1
|
Leng W, Wu X, Qi X, Liu H, Yuan L, Gao R. Systematic functional analysis and potential application of a serine protease from cold-adapted Planococcus bacterium. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
2
|
Genome sequence analysis and characterization of Bacillus altitudinis B12, a polylactic acid- and keratin-degrading bacterium. Mol Genet Genomics 2023; 298:389-398. [PMID: 36585993 DOI: 10.1007/s00438-022-01989-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/20/2022] [Indexed: 01/01/2023]
Abstract
Keratin-rich wastes, mainly in the form of feathers, are recalcitrant residues generated in high amounts as by-products in chicken farms and food industry. Polylactic acid (PLA) is the second most common biodegradable polymer found in commercial plastics, which is not easily degraded by microbial activity. This work reports the 3.8-Mb genome of Bacillus altitudinis B12, a highly efficient PLA- and keratin-degrading bacterium, with potential for environmental friendly biotechnological applications in the feed, fertilizer, detergent, leather, and pharmaceutical industries. The whole genome sequence of B. altitudinis B12 revealed that this strain (which had been previously misclassified as Bacillus pumilus B12) is closely related to the B. altitudinis strains ER5, W3, and GR-8. A total of 4056 coding sequences were annotated using the RAST server, of which 2484 are core genes of the pan genome of B. altitudinis and 171 are unique to this strain. According to the sequence analysis, B. pumilus B12 has a predicted secretome of 353 proteins, among which a keratinase and a PLA depolymerase were identified by sequence analysis. The presence of these two enzymes could explain the characterized PLA and keratin biodegradation capability of the strain.
Collapse
|
3
|
Jana A, Kakkar N, Halder SK, Das AJ, Bhaskar T, Ray A, Ghosh D. Efficient valorization of feather waste by Bacillus cereus IIPK35 for concomitant production of antioxidant keratin hydrolysate and milk-clotting metallo-serine keratinase. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116380. [PMID: 36208515 DOI: 10.1016/j.jenvman.2022.116380] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/08/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Keratinase production by Bacillus cereus IIPK35 was investigated under solid-state fermentation (SSF) and the maximum titer of 648.28 U/gds was revealed. Feather hydrolysates obtained from SSF exhibited paramount antioxidant properties in ABTS [2,2'-azinobis-(3-ethylbenzothiazoline)-6-sulfonic acid], FRAP [Ferric ion reducing antioxidant power], and DPPH [2,2,-Diphenyl-1-picrylhydrazyl] assay. The keratinase was purified up to homogeneity have a molecular weight of 42 kDa, and showed its stability between pH 6.5-10.0 and temperature 35-60 °C with optimum enzyme activity at pH 9.0 and 55 °C. The catalytic indices viz. Km of 9.8 mg/ml and Vmax of 307.7 μmol/min for keratin were determined. Besides keratin, the enzyme displayed broad and proteolytic activity towards other proteinaceous substrates such as casein, skim milk, gelatin, and bovine serum albumin. Pure keratinase activity was stimulated in presence of Ca2+ and Mg2+ ions, while it was strongly inhibited by both iodoacetamide and EDTA, indicating it to be a metallo-serine protease in nature. Circular dichroism study endorses the structural stability of the secondary structure at the said range of pH and temperature. The IIPK35 keratinase is non-cytotoxic in nature, shows remarkable storage stability and is stable in presence of Tween 80, Triton X 100, and sodium sulfite. Furthermore, it showed excellent milk clotting potential (107.6 Soxhlet Unit), suggesting its usefulness as an alternative milk clotting agent in the dairy industry. This study unlocks a new gateway for keratinase investigation in SSF using chicken feathers as substrate and biochemical and biophysical characterization of keratinase for better understanding and implication in industrial applications.
Collapse
Affiliation(s)
- Arijit Jana
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, 248005, India.
| | - Nikita Kakkar
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, 248005, India; Department of Bioscience and Biotechnology, Banasthali Vidyapith, Jaipur, Rajasthan, 304022, India.
| | - Suman Kumar Halder
- Department of Microbiology, Vidyasagar University, Midnapore, West Bengal, 721102, India.
| | - Amar Jyoti Das
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, 248005, India.
| | - Thallada Bhaskar
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, 248005, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh, 210002, India.
| | - Anjan Ray
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, 248005, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh, 210002, India.
| | - Debashish Ghosh
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, 248005, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh, 210002, India.
| |
Collapse
|
4
|
Zhang RX, Wu ZW, Cui HY, Chai YN, Hua CW, Wang P, Li L, Yang TY. Production of surfactant-stable keratinase from Bacillus cereus YQ15 and its application as detergent additive. BMC Biotechnol 2022; 22:26. [PMID: 36076195 PMCID: PMC9454225 DOI: 10.1186/s12896-022-00757-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 09/01/2022] [Indexed: 11/26/2022] Open
Abstract
Background With the growing concern for the environment, there are trends that bio-utilization of keratinous waste by keratinases could ease the heavy burden of keratinous waste from the poultry processing and leather industry. Especially surfactant-stable keratinases are beneficial for the detergent industry. Therefore, the production of keratinase by Bacillus cereus YQ15 was improved; the characterization and use of keratinase in detergent were also studied. Results A novel alkaline keratinase-producing bacterium YQ15 was isolated from feather keratin-rich soil and was identified as Bacillus cereus. Based on the improvement of medium components and culture conditions, the maximum keratinase activity (925 U/mL) was obtained after 36 h of cultivation under conditions of 35 °C and 160 rpm. Moreover, it was observed that the optimal reacting temperature and pH of the keratinase are 60 °C and 10.0, respectively; the activity was severely inhibited by PMSF and EDTA. On the contrary, the keratinase showed remarkable stability in the existence of the various surfactants, including SDS, Tween 20, Tween 60, Tween 80, and Triton X-100. Especially, 5% of Tween 20 and Tween 60 increased the activity by 100% and 60%, respectively. Furtherly, the keratinase revealed high efficiency in removing blood stains. Conclusion The excellent compatibility with commercial detergents and the high washing efficiency of removing blood stains suggested its suitability for potential application as a bio-detergent additive. Supplementary Information The online version contains supplementary material available at 10.1186/s12896-022-00757-3.
Collapse
Affiliation(s)
- Rong-Xian Zhang
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, People's Republic of China.
| | - Zhong-Wei Wu
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, People's Republic of China
| | - Hai-Yang Cui
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, People's Republic of China
| | - Ying-Nan Chai
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, People's Republic of China
| | - Cheng-Wei Hua
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, People's Republic of China
| | - Peng Wang
- Blood Transfusion Department, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, People's Republic of China
| | - Lan Li
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, People's Republic of China
| | - Tian-You Yang
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, People's Republic of China
| |
Collapse
|
5
|
Siddharthan N, Balagurunathan R, Hemalatha N. A novel feather-degrading bacterial isolate Geobacillus thermodenitrificans PS41 isolated from poultry farm soil. Arch Microbiol 2022; 204:565. [PMID: 35982264 DOI: 10.1007/s00203-022-03179-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/18/2022] [Accepted: 08/08/2022] [Indexed: 11/02/2022]
Abstract
The aim of this present work was to explore the potential feather-degrading bacterial isolates were isolated from poultry farm soil. Isolation and screening of keratinase-producing bacterial isolates were performed in keratin agar medium. The potential keratinase-producing bacterial isolates were identified using morphological, biochemical and molecular characterization. Degradation of chicken feather was optimized using different nutrient or physical factors in feather meal broth medium. Soluble peptide, amino acid and free thiol group liberation during feather degradation were estimated too. The isolated bacterial isolates were found significantly degrading the chicken feathers with keratinase enzyme production. The present study revealed a significantly novel feather-degrading Geobacillus thermodenitrificans PS41 bacterial isolate, isolated from poultry farm soil.
Collapse
Affiliation(s)
- Nagarajan Siddharthan
- Department of Microbiology, Periyar University, Periyar Palkalai Nagar, Salem, 636011, India
| | - Ramasamy Balagurunathan
- Department of Microbiology, Periyar University, Periyar Palkalai Nagar, Salem, 636011, India
| | - Natarajan Hemalatha
- Department of Microbiology, Periyar University, Periyar Palkalai Nagar, Salem, 636011, India.
| |
Collapse
|
6
|
Bokveld A, Nnolim NE, Nwodo UU. Chryseobacterium aquifrigidense FANN1 Produced Detergent-Stable Metallokeratinase and Amino Acids Through the Abasement of Chicken Feathers. Front Bioeng Biotechnol 2021; 9:720176. [PMID: 34422784 PMCID: PMC8377754 DOI: 10.3389/fbioe.2021.720176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/29/2021] [Indexed: 11/15/2022] Open
Abstract
Microbial keratinases’ versatility in the beneficiation of keratinous waste biomass into high-value products prompts their application in diverse spheres hence, advancing green technology and the bioeconomy. Consequently, a feather-degrading Chryseobacterium aquifrigidense FANN1 (NCBI: MW169027) was used to produce keratinase, and its biochemical properties were determined. The optimization of physicochemical parameters and analysis of the free amino acid constituents of the feather hydrolysate were also carried out. FANN1 showed a maximum keratinase yield of 1,664.55 ± 42.43 U/mL after 72 h, at optimal process conditions that included initial medium pH, incubation temperature, inoculum size, and chicken feather concentration of 8, 30°C, 4% (v/v), and 15 (g/L), respectively. Analysis of degradation product showed 50.32% and 23.25% as the protein value and total free amino acids, respectively, with a relatively high abundance of arginine (2.25%) and serine (2.03%). FANN1 keratinase was optimally active at pH 8.0 and relatively moderate to high temperature (40–50°C). EDTA and 1,10-phenanthroline inhibited the keratinase activity, and that suggests a metallo-keratinase. The enzyme showed remarkable stability in the presence of chemical agents, with residual activity 141 ± 10.38%, 98 ± 0.43%, 111 ± 1.73%, 124 ± 0.87%, 104 ± 3.89%, 107 ± 7.79%, and 112 ± 0.86% against DTT, H2O2, DMSO, acetonitrile, triton X-100, tween-80, and SDS, respectively. The residual activity of FANN1 keratinase was enhanced by Sunlight (129%), Ariel (116%), MAQ (151%), and Surf (143%) compared to the control after 60 min preincubation. Likewise, the enzyme was remarkably stable in the presence Fe3+ (120 ± 5.06%), Ca2+ (100 ± 10.33%), Na+ (122 ± 2.95%), Al3+ (106 ± 10.33%); while Co2+ (68 ± 8.22%) and Fe2+ (51 ± 8.43%) elicited the most repressive effect on keratinase activity. The findings suggest that C. aquifrigidense FANN1 is a potential candidate for keratinous wastes bio-recycling, and the associated keratinase has a good prospect for application in detergent formulation.
Collapse
Affiliation(s)
- Amahle Bokveld
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| | - Nonso E Nnolim
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| | - Uchechukwu U Nwodo
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| |
Collapse
|
7
|
Conception of active food packaging films based on crab chitosan and gelatin enriched with crustacean protein hydrolysates with improved functional and biological properties. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106639] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
8
|
Farooq S, Nazir R, Ganai SA, Ganai BA. Isolation and characterization of a new cold-active protease from psychrotrophic bacteria of Western Himalayan glacial soil. Sci Rep 2021; 11:12768. [PMID: 34140593 PMCID: PMC8211794 DOI: 10.1038/s41598-021-92197-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/28/2021] [Indexed: 02/05/2023] Open
Abstract
As an approach to the exploration of cold-active enzymes, in this study, we isolated a cold-active protease produced by psychrotrophic bacteria from glacial soils of Thajwas Glacier, Himalayas. The isolated strain BO1, identified as Bacillus pumilus, grew well within a temperature range of 4-30 °C. After its qualitative and quantitative screening, the cold-active protease (Apr-BO1) was purified. The Apr-BO1 had a molecular mass of 38 kDa and showed maximum (37.02 U/mg) specific activity at 20 °C, with casein as substrate. It was stable and active between the temperature range of 5-35 °C and pH 6.0-12.0, with an optimum temperature of 20 °C at pH 9.0. The Apr-BO1 had low Km value of 1.0 mg/ml and Vmax 10.0 µmol/ml/min. Moreover, it displayed better tolerance to organic solvents, surfactants, metal ions and reducing agents than most alkaline proteases. The results exhibited that it effectively removed the stains even in a cold wash and could be considered a decent detergent additive. Furthermore, through protein modelling, the structure of this protease was generated from template, subtilisin E of Bacillus subtilis (PDB ID: 3WHI), and different methods checked its quality. For the first time, this study reported the protein sequence for psychrotrophic Apr-BO1 and brought forth its novelty among other cold-active proteases.
Collapse
Affiliation(s)
- Saleem Farooq
- grid.412997.00000 0001 2294 5433Department of Environmental Science, University of Kashmir, Srinagar, Jammu and Kashmir 190006 India ,grid.412997.00000 0001 2294 5433Microbiology Research Laboratory, Centre of Research for Development (CORD), University of Kashmir, Hazratbal, Srinagar, India Jammu and Kashmir 190006
| | - Ruqeya Nazir
- grid.412997.00000 0001 2294 5433Microbiology Research Laboratory, Centre of Research for Development (CORD), University of Kashmir, Hazratbal, Srinagar, India Jammu and Kashmir 190006
| | - Shabir Ahmad Ganai
- grid.444725.40000 0004 0500 6225Division of Basic Sciences and Humanities, FoA, SKUAST-Kashmir, Srinagar, Jammu and Kashmir 193201 India
| | - Bashir Ahmad Ganai
- grid.412997.00000 0001 2294 5433Microbiology Research Laboratory, Centre of Research for Development (CORD), University of Kashmir, Hazratbal, Srinagar, India Jammu and Kashmir 190006
| |
Collapse
|
9
|
Nnolim NE, Nwodo UU. Bacillus sp. CSK2 produced thermostable alkaline keratinase using agro-wastes: keratinolytic enzyme characterization. BMC Biotechnol 2020; 20:65. [PMID: 33317483 PMCID: PMC7734832 DOI: 10.1186/s12896-020-00659-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/26/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Chicken feathers are the most abundant agro-wastes emanating from the poultry processing farms and present major concerns to environmentalists. Bioutilization of intractable feather wastes for the production of critical proteolytic enzymes is highly attractive from both ecological and biotechnological perspectives. Consequently, physicochemical conditions influencing keratinase production by Bacillus sp. CSK2 on chicken feathers formulation was optimized, and the keratinase was characterized. RESULTS The highest enzyme activity of 1539.09 ± 68.14 U/mL was obtained after 48 h of incubation with optimized conditions consisting of chicken feathers (7.5 g/L), maltose (2.0 g/L), initial fermentation pH (5.0), incubation temperature (30 °C), and agitation speed (200 rpm). The keratinase showed optimal catalytic efficiency at pH 8.0 and a temperature range of 60 °C - 80 °C. The keratinase thermostability was remarkable with a half-life of above 120 min at 70 °C. Keratinase catalytic efficiency was halted by ethylenediaminetetraacetic acid and 1,10-phenanthroline. However, keratinase activity was enhanced by 2-mercaptoethanol, dimethyl sulfoxide, tween-80, but was strongly inhibited by Al3+ and Fe3+. Upon treatment with laundry detergents, the following keratinase residual activities were achieved: 85.19 ± 1.33% (Sunlight), 90.33 ± 5.95% (Surf), 80.16 ± 2.99% (Omo), 99.49 ± 3.11% (Ariel), and 87.19 ± 0.26% (Maq). CONCLUSION The remarkable stability of the keratinase with an admixture of organic solvents or laundry detergents portends the industrial and biotechnological significance of the biocatalyst.
Collapse
Affiliation(s)
- Nonso E Nnolim
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice, 5700, South Africa
| | - Uchechukwu U Nwodo
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa. .,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice, 5700, South Africa.
| |
Collapse
|
10
|
Su C, Gong JS, Qin J, Li H, Li H, Xu ZH, Shi JS. The tale of a versatile enzyme: Molecular insights into keratinase for its industrial dissemination. Biotechnol Adv 2020; 45:107655. [PMID: 33186607 DOI: 10.1016/j.biotechadv.2020.107655] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 01/02/2023]
Abstract
Keratinases are unique among proteolytic enzymes for their ability to degrade recalcitrant insoluble proteins, and they are of critical importance in keratin waste management. Over the past few decades, researchers have focused on discovering keratinase producers, as well as producing and characterizing keratinases. The application potential of keratinases has been investigated in the feed, fertilizer, leathering, detergent, cosmetic, and medical industries. However, the commercial availability of keratinases is still limited due to poor productivity and properties, such as thermostability, storage stability and resistance to organic reagents. Advances in molecular biotechnology have provided powerful tools for enhancing the production and functional properties of keratinase. This critical review systematically summarizes the application potential of keratinase, and in particular certain newly discovered catalytic capabilities. Furthermore, we provide comprehensive insight into mechanistic and molecular aspects of keratinases including analysis of gene sequences and protein structures. In addition, development and current advances in protein engineering of keratinases are summarized and discussed, revealing that the engineering of protein domains such as signal peptides and pro-peptides has become an important strategy to increase production of keratinases. Finally, prospects for further development are also proposed, indicating that advanced protein engineering technologies will lead to improved and additional commercial keratinases for various industrial applications.
Collapse
Affiliation(s)
- Chang Su
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China.
| | - Jiufu Qin
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Heng Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Hui Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Zheng-Hong Xu
- National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, PR China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
11
|
Sustainable production, biochemical and molecular characterization of thermo-and-solvent stable alkaline serine keratinase from novel Bacillus pumilus AR57 for promising poultry solid waste management. Int J Biol Macromol 2020; 163:135-146. [PMID: 32615225 DOI: 10.1016/j.ijbiomac.2020.06.219] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/21/2020] [Accepted: 06/24/2020] [Indexed: 01/29/2023]
Abstract
The increasing amount of recalcitrant keratinous wastes generated from the poultry industry poses a serious threat to the environment. Keratinase have gained much attention to convert these wastes into valuable products. Ever since primitive feathers first appeared on dinosaurs, microorganisms have evolved to degrade this most recalcitrant keratin. In this study, we identified a promising keratinolytic bacterial strain for bioconversion of poultry solid wastes. A true keratinolytic bacterium was isolated from the slaughterhouse soil and was identified and designated as Bacillus pumilus AR57 by 16S rRNA sequencing. For enhanced keratinase production and rapid keratin degradation, the media components and substrate concentration were optimized through shake flask culture. White chicken feather (1% w/v) was found to be the good substrate concentration for high keratinase production when supplemented with simple medium ingredients. The biochemical characterization reveals astounding results which makes the B. pumilus AR57 keratinase as a novel and unique protease. Optimum activity of the crude enzyme was exhibited at pH 9 and 45 °C. The crude extracellular keratinase was characterized as thermo-and-solvent (DMSO) stable serine keratinase. Bacillus pumilus AR57 showed complete degradation (100%) of white chicken feather (1% w/v) within 18 h when incubated in modified minimal medium supplemented with DMSO (1% v/v) at 150 rpm at 37 °C. Keratinase from modified minimal medium supplemented with DMSO exhibits a half-life of 4 days. Whereas, keratinase from the modified minimal medium fortified with white chicken feather (1% w/v) was stable for 3 h only. Feather meal produced by B. pumilus AR57 was found to be rich in essential amino acids. Hence, we proposed B. pumilus AR57 as a potential candidate for the future application in eco-friendly bioconversion of poultry waste and the keratinase could play a pivotal role in the detergent industry. While feather meal may serve as an alternative to produce animal feed and biofertilizers.
Collapse
|
12
|
Biochemical Properties of a Partially Purified Protease from Bacillus sp. CL18 and Its Use to Obtain Bioactive Soy Protein Hydrolysates. Appl Biochem Biotechnol 2020; 192:643-664. [PMID: 32504245 DOI: 10.1007/s12010-020-03355-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/22/2020] [Indexed: 12/17/2022]
Abstract
Microbial proteases are relevant biocatalysts with diverse applications. Production of protein hydrolysates is recently focused, since they might display biological activities. Therefore, the extracellular protease from Bacillus sp. CL18 was partially purified through ammonium sulfate precipitation (25-50% saturation) and gel filtration chromatography, with a 60.7-fold purification (40,593 U/mg protein) and 21.3% recovery. The partially purified protease (PPP) was characterized as a serine protease, with optimal activity at 51-59 °C and pH 7.4-8.8 and low thermal stability. Thermal inactivation followed first-order kinetics. PPP depended on Ca2+ for higher thermal stability, depicted by increases in half-lives (t1/2), activation energy (Ea), and free energy (ΔG#) for kinetic inactivation. PPP preferentially hydrolyzed casein > soy protein isolate (SPI) >>> keratinous materials. SPI hydrolysis by PPP was further investigated, and the obtained hydrolysates exhibited increased in vitro bioactivities. Hydrolysates displayed antioxidant capacities through the scavenging of synthetic organic radicals and Fe3+-reducing ability. In addition, hydrolysates inhibited the activities of dipeptidyl peptidase IV (DPP IV) and angiotensin-converting enzyme (ACE), suggesting antidiabetic and antihypertensive potentials, respectively. From its biochemical properties, PPP might be used to produce protein hydrolysates with multifunctional bioactivities. Both PPP and SPI hydrolysates can find applications in food biotechnology.
Collapse
|
13
|
Challenges and Opportunities in Identifying and Characterising Keratinases for Value-Added Peptide Production. Catalysts 2020. [DOI: 10.3390/catal10020184] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Keratins are important structural proteins produced by mammals, birds and reptiles. Keratins usually act as a protective barrier or a mechanical support. Millions of tonnes of keratin wastes and low value co-products are generated every year in the poultry, meat processing, leather and wool industries. Keratinases are proteases able to breakdown keratin providing a unique opportunity of hydrolysing keratin materials like mammalian hair, wool and feathers under mild conditions. These mild conditions ameliorate the problem of unwanted amino acid modification that usually occurs with thermochemical alternatives. Keratinase hydrolysis addresses the waste problem by producing valuable peptide mixes. Identifying keratinases is an inherent problem associated with the search for new enzymes due to the challenge of predicting protease substrate specificity. Here, we present a comprehensive review of twenty sequenced peptidases with keratinolytic activity from the serine protease and metalloprotease families. The review compares their biochemical activities and highlights the difficulties associated with the interpretation of these data. Potential applications of keratinases and keratin hydrolysates generated with these enzymes are also discussed. The review concludes with a critical discussion of the need for standardized assays and increased number of sequenced keratinases, which would allow a meaningful comparison of the biochemical traits, phylogeny and keratinase sequences. This deeper understanding would facilitate the search of the vast peptidase family sequence space for novel keratinases with industrial potential.
Collapse
|
14
|
Hammami A, Bayoudh A, Hadrich B, Abdelhedi O, Jridi M, Nasri M. Response‐surface methodology for the production and the purification of a new H
2
O
2
‐tolerant alkaline protease from
Bacillus invictae
AH1 strain. Biotechnol Prog 2020; 36:e2965. [DOI: 10.1002/btpr.2965] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/03/2020] [Accepted: 01/09/2020] [Indexed: 01/22/2023]
Affiliation(s)
- Amal Hammami
- Laboratory of Enzyme Engineering and MicrobiologyEngineering National School of Sfax (ENIS), University of Sfax Sfax Tunisia
| | - Ahmed Bayoudh
- Laboratory of Enzyme Engineering and MicrobiologyEngineering National School of Sfax (ENIS), University of Sfax Sfax Tunisia
| | - Bilel Hadrich
- Unité de Biotechnologie des Algues, Biological Engineering Department, National School of Engineers of SfaxUniversity of Sfax Sfax Tunisia
| | - Ola Abdelhedi
- Laboratory of Enzyme Engineering and MicrobiologyEngineering National School of Sfax (ENIS), University of Sfax Sfax Tunisia
| | - Mourad Jridi
- Laboratory of Enzyme Engineering and MicrobiologyEngineering National School of Sfax (ENIS), University of Sfax Sfax Tunisia
- Higher Institute of Biotechnology of BejaUniversity of Jendouba Beja Tunisia
| | - Moncef Nasri
- Laboratory of Enzyme Engineering and MicrobiologyEngineering National School of Sfax (ENIS), University of Sfax Sfax Tunisia
| |
Collapse
|
15
|
Cloning and expression of a thermostable keratinase gene from Thermoactinomyces sp. YT06 in Escherichia coli and characterization of purified recombinant enzymes. World J Microbiol Biotechnol 2019; 35:135. [PMID: 31432264 DOI: 10.1007/s11274-019-2710-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 08/08/2019] [Indexed: 10/26/2022]
Abstract
The feather-degrading strain Thermoactinomyces sp. YT06 secretes an extracellular keratinolytic protease (KERTYT); however, the gene encoding this protease remains unknown. The kerT1 gene (1170 bp) encoding keratinase was cloned and expressed in Escherichia coli BL21(DE3). Purified recombinant keratinase (rKERTYT) was achieved at a yield of 39.16% and 65.27-fold purification with a specific activity of 1325 U/mg. It was shown that rKERTYT has many similarities to the native enzyme (KERTYT) by characterization of rKERTYT. The molecular weight of rKERTYT secreted by recombinant E. coli was approximately 28 kDa. The optimal temperature and the pH values of rKERTYT were 65 °C and 8.5, respectively, and the protein remained stable from 50 to 60 °C and pH 6-11. The keratinase was strongly inhibited by phenyl methane sulfonyl fluoride (PMSF), suggesting that it belongs to the serine protease family. It was significantly activated by Mn2+ and β-mercaptoethanol (β-Me). rKERTYT showed stability and retained over 80% activity with the existence of organic solvents such as acetone, methylbenzene and dimethyl sulfoxide. These findings indicated that rKERTYT will be a promising candidate for the enzymatic processing of keratinous wastes.
Collapse
|
16
|
Purification and characterization of a novel high molecular weight alkaline protease produced by an endophytic Bacillus halotolerans strain CT2. Int J Biol Macromol 2018; 111:342-351. [DOI: 10.1016/j.ijbiomac.2018.01.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/22/2017] [Accepted: 01/04/2018] [Indexed: 01/14/2023]
|
17
|
Gegeckas A, Šimkutė A, Gudiukaitė R, Čitavičius DJ. Characterization and application of keratinolytic paptidases from Bacillus spp. Int J Biol Macromol 2018; 113:1206-1213. [PMID: 29545060 DOI: 10.1016/j.ijbiomac.2018.03.046] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/06/2018] [Accepted: 03/11/2018] [Indexed: 12/25/2022]
Abstract
Solid keratin-rich waste management is one of essential research area in nowadays. Conventional chemical and high thermal keratin waste decomposition methods are fully explored and not enough effective for future biotechnology perspectives. However, traditional keratin-rich waste decomposition methods could be replaced by environmentally-friendly and economical microbial keratin waste biodegradation methods without energy wastage and essential amino acids and nutrition elements loss. In this study BPKer and BAKer keratinolytic peptidases from Bacillus sp. AD-W and Bacillus sp. AD-AA3 strains, respectively, were successfully produced, purified and biochemically characterized. Physical and chemical characterization of native BPKer and BAKer suggested that new keratinolytic peptidases are powerful biocatalysts for efficient keratin waste biodegradation and can replace conventional insufficient non-biological hydrolysis processes without energy, important amino acids and nutritional elements loss. High value bio-active hydrolysis products - peptides obtained from keratin waste biodegradation by BPKer and BAKer are suitable for industrial applications in white and green biotechnology.
Collapse
Affiliation(s)
- Audrius Gegeckas
- Department of Microbiology & Biotechnology, Life Sciences Center (LSC), Vilnius University, Saulėtekio ave. 7, LT-10257 Vilnius, Lithuania.
| | - Aistė Šimkutė
- Department of Microbiology & Biotechnology, Life Sciences Center (LSC), Vilnius University, Saulėtekio ave. 7, LT-10257 Vilnius, Lithuania
| | - Renata Gudiukaitė
- Department of Microbiology & Biotechnology, Life Sciences Center (LSC), Vilnius University, Saulėtekio ave. 7, LT-10257 Vilnius, Lithuania
| | - Donaldas Jonas Čitavičius
- Department of Microbiology & Biotechnology, Life Sciences Center (LSC), Vilnius University, Saulėtekio ave. 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
18
|
Tao LY, Gong JS, Su C, Jiang M, Li H, Li H, Lu ZM, Xu ZH, Shi JS. Mining and Expression of a Metagenome-Derived Keratinase Responsible for Biosynthesis of Silver Nanoparticles. ACS Biomater Sci Eng 2018; 4:1307-1315. [DOI: 10.1021/acsbiomaterials.7b00687] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Li-Yan Tao
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, P. R. China
| | - Jin-Song Gong
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, P. R. China
| | - Chang Su
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, P. R. China
| | - Min Jiang
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, P. R. China
| | - Heng Li
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, P. R. China
| | - Hui Li
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, P. R. China
| | - Zhen-Ming Lu
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, P. R. China
- National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Zheng-Hong Xu
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, P. R. China
- National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Jin-Song Shi
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
19
|
A novel alkaline surfactant-stable keratinase with superior feather-degrading potential based on library screening strategy. Int J Biol Macromol 2017; 95:404-411. [DOI: 10.1016/j.ijbiomac.2016.11.045] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/11/2016] [Accepted: 11/14/2016] [Indexed: 11/22/2022]
|
20
|
Mohamad N, Phang LY, Abd-Aziz S. Optimization of metallo-keratinase production by Pseudomonas sp. LM19 as a potential enzyme for feather waste conversion. BIOCATAL BIOTRANSFOR 2017. [DOI: 10.1080/10242422.2017.1280031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Nurliyana Mohamad
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Lai-yee Phang
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Suraini Abd-Aziz
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| |
Collapse
|
21
|
Fellahi S, Chibani A, Feuk-Lagerstedt E, Taherzadeh MJ. Identification of two new keratinolytic proteases from a Bacillus pumilus strain using protein analysis and gene sequencing. AMB Express 2016; 6:42. [PMID: 27363997 PMCID: PMC4929112 DOI: 10.1186/s13568-016-0213-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/21/2016] [Indexed: 11/18/2022] Open
Abstract
The Bacillus strain (CCUG 66887) has a high capacity to excrete keratinase with the ability to degrade both alpha- and beta keratin. In this study we aimed to show the characteristics of the keratinolytic protease and to identify its gene by using liquid chromatography–electrospray ionization tandem mass spectrometry methods (nanoHPLC–ESI–MS/MS) followed by Mascot data base search. The results showed that the enzyme in fact consists of two different keratinases, both with a molecular mass of 38 kDa. Further, DNA sequencing generated the open reading frame (ORF) of one of the genes (Ker1), and de novo genome sequencing identified the ORF of the second gene (Ker2). The two keratinase genes contain 1153 base pairs each and have a gene similarity of 67 %. In addition, the Bacillus strain was classified as Bacillus pumilus and its genes were annotated in the GeneBank at NCBI (accession: CP011109.1). Amino acid sequences alignment with known B. pumilus proteases indicated that the two keratinases of B. pumilus strain C4 are subtilisin-like serine proteases belonging to the Protease S8 family. Taken together, these result suggest the two keratinases as promising candidates for enzymatic processing of keratinous wastes in waste refinery.
Collapse
|
22
|
Biochemical characterization of a novel surfactant-stable serine keratinase with no collagenase activity from Brevibacillus parabrevis CGMCC 10798. Int J Biol Macromol 2016; 93:843-851. [PMID: 27651275 DOI: 10.1016/j.ijbiomac.2016.09.063] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/14/2016] [Accepted: 09/15/2016] [Indexed: 11/22/2022]
Abstract
Dehairing is a high pollution process in leather industry. Conventionally, the lime-sulfide mediated chemical process for dehairing would lead to the discharge of pollutants and corrosion of industrial equipment. Concerning these problems, keratinase has become a promising candidate for dehairing process in recent years. In this study, a keratinase-producing bacterium was isolated from sheepfold soil and identified as Brevibacillus parabrevis CGMCC 10798 based on the biochemical characteristics and molecular identification. The keratinase was purified to electrophoretic homogeneity with 17.19% of recovery, 13.18 folds of purification and an estimated molecular weight of 28kDa. The enzyme exhibited high keratinase activity and no collagenase activity. Besides, the keratinase showed optimal activity at 60°C and pH 8.0. The enzyme activity could be significantly increased in the presence of Na+ and Ca2+. And it was inhibited by EDTA, and PMSF, which indicated that the keratinase belongs to serine-metallo protease. The enzyme could remain stable in the presence of surfactants. Especially, 5mM Tween 40 and Triton 100 could improve the activity by 11% and 30%, respectively. Moreover, B. parabrevis keratinase could completely dehair goat wool within 7h, which indicated its application potential in leather industry.
Collapse
|
23
|
Verma A, Singh H, Anwar MS, Kumar S, Ansari MW, Agrawal S. Production of Thermostable Organic Solvent Tolerant Keratinolytic Protease from Thermoactinomyces sp. RM4: IAA Production and Plant Growth Promotion. Front Microbiol 2016; 7:1189. [PMID: 27555836 PMCID: PMC4974946 DOI: 10.3389/fmicb.2016.01189] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 07/19/2016] [Indexed: 11/13/2022] Open
Abstract
There are several reports about the optimization of protease production, but only few have optimized the production of organic solvent tolerant keratinolytic proteases that show remarkable exploitation in the development of the non-polluting processes in biotechnological industries. The present study was carried with aim to optimize the production of a thermostable organic solvent tolerant keratinolytic protease Thermoactinomyces sp. RM4 utilizing chicken feathers. Thermoactinomyces sp. RM4 isolated from the soil sample collected from a rice mill wasteyard site near Kashipur, Uttrakhand was identified on the basis of 16S rDNA analysis. The production of organic solvent tolerant keratinolytic protease enzyme by Thermoactinomyces sp. RM4 was optimized by varying physical culture conditions such as pH (10.0), temperature (60°C), inoculum percentage (2%), feather concentration (2%) and agitation rate (2 g) for feather degradation. The result showed that Thermoactinomyces sp. RM4 potentially produces extra-cellular thermostable organic solvent tolerant keratinolytic protease in the culture medium. Further, the feather hydrolysate from keratinase production media showed plant growth promoting activity by producing indole-3-acetic acid itself. The present findings suggest that keratinolytic protease from Thermoactinomyces sp. RM4 offers enormous industrial applications due to its organic solvent tolerant property in peptide synthesis, practical role in feather degradation and potential function in plant growth promoting activity, which might be a superior candidate to keep ecosystem healthy and functional.
Collapse
Affiliation(s)
- Amit Verma
- Department of Biochemistry, G. B. Pant University of Agriculture and TechnologyPantnagar, India; College of Basic Science & Humanities, Sardarkrushinagar Dantiwada Agricultural UniversityPalanpur, India
| | - Hukum Singh
- Climate Change and Forest Influence Division, Forest Research Institute Dehradun, India
| | - Mohammad S Anwar
- Department of Biotechnology, Bheemtal Campus, Kumaun University Nainital, India
| | - Shailendra Kumar
- Forest Pathology Division, Forest Research Institute Dehradun, India
| | - Mohammad W Ansari
- Department of Botany, Zakir Husain Delhi College, University of Delhi New Delhi, India
| | - Sanjeev Agrawal
- Department of Biochemistry, G. B. Pant University of Agriculture and Technology Pantnagar, India
| |
Collapse
|
24
|
Ferrareze PAG, Correa APF, Brandelli A. Purification and characterization of a keratinolytic protease produced by probiotic Bacillus subtilis. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2016. [DOI: 10.1016/j.bcab.2016.05.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
25
|
Kshetri P, Ningthoujam DS. Keratinolytic activities of alkaliphilic Bacillus sp. MBRL 575 from a novel habitat, limestone deposit site in Manipur, India. SPRINGERPLUS 2016; 5:595. [PMID: 27247891 PMCID: PMC4864789 DOI: 10.1186/s40064-016-2239-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/27/2016] [Indexed: 12/02/2022]
Abstract
Microbial degradation of keratinous wastes is preferred over physicochemical methods as the latter is costlier and not eco-friendly. Novel habitats are promising for discovery of new microbial strains. Towards discovery of novel keratinolytic bacteria, screening of bacterial strains from a novel limestone habitat in Hundung, Manipur, India was done and a promising isolate, MBRL 575, was found to degrade native chicken feather efficiently. It could grow over a broad pH range (Langeveld et al. in J Infect Dis 188:1782-1789, 2003; Park and Son in Microbiol Res 164:478-485, 2009; Zaghloul et al. in Biodegradation 22:111-128, 2011; Takami et al. in Biosci Biotechnol Biochem 56:1667-1669, 1992; Riffel et al. in J Biotechnol 128:693-703, 2007; Wang et al. in Bioresour Technol 99:5679-5686, 2008) and in presence of 0-15 % NaCl. Based on phenotypic characterization and 16S rRNA gene sequence analysis, the new keratinolytic limestone isolate was identified as Bacillus sp. MBRL 575. It produced 305 ± 12 U/ml keratinase and liberated 120 ± 5.5 mg of soluble peptides and 158 ± 4 mg of amino acids per gram of feather after 48 h of incubation at 30 °C in chicken feather medium. The strain could also degrade feathers of other species besides chicken. The cell-free enzyme was also able to degrade feather. Citrate and soybean meal were found to be the best carbon and nitrogen supplements for enhanced enzyme, soluble peptide and amino acid production. In addition to keratinolytic activity, MBRL 575 also exhibited antagonistic activity against two major rice fungal pathogens, Rhizoctonia oryzae-sativae (65 %) and Rhizoctonia solani (58 %).
Collapse
Affiliation(s)
- Pintubala Kshetri
- Microbial Biotechnology Research Laboratory, Department of Biochemistry, Manipur University, Canchipur, 795003 India
| | - Debananda S. Ningthoujam
- Microbial Biotechnology Research Laboratory, Department of Biochemistry, Manipur University, Canchipur, 795003 India
| |
Collapse
|
26
|
Purification and partial characterization of serine-metallokeratinase from a newly isolated Bacillus pumilus NRC21. Int J Biol Macromol 2016; 86:189-96. [PMID: 26802243 DOI: 10.1016/j.ijbiomac.2016.01.060] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 01/14/2016] [Accepted: 01/18/2016] [Indexed: 11/24/2022]
Abstract
A serine metallokeratinase enzyme (30 kDa) produced by a newly isolated Bacillus strain (Bacillus pumilus NRC21) cultivated under optimized conditions in medium containing chicken feather meal was purified and characterized in a set of biochemical assays. The purification was carried out using two successive chromatographic steps; cation exchange chromatography on CM-cellulose and gel filtration on sephadex G-100 columns. The purified enzyme showed a specific activity of 2000 units/mg protein against 170 units/mg protein for crude extract with 12 fold purification. The enzymatic activity of the keratinase stimulated by (Na(+), K(+), Mg(2+)), Hg(+2) had no effect, and inhibited by entire tested cations, serine and metalloproteinase inhibitors, therefore it can be considered as a serine metalloenzyme. The optimum pH and temperature for the purified enzyme were (7.5, 8.5) and (50, 45 °C) when using keratin azure and azocasein as substrates, respectively. The purified enzyme was highly stable at broad pH and temperature ranged (5-10) and (20-60 °C), respectively and its thermoactivity and thermostability were enhanced in the presence of 5 mM Mg(+2). These results suggest that the purified keratinase may be used in several industrial applications.
Collapse
|
27
|
Padma Latha P, Bhatt M, Jain SL. Sustainable catalysis using magnetic chicken feathers decorated with Pd(0) for Suzuki-cross coupling reaction. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.08.081] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
28
|
Chitin extraction from crab shells by Bacillus bacteria. Biological activities of fermented crab supernatants. Int J Biol Macromol 2015; 79:167-73. [DOI: 10.1016/j.ijbiomac.2015.04.027] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/28/2015] [Accepted: 04/13/2015] [Indexed: 11/24/2022]
|
29
|
Gegeckas A, Gudiukaitė R, Debski J, Citavicius D. Keratinous waste decomposition and peptide production by keratinase from Geobacillus stearothermophilus AD-11. Int J Biol Macromol 2015; 75:158-65. [PMID: 25625783 DOI: 10.1016/j.ijbiomac.2015.01.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/22/2014] [Accepted: 01/19/2015] [Indexed: 10/24/2022]
Abstract
A keratinolytic proteinase was cloned from thermophilic bacterium Geobacillus stearothermophilus AD-11 and was expressed in Escherichia coli BL21(DE3). Recombinant keratinolytic proteinase (RecGEOker) with an estimated molecular weight of 57 kDa was purified and keratinase activity was measured. RecGEOker showed optimal activity at pH 9 and 60 °C. Recombinant keratinolytic proteinase showed the highest substrate specificity toward keratin from wool > collagen > sodium caseinate > gelatin > and BSA in descending order. RecGEOker is applicable for efficient keratin waste biodegradation and can replace conventional non-biological hydrolysis processes. High-value small peptides obtained from enzymatic biodegradation by RecGEOker are suitable for industrial application in white and/or green biotechnology for use as major additives in various products.
Collapse
Affiliation(s)
- Audrius Gegeckas
- Department of Microbiology and Biotechnology, Faculty of Natural Sciences, Vilnius University, M. K. Čiurlionio 21/27, LT-03101 Vilnius, Lithuania.
| | - Renata Gudiukaitė
- Department of Microbiology and Biotechnology, Faculty of Natural Sciences, Vilnius University, M. K. Čiurlionio 21/27, LT-03101 Vilnius, Lithuania
| | - Janusz Debski
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Science, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Donaldas Citavicius
- Department of Microbiology and Biotechnology, Faculty of Natural Sciences, Vilnius University, M. K. Čiurlionio 21/27, LT-03101 Vilnius, Lithuania
| |
Collapse
|
30
|
Gong J, Wang Y, Zhang D, Li H, Zhang X, Zhang R, Lu Z, Xu Z, Shi J. A surfactant-stable Bacillus pumilus K9 α-keratinase and its potential application in detergent industry. Chem Res Chin Univ 2015. [DOI: 10.1007/s40242-015-4351-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Gegeckas A, Gudiukaitė R, Citavicius D. Keratinolytic proteinase from Bacillus thuringiensis AD-12. Int J Biol Macromol 2014; 69:46-51. [DOI: 10.1016/j.ijbiomac.2014.05.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 05/06/2014] [Accepted: 05/07/2014] [Indexed: 11/15/2022]
|
32
|
Gao L, Hu H, Sui X, Chen C, Chen Q. One for two: conversion of waste chicken feathers to carbon microspheres and (NH4)HCO3. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:6500-6507. [PMID: 24766379 DOI: 10.1021/es5006708] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Pyrolysis of 1 g of waste chicken feathers (quills and barbs) in supercritical carbon dioxide (sc-CO2) system at 600 °C for 3 h leads to the formation of 0.25 g well-shaped carbon microspheres with diameters of 1-5 μm and 0.26 g ammonium bicarbonate ((NH4)HCO3). The products were characterized by powder X-ray diffraction (XRD), Field emission scanning electron microscopy (FE-SEM), Raman spectroscopic, FT-IR spectrum, X-ray electron spectroscopy (XPS), and N2 adsorption/desorption measurements. The obtained carbon microspheres displayed great superhydrophobicity as fabric coatings materials, with the water contact angle of up to 165.2±2.5°. The strategy is simple, efficient, does not require any toxic chemicals or catalysts, and generates two valuable materials at the same time. Moreover, other nitrogen-containing materials (such as nylon and amino acids) can also be converted to carbon microspheres and (NH4)HCO3 in the sc-CO2 system. This provides a simple strategy to extract the nitrogen content from natural and man-made waste materials and generate (NH4)HCO3 as fertilizer.
Collapse
Affiliation(s)
- Lei Gao
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China , Jinzhai Rd 96, Hefei 86-551-63601495, China
| | | | | | | | | |
Collapse
|
33
|
|
34
|
Zymogram Analysis of Alkaline Keratinase Produced by Nitrogen Fixing Bacillus pumilus ZED17 Exhibiting Multiprotease Enzyme Activities. Jundishapur J Microbiol 2013. [DOI: 10.5812/jjm.7974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
35
|
Biochemical and molecular characterization of a serine keratinase from Brevibacillus brevis US575 with promising keratin-biodegradation and hide-dehairing activities. PLoS One 2013; 8:e76722. [PMID: 24146914 PMCID: PMC3795758 DOI: 10.1371/journal.pone.0076722] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 08/26/2013] [Indexed: 12/30/2022] Open
Abstract
Dehairing is one of the highly polluting operations in the leather industry. The conventional lime-sulfide process used for dehairing produces large amounts of sulfide, which poses serious toxicity and disposal problems. This operation also involves hair destruction, a process that leads to increased chemical oxygen demand (COD), biological oxygen demand (BOD), and total suspended solid (TSS) loads in the effluent. With these concerns in mind, enzyme-assisted dehairing has often been proposed as an alternative method. The main enzyme preparations so far used involved keratinases. The present paper reports on the purification of an extracellular keratinase (KERUS) newly isolated from Brevibacillus brevis strain US575. Matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/MS) analysis revealed that the purified enzyme was a monomer with a molecular mass of 29121.11 Da. The sequence of the 27 N-terminal residues of KERUS showed high homology with those of Bacillus keratinases. Optimal activity was achieved at pH 8 and 40°C. Its thermoactivity and thermostability were upgraded in the presence of 5 mM Ca2+. The enzyme was completely inhibited by phenylmethanesulfonyl fluoride (PMSF) and diiodopropyl fluorophosphates (DFP), which suggests that it belongs to the serine protease family. KERUS displayed higher levels of hydrolysis, substrate specificity, and catalytic efficiency than NUE 12 MG and KOROPON® MK EG keratinases. The enzyme also exhibited powerful keratinolytic activity that made it able to accomplish the entire feather-biodegradation process on its own. The kerUS gene encoding KERUS was cloned, sequenced, and expressed in Escherichia coli. The biochemical properties of the extracellular purified recombinant enzyme (rKERUS) were similar to those of native KERUS. Overall, the findings provide strong support for the potential candidacy of this enzyme as an effective and eco-friendly alternative to the conventional chemicals used for the dehairing of rabbit, goat, sheep and bovine hides in the leather processing industry.
Collapse
|
36
|
Optimization of chitin extraction from shrimp waste with Bacillus pumilus A1 using response surface methodology. Int J Biol Macromol 2013; 61:243-50. [DOI: 10.1016/j.ijbiomac.2013.07.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 06/25/2013] [Accepted: 07/01/2013] [Indexed: 11/18/2022]
|
37
|
Ktari N, Fakhfakh N, Balti R, Ben Khaled H, Nasri M, Bougatef A. Effect of Degree of Hydrolysis and Protease Type on the Antioxidant Activity of Protein Hydrolysates From Cuttlefish (Sepia officinalis) By-Products. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2013. [DOI: 10.1080/10498850.2012.658961] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
38
|
Fakhfakh N, Ktari N, Siala R, Nasri M. Wool-waste valorization: production of protein hydrolysate with high antioxidative potential by fermentation with a new keratinolytic bacterium, Bacillus pumilus A1. J Appl Microbiol 2013; 115:424-33. [PMID: 23663724 DOI: 10.1111/jam.12246] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Revised: 05/05/2013] [Accepted: 05/07/2013] [Indexed: 11/27/2022]
Abstract
AIMS Wool, a recalcitrant waste mainly composed of keratin, constituted a serious problem for the environment and was not effectively valorized. This study reported the optimization of wool-waste biodegradation by a new keratinolytic bacterium Bacillus pumilus A1. The in vitro digestibility and the antioxidant potential of wool protein hydrolysate (WPH) were also investigated. METHODS AND RESULTS The antioxidant potential of WPH was evaluated using in vitro antioxidant assays, such as 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity, reducing power and metal (Fe(2+)) chelating activity. Cultivation on 50 g l(-1) of wool for 2 days, at 45°C and at initial pH of 10, resulted in maximum production of amino acids and peptides (39.7 g l(-1)). WPH presented a very high in vitro digestibility (97%) as compared with that of the untreated wool (3%). CONCLUSIONS The keratin present into the wool-waste was completely solubilized. Interestingly, WPH presented an important DPPH radical-scavenging activity with an IC50 value of 0.14 ± 0.01 mg ml(-1). SIGNIFICANCE AND IMPACT OF STUDY WPH would be a very useful source of protein and antioxidants in animals' diets.
Collapse
Affiliation(s)
- N Fakhfakh
- Laboratoire de Génie Enzymatique et de Microbiologie, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia.
| | | | | | | |
Collapse
|
39
|
Ghorbel-Bellaaj O, Younes I, Maâlej H, Hajji S, Nasri M. Chitin extraction from shrimp shell waste using Bacillus bacteria. Int J Biol Macromol 2012; 51:1196-201. [DOI: 10.1016/j.ijbiomac.2012.08.034] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 08/24/2012] [Accepted: 08/29/2012] [Indexed: 12/01/2022]
|
40
|
Arthrobacter arilaitensis Re117 oxidant-stable alkaline metalloprotease: Purification and biochemical characterization. BIOTECHNOL BIOPROC E 2012. [DOI: 10.1007/s12257-011-0478-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Total solubilisation of the chicken feathers by fermentation with a keratinolytic bacterium, Bacillus pumilus A1, and the production of protein hydrolysate with high antioxidative activity. Process Biochem 2011. [DOI: 10.1016/j.procbio.2011.05.023] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
42
|
Production and properties of keratinolytic proteases from three novel Gram-negative feather-degrading bacteria isolated from Brazilian soils. Biodegradation 2011; 22:1191-201. [PMID: 21526391 DOI: 10.1007/s10532-011-9474-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 04/11/2011] [Indexed: 10/18/2022]
Abstract
The keratinolytic potential and protease properties of three novel Gram-negative feather-degrading bacteria isolated from Brazilian soils was described. Aeromonas hydrophila K12, Chryseobacterium indologenes A22 and Serratia marcescens P3 were able to degrade feather meal, producing high amounts of soluble proteins and forming thiol groups. The proteases of strains K12, A22 and P3 had optimal pH of 8.0, 7.5 and 6.0, respectively; this last is an uncommon feature for bacterial keratinases. The optimal temperature was in the range 45-55°C. All three proteases were active towards azokeratin and were inhibited by EDTA, suggesting that they are keratinolytic metalloproteases. The proteolytic activity of K12 was stimulated by organic solvents and the detergent SDS, suggesting its potential application for detergent formulations and peptide synthesis. Strains A22, K12 and P3 have great potential for use in biotechnological processes involving hydrolysis of keratinous byproducts.
Collapse
|
43
|
Rajput R, Sharma R, Gupta R. Cloning and characterization of a thermostable detergent-compatible recombinant keratinase fromBacillus pumilusKS12. Biotechnol Appl Biochem 2011. [DOI: 10.1002/bab.16] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
44
|
Hmidet N, Ali NEH, Zouari-Fakhfakh N, Haddar A, Nasri M, Sellemi-Kamoun A. Chicken feathers: a complex substrate for the co-production of alpha-amylase and proteases by B. licheniformis NH1. J Ind Microbiol Biotechnol 2010; 37:983-90. [PMID: 20694741 DOI: 10.1007/s10295-010-0792-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 07/21/2010] [Indexed: 10/19/2022]
Abstract
This study is concerned with the co-production of alkaline proteases and thermostable alpha-amylase by some feather-degrading Bacillus strains: B. mojavensis A21, B. licheniformis NH1, B. subtilis A26, B. amyloliquefaciens An6 and B. pumilus A1. All strains produced both enzymes, except B. pumilus A1, which did not exhibit amylolytic activity. The best enzyme co-production was obtained by the NH1 strain when chicken feathers were used as nitrogen and carbon sources in the fermentation medium. The higher co-production of both enzymes by B. licheniformis NH1 strain was achieved in the presence of 7.5 g/l chicken feathers and 1 g/l yeast extract. Strong catabolic repression on protease and alpha-amylase production was observed with glucose. Addition of 0.5% glucose to the feather medium suppressed enzyme production by B. licheniformis NH1. The growth of B. licheniformis NH1 using chicken feathers as nitrogen and carbon sources resulted in its complete degradation after 24 h of incubation at 37 degrees C. However, maximum protease and amylase activities were attained after 30 h and 48 h, respectively. Proteolytic activity profiles of NH1 enzymatic preparation grown on chicken feather or casein-based medium are different. As far as we know, this is the first contribution towards the co-production of alpha-amylase and proteases using keratinous waste. Strain NH1 shows potential use for biotechnological processes involving keratin hydrolysis and industrial alpha-amylase and proteases co-production. Thus, the utilization of chicken feathers may result in a cost-effective process suitable for large-scale production.
Collapse
Affiliation(s)
- Noomen Hmidet
- Laboratoire de Génie Enzymatique et de Microbiologie, Ecole Nationale d'Ingénieurs de Sfax, B.P. 1173 Sfax, Tunisia.
| | | | | | | | | | | |
Collapse
|
45
|
Rajput R, Sharma R, Gupta R. Biochemical Characterization of a Thiol-Activated, Oxidation Stable Keratinase from Bacillus pumilus KS12. Enzyme Res 2010; 2010:132148. [PMID: 21048858 PMCID: PMC2956970 DOI: 10.4061/2010/132148] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Accepted: 06/16/2010] [Indexed: 11/25/2022] Open
Abstract
An extracellular keratinase from Bacillus pumilus KS12 was purified by DEAE ion exchange chromatography. It was a 45 kDa monomer as determined by SDS PAGE analysis. It was found to be an alkaline, serine protease with pH and temperature optima of 10 and 60°C, respectively. It was thiol activated with two- and eight-fold enhancement in presence of 10 mM DTT and β-mercaptoethanol, respectively. In addition, its activity was stimulated in the presence of various surfactants, detergents, and oxidizing agents where a nearly 2- to 3-fold enhancement was observed in presence of H2O2 and NaHClO3. It hydrolyzed broad range of complex substrates including feather keratin, haemoglobin, fibrin, casein,and α-keratin. Analysis of amidolytic activity revealed that it efficiently cleaved phenylalanine → leucine → alanine- p-nitroanilides. It also cleaved insulin B chain between Val2- Asn3, Leu6-Cys7 and His10-Leu11 residues.
Collapse
Affiliation(s)
- Rinky Rajput
- Department of Microbiology, University of Delhi, South Campus, New Delhi 110021, India
| | | | | |
Collapse
|