1
|
Zadegan S, Vahidi B, Nourmohammadi J, Shojaee A, Haghighipour N. Evaluation of rabbit adipose derived stem cells fate in perfused multilayered silk fibroin composite scaffold for Osteochondral repair. J Biomed Mater Res B Appl Biomater 2024; 112:e35396. [PMID: 38433653 DOI: 10.1002/jbm.b.35396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/30/2023] [Accepted: 02/18/2024] [Indexed: 03/05/2024]
Abstract
Development of osteochondral tissue engineering approaches using scaffolds seeded with stem cells in association with mechanical stimulations has been recently considered as a promising technique for the repair of this tissue. In this study, an integrated and biomimetic trilayered silk fibroin (SF) scaffold containing SF nanofibers in each layer was fabricated. The osteogenesis and chondrogenesis of stem cells seeded on the fabricated scaffolds were investigated under a perfusion flow. 3-Dimethylthiazol-2,5-diphenyltetrazolium bromide assay showed that the perfusion flow significantly enhanced cell viability and proliferation. Analysis of gene expression by stem cells revealed that perfusion flow had significantly upregulated the expression of osteogenic and chondrogenic genes in the bone and cartilage layers and downregulated the hypertrophic gene expression in the intermediate layer of the scaffold. In conclusion, applying flow perfusion on the prepared integrated trilayered SF-based scaffold can support osteogenic and chondrogenic differentiation for repairing osteochondral defects.
Collapse
Affiliation(s)
- Sara Zadegan
- Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Bahman Vahidi
- Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Jhamak Nourmohammadi
- Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Asiyeh Shojaee
- Division of Physiology, Department of Basic Science, Faculty of Veterinary, Amol University of Special Modern Technologies, Amol, Iran
| | | |
Collapse
|
2
|
Song JS, Hong KT, Kim NM, Hwangbo BH, Yang BS, Victoroff BN, Choi NH. Clinical and Magnetic Resonance Imaging Outcomes After Human Cord Blood-Derived Mesenchymal Stem Cell Implantation for Chondral Defects of the Knee. Orthop J Sports Med 2023; 11:23259671231158391. [PMID: 37123990 PMCID: PMC10134134 DOI: 10.1177/23259671231158391] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/17/2023] [Indexed: 05/02/2023] Open
Abstract
Background There is a paucity of literature reporting clinical and magnetic resonance imaging (MRI) outcomes after allogeneic umbilical cord blood-derived mesenchymal stem cell (UCB-MSC) implantation for chondral defects of the knee. Purpose To report clinical and MRI outcomes after UCB-MSC implantation for chondral lesions of the knee. Study Design Case series; Level of evidence, 4. Methods Inclusion criteria were patients aged between 40 and 70 years with focal chondral lesions of grade 3 or 4 on the medial femoral condyle, defect sizes >4 cm2, and intact ligaments. Exclusion criteria were patients who required realignment osteotomy or who had a meniscal deficiency, ligamentous instability, or a concomitant full-thickness chondral defect in the lateral or patellofemoral compartment. A mixture of human UCB-MSCs and sodium hyaluronate was implanted into the chondral defect through mini-arthrotomy. MRI at 1-year follow-up was performed to evaluate repaired cartilage hypertrophy. Repaired cartilage thickness was measured, and hypertrophy was classified as grade 1 (<125%), grade 2 (<150%), or grade 3 (<200%). Patient-reported outcomes (PROs; International Knee Documentation Committee, visual analog scale for pain, and Western Ontario and McMaster Universities Osteoarthritis Index) were evaluated preoperatively and at 1, 2, and 3 years postoperatively. Repaired cartilage hypertrophy was evaluated for a correlation with PRO scores. Results Enrolled were 85 patients with a mean age of 56.8 ± 6.1 years and a mean chondral defect size of 6.7 ± 2.0 cm2. At follow-up, a significant improvement in all PRO scores was seen compared with preoperatively (P < .001 for all). MRI at 1-year follow-up demonstrated that 28 patients had grade 1 repaired cartilage hypertrophy, 41 patients had grade 2, and 16 patients had grade 3. MRI performed in 11 patients at 2 years after surgery indicated no difference in repaired cartilage hypertrophy between the 1- and 2-year time points. The grade of repaired cartilage hypertrophy did not correlate with PRO scores. Conclusion Clinical outcomes improved significantly at short-term follow-up after UCB-MSC implantation. Although all patients showed repaired cartilage hypertrophy, it did not correlate with clinical outcomes.
Collapse
Affiliation(s)
- Jun-Seob Song
- Department of Orthopedic Surgery, Gangnam JS Hospital, Seoul, Republic of Korea
| | - Ki-Taek Hong
- Department of Orthopedic Surgery, Gangnam JS Hospital, Seoul, Republic of Korea
| | - Na-Min Kim
- Department of Orthopedic Surgery, Gangnam JS Hospital, Seoul, Republic of Korea
| | - Byung-Hun Hwangbo
- Department of Orthopedic Surgery, Nowon Eulji Medical Center, Eulji University, Seoul, Republic of Korea
| | - Bong-Seok Yang
- Department of Orthopedic Surgery, Shihwa Medical Center, Siheung, Republic of Korea
| | - Brian N. Victoroff
- Department of Orthopaedic Surgery, Case Western Reserve University, Cleveland, Ohio, USA
| | - Nam-Hong Choi
- Department of Orthopedic Surgery, Nowon Eulji Medical Center, Eulji University, Seoul, Republic of Korea
- Nam-Hong Choi, MD, Department of Orthopedic Surgery, Nowon Eulji Medical Center, Eulji University, 280-1, Hagye-1-dong, Nowon-gu, Seoul, 139-711, Republic of Korea ()
| |
Collapse
|
3
|
Rikken QGH, Dahmen J, Reilingh ML, van Bergen CJA, Stufkens SAS, Kerkhoffs GMMJ. Outcomes of Bone Marrow Stimulation for Secondary Osteochondral Lesions of the Talus Equal Outcomes for Primary Lesions. Cartilage 2021; 13:1429S-1437S. [PMID: 34167358 PMCID: PMC8739575 DOI: 10.1177/19476035211025816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To compare clinical, sports, work, and radiological outcomes between primary and secondary osteochondral lesions of the talus (OLTs; <15 mm) treated with arthroscopic bone marrow stimulation (BMS). DESIGN Secondary OLTs were matched to primary OLTs in a 1:2 ratio to assess the primary outcome measure-the Numeric Rating Scale (NRS) during activities. Secondary outcomes included the pre- and 1-year postoperative NRS at rest, American Orthopaedic Foot and Ankle Society score, Foot and Ankle Outcome Score subscales, and the EQ-5D general health questionnaire. The rates and time to return to work and sports were collected. Radiological examinations were performed preoperatively and at final follow-up using computed tomography (CT). RESULTS After matching, 22 and 12 patients with small (<15 mm) OLTs were included in the primary and secondary groups, respectively. The NRS during activities was not different between primary cases (median: 2, interquartile range [IQR]: 1-4.5) and secondary cases (median: 3, IQR: 1-4), P = 0.5. Both groups showed a significant difference between all pre- and postoperative clinical outcome scores, but no significant difference between BMS groups postoperatively. The return to sport rate was 90% for primary cases and 83% for secondary cases (P = 0.6). All patients returned to work. Lesion filling on CT was complete (67% to 100%) in 59% of primary cases and 67% of secondary cases (P = 0.6). CONCLUSION No differences in outcomes were observed between arthroscopic bone marrow stimulation in primary and secondary OLTs at 1-year follow-up. Repeat BMS may therefore be a viable treatment option for failed OLTs in the short term.
Collapse
Affiliation(s)
- Quinten G. H. Rikken
- Department of Orthopaedic Surgery,
Amsterdam Movement Sciences, Amsterdam UMC—Location AMC, University of Amsterdam,
Amsterdam, The Netherlands,Academic Center for Evidence Based
Sports Medicine, Amsterdam UMC, Amsterdam, The Netherlands,Amsterdam Collaboration for Health and
Safety in Sports, International Olympic Committee Research Center, Amsterdam UMC,
Amsterdam, The Netherlands
| | - Jari Dahmen
- Department of Orthopaedic Surgery,
Amsterdam Movement Sciences, Amsterdam UMC—Location AMC, University of Amsterdam,
Amsterdam, The Netherlands,Academic Center for Evidence Based
Sports Medicine, Amsterdam UMC, Amsterdam, The Netherlands,Amsterdam Collaboration for Health and
Safety in Sports, International Olympic Committee Research Center, Amsterdam UMC,
Amsterdam, The Netherlands
| | - Mikel L. Reilingh
- Department of Orthopedic Surgery,
Albert Schweitzer Hospital, Dordrecht, The Netherlands
| | - Christiaan J. A. van Bergen
- Academic Center for Evidence Based
Sports Medicine, Amsterdam UMC, Amsterdam, The Netherlands,Amsterdam Collaboration for Health and
Safety in Sports, International Olympic Committee Research Center, Amsterdam UMC,
Amsterdam, The Netherlands,Department of Orthopedic Surgery,
Amphia Hospital, Breda, The Netherlands
| | - Sjoerd A. S. Stufkens
- Department of Orthopaedic Surgery,
Amsterdam Movement Sciences, Amsterdam UMC—Location AMC, University of Amsterdam,
Amsterdam, The Netherlands,Academic Center for Evidence Based
Sports Medicine, Amsterdam UMC, Amsterdam, The Netherlands,Amsterdam Collaboration for Health and
Safety in Sports, International Olympic Committee Research Center, Amsterdam UMC,
Amsterdam, The Netherlands
| | - Gino M. M. J. Kerkhoffs
- Department of Orthopaedic Surgery,
Amsterdam Movement Sciences, Amsterdam UMC—Location AMC, University of Amsterdam,
Amsterdam, The Netherlands,Academic Center for Evidence Based
Sports Medicine, Amsterdam UMC, Amsterdam, The Netherlands,Amsterdam Collaboration for Health and
Safety in Sports, International Olympic Committee Research Center, Amsterdam UMC,
Amsterdam, The Netherlands,Gino M. M. J. Kerkhoffs, Department of
Orthopaedic Surgery, Amsterdam Movement Sciences, Amsterdam UMC—Location AMC,
University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Kok AC, den Dunnen S, Lambers KT, Kerkhoffs GM, Tuijthof GJ. Feasibility Study to Determine if Microfracture Surgery Using Water Jet Drilling Is Potentially Safe for Talar Chondral Defects in a Caprine Model. Cartilage 2021; 13:1627S-1636S. [PMID: 31646879 PMCID: PMC8721612 DOI: 10.1177/1947603519880332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVE Surgical microfracture is considered a first-line treatment for talar osteochondral defects. However, current rigid awls and drills limit access to all locations in human joints and increase risk of heat necrosis of bone. Using a flexible water jet instrument to drill holes can improve the reachability of the defect without inducing thermal damage. The aim of this feasibility study is to determine whether water jet drilling is potentially safe compared with conventional microfracture awls by studying side effects and perioperative complications, as well as the quality of cartilage repair tissue. DESIGN Talar chondral defects with 6-mm diameter were created bilaterally in 6 goats (12 samples). One defect in each goat was treated with microfracture created with conventional awls, the contralateral defect was treated with holes created with 5-second water jet bursts at a pressure of 50 MPa. Postoperative complications were recorded and after 24 weeks analyses were performed using the ICRS (International Cartilage Repair Society) macroscopic score and modified O'Driscoll histological score. RESULTS Several practical issues using the water jet in the operating theatre were noted. Water jet drilling resulted in fibrocartilage repair tissue similar to the repair tissue from conventional awls. CONCLUSIONS These results suggest that water jet drilling gives adequate fibrocartilage repair tissue. Furthermore, the results highlight essential prerequisites for safe application of surgical water jet drilling: stable water pressure, water jet beam coherence, stable positioning of the nozzle head when jetting, and minimizing excessive fluid extravasation.
Collapse
Affiliation(s)
- Aimee C. Kok
- Department of Orthopaedic Surgery,
Amsterdam Academic Medical Centre, University of Amsterdam, Amsterdam Movement
Sciences, Amsterdam, Netherlands,Aimee C. Kok, Department of Orthopaedic
Surgery, Amsterdam Academic Medical Centre, Meibergdreef 9, Amsterdam, 1105 AZ,
Netherlands.
| | - Steven den Dunnen
- Department of BioMechanical Engineering,
Delft University of Technology, Delft, Netherlands
| | - Kaj T.A. Lambers
- Department of Orthopaedic Surgery,
Amsterdam Academic Medical Centre, University of Amsterdam, Amsterdam Movement
Sciences, Amsterdam, Netherlands
| | - Gino M.M.J. Kerkhoffs
- Department of Orthopaedic Surgery,
Amsterdam Academic Medical Centre, University of Amsterdam, Amsterdam Movement
Sciences, Amsterdam, Netherlands
| | - Gabrielle J.M. Tuijthof
- Department of Orthopaedic Surgery,
Amsterdam Academic Medical Centre, University of Amsterdam, Amsterdam Movement
Sciences, Amsterdam, Netherlands,Department of BioMechanical Engineering,
Delft University of Technology, Delft, Netherlands
| |
Collapse
|
5
|
Serel S, Çerkez C, Işılgan Alpat SE, Yiğit P, Can B, Göktürk H. Non-significant Effects of The Geometric Shape of Autologous Cartilage Grafts on Tissue Healing: An Animal Study. Aesthetic Plast Surg 2020; 44:1845-1853. [PMID: 32766922 DOI: 10.1007/s00266-020-01904-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/26/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND The reconstruction of cartilage defects for cosmetic and/or functional reasons has become routine in plastic and reconstructive surgery. However, it remains challenging due to the slow turnover and low viability of cartilage grafts. Although autologous grafts can be used to determine the shape of the defect in cartilage-reconstruction surgeries, the effect of defect shape on cartilage healing has not been reported. Here, we present the first study aiming to investigate the influence of cartilage graft geometry on healing. METHODS Twelve New Zealand white rabbits were used in the study. Square-, rectangle-, sphere-, and fusiform-shaped cartilage defects were applied to both ears with 1-cm2 geometric templates that completely elevated the cartilage tissue without damaging the opposite perichondrium. As a control, the removed cartilage was sutured back to the right ear, whereas the left ear was sutured back without any graft. Histological examinations were made on samples taken during surgery and those taken four months post-surgery. Chondrocyte production and organisation, chondrocyte vacuolisation, collagen synthesis, proteoglycan levels, vascularisation, focal bleeding, and peripheral proliferation were scored independently by two histologists. RESULTS There was no statistically significant difference in the growth rates of either the control or experimental cartilage tissues when compared with that of the initial cartilage tissue (p = 0.083). Histologic comparisons revealed better outcomes in the grafted cartilage groups compared to those receiving the donor cartilage, but this was not statistically significant. CONCLUSIONS This study demonstrates that the geometric shape of the defect has no significant effect on cartilage healing. LEVEL OF EVIDENCE This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
|
6
|
Carlson MJ, Antkowiak TT, Larsen NJ, Applegate GR, Ferkel RD. Arthroscopic Treatment of Osteochondral Lesions of the Talus in a Pediatric Population: A Minimum 2-Year Follow-up. Am J Sports Med 2020; 48:1989-1998. [PMID: 32510966 DOI: 10.1177/0363546520924800] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Treatment of osteochondral lesions of the talus (OLTs) in children presents a difficult clinical challenge, with few large series reported. PURPOSE To evaluate functional and radiographic outcomes for children and adolescents undergoing arthroscopic treatment of symptomatic OLT with a minimum follow-up of 2 years. STUDY DESIGN Case series; Level of evidence, 4. METHODS Patients were identified who had symptomatic OLT treated arthroscopically with marrow stimulation techniques. Inclusion criteria were age ≤18 years, symptomatic chronic OLT as the surgical indication, failure of nonoperative treatment, and minimum follow-up of 24 months. Outcome measures included Foot Function Index, American Orthopaedic Foot and Ankle Society Hindfoot Score, Tegner Activity Scale, 36-Item Short Form Health Survey (Short Form-36, v 2), visual analog scale, ankle range of motion, and patient satisfaction survey. Weightbearing radiographs were compared with preoperative radiographs via an ankle arthritis classification system. Magnetic resonance imaging (MRI) was used to evaluate postoperative lesion characteristics per the MOCART scale (magnetic resonance observation of cartilage repair tissue). The size, location, lesion stability, traumatic etiology, skeletal maturity, and length of follow-up were recorded and analyzed through univariate logistic regression. RESULTS The study group consisted of 22 patients (11 male, 11 female) with a mean age of 14.4 years (range, 8-18 years) and a mean follow-up of 8.3 years (range, 2-27 years). Of 22 patients, 20 were satisfied with the results from surgery and would recommend it to others. Mean follow-up visual analog scale for pain was reported as 2.2 on a 10-point scale, and mean American Orthopaedic Foot and Ankle Society score at follow-up was 86.6. Mean postoperative Foot Function Index scores for the study group were as follows: pain, 17.1; disability, 16.5; activity, 4.7; and overall, 38.7. Mean Short Form-36 physical component score was 50.7. Postoperative radiographs indicated a van Dijk osteoarthritis grade of 0 in 56%, I in 38%, II in 6%, and III in 0%. Postoperative MRI MOCART scores showed complete filling of the cartilage in 27% of cases, complete graft integration in 22%, and intact repair surface in 22%, with a mean MOCART score of 48.0. No correlation was found between radiographic and MRI findings and clinical outcomes. None of the prognostic factors were significantly associated with patient satisfaction, progression of arthritis, or MOCART scores. CONCLUSION Arthroscopic treatment of symptomatic OLT in adolescent patients (≤18 years) demonstrated high functional outcomes, high clinical satisfaction rates, and minimal radiographic osteoarthritic progression despite low MOCART scores.
Collapse
Affiliation(s)
| | | | | | | | - Richard D Ferkel
- Southern California Orthopedic Institute, Van Nuys, California, USA
| |
Collapse
|
7
|
Shimozono Y, Vannini F, Ferkel RD, Nakamura N, Kennedy JG. Restorative procedures for articular cartilage in the ankle: state-of-the-art review. J ISAKOS 2019. [DOI: 10.1136/jisakos-2017-000163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Seow D, Yasui Y, Hutchinson ID, Hurley ET, Shimozono Y, Kennedy JG. The Subchondral Bone Is Affected by Bone Marrow Stimulation: A Systematic Review of Preclinical Animal Studies. Cartilage 2019; 10:70-81. [PMID: 28573889 PMCID: PMC6376565 DOI: 10.1177/1947603517711220] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE Despite the mechanical and biological roles of subchondral bone (SCB) in articular cartilage health, there remains no consensus on the postoperative morphological status of SCB following bone marrow stimulation (BMS). The purpose of this systematic review was to clarify the morphology of SCB following BMS in preclinical, translational animal models. DESIGN The MEDLINE and EMBASE databases were systematically reviewed using specific search terms on April 19, 2016 based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The morphology of the SCB was assessed using of microcomputed tomography (bone density) and histology (microscopic architecture). RESULTS Seventeen animal studies with 520 chondral lesions were included. The morphology of SCB did not recover following BMS. Compared with untreated chondral defects, BMS resulted in superior morphology of superficial SCB and cartilage but inferior morphology (specifically bone density, P < 0.05) of the deep SCB. Overall, the use of biological adjuvants during BMS resulted in the superior postoperative morphology of SCB. CONCLUSIONS Alterations in the SCB following BMS were confirmed. Biologics adjuvants may improve the postoperative morphology of both SCB and articular cartilage. Refinements of BMS techniques should incorporate consideration of SCB damage and restoration. Investigations to optimize BMS techniques incorporating both minimally invasive approaches and biologically augmented platforms are further warranted.
Collapse
Affiliation(s)
- Dexter Seow
- Hospital for Special Surgery, New York, NY, USA,Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Youichi Yasui
- Hospital for Special Surgery, New York, NY, USA,Department of Orthopaedic Surgery, Teikyo University School of Medicine, Tokyo, Japan
| | - Ian D. Hutchinson
- Hospital for Special Surgery, New York, NY, USA,Department of Orthopaedic Surgery, Albany Medical Center, Albany, NY, USA
| | - Eoghan T. Hurley
- Hospital for Special Surgery, New York, NY, USA,Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Yoshiharu Shimozono
- Hospital for Special Surgery, New York, NY, USA,Department of Orthopaedic Surgery, Teikyo University School of Medicine, Tokyo, Japan,Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - John G. Kennedy
- Hospital for Special Surgery, New York, NY, USA,John G. Kennedy, Hospital for Special Surgery, 523 East 72nd Street, Suite 507, New York, NY 10021, USA.
| |
Collapse
|
9
|
Gao L, Goebel LKH, Orth P, Cucchiarini M, Madry H. Subchondral drilling for articular cartilage repair: a systematic review of translational research. Dis Model Mech 2018; 11:dmm034280. [PMID: 29728409 PMCID: PMC6031351 DOI: 10.1242/dmm.034280] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/26/2018] [Indexed: 12/09/2022] Open
Abstract
Articular cartilage defects may initiate osteoarthritis. Subchondral drilling, a widely applied clinical technique to treat small cartilage defects, does not yield cartilage regeneration. Various translational studies aiming to improve the outcome of drilling have been performed; however, a robust systematic analysis of its translational evidence was still lacking. Here, we performed a systematic review of the outcome of subchondral drilling for knee cartilage repair in translational animal models. A total of 12 relevant publications studying 198 animals was identified, detailed study characteristics were extracted, and methodological quality and risk of bias were analyzed. Subchondral drilling led to improved repair outcome compared with defects that were untreated or treated with abrasion arthroplasty for cartilage repair in multiple translational models. Within the 12 studies, considerable subchondral bone changes were observed, including subchondral bone cysts and intralesional osteophytes. Furthermore, extensive alterations of the subchondral bone microarchitecture appeared in a temporal pattern in small and large animal models, together with specific topographic aspects of repair. Moreover, variable technical aspects directly affected the outcomes of osteochondral repair. The data from this systematic review indicate that subchondral drilling yields improved short-term structural articular cartilage repair compared with spontaneous repair in multiple small and large animal models. These results have important implications for future investigations aimed at an enhanced translation into clinical settings for the treatment of cartilage defects, highlighting the importance of considering specific aspects of modifiable variables such as improvements in the design and reporting of preclinical studies, together with the need to better understand the underlying mechanisms of cartilage repair following subchondral drilling.
Collapse
Affiliation(s)
- Liang Gao
- Center of Experimental Orthopedics, Saarland University, D-66421 Homburg, Germany
| | - Lars K H Goebel
- Center of Experimental Orthopedics, Saarland University, D-66421 Homburg, Germany
- Department of Orthopaedic Surgery, Saarland University Medical Center, D-66421 Homburg, Germany
| | - Patrick Orth
- Center of Experimental Orthopedics, Saarland University, D-66421 Homburg, Germany
- Department of Orthopaedic Surgery, Saarland University Medical Center, D-66421 Homburg, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopedics, Saarland University, D-66421 Homburg, Germany
| | - Henning Madry
- Center of Experimental Orthopedics, Saarland University, D-66421 Homburg, Germany
- Department of Orthopaedic Surgery, Saarland University Medical Center, D-66421 Homburg, Germany
| |
Collapse
|
10
|
Ghosh P, Gruber SMS, Lin CY, Whitlock PW. Microspheres containing decellularized cartilage induce chondrogenesis in vitro and remain functional after incorporation within a poly(caprolactone) filament useful for fabricating a 3D scaffold. Biofabrication 2018; 10:025007. [PMID: 29394158 DOI: 10.1088/1758-5090/aaa637] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In this study, articular cartilage was decellularized preserving a majority of the inherent proteins, cytokines, growth factors and sGAGs. The decellularized cartilage matrix (dCM) was then encapsulated in poly(lactic acid) microspheres (MS + dCM) via double emulsion. Blank microspheres without dCM, MS(-), were also produced. The microspheres were spherical in shape and protein encapsulation efficiency within MS + dCM was 63.4%. The sustained release of proteins from MS + dCM was observed over 4 weeks in vitro. Both MS + dCM and MS(-) were cytocompatible. The sustained delivery of retained growth factors and cytokines from MS + dCM promoted cell migration in contrast to MS(-). Subsequently, chondrogenesis of human mesenchymal stem cells was upregulated in presence of MS + dCM as evidenced from immunohistochemistry, biochemical quantification and qPCR studies. Specifically, collagen II, aggrecan and SOX 9 gene expression were increased in the presence of MS + dCM by an order or more in magnitude compared to MS(-) with concomitant downregulation of hypertrophic genes (COL X) despite being cultured in the absence of chondrogenic media, (p < 0.05). Lastly, microspheres containing alkaline phosphatase (MS + ALP), a surrogate to assess the thermal stability of dCM proteins, incorporated within poly(caprolactone) filaments showed that the enzyme remained functional after filament production by melt extrusion. The establishment of a novel, thermally stable process for producing filaments containing chondroinductive microspheres provides evidence supporting subsequent development of a clinically-relevant, 3D scaffold fabricated from them for osteochondral regeneration and repair.
Collapse
Affiliation(s)
- Paulomi Ghosh
- Department of Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States of America
| | | | | | | |
Collapse
|
11
|
Colliding jets provide depth control for water jetting in bone tissue. J Mech Behav Biomed Mater 2017; 72:219-228. [PMID: 28501719 DOI: 10.1016/j.jmbbm.2017.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/29/2017] [Accepted: 05/05/2017] [Indexed: 11/24/2022]
Abstract
In orthopaedic surgery, water jet drilling provides several advantages over classic drilling with rigid drilling bits, such as the always sharp cut, absence of thermal damage and increased manoeuvrability. Previous research showed that the heterogeneity of bone tissue can cause variation in drilling depth whilst water jet drilling. To improve control over the drilling depth, a new method is tested consisting of two water jets that collide directly below the bone surface. The expected working principle is that after collision the jets will disintegrate, with the result of eliminating the destructive power of the coherent jets and leaving the bone tissue underneath the focal point intact. To assess the working principle of colliding water jets (CWJ), the influence of inhomogeneity of the bone tissue on the variation of the drilling depth and the impact of jet time (twj) on the drilling depth were compared to a single water jet (SWJ) with a similar power. 98 holes were drilled in 14 submerged porcine tali with two conditions CWJ (impact angle of 30° and 90°) and SWJ. The water pressure was 70MPa for all conditions. The water jet diameter was 0.3 mm for CWJ and 0.4 mm for SWJ. twj was set at 1, 3, 5 and 8s. Drilling depth and hole diameter were measured using microCT scans. A non-parametric Levene's test was performed to assess a significant difference in variance between conditions SWJ and CWJ. A regression analysis was used to determine differences in influence of twj on the drilling depth. Hole diameter differences were assessed using a one way Anova. A significance level of p<0.05 was set. Condition CWJ significantly decreases the drilling depth variance caused by the heterogeneity of the bone when compared to SWJ. The mean depth for CWJ was 0.9 mm (SD 0.3 mm) versus 4.8 mm (SD 2.0) for SWJ. twj affects the drilling depth less for condition CWJ (p<0.01, R2=0.30) than for SWJ (p<0.01, R2=0.46). The impact angle (30° or 90°) of the CWJ does not influence the drilling depth nor the variation in depth. The diameters of the resulting holes in the direction of the jets is significantly larger for CWJ at 90° than for 30° or a single jet. This study shows that CWJ provides accurate depth control when water jet drilling in an inhomogeneous material such as bone. The maximum variance measured by using the 95% confidence interval is 0.6 mm opposed to 5.4 mm for SWJ. This variance is smaller than the accuracy required for bone debridement treatments (2-4 mm deep) or drilling pilot holes. This confirms that the use of CWJ is an inherently safe method that can be used to accurately drill in bones.
Collapse
|
12
|
Shimozono Y, Yasui Y, Ross AW, Kennedy JG. Osteochondral lesions of the talus in the athlete: up to date review. Curr Rev Musculoskelet Med 2017; 10:131-140. [PMID: 28188546 DOI: 10.1007/s12178-017-9393-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW Osteochondral lesions of the talus (OLT) are common injuries in athletes. The purpose of this study is to comprehensively review the clinical results and return to sport capacity in athletes following treatment for OLT. RECENT FINDINGS Reparative procedures, such as bone marrow stimulation, and replacement procedures, such as autologous osteochondral transplantation, provide good clinical outcomes in short- and mid-term follow-up in the athlete. Recently, biological augmentation and scaffold-based therapies have been shown to improve clinical and radiological outcomes in OLT in both the general population and athletes. Most studies are of a low level of evidence. Studies analyzing the return to sport capability in athletes are further lacking. High-level evidence and well-designed clinical trials are required to establish the most effective treatment protocol.
Collapse
Affiliation(s)
- Yoshiharu Shimozono
- Hospital for Special Surgery, 523 East 72nd Street, Suite 507, New York, NY, 10021, USA.,Department of Orthopaedic Surgery, Teikyo University School of Medicine, Tokyo, Japan.,Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Youichi Yasui
- Hospital for Special Surgery, 523 East 72nd Street, Suite 507, New York, NY, 10021, USA.,Department of Orthopaedic Surgery, Teikyo University School of Medicine, Tokyo, Japan
| | - Andrew W Ross
- Hospital for Special Surgery, 523 East 72nd Street, Suite 507, New York, NY, 10021, USA
| | - John G Kennedy
- Hospital for Special Surgery, 523 East 72nd Street, Suite 507, New York, NY, 10021, USA.
| |
Collapse
|
13
|
Thomas M, Jordan M, Hamborg-Petersen E. [Arthroscopic treatment of chondral lesions of the ankle joint. Evidence-based therapy]. Unfallchirurg 2017; 119:100-8. [PMID: 26810230 DOI: 10.1007/s00113-015-0136-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Ankle sprains are the most relevant injuries of the lower extremities and can lead to damage to ligaments and osteochondral lesions. Up to 50 % of patients with a sprained ankle later develop a lesion of the cartilage in the ankle joint or an osteochondral lesion of the talus. This can lead to osteoarthritis of the injured ankle joint. Spontaneous healing is possible in all age groups in cases of a bone bruise in the subchondral bone but in isolated chondral injuries is only useful in pediatric patients. In many cases chondral and osteochondral injuries lead to increasing demarcation of the affected area and can result in progressive degeneration of the joint if not recognized in time. There also exist a certain number of osteochondral changes of the articular surface of the talus without any history of relevant trauma, which are collectively grouped under the term osteochondrosis dissecans. Perfusion disorders are discussed as one of many possible causes of these alterations. Nowadays, chondral and osteochondral defects can be treated earlier due to detection using very sensitive magnetic resonance imaging (MRI) and computed tomography (CT) techniques. The use of conservative treatment only has a chance of healing in pediatric patients. Conservative measures for adults should only be considered as adjuvant treatment to surgery.Based on a comprehensive analysis of the current literature, this article gives an overview and critical analysis of the current concepts for treatment of chondral and osteochondral injuries and lesions of the talus. With arthroscopic therapy curettage and microfracture of talar lesions are the predominant approaches or retrograde drilling of the defect is another option when the chondral coating is retained. Implantation of autologous chondral cells or homologous juvenile cartilage tissue is also possible with arthroscopic techniques. Osteochondral fractures (flake fracture) are usually performed as a mini-open procedure supported by arthroscopy. The use of the osteochondral autograft transfer system (OATS), implantation of membranes with or without autologous bone marrow transfer and possibly with growth factors or implantation of stem cells are carried out in combination with arthroscopic mini-open procedures. The results from the literature are discussed and compared with own results after arthroscopic treatment of chondral lesions of the talus.
Collapse
Affiliation(s)
- M Thomas
- Abteilung für Fuß- und Sprunggelenkschirurgie, Hessingpark-Clinic, Hessingstrasse 17, 86199, Augsburg, Deutschland.
| | - M Jordan
- Abteilung für Fuß- und Sprunggelenkschirurgie, Hessingpark-Clinic, Hessingstrasse 17, 86199, Augsburg, Deutschland
| | - E Hamborg-Petersen
- Department of Orthopaedic Surgery, Odense University Hospital, Odense, Dänemark
| |
Collapse
|
14
|
|
15
|
Gianakos AL, Yasui Y, Fraser EJ, Ross KA, Prado MP, Fortier LA, Kennedy JG. The Effect of Different Bone Marrow Stimulation Techniques on Human Talar Subchondral Bone: A Micro-Computed Tomography Evaluation. Arthroscopy 2016; 32:2110-2117. [PMID: 27234650 DOI: 10.1016/j.arthro.2016.03.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 03/17/2016] [Accepted: 03/22/2016] [Indexed: 02/02/2023]
Abstract
PURPOSE To evaluate morphological alterations, microarchitectural disturbances, and the extent of bone marrow access to the subchondral bone marrow compartment using micro-computed tomography analysis in different bone marrow stimulation (BMS) techniques. METHODS Nine zones in a 3 × 3 grid pattern were assigned to 5 cadaveric talar dome articular surfaces. A 1.00-mm microfracture awl (s.MFX), a 2.00-mm standard microfracture awl (l.MFX), or a 1.25-mm Kirschner wire (K-wire) drill hole was used to penetrate the subchondral bone in each grid zone. Subchondral bone holes and adjacent tissue areas were assessed by micro-computed tomography to analyze adjacent bone area destruction and communicating channels to the bone marrow. Grades 1 to 3 were assigned, where 1 = minimal compression/sclerosis; 2 = moderate compression/sclerosis; 3 = severe compression/sclerosis. Bone volume/total tissue volume, bone surface area/bone volume, trabecular thickness, and trabecular number were calculated in the region of interest. RESULTS Visual assessment revealed that the s.MFX had significantly more grade 1 holes (P < .001) and that the l.MFX had significantly more poor/grade 3 holes (P = .002). Bone marrow channel assessment showed a statistically significant increase in the number of channels in the s.MFX when compared with both K-wire and l.MFX holes (P < .001). Bone volume fraction for the s.MFX was significantly less than that of the l.MFX (P = .029). CONCLUSIONS BMS techniques using instruments with larger diameters resulted in increased trabecular compaction and sclerosis in areas adjacent to the defect. K-wire and l.MFX techniques resulted in less open communicating bone marrow channels, denoting a reduction in bone marrow access. The results of this study indicate that BMS using larger diameter devices results in greater microarchitecture disturbances. CLINICAL RELEVANCE The current study suggests that the choice of a BMS technique should be carefully considered as the results indicate that smaller diameter hole sizes may diminish the amount of microarchitectural disturbances in the subchondral bone.
Collapse
Affiliation(s)
| | | | | | - Keir A Ross
- Hospital for Special Surgery, New York, U.S.A
| | | | - Lisa A Fortier
- Department of Clinical Sciences, Cornell University, Ithaca, New York, U.S.A
| | | |
Collapse
|
16
|
den Dunnen S, Dankelman J, Kerkhoffs GM, Tuijthof GJ. How do jet time, pressure and bone volume fraction influence the drilling depth when waterjet drilling in porcine bone? J Mech Behav Biomed Mater 2016; 62:495-503. [DOI: 10.1016/j.jmbbm.2016.05.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/20/2016] [Accepted: 05/24/2016] [Indexed: 10/21/2022]
|
17
|
Moshtagh PR, Pouran B, van Tiel J, Rauker J, Zuiddam MR, Arbabi V, Korthagen NM, Weinans H, Zadpoor AA. Micro- and nano-mechanics of osteoarthritic cartilage: The effects of tonicity and disease severity. J Mech Behav Biomed Mater 2016; 59:561-571. [PMID: 27043052 DOI: 10.1016/j.jmbbm.2016.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/23/2016] [Accepted: 03/09/2016] [Indexed: 10/22/2022]
Abstract
The present study aims to discover the contribution of glycosaminoglycans (GAGs) and collagen fibers to the mechanical properties of the osteoarthritic (OA) cartilage tissue. We used nanoindentation experiments to understand the mechanical behavior of mild and severe osteoarthritic cartilage at micro- and nano-scale at different swelling conditions. Contrast enhanced micro-computed tomography (EPIC-μCT) was used to confirm that mild OA specimens had significantly higher GAGs content compared to severe OA specimens. In micro-scale, the semi-equilibrium modulus of mild OA specimens significantly dropped after immersion in a hypertonic solution and at nano-scale, the histograms of the measured elastic modulus revealed three to four components. Comparing the peaks with those observed for healthy cartilage in a previous study indicated that the first and third peaks represent the mechanical properties of GAGs and the collagen network. The third peak shows considerably stiffer elastic modulus for mild OA samples as compared to the severe OA samples in isotonic conditions. Furthermore, this peak clearly dropped when the tonicity increased, indicating the loss of collagen (pre-) stress in the shrunk specimen. Our observations support the association of the third peak with the collagen network. However, our results did not provide any direct evidence to support the association of the first peak with GAGs. For severe OA specimens, the peak associated with the collagen network did not drop when the tonicity increased, indicating a change in the response of OA cartilage to hypertonicity, likely collagen damage, as the disease progresses to its latest stages.
Collapse
Affiliation(s)
- P R Moshtagh
- Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft, The Netherlands; Department of Orthopaedics, University Medical Center Utrecht, Q.03.2.103-1, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
| | - B Pouran
- Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft, The Netherlands; Department of Orthopaedics, University Medical Center Utrecht, Q.03.2.103-1, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
| | - J van Tiel
- Department of Orthopaedics and Radiology, Erasmus Medical Centre, Rotterdam, The Netherlands.
| | - J Rauker
- Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft, The Netherlands.
| | - M R Zuiddam
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ, Delft, The Netherlands.
| | - V Arbabi
- Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft, The Netherlands.
| | - N M Korthagen
- Department of Orthopaedics, University Medical Center Utrecht, Q.03.2.103-1, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands; Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | - H Weinans
- Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft, The Netherlands; Department of Orthopaedics, University Medical Center Utrecht, Q.03.2.103-1, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands; Department of Rheumatology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - A A Zadpoor
- Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft, The Netherlands.
| |
Collapse
|
18
|
Green CJ, Beck A, Wood D, Zheng MH. The biology and clinical evidence of microfracture in hip preservation surgery. J Hip Preserv Surg 2016; 3:108-23. [PMID: 27583147 PMCID: PMC5005050 DOI: 10.1093/jhps/hnw007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/11/2016] [Indexed: 01/01/2023] Open
Abstract
The use of microfracture in hip arthroscopy is increasing dramatically. However, recent reports raise concerns not only about the lack of evidence to support the clinical use of microfracture, but also about the potential harm caused by violation of the subchondral bone plate. The biology and pathology of the microfracture technique were described based on observations in translational models and the clinical evidence for hip microfracture was reviewed systematically. The clinical outcomes in patients undergoing microfracture were the same as those not undergoing microfracture. However, the overall clinical evidence quality is poor in hips. This review identified only one study with Level III evidence, while most studies were Level IV. There were no randomized trials available for review. Repair tissue is primarily of fibrocartilaginous nature. Reconstitution of the subchondral bone is often incomplete and associated with poor quality repair tissue and faster degeneration. Subchondral bone cyst formation is associated with microfracture, likely secondary to subchondral bone plate disruption and a combination of pressurized synovial fluid and inflammatory mediators moving from the joint into the bone. There is a lack of clinical efficacy evidence for patients undergoing microfracture. There is evidence of bone cyst formation following microfracture in animal studies, which may accelerate joint degeneration. Bone cyst formation following microfracture has not been studied adequately in humans.
Collapse
Affiliation(s)
- Chadwick John Green
- Department of Orthopaedic Surgery, Royal Perth Hospital, Perth 6000, Australia and
| | - Aswin Beck
- Centre for Orthopaedic Research, School of Surgery, University of Western Australia, Nedlands 6009, Australia
| | - David Wood
- Centre for Orthopaedic Research, School of Surgery, University of Western Australia, Nedlands 6009, Australia
| | - Ming H Zheng
- Centre for Orthopaedic Research, School of Surgery, University of Western Australia, Nedlands 6009, Australia
| |
Collapse
|
19
|
Orth P, Duffner J, Zurakowski D, Cucchiarini M, Madry H. Small-Diameter Awls Improve Articular Cartilage Repair After Microfracture Treatment in a Translational Animal Model. Am J Sports Med 2016; 44:209-19. [PMID: 26546301 DOI: 10.1177/0363546515610507] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Microfracture is the most commonly applied arthroscopic marrow stimulation procedure. HYPOTHESIS Articular cartilage repair is improved when the subchondral bone is perforated by small-diameter microfracture awls compared with larger awls. STUDY DESIGN Controlled laboratory study. METHODS Standardized rectangular (4 × 8 mm) full-thickness chondral defects (N = 24) were created in the medial femoral condyle of 16 adult sheep and debrided down to the subchondral bone plate. Three treatment groups (n = 8 defects each) were tested: 6 microfracture perforations using small-diameter awls (1.0 mm; group 1), large-diameter awls (1.2 mm; group 2), or without perforations (debridement control; group 3). Osteochondral repair was assessed at 6 months in vivo using established macroscopic, histological, immunohistochemical, biochemical, and micro-computed tomography analyses. RESULTS Compared with control defects, histological cartilage repair was always improved after both microfracture techniques (P < .023). Application of 1.0-mm microfracture awls led to a significantly improved histological overall repair tissue quality (7.02 ± 0.70 vs 9.03 ± 0.69; P = .008) and surface grading (1.05 ± 0.28 vs 2.10 ± 0.19; P = .001) compared with larger awls. The small-diameter awl decreased relative bone volume of the subarticular spongiosa (bone volume/tissue volume ratio: 23.81% ± 3.37% vs 30.58% ± 2.46%; P = .011). Subchondral bone cysts and intralesional osteophytes were frequently observed after either microfracture treatment. Macroscopic grading, DNA, proteoglycan, and type I and type II collagen contents as well as degenerative changes within the adjacent cartilage remained unaffected by the awl diameter. CONCLUSION Small-diameter microfracture awls improve articular cartilage repair in the translational sheep model more effectively than do larger awls. CLINICAL RELEVANCE These data support the use of small microfracture instruments for the surgical treatment of cartilage defects and warrant prolonged clinical investigations.
Collapse
Affiliation(s)
- Patrick Orth
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany Department of Orthopaedic Surgery, Saarland University Medical Center, Homburg, Germany
| | - Julia Duffner
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany
| | - David Zurakowski
- Departments of Anesthesia and Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany Department of Orthopaedic Surgery, Saarland University Medical Center, Homburg, Germany
| |
Collapse
|
20
|
Natenstedt J, Kok AC, Dankelman J, Tuijthof GJ. What quantitative mechanical loading stimulates in vitro cultivation best? J Exp Orthop 2015; 2:15. [PMID: 26914883 PMCID: PMC4538712 DOI: 10.1186/s40634-015-0029-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 05/26/2015] [Indexed: 11/10/2022] Open
Abstract
Articular cartilage has limited regeneration capacities. One of the factors that appear to affect the in vitro cultivation of articular cartilage is mechanical stimulation. So far, no combination of parameters has been identified that offers the best results. The goal is to review the literature in search of the best available set of quantitative mechanical stimuli that lead to optimal in vitro cultivation.The databases Scopus and PubMed were used to survey the literature, and strict in- and exclusion criteria were applied regarding the presence of quantitative data. The review was performed by studying the type of loading (hydrostatic compression or direct compression), the loading magnitude, the frequency and the loading regime (duration of the loading) in comparison to quantitative evidence of cartilage quality response (cellular, signaling and mechanical).Thirty-three studies met all criteria of which 8 studied human, 20 bovine, 2 equine, 1 ovine, 1 porcine and 1 canine cells using four different types of cultivated constructs. Six studies investigated loading magnitude within the same setup, three studies the frequency, and seven the loading regime. Nine studies presented mechanical tissue response. The studies suggest that a certain threshold exits for enhanced cartilage in vitro cultivation of explants (>20 % strain and 0.5 Hz), and that chondrocyte-seeded cultivated constructs show best results when loaded with physiological mechanical stimuli. That is a loading pressure between 5-10 MPa and a loading frequency of 1 Hz exerted at intermittent intervals for a period of a week or longer. Critical aspects remain to be answered for translation into in vivo therapies.
Collapse
Affiliation(s)
- Jerry Natenstedt
- Department of Biomechanical Engineering, Faculty of Mechanical, Materials and Maritime Engineering, Delft University of Technology, Mekelweg 2, Delft, 2628 CD, The Netherlands.
| | - Aimee C Kok
- Department of Orthopedic Surgery, Academic Medical Centre, Meibergdreef 9, Amsterdam, AZ, 1105, The Netherlands.
| | - Jenny Dankelman
- Department of Biomechanical Engineering, Faculty of Mechanical, Materials and Maritime Engineering, Delft University of Technology, Mekelweg 2, Delft, 2628 CD, The Netherlands.
| | - Gabrielle Jm Tuijthof
- Department of Biomechanical Engineering, Faculty of Mechanical, Materials and Maritime Engineering, Delft University of Technology, Mekelweg 2, Delft, 2628 CD, The Netherlands. .,Department of Orthopedic Surgery, Academic Medical Centre, Meibergdreef 9, Amsterdam, AZ, 1105, The Netherlands.
| |
Collapse
|
21
|
Khoury BM, Bigelow EMR, Smith LM, Schlecht SH, Scheller EL, Andarawis-Puri N, Jepsen KJ. The use of nano-computed tomography to enhance musculoskeletal research. Connect Tissue Res 2015; 56:106-19. [PMID: 25646568 PMCID: PMC4755519 DOI: 10.3109/03008207.2015.1005211] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Advances in computed tomography (CT) imaging are opening new avenues toward more precise characterization and quantification of connective tissue microarchitecture. In the last two decades, micro-computed tomography (microCT) has significantly augmented destructive methods for the 3D micro-analysis of tissue structure, primarily in the bone research field. Recently, microCT has been employed in combination with contrast agents to generate contrast-enhanced images of soft tissues that are otherwise difficult to visualize due to their native radiodensity. More recent advances in CT technology have enabled ultra-high resolution imaging by utilizing a more powerful nano-focused X-ray source, such as that found in nano-computed tomography (nanoCT) systems. NanoCT imaging has facilitated the expansion of musculoskeletal research by reducing acquisition time and significantly expanding the range of samples that can be imaged in terms of size, age and tissue-type (bone, muscle, tendon, cartilage, vessels and adipose tissue). We present the application and early results of nanoCT imaging in various tissue types and how this ultra-high resolution imaging modality is capable of characterizing microstructures at levels of details previously not possible. Contrast-enhanced imaging techniques to enable soft-tissue visualization and characterization are also outlined.
Collapse
Affiliation(s)
| | | | | | | | - Erica L. Scheller
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Nelly Andarawis-Puri
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | |
Collapse
|
22
|
Boerckel JD, Mason DE, McDermott AM, Alsberg E. Microcomputed tomography: approaches and applications in bioengineering. Stem Cell Res Ther 2014; 5:144. [PMID: 25689288 PMCID: PMC4290379 DOI: 10.1186/scrt534] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Microcomputed tomography (microCT) has become a standard and essential tool for quantifying structure-function relationships, disease progression, and regeneration in preclinical models and has facilitated numerous scientific and bioengineering advancements over the past 30 years. In this article, we recount the early events that led to the initial development of microCT and review microCT approaches for quantitative evaluation of bone, cartilage, and cardiovascular structures, with applications in fundamental structure-function analysis, disease, tissue engineering, and numerical modeling. Finally, we address several next-generation approaches under active investigation to improve spatial resolution, acquisition time, tissue contrast, radiation dose, and functional and molecular information.
Collapse
|
23
|
Eldracher M, Orth P, Cucchiarini M, Pape D, Madry H. Small subchondral drill holes improve marrow stimulation of articular cartilage defects. Am J Sports Med 2014; 42:2741-50. [PMID: 25167994 DOI: 10.1177/0363546514547029] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Subchondral drilling is an established marrow stimulation technique. HYPOTHESIS Osteochondral repair is improved when the subchondral bone is perforated with small drill holes, reflecting the physiological subchondral trabecular distance. STUDY DESIGN Controlled laboratory study. METHODS A rectangular full-thickness chondral defect was created in the trochlea of adult sheep (n = 13) and treated with 6 subchondral drillings of either 1.0 mm (reflective of the trabecular distance) or 1.8 mm in diameter. Osteochondral repair was assessed after 6 months in vivo by macroscopic, histological, and immunohistochemical analyses and by micro-computed tomography. RESULTS The application of 1.0-mm subchondral drill holes led to significantly improved histological matrix staining, cellular morphological characteristics, subchondral bone reconstitution, and average total histological score as well as significantly higher immunoreactivity to type II collagen and reduced immunoreactivity to type I collagen in the repair tissue compared with 1.8-mm drill holes. Analysis of osteoarthritic changes in the cartilage adjacent to the defects revealed no significant differences between treatment groups. Restoration of the microstructure of the subchondral bone plate below the chondral defects was significantly improved after 1.0-mm compared to 1.8-mm drilling, as shown by higher bone volume and reduced thickening of the subchondral bone plate. Likewise, the microarchitecture of the drilled subarticular spongiosa was better restored after 1.0-mm drilling, indicated by significantly higher bone volume and more and thinner trabeculae. Moreover, the bone mineral density of the subchondral bone in 1.0-mm drill holes was similar to the adjacent subchondral bone, whereas it was significantly reduced in 1.8-mm drill holes. No significant correlations existed between cartilage and subchondral bone repair. CONCLUSION Small subchondral drill holes that reflect the physiological trabecular distance improve osteochondral repair in a translational model more effectively than larger drill holes. CLINICAL RELEVANCE These results have important implications for the use of subchondral drilling for marrow stimulation, as they support the use of small-diameter bone-cutting devices.
Collapse
Affiliation(s)
- Mona Eldracher
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany
| | - Patrick Orth
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany Department of Orthopaedic Surgery, Saarland University Medical Center, Homburg, Germany Cartilage Net of the Greater Region (Germany, France, Belgium, Luxembourg)
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany Cartilage Net of the Greater Region (Germany, France, Belgium, Luxembourg)
| | - Dietrich Pape
- Cartilage Net of the Greater Region (Germany, France, Belgium, Luxembourg) Olympic Medical Center, Centre Hospitalier de Luxembourg, Clinique d'Eich, Luxembourg, Luxembourg
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany Department of Orthopaedic Surgery, Saarland University Medical Center, Homburg, Germany Cartilage Net of the Greater Region (Germany, France, Belgium, Luxembourg)
| |
Collapse
|
24
|
Three-dimensional characterization of in vivo intervertebral disc degeneration using EPIC-μCT. Osteoarthritis Cartilage 2014; 22:1918-25. [PMID: 25151083 DOI: 10.1016/j.joca.2014.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/25/2014] [Accepted: 08/13/2014] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Small animal models are commonly employed to study progression of and potential treatment techniques for degenerative disc disease (DDD), but assessment using conventional imaging techniques is challenging due to resolution. The objective of this study was to employ equilibrium partitioning of an ionic contrast agent micro computed tomography (EPIC - μCT) to map three-dimensional (3D) degenerative changes in the rabbit intervertebral disc (IVD). MATERIALS AND METHODS In vivo degeneration was induced surgically in 12 New Zealand White rabbits via percutaneous annular puncture and percutaneous nucleotomy. IVDs were harvested after 3 and 6 weeks. EPIC-μCT imaging was performed on fresh, IVDs before and after formalin fixation, and 3D IVD volumes were segmented. IVDs were histologically stained with Safranin-O/Fast-Green and Hematoxylin & Eosin (H&E). EPIC-μCT attenuation and 3D morphological measurements were assessed in healthy and degenerate IVDs and compared to qualitative grading and disc height measurement from histology. RESULTS EPIC-μCT caused pronounced contrast enhancement of the IVD. Annular puncture and nucleotomy produced mild and severe degenerative changes, respectively. IVD attenuation following contrast enhancement increased significantly in nucleotomized discs at 3 and 6 weeks. IVD attenuation correlated significantly with histologic score and disc height measurements. Disc height decreased most extensively in the posterior and lateral aspects of the IVD. 3D morphological measurements correlated strongly to IVD attenuation and were more sensitive to degenerative changes than histologic measurements. Formalin fixation reduced the attenuation of IVDs by ∼10%. CONCLUSION EPIC-μCT is sensitive to in vivo DDD induced by nucleotomy and provides a high resolution 3D method for mapping degenerative changes in rabbit IVDs.
Collapse
|
25
|
Seo SJ, Mahapatra C, Singh RK, Knowles JC, Kim HW. Strategies for osteochondral repair: Focus on scaffolds. J Tissue Eng 2014; 5:2041731414541850. [PMID: 25343021 PMCID: PMC4206689 DOI: 10.1177/2041731414541850] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 06/06/2014] [Indexed: 01/27/2023] Open
Abstract
Interest in osteochondral repair has been increasing with the growing number of sports-related injuries, accident traumas, and congenital diseases and disorders. Although therapeutic interventions are entering an advanced stage, current surgical procedures are still in their infancy. Unlike other tissues, the osteochondral zone shows a high level of gradient and interfacial tissue organization between bone and cartilage, and thus has unique characteristics related to the ability to resist mechanical compression and restoration. Among the possible therapies, tissue engineering of osteochondral tissues has shown considerable promise where multiple approaches of utilizing cells, scaffolds, and signaling molecules have been pursued. This review focuses particularly on the importance of scaffold design and its role in the success of osteochondral tissue engineering. Biphasic and gradient composition with proper pore configurations are the basic design consideration for scaffolds. Surface modification is an essential technique to improve the scaffold function associated with cell regulation or delivery of signaling molecules. The use of functional scaffolds with a controllable delivery strategy of multiple signaling molecules is also considered a promising therapeutic approach. In this review, we updated the recent advances in scaffolding approaches for osteochondral tissue engineering.
Collapse
Affiliation(s)
- Seog-Jin Seo
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea ; Department of Nanobiomedical Science, BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Chinmaya Mahapatra
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea ; Department of Nanobiomedical Science, BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Rajendra K Singh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea ; Department of Nanobiomedical Science, BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Jonathan C Knowles
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, London, UK
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea ; Department of Nanobiomedical Science, BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea ; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
26
|
Delgado-Ruiz RA, Calvo-Guirado JL, Romanos GE. Critical size defects for bone regeneration experiments in rabbit calvariae: systematic review and quality evaluation using ARRIVE guidelines. Clin Oral Implants Res 2014; 26:915-930. [PMID: 24766503 DOI: 10.1111/clr.12406] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2014] [Indexed: 12/12/2022]
Abstract
OBJECTIVES To perform a systematic review of studies that report the healing of critical size defects (CSDs) in rabbit calvaria and to determine the quality of the studies according to ARRIVE guidelines. MATERIALS AND METHODS An Internet search was made in duplicate between December 2011 and August 2013 using MEDLINE, PubMed and Google Scholar (without restrictions on date of publication) for rabbit studies reporting the healing of CSD in the calvaria. Animal Research Reporting in Vivo Experiment (ARRIVE) guidelines (a list of 20 aspects to score and to ensure comparison between different experimental studies in animals) were used to evaluate the quality of the selected works. RESULTS Twenty-five manuscripts were evaluated. Case-control studies predominated (92.59%). Animal age was not stated in 70.37% of the studies; weight was not reported in 29.62%; most animals weighed 3.5 kg (26.31%). A CSD dimension of 15 mm was common (51.61%), generally located centrally (51.85%), followed by bilateral locations (48.14%). Circular (66.66%), rectangular (14.81%), square (14.81%) and ovoid (1.48%) geometries were used. Histomorphometric data showed incomplete healing in all CSDs and higher percentages of healing in smaller defects (<10 mm). The longer the healing time allowed, the more bone healing took place, for both smaller and larger defects (>15 mm). Minimum quality grades were assigned to ARRIVE items study design (6), experimental animals (8), housing and husbandry (9), sample size (10), allocation (11), statistics (13), results-baseline data (14), numbers analyzed (15), adverse events (17) and funding (20). CONCLUSIONS Data on CSDs in rabbit calvariae lack homogeneity. Smaller defects can be considered critical depending on the time of sacrifice. When new diagnostic technologies are used in addition to histomorphometry, these should be applied with caution to facilitate future comparison with other research. The ARRIVE guidelines should be followed in any animal research protocol to improve the homogeneity, comparison and reproducibility between studies.
Collapse
|