, USA; (C.B.-S.); (T.M.); (B.-S.C.); (T.W.)
| | - Ricardo Villalobos-Carvajal
- Food Engineering Department, Universidad del Bío-Bío, P.O. Box 447, Av. Andrés Bello 720, Chillán 3800708, Chile;
| |
Collapse
|
35
|
Molaei S, Soleimani A, Rabiei V, Razavi F. Impact of chitosan in combination with potassium sorbate treatment on chilling injury and quality attributes of pomegranate fruit during cold storage. J Food Biochem 2021; 45:e13633. [PMID: 33528052 DOI: 10.1111/jfbc.13633] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/04/2021] [Accepted: 01/10/2021] [Indexed: 11/27/2022]
Abstract
The impact of chitosan (CH) and potassium sorbate (PS) on quality attributes of pomegranate fruits (cv. Malas e Saveh) was evaluated during 90 days of storage at 4°C and 85%-90% relative humidity. The CH as well as the combined treatments (CH + PS) were effective in decreasing the chilling injury (CI) symptoms, electrolyte leakage, and malondialdehyde contents of fruit peel. Furthermore, CH, PS, and CH + PS treatments enhanced the activity of DPPH radical scavenging, and antioxidant enzymes of arils, and preserved the ascorbic acid content at high levels during the storage period. Fruits treated with CH1% + PS10% and CH2% + PS10% exhibited the lowest decay incidence and weight loss. Higher content of arils' phenols, flavonoids, and anthocyanin was observed in treated-fruits as a result of more activity of phenylalanine ammonia-lyase (PAL) and low activity of polyphenol oxidase (PPO). Consequently, CH + PS showed positive effects on the storage life of pomegranate fruits in terms of CI, decay incidence, and also nutritional values. PRACTICAL APPLICATIONS: Enhancement of chilling tolerance of pomegranate fruits during cold storage condition is a crucial issue. Application of CH coating alone or in combination with potassium sorbate could decrease the CI symptoms and preserved peel cell membrane integrity by maintaining electrolyte leakage (EL) and malondialdehyde in lower levels. Also, these treatments prevent weight loss and decay incidence in peel, and increase the activity of phenylpropanoid pathway and antioxidant systems in arils. All in all, usage of CH edible coating (2%) plus PS (10%) illustrated high efficiency in alleviating CI, decay incidence, and preserving nutritional quality of pomegranate fruits.
Collapse
Affiliation(s)
- Sanaz Molaei
- Department of Horticulture, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Ali Soleimani
- Department of Horticulture, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Vali Rabiei
- Department of Horticulture, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Farhang Razavi
- Department of Horticulture, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| |
Collapse
|
36
|
Arabpoor B, Yousefi S, Weisany W, Ghasemlou M. Multifunctional coating composed of Eryngium campestre L. essential oil encapsulated in nano-chitosan to prolong the shelf-life of fresh cherry fruits. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106394] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
Bianchi F, Fornari F, Riboni N, Spadini C, Cabassi CS, Iannarelli M, Carraro C, Mazzeo PP, Bacchi A, Orlandini S, Furlanetto S, Careri M. Development of novel cocrystal-based active food packaging by a Quality by Design approach. Food Chem 2021; 347:129051. [PMID: 33476921 DOI: 10.1016/j.foodchem.2021.129051] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 10/22/2022]
Abstract
A way to reduce food waste is related to the increase of the shelf-life of food as a result of improving the package type. An innovative active food packaging material based on cocrystallization of microbiologically active compounds present in essential oils i.e. carvacrol, thymol and cinnamaldehyde was developed following the Quality by Design principles. The selected active components were used to produce antimicrobial plastic films with solidified active ingredients on their surface characterized by antimicrobial properties against four bacterial strains involved in fruit and vegetable spoilage. The developed packaging prototypes exhibited good antimicrobial activity in vitro providing inhibition percentage of 69 (±15)% by contact and inhibition diameters of 32 (±6) mm in the gas phase, along with a prolonged release of the active components. Finally, the prolonged shelf-life of grape samples up to 7 days at room temperature was demonstrated.
Collapse
Affiliation(s)
- Federica Bianchi
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 17/A, 43124 Parma, Italy; University of Parma, Interdepartmental Center for Packaging (CIPACK), Parco Area delle Scienze, 43124 Parma, Italy.
| | - Fabio Fornari
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Nicolò Riboni
- University of Parma, Center for Energy and Environment (CIDEA), Parco Area delle Scienze 42, 43124 Parma, Italy
| | - Costanza Spadini
- University of Parma, Department of Veterinary Sciences, Strada del Taglio 10, 43121 Parma, Italy
| | - Clotilde Silvia Cabassi
- University of Parma, Department of Veterinary Sciences, Strada del Taglio 10, 43121 Parma, Italy
| | - Mattia Iannarelli
- University of Parma, Department of Veterinary Sciences, Strada del Taglio 10, 43121 Parma, Italy
| | - Claudia Carraro
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Paolo Pio Mazzeo
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Alessia Bacchi
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 17/A, 43124 Parma, Italy; University of Parma, Biopharmanet-TEC, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Serena Orlandini
- University of Florence, Department of Chemistry "U. Schiff", Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Sandra Furlanetto
- University of Florence, Department of Chemistry "U. Schiff", Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| | - Maria Careri
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 17/A, 43124 Parma, Italy; University of Parma, Interdepartmental Center on Safety, Technologies and Agri-Food Innovation (SITEIA.PARMA), Parco Area delle Scienze, 43124 Parma, Italy
| |
Collapse
|
38
|
Xin Y, Liu Z, Zhang Y, Shi X, Chen F, Liu K. Effect of temperature fluctuation on colour change and softening of postharvest sweet cherry. RSC Adv 2021; 11:22969-22982. [PMID: 35480452 PMCID: PMC9034382 DOI: 10.1039/d1ra02610k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/15/2021] [Indexed: 11/24/2022] Open
Abstract
The inevitable temperature fluctuation during cold chain transport accelerates the colour change and softening of postharvest sweet cherry, leading to further deterioration of quality and decline of the marketable value of cherries. The influences of temperature fluctuation on the contents of total anthocyanin, phenolic, malondialdehyde, and sodium carbonate-soluble pectin (SSP), as well as the activities of polyphenoloxidase (PPO) and peroxidase (POD) in sweet cherry, were assessed. In addition, the effects of temperature fluctuation on the activities of polygalacturonase (PG), pectin methyl esterase (PME), and beta-galactosidase (β-Gal) activities, and the paPG, paPME, and paPME genes expression were studied. The evolution of SSP nano-morphology was measured by atomic force microscopy. The results showed that the temperature fluctuation promoted anthocyanin synthesis, phenolic metabolism, and malondialdehyde accumulation, which immediately affected the brightness (6.2% lower than that of the cherry stored at 5 °C) of sweet cherry. Temperature fluctuation also led to a significant increase in POD and PPO activities during subsequent isothermal storage, accelerating the colour change (24.8% more than that of the cherry stored at 5 °C), which almost reached the level observed during constant 10 °C storage. In addition, temperature fluctuation not only affected the firmness (13.7% lower than that of the cherry stored at a constant temperature of 5 °C) of fruit immediately, but also, during subsequent isothermal storage, accelerated the deterioration of firmness (19.6% lower than that of the cherry stored at a constant temperature of 5 °C). This could be explained by temperature fluctuation inducing the upregulation of paPG1-3, paPME3, and paPME4 expression, which led to a 3.5 and 1.5-fold increase in PG and PME activity, respectively. This led to degradation of the aggregated SSP to its nanostructural basic units. Furthermore, temperature fluctuation resulted in upregulated expression of paβ-Gal1 and paβ-Gal3 and enhanced β-Gal activity during subsequent isothermal storage. The results provide theoretical guidance for the transportation, storage, and preservation of postharvest sweet cherry. The inevitable temperature fluctuation induced anthocyanin synthesis, phenolic metabolism, and alkali-soluble pectin degradation, which lead to sweet cherry enzymatic browning and softening.![]()
Collapse
Affiliation(s)
- Ying Xin
- College of Food Science and Technology
- Henan University of Technology
- Zhengzhou
- P. R. China
| | - Zhenzhen Liu
- College of Food Science and Technology
- Henan University of Technology
- Zhengzhou
- P. R. China
| | - Yuanwei Zhang
- College of Food Science and Technology
- Henan University of Technology
- Zhengzhou
- P. R. China
| | - Xiaofei Shi
- College of Food Science and Technology
- Henan University of Technology
- Zhengzhou
- P. R. China
| | - Fusheng Chen
- College of Food Science and Technology
- Henan University of Technology
- Zhengzhou
- P. R. China
| | - Kunlun Liu
- College of Food Science and Technology
- Henan University of Technology
- Zhengzhou
- P. R. China
| |
Collapse
|
39
|
Combining Chitosan and Vanillin to Retain Postharvest Quality of Tomato Fruit during Ambient Temperature Storage. COATINGS 2020. [DOI: 10.3390/coatings10121222] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Tomato, being a climacteric crop, has a relatively short postharvest life due to several factors such as postharvest diseases, accelerated ripening, and senescence that trigger losses in quantity and quality. Chemicals are widely used to control postharvest disease. Inaptly, it leads to detrimental effects on human health, environment and it is leads to increased disease resistance. Chitosan and vanillin could be an alternative to disease control, maintain fruit quality, and prolong shelf life. The aim of this research was to evaluate the potential of chitosan and vanillin coating on the tomato fruit’s physicochemical quality during storage at 26 ± 2 °C/60 ± 5% relative humidity. Chitosan and vanillin in aqueous solutions i.e., 0.5% chitosan + 10 mM vanillin, 1% chitosan + 10 mM vanillin, 1.5% chitosan + 10 mM vanillin, 0.5% chitosan + 15 mM vanillin, 1% chitosan + 15 mM vanillin, and 1.5% chitosan + 15 mM vanillin, respectively, were used as edible coating. The analysis was evaluated at 5-day intervals. The results revealed that 1.5% chitosan + 15 mM vanillin significantly reduced disease incidence and disease severity by 74.16% and 79%, respectively, as well delaying weight loss up to 90% and reducing changes in firmness, soluble solids concentration, and color score. These coatings also reduced the rate of respiration and the rate of ethylene production in comparison to the control and fruit treated with 0.5% chitosan + 10 mM vanillin. Furthermore, ascorbic acid content and the antioxidant properties of tomato were retained while shelf life was prolonged to 25 days without any negative effects on fruit postharvest quality.
Collapse
|
40
|
Parsa Z, Roozbehi S, Hosseinifarahi M, Radi M, Amiri S. Integration of pomegranate peel extract (PPE) with calcium sulphate (CaSO
4
): A friendly treatment for extending shelf‐life and maintaining postharvest quality of sweet cherry fruit. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.15089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ziba Parsa
- Department of Food Science and technology Yasooj Branch Islamic Azad University Yasooj Iran
| | - Sahar Roozbehi
- Department of Biochemistry Tarbiat Modares University Tehran Iran
| | - Mehdi Hosseinifarahi
- Department of Horticultural Science Yasooj Branch Islamic Azad University Yasooj Iran
| | - Mohsen Radi
- Department of Food Science and technology Yasooj Branch Islamic Azad University Yasooj Iran
| | - Sedigheh Amiri
- Department of Food Science and technology Yasooj Branch Islamic Azad University Yasooj Iran
| |
Collapse
|
41
|
Yang X, Yan R, Chen Q, Fu M. Analysis of flavor and taste attributes differences treated by chemical preservatives: a case study in strawberry fruits treated by 1-methylcyclopropene and chlorine dioxide. Journal of Food Science and Technology 2020; 57:4371-4382. [PMID: 33087951 DOI: 10.1007/s13197-020-04474-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/28/2020] [Accepted: 04/23/2020] [Indexed: 11/26/2022]
Abstract
Flavor and taste attributes of fruits varied by different preservatives treatments. Changes in sugars, organic acids, amino acids as well as volatiles of strawberries treated with 1-methylcyclopropene (1-MCP) and/or chlorine dioxide (ClO2) were evaluated during storage period in this study. Our results revealed that the decreases of tartaric acid, malic acid, citric acid, titratable acidity (TA), sucrose and soluble sugar contents were significantly inhibited by 1-MCP + ClO2. The fructose and glucose contents of all groups remained stable and slightly increased at the last period of 10 days. However, different treatments had no influence on content of succinic acid. Moreover, the highest sweet taste (77.37 mg 100 g-1 fresh weight) and lowest bitter taste (3.44 mg 100 g-1 fresh weight) free amino acids (FAA) were observed in the strawberries treated by 1-MCP combined with ClO2 treatment as compared to other treatments and control. (E)-2-hexenal was the most abundant volatile and showed a significant increase trend during strawberry storage. More interestingly, ethyl butyrate, fruit-like aroma, could be recovered in content by 1-MCP, ClO2 alone and their combination treatment. Compared with other treatments, the significant different flavor in ClO2 treatment was identified by principle component analysis. In addition, methyl hexanoate and 4-methoxy-2,5-dimethylfuran-3(2H)-one (DMMF) were the major factors that affected the volatile organic compounds (VOCs) of strawberries through the whole storage. Taken together, 1-MCP coupled with ClO2 could be a complex preservative to maintain strawberries quality by regulating the flavor and taste attributes.
Collapse
Affiliation(s)
- Xiaoying Yang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
| | - Ran Yan
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
| | - Qingmin Chen
- Department of Food Science and Engineering, Shandong Agriculture and Engineering University, Jinan, People's Republic of China
| | - Maorun Fu
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
| |
Collapse
|
42
|
Tokatlı K, Demirdöven A. Influences of chitosan coatings on functional compounds of sweet cherries. Journal of Food Science and Technology 2020; 58:1808-1818. [PMID: 33897017 DOI: 10.1007/s13197-020-04692-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/27/2020] [Accepted: 08/04/2020] [Indexed: 11/26/2022]
Abstract
In this study, sweet cherries were coated with four chitosans (1%) [two of them produced from shrimp waste from Marmara Sea in Turkey (Chitosan-1, Chitosan-2) and two of them commercially produced (Commercial-1 and Commercial-2)] which have different deacetylation degree, and molecular weight (Chitosan-1, deacetylation degree: 78.20%, molecular weight: 182 kDa; Chitosan-2, deacetylation degree: 84.95%, molecular weight: 127 kDa; Commercial-1, deacetylation degree: 81.22%, molecular weight: 273 kDa; Commercial-2, deacetylation degree: 75.12%, molecular weight: 407 kDa) and stored at 4 °C for 25 days, and 20 °C for 15 days. Changes in the total phenolic content, antioxidant capacity, total anthocyanin content, ascorbic acid, total pectin content, firmness, and colour values were evaluated. The results revealed that Chitosan-1 had the highest firmness value; Chitosan-2 showed the highest total anthocyanin and total phenolic content and Commercial-1 exhibited the highest antioxidant capacity and ascorbic acid content at 4 °C. Furthermore, it was found that Chitosan-1 demonstrated the highest total phenolic content; Chitosan-2 displayed the highest total anthocyanin; Commercial-1 had the highest firmness value and C-2 exhibited the highest ascorbic acid content at 20 °C. In conclusion, each tested chitosan coatings have different effects on different quality attributes at different storage temperatures.
Collapse
Affiliation(s)
- Kader Tokatlı
- Faculty of Health Science, Department of Nutrition and Dietetics, Tokat Gaziosmanpasa University, Tasliciftlik, 60250 Tokat, Turkey
| | - Aslıhan Demirdöven
- Faculty of Engineering and Architecture, Food Engineering Department, Tokat Gaziosmanpasa University, Tasliciftlik, 60250 Tokat, Turkey
| |
Collapse
|
43
|
Effect of nano-SiO 2 packing on postharvest quality and antioxidant capacity of loquat fruit under ambient temperature storage. Food Chem 2020; 315:126295. [PMID: 32014671 DOI: 10.1016/j.foodchem.2020.126295] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/23/2019] [Accepted: 01/24/2020] [Indexed: 12/15/2022]
Abstract
Effect of nano-SiO2 packing on postharvest quality and antioxidant capacity of two different loquat cultivars (white-flesh 'Qingzhong' and red-flesh 'Dawuxing') were determined. Results showed that nano-SiO2 packing significantly inhibited internal browning, retarded the decline of total soluble solids, titratable acidity, ascorbic acid content and extractable juice in both cultivars. Decay index of nano-SiO2 packing in 'Dawuxing' and 'Qingzhong' was 53.25% and 42.84% lower than control after the day 12, respectively. Meanwhile, nano-SiO2 packing enhanced the contents of individual phenolic compounds and soluble sugar compounds, induced higher superoxide dismutase and catalase activities, which contributed to improving 1,1-diphenyl-2-picrylhydrazyl and hydroxyl radical scavenging capacity. Furthermore, the contents of total soluble solids, ascorbic acid and soluble sugar were higher in 'Qingzhong' than those in 'Dawuxing', which dedicated to better quality. These results indicated that nano-SiO2 packing was a promising approach in inhibiting decay, maintaining quality and expanding shelf life of loquats.
Collapse
|
44
|
Goffi V, Magri A, Botondi R, Petriccione M. Response of antioxidant system to postharvest ozone treatment in 'Soreli' kiwifruit. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:961-968. [PMID: 31591725 DOI: 10.1002/jsfa.10055] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/10/2019] [Accepted: 09/14/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Among the challenges for postharvest researchers is that of understanding the physiological and biochemical pathways associated with postharvest fruit decay. Fruit senescence directly affects sensorial and nutritional quality during postharvest life. It has been clarified that reactive oxygen species and oxidative damage are responsible for fruit senescence. Some cultivars of yellow-fleshed kiwifruit can be stored for a short period compared with green-fleshed kiwifruit. Postharvest performance is affected by the physiological state of the fruit at harvest, associated with its postharvest management. Among several postharvest applications, ozone treatment is considered as a cost-effective and eco-friendly food-processing technology to preserve the fruits' quality during cold storage. In this study, we investigated the influence of ozone, after gradual cooling treatment, on the antioxidant defense system in Actinidia chinensis, 'Soreli'. RESULTS Bioactive compound content decreased during cold storage, and ozone treatment enhanced the activities of superoxide dismutase and catalase during cold storage. This treatment preserved membrane integrity by inhibiting lipoxygenase activity and malondialdehyde accumulation. A multivariate statistical approach, using principal component analysis, provided the global response to the effect of ozone postharvest treatment during cold storage in kiwifruit 'Soreli'. CONCLUSION Ozone treatment improves the efficiency of antioxidative system and storability of 'Soreli' kiwifruits. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Valentina Goffi
- Department for Innovation in Biological, Agro-Food and Forest systems (DIBAF), Università degli Studi della Tuscia, Viterbo, Italy
| | - Anna Magri
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia agraria (CREA), Centro di ricerca Olivicoltura, Frutticoltura e Agrumicoltura, Caserta, Italy
| | - Rinaldo Botondi
- Department for Innovation in Biological, Agro-Food and Forest systems (DIBAF), Università degli Studi della Tuscia, Viterbo, Italy
| | - Milena Petriccione
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia agraria (CREA), Centro di ricerca Olivicoltura, Frutticoltura e Agrumicoltura, Caserta, Italy
| |
Collapse
|
45
|
Effect of Salicylic Acid Incorporated Chitosan Coating on Shelf Life Extension of Fresh In-Hull Pistachio Fruit. FOOD BIOPROCESS TECH 2019. [DOI: 10.1007/s11947-019-02383-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
46
|
Comparative Physiological and Transcriptomic Analyses Reveal Mechanisms of Improved Osmotic Stress Tolerance in Annual Ryegrass by Exogenous Chitosan. Genes (Basel) 2019; 10:genes10110853. [PMID: 31661916 PMCID: PMC6895815 DOI: 10.3390/genes10110853] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/20/2019] [Accepted: 10/25/2019] [Indexed: 11/17/2022] Open
Abstract
Water deficit adversely affects the growth and productivity of annual ryegrass (Lolium multiflorum Lam.). The exogenous application of chitosan (CTS) has gained extensive interests due to its effect on improving drought resistance. This research aimed to determine the role of exogenous CTS on annual ryegrass in response to water stress. Here, we investigated the impact of exogenous CTS on the physiological responses and transcriptome changes of annual ryegrass variety "Tetragold" under osmotic stress induced by exposing them to 20% polyethylene glycol (PEG)-6000. Our experimental results demonstrated that 50 mg/L exogenous CTS had the optimal effect on promoting seed germination under osmotic stress. Pre-treatment of annual ryegrass seedlings with 500 mg/L CTS solution reduced the level of electrolyte leakage (EL) as well as the contents of malondialdehyde (MDA) and proline and enhanced the activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbic acid peroxidase (APX) under osmotic stress. In addition, CTS increased soluble sugars and chlorophyll (Chl) content, net photosynthetic rate (A), stomatal conductance (gs), water use efficiency (WUE), and transpiration rate (E) in annual ryegrass seedlings in response to three and six days of osmotic stress. Transcriptome analysis further provided a comprehensive understanding of underlying molecular mechanisms of CTS impact. To be more specific, in contrast of non-treated seedlings, the distinct changes of gene expressions of CTS-treated seedlings were shown to be tightly related to carbon metabolism, photosynthesis, and plant hormone. Altogether, exogenous CTS could elicit drought-related genes in annual ryegrass, leading to resistance to osmotic stress via producing antioxidant enzymes and maintaining intact cell membranes and photosynthetic rates. This robust evidence supports the potential of the application of exogenous CTS, which will be helpful for determining the suitability and productivity of agricultural crops.
Collapse
|
47
|
Goffi V, Zampella L, Forniti R, Petriccione M, Botondi R. Effects of ozone postharvest treatment on physicochemical and qualitative traits of Actinidia chinensis 'Soreli' during cold storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:5654-5661. [PMID: 31141163 DOI: 10.1002/jsfa.9823] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Ozone has been used for improving the postharvest life of fruits and vegetables. Ozonation, an alternative decontamination method, can be applied effectively to perishable commodities immediately after harvest. Kiwifruit is a subtropical climacteric fruit that is less able to acclimate and is susceptible to low temperatures. In this study, we investigated the influence of ozone and different storage temperatures on the physico-chemical and qualitative features in Actinidia chinensis 'Soreli'. The fruits were treated with a continuous flow of ozone in air (300 ppb), stored at 2 and 4 °C for 60 days, and sampled every 15 days. RESULTS It was found that ozone treatment induced the ripening process; this was evident at the end of the storage, with higher soluble solids content for ozone-treated fruits at 2 and 4 °C. Storage temperatures and gaseous ozone treatment influenced in a different manner the bioactive compounds, such as polyphenols, flavonoids, ascorbic acid, and carotenoids. Additionally, under gaseous ozone storage, microbial growth was delayed, improving the microbial quality index when the fruits were stored at the lowest storage temperature (2 °C). Principal component analysis highlighted that the effects of storage temperature on physico-chemical and bioactive compounds were greater than the postharvest treatment. CONCLUSION Storage temperature influenced the postharvest life of 'Soreli'. Storage at 2 °C and under 300 ppb gaseous ozone improved the yellow-fleshed fruit storage life. However, storage at 4 °C under 300 ppb gaseous ozone did not show advantages in preserving the fruit quality. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Valentina Goffi
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), Università degli Studi della Tuscia, Viterbo, Italy
| | - Luigi Zampella
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia agraria (CREA), Centro di ricerca per Olivicoltura, Frutticoltura e Agrumicoltura, Caserta, Italy
| | - Roberto Forniti
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), Università degli Studi della Tuscia, Viterbo, Italy
| | - Milena Petriccione
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia agraria (CREA), Centro di ricerca per Olivicoltura, Frutticoltura e Agrumicoltura, Caserta, Italy
| | - Rinaldo Botondi
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), Università degli Studi della Tuscia, Viterbo, Italy
| |
Collapse
|
48
|
Chang X, Lu Y, Li Q, Lin Z, Qiu J, Peng C, Brennan CS, Guo X. The Combination of Hot Air and Chitosan Treatments on Phytochemical Changes during Postharvest Storage of 'Sanhua' Plum Fruits. Foods 2019; 8:foods8080338. [PMID: 31409061 PMCID: PMC6722782 DOI: 10.3390/foods8080338] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/05/2019] [Accepted: 08/08/2019] [Indexed: 02/07/2023] Open
Abstract
Plum fruits would become putrid quickly after harvest. In order to prolong postharvest life, 'Sanhua' plum fruits were treated by hot air combined with a chitosan coating, and stored at low temperature. Fruit firmness, total soluble solids, total phytochemical contents were evaluated along with total antioxidant activities and phytochemical components. Results showed that hot air treatment delayed softening process of plum fruit. The total phenolics and flavonoids accumulated and antioxidant activities increased in both control and treatment samples during storage. These values in the samples treated with hot air and chitosan were all higher than control and hot air treatments. Phytochemicals of epicatechin, cyanidin, pelargonidin, and hesperetin were all upregulated by hot air and chitosan treatment, especially epicatechin. This suggested that chitosan might play an important role in regulating phytochemical profiles of 'Sanhua' plum fruits during storage.
Collapse
Affiliation(s)
- Xiaoxiao Chang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of SouthSubtropical Fruit Biology and Genetics Resource Utilization, Ministry of Agriculture; Guangdong Province KeyLaboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China
| | - Yusheng Lu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of SouthSubtropical Fruit Biology and Genetics Resource Utilization, Ministry of Agriculture; Guangdong Province KeyLaboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China
| | - Quan Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhixiong Lin
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of SouthSubtropical Fruit Biology and Genetics Resource Utilization, Ministry of Agriculture; Guangdong Province KeyLaboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China
| | - Jishui Qiu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of SouthSubtropical Fruit Biology and Genetics Resource Utilization, Ministry of Agriculture; Guangdong Province KeyLaboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China
| | - Cheng Peng
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of SouthSubtropical Fruit Biology and Genetics Resource Utilization, Ministry of Agriculture; Guangdong Province KeyLaboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China
| | - Charles Stephen Brennan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Department of Wine, Food Molecular Biosciences, Lincoln University, 7647 Lincoln, New Zealand
| | - Xinbo Guo
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
49
|
Effects of calcium and pectin methylesterase on quality attributes and pectin morphology of jujube fruit under vacuum impregnation during storage. Food Chem 2019; 289:40-48. [DOI: 10.1016/j.foodchem.2019.03.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 03/03/2019] [Accepted: 03/05/2019] [Indexed: 01/19/2023]
|
50
|
Effect of Alginate and Chitosan Edible Coating Enriched with Olive Leaves Extract on the Shelf Life of Sweet Cherries (Prunus avium L.). J FOOD QUALITY 2019. [DOI: 10.1155/2019/8192964] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Edible film coatings are widely used as a protective barrier for the reduction of transpiration and respiration, therefore reducing the ripening process in fruits and vegetables and improving their quality. The influence of chitosan 1% and alginate 3% enriched with olive leaves extract (OLE) on the quality of sweet cherries was studied. Overall, the ripening process and the increase in anthocyanins were found to be delayed with the use of coating particularly those composed of chitosan in combination with OLE. Ascorbic acid and total phenolic contents were recorded with restricted loss at the end of 20 days of storage in both chitosan- and alginate-coated samples enriched with OLE. Higher values of antioxidant activity expressed as the percentage inhibition of DPPH were reported in correlation with phytochemical content. It could be concluded that chitosan and alginate coating enriched with OLE could be efficient for prolonging the shelf life of sweet cherries.
Collapse
|