1
|
Singh S, Arya SK, Krishania M. Bioprocess optimization for enhanced xylitol synthesis by new isolate Meyerozyma caribbica CP02 using rice straw. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:31. [PMID: 38402217 PMCID: PMC10894501 DOI: 10.1186/s13068-024-02475-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/10/2024] [Indexed: 02/26/2024]
Abstract
The present work models the fermentation process parameters of the newly isolated, Meyerozyma caribbica CP02 for enhanced xylitol production and its fermentability study on rice straw hydrolysate. The study examined the impact of each of the process variables by one variable at a time optimization followed by statistical validation. Temperature of 32 °C, pH of 3.5, agitation of 200 rpm, 1.5% (v/v) inoculum, 80 gL-1 initial xylose was optimized. Subsequently, a sequential two-stage agitation approach was adopted for fermentation. At these optimized conditions, xylitol yield of 0.77 gg-1 and 0.64 gg-1 was achieved using media containing commercial and rice straw derived xylose, respectively. For scale up, in 3L batch bioreactor, the highest xylitol yield (0.63 gg-1) was attained at 72 h with rice straw hydrolysate media containing initial xylose (59.48 ± 0.82 gL-1) along with inhibitors (1.55 ± 0.10 gL-1 aliphatic acids, 0.0.048 ± 0.11 gL-1 furans, 0.64 ± 0.23 gL-1 total phenols). The results imply that even under circumstances characterized by an acidic pH and elevated initial xylose level, M. caribbica CP02, as an isolate, displays robustness and shows favorable fermentability of rice straw hydrolysate. Therefore, isolate CP02 has potential to be used in bio-refineries for high yield xylitol production with minimal hydrolysate processing requirements.
Collapse
Affiliation(s)
- Saumya Singh
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
- Center of Innovative and Applied Bioprocessing (DBT-CIAB), Sector-81 (Knowledge City), Mohali, 140306, India
| | - Shailendra Kumar Arya
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Meena Krishania
- Center of Innovative and Applied Bioprocessing (DBT-CIAB), Sector-81 (Knowledge City), Mohali, 140306, India.
| |
Collapse
|
2
|
da Costa RMF, Bosch M, Simister R, Gomez LD, Canhoto JM, Batista de Carvalho LAE. Valorisation Potential of Invasive Acacia dealbata, A. longifolia and A. melanoxylon from Land Clearings. Molecules 2022; 27:7006. [PMID: 36296599 PMCID: PMC9610895 DOI: 10.3390/molecules27207006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/04/2022] [Accepted: 10/14/2022] [Indexed: 08/02/2023] Open
Abstract
Acacia spp. are invasive in Southern Europe, and their high propagation rates produce excessive biomass, exacerbating wildfire risk. However, lignocellulosic biomass from Acacia spp. may be utilised for diverse biorefinery applications. In this study, attenuated total reflectance Fourier transform infrared spectroscopy (FTIR-ATR), high-performance anion-exchange chromatography pulsed amperometric detection (HPAEC-PAD) and lignin content determinations were used for a comparative compositional characterisation of A. dealbata, A. longifolia and A. melanoxylon. Additionally, biomass was treated with three white-rot fungi species (Ganoderma lucidum, Pleurotus ostreatus and Trametes versicolor), which preferentially degrade lignin. Our results showed that the pre-treatments do not significantly alter neutral sugar composition while reducing lignin content. Sugar release from enzymatic saccharification was enhanced, in some cases possibly due to a synergy between white-rot fungi and mild alkali pretreatments. For example, in A. dealbata stems treated with alkali and P. ostreatus, saccharification yield was 702.3 nmol mg-1, which is higher than the samples treated only with alkali (608.1 nmol mg-1), and 2.9-fold higher than the non-pretreated controls (243.9 nmol mg-1). By characterising biomass and pretreatments, generated data creates value for unused biomass resources, contributing to the implementation of sustainable biorefining systems. In due course, the generated value will lead to economic incentives for landowners to cut back invasive Acacia spp. more frequently, thus reducing excess biomass, which exacerbates wildfire risk.
Collapse
Affiliation(s)
- Ricardo M. F. da Costa
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Maurice Bosch
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Gogerddan, Aberystwyth, Ceredigion SY23 3EE, UK
| | - Rachael Simister
- Centre for Novel Agricultural Products, Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Leonardo D. Gomez
- Centre for Novel Agricultural Products, Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Jorge M. Canhoto
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Luís A. E. Batista de Carvalho
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| |
Collapse
|
3
|
da Costa RMF, Winters A, Hauck B, Martín D, Bosch M, Simister R, Gomez LD, Batista de Carvalho LAE, Canhoto JM. Biorefining Potential of Wild-Grown Arundo donax, Cortaderia selloana and Phragmites australis and the Feasibility of White-Rot Fungi-Mediated Pretreatments. FRONTIERS IN PLANT SCIENCE 2021; 12:679966. [PMID: 34276732 PMCID: PMC8283202 DOI: 10.3389/fpls.2021.679966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/10/2021] [Indexed: 05/29/2023]
Abstract
Arundo donax, Cortaderia selloana and Phragmites australis are high-biomass-producing perennial Poalean species that grow abundantly and spontaneously in warm temperate regions, such as in Mediterranean-type climates, like those of Southern Europe, Western United States coastal areas, or in regions of South America, South Africa and Australia. Given their vigorous and spontaneous growth, biomass from the studied grasses often accumulates excessively in unmanaged agro-forestry areas. Nonetheless, this also creates the demand and opportunity for the valorisation of these biomass sources, particularly their cell wall polymers, for biorefining applications. By contrast, a related crop, Miscanthus × giganteus, is a perennial grass that has been extensively studied for lignocellulosic biomass production, as it can grow on low-input agricultural systems in colder climates. In this study Fourier transform mid-infrared spectroscopy (FTIR), high-performance anion-exchange chromatography (HPAEC) and lignin content determinations were used for a comparative compositional characterisation of A. donax, C. selloana and P. australis harvested from the wild, in relation to a trial field-grown M. × giganteus high-yielding genotype. A high-throughput saccharification assay showed relatively high sugar release values from the wild-grown grasses, even with a 0.1M NaOH mild alkali pretreatment. In addition to this alkaline pretreatment, biomass was treated with white-rot fungi (WRF), which preferentially degrade lignin more readily than holocellulose. Three fungal species were used: Ganoderma lucidum, Pleurotus ostreatus and Trametes versicolor. Our results showed that neutral sugar contents are not significantly altered, while some lignin is lost during the pretreatments. Furthermore, sugar release upon enzymatic saccharification was enhanced, and this was dependent on the plant biomass and fungal species used in the treatment. To maximise the potential for lignocellulose valorisation, the liquid fractions from the pretreatments were analysed by high performance liquid chromatography - photodiode array detection - electrospray ionisation tandem mass spectrometry (HPLC-PDA-ESI-MS n ). This study is one of the first to report on the composition of WRF-treated grass biomass, while assessing the potential relevance of breakdown products released during the treatments, beyond more traditional sugar-for-energy applications. Ultimately, we expect that our data will help promote the valorisation of unused biomass resources, create economic value, while contributing to the implementation of sustainable biorefining systems.
Collapse
Affiliation(s)
- Ricardo M. F. da Costa
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | - Ana Winters
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Barbara Hauck
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Daniel Martín
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | - Maurice Bosch
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Rachael Simister
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, United Kingdom
| | - Leonardo D. Gomez
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, United Kingdom
| | | | - Jorge M. Canhoto
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
4
|
Zambry NS, Rusly NS, Awang MS, Md Noh NA, Yahya ARM. Production of lipopeptide biosurfactant in batch and fed-batch Streptomyces sp. PBD-410L cultures growing on palm oil. Bioprocess Biosyst Eng 2021; 44:1577-1592. [PMID: 33687550 DOI: 10.1007/s00449-021-02543-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/19/2021] [Indexed: 10/22/2022]
Abstract
The present study focused on lipopeptide biosurfactant production by Streptomyces sp. PBD-410L in batch and fed-batch fermentation in a 3-L stirred-tank reactor (STR) using palm oil as a sole carbon source. In batch cultivation, the impact of bioprocessing parameters, namely aeration rate and agitation speed, was studied to improve biomass growth and lipopeptide biosurfactant production. The maximum oil spreading technique (OST) result (45 mm) which corresponds to 3.74 g/L of biosurfactant produced, was attained when the culture was agitated at 200 rpm and aeration rate of 0.5 vvm. The best aeration rate and agitation speed obtained from the batch cultivation was adopted in the fed-batch cultivation using DO-stat feeding strategy to further improve the lipopeptide biosurfactant production. The lipopeptide biosurfactant production was enhanced from 3.74 to 5.32 g/L via fed-batch fermentation mode at an initial feed rate of 0.6 mL/h compared to that in batch cultivation. This is the first report on the employment of fed-batch cultivation on the production of biosurfactant by genus Streptomyces.
Collapse
Affiliation(s)
- Nor Syafirah Zambry
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | | | - Mohd Syafiq Awang
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Nur Asshifa Md Noh
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | | |
Collapse
|
5
|
Miyamoto RY, José AHM, Lopes MM, Rodrigues RC. Effectiveness of Baffled Flasks on the Growth of Scheffersomyces stipitis CBS 6054 Inoculum for Ethanol Production in Corncob Hemicellulosic Hydrolysate. Ind Biotechnol (New Rochelle N Y) 2020. [DOI: 10.1089/ind.2020.0023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Renan Y. Miyamoto
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, Brazil
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil
- Institute of Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Alvaro H. M. José
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, Brazil
| | - Milena M. Lopes
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, Brazil
| | - Rita C.L.B. Rodrigues
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, Brazil
| |
Collapse
|
6
|
Robak K, Balcerek M. Current state-of-the-art in ethanol production from lignocellulosic feedstocks. Microbiol Res 2020; 240:126534. [PMID: 32683278 DOI: 10.1016/j.micres.2020.126534] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 01/08/2023]
Abstract
The renewable lignocellulosic biomass is a sustainable feedstock for the production of bioethanol, which shows the potential to replace fossil fuels. Due to the recalcitrant structure of plant cell wall made of cellulose, hemicellulose, and lignin, the biomass conversion process requires the use of efficient pretreatment process before enzymatic hydrolysis and fermentation to degrade the crystallinity of cellulose fibres and to remove lignin from biomass. Proper pretreatment techniques, economical production of cellulolytic enzymes, and effective fermentation of glucose and xylose in the presence of inhibitors are key challenges for the viable production of bioethanol. Although new strains capable of fermenting xylose are being designed, they are often not resistant to toxic compounds in hydrolysates. This paper provides an in-depth review of lignocellulosic bioethanol production via biochemical route, focusing on the most widely used pretreatment technologies and key operational conditions of enzymatic hydrolysis and fermentation considering sugar/ethanol yields. In addition, this review examines the relevant detoxification strategies for the removal of toxic substances and the importance of immobilization. The review also indicates potential usage of engineered microorganisms to improve glucose and xylose fermentation, cellulolytic enzymes production, and response to stress conditions.
Collapse
Affiliation(s)
- Katarzyna Robak
- Lodz University of Technology, Faculty of Biotechnology and Food Sciences, Institute of Fermentation Technology and Microbiology, Wólczańska 171/173, 90-924 Łódź, Poland.
| | - Maria Balcerek
- Lodz University of Technology, Faculty of Biotechnology and Food Sciences, Institute of Fermentation Technology and Microbiology, Wólczańska 171/173, 90-924 Łódź, Poland
| |
Collapse
|
7
|
Production of Itaconic Acid from Cellulose Pulp: Feedstock Feasibility and Process Strategies for an Efficient Microbial Performance. ENERGIES 2020. [DOI: 10.3390/en13071654] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study assessed the feasibility of using bleached cellulose pulp from Eucalyptus wood as a feedstock for the production of itaconic acid by fermentation. Additionally, different process strategies were tested with the aim of selecting suitable conditions for an efficient production of itaconic acid by the fungus Aspergillus terreus. The feasibility of using cellulose pulp was demonstrated through assays that revealed the preference of the strain in using glucose as carbon source instead of xylose, mannose, sucrose or glycerol. Additionally, the cellulose pulp was easily digested by enzymes without requiring a previous step of pretreatment, producing a glucose-rich hydrolysate with a very low level of inhibitor compounds, suitable for use as a fermentation medium. Fermentation assays revealed that the technique used for sterilization of the hydrolysate (membrane filtration or autoclaving) had an important effect in its composition, especially on the nitrogen content, consequently affecting the fermentation performance. The carbon-to-nitrogen ratio (C:N ratio), initial glucose concentration and oxygen availability, were also important variables affecting the performance of the strain to produce itaconic acid from cellulose pulp hydrolysate. By selecting appropriate process conditions (sterilization by membrane filtration, medium supplementation with 3 g/L (NH4)2SO4, 60 g/L of initial glucose concentration, and oxygen availability of 7.33 (volume of air/volume of medium)), the production of itaconic acid was maximized resulting in a yield of 0.62 g/g glucose consumed, and productivity of 0.52 g/L·h.
Collapse
|
8
|
Castro RC, Ferreira IS, Roberto IC, Mussatto SI. Isolation and physicochemical characterization of different lignin streams generated during the second-generation ethanol production process. Int J Biol Macromol 2019; 129:497-510. [DOI: 10.1016/j.ijbiomac.2019.01.148] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 01/17/2019] [Accepted: 01/25/2019] [Indexed: 10/27/2022]
|
9
|
Shin M, Kim JW, Ye S, Kim S, Jeong D, Lee DY, Kim JN, Jin YS, Kim KH, Kim SR. Comparative global metabolite profiling of xylose-fermenting Saccharomyces cerevisiae SR8 and Scheffersomyces stipitis. Appl Microbiol Biotechnol 2019; 103:5435-5446. [PMID: 31001747 DOI: 10.1007/s00253-019-09829-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/18/2019] [Accepted: 04/04/2019] [Indexed: 01/22/2023]
Abstract
Bioconversion of lignocellulosic biomass into ethanol requires efficient xylose fermentation. Previously, we developed an engineered Saccharomyces cerevisiae strain, named SR8, through rational and inverse metabolic engineering strategies, thereby improving its xylose fermentation and ethanol production. However, its fermentation characteristics have not yet been fully evaluated. In this study, we investigated the xylose fermentation and metabolic profiles for ethanol production in the SR8 strain compared with native Scheffersomyces stipitis. The SR8 strain showed a higher maximum ethanol titer and xylose consumption rate when cultured with a high concentration of xylose, mixed sugars, and under anaerobic conditions than Sch. stipitis. However, its ethanol productivity was less on 40 g/L xylose as the sole carbon source, mainly due to the formation of xylitol and glycerol. Global metabolite profiling indicated different intracellular production rates of xylulose and glycerol-3-phosphate in the two strains. In addition, compared with Sch. stipitis, SR8 had increased abundances of metabolites from sugar metabolism and decreased abundances of metabolites from energy metabolism and free fatty acids. These results provide insights into how to control and balance redox cofactors for the production of fuels and chemicals from xylose by the engineered S. cerevisiae.
Collapse
Affiliation(s)
- Minhye Shin
- Department of Biotechnology, Graduate School, Korea University, Seoul, Korea
| | - Jeong-Won Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Korea
| | - Suji Ye
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Korea
| | - Sooah Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul, Korea
| | - Deokyeol Jeong
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Korea
| | - Do Yup Lee
- Department of Bio and Fermentation Convergence Technology, BK21 PLUS Program, Kookmin University, Seoul, Korea
| | - Jong Nam Kim
- Department of Food Science and Nutrition, Dongseo University, Busan, Korea
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, the University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul, Korea
| | - Soo Rin Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Korea.
| |
Collapse
|
10
|
Two-Stage Aeration Fermentation Strategy to Improve Bioethanol Production by Scheffersomyces stipitis. FERMENTATION-BASEL 2018. [DOI: 10.3390/fermentation4040097] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hardwood spent sulfite liquor (HSSL) is a by-product from pulp industry with a high concentration of pentose sugars, besides some hexoses suitable for bioethanol production by Scheffersomyces stipitis. The establishment of optimal aeration process conditions that results in specific microaerophilic conditions required by S. stipitis is the main challenge for ethanol production. The present study aimed to improve the ethanol production from HSSL by S. stipitis through a two-stage aeration fermentation. Experiments with controlled dissolved oxygen tension (DOT) in the first stage and oxygen restriction in the second stage were carried out. The best results were obtained with DOT control at 50% in the first stage, where the increase of oxygen availability provided faster growth and higher biomass yield, and no oxygen supply with an agitation rate of 250 rpm, in the second stage allowed a successful induction of ethanol production. Fermentation using 60% of HSSL (v/v) as substrate for S. stipitis provided a maximum specific growth rate of 0.07 h−1, an ethanol productivity of 0.04 g L h−1 and an ethanol yield of 0.39 g g−1, respectively. This work showed a successful two-stage aeration strategy as a promising aeration alternative for bioethanol production from HSSL by S. stipitis.
Collapse
|
11
|
Comparison and Optimization of Saccharification Conditions of Alkaline Pre-Treated Triticale Straw for Acid and Enzymatic Hydrolysis Followed by Ethanol Fermentation. ENERGIES 2018. [DOI: 10.3390/en11030639] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Nikhanj P, Kocher GS. Statistical optimization of ethanol fermentation parameters for processing local grape cultivars to wines. J FOOD PROCESS PRES 2018. [DOI: 10.1111/jfpp.13319] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Pooja Nikhanj
- Department of Microbiology; Punjab Agricultural University (PAU); Ludhiana 141001 Punjab India
| | - G. S. Kocher
- Department of Microbiology; Punjab Agricultural University (PAU); Ludhiana 141001 Punjab India
| |
Collapse
|
13
|
Brumano LP, Antunes FAF, Souto SG, Dos Santos JC, Venus J, Schneider R, da Silva SS. Biosurfactant production by Aureobasidium pullulans in stirred tank bioreactor: New approach to understand the influence of important variables in the process. BIORESOURCE TECHNOLOGY 2017; 243:264-272. [PMID: 28675840 DOI: 10.1016/j.biortech.2017.06.088] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/15/2017] [Accepted: 06/16/2017] [Indexed: 06/07/2023]
Abstract
Surfactants are amphiphilic molecules with large industrial applications produced currently by chemical routes mainly derived from oil industry. However, biotechnological process, aimed to develop new sustainable process configurations by using favorable microorganisms, already requires investigations in more details. Thus, we present a novel approach for biosurfactant production using the promising yeast Aureobasidium pullulans LB 83, in stirred tank reactor. A central composite face-centered design was carried out to evaluate the effect of the aeration rate (0.1-1.1min-1) and sucrose concentration (20-80g.L-1) in the biosurfactant maximum tensoactivity and productivity. Statistical analysis showed that the use of variables at high levels enhanced tensoactivity, showing 8.05cm in the oil spread test and productivity of 0.0838cm.h-1. Also, unprecedented investigation of aeration rate and sucrose concentration relevance in biosurfactant production by A. pullulans in stirred tank reactor was detailed, demonstrating the importance to establish adequate conditions in bioreactors, aimed to scale-up process.
Collapse
Affiliation(s)
- Larissa Pereira Brumano
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, CEP12602-810, Brazil.
| | | | - Sara Galeno Souto
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, CEP12602-810, Brazil
| | - Júlio Cesar Dos Santos
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, CEP12602-810, Brazil
| | - Joachim Venus
- Leibniz Institute for Agricultural Engineering and Bioeconomy, Max-Eyth-Allee 100, D-14469 Potsdam, Germany
| | - Roland Schneider
- Leibniz Institute for Agricultural Engineering and Bioeconomy, Max-Eyth-Allee 100, D-14469 Potsdam, Germany
| | - Silvio Silvério da Silva
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, CEP12602-810, Brazil
| |
Collapse
|
14
|
Cunha-Pereira FD, Hickert LR, Rech R, Dillon AP, Ayub MAZ. Fermentation of hexoses and pentoses from hydrolyzed soybean hull into ethanol and xylitol by Candida guilliermondii BL 13. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2017. [DOI: 10.1590/0104-6632.20170344s20160005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
| | | | - R. Rech
- Federal University of Rio Grande do Sul, Brazil
| | | | | |
Collapse
|
15
|
Acevedo A, Conejeros R, Aroca G. Ethanol production improvement driven by genome-scale metabolic modeling and sensitivity analysis in Scheffersomyces stipitis. PLoS One 2017; 12:e0180074. [PMID: 28658270 PMCID: PMC5489217 DOI: 10.1371/journal.pone.0180074] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 06/11/2017] [Indexed: 11/18/2022] Open
Abstract
The yeast Scheffersomyces stipitis naturally produces ethanol from xylose, however reaching high ethanol yields is strongly dependent on aeration conditions. It has been reported that changes in the availability of NAD(H/+) cofactors can improve fermentation in some microorganisms. In this work genome-scale metabolic modeling and phenotypic phase plane analysis were used to characterize metabolic response on a range of uptake rates. Sensitivity analysis was used to assess the effect of ARC on ethanol production indicating that modifying ARC by inhibiting the respiratory chain ethanol production can be improved. It was shown experimentally in batch culture using Rotenone as an inhibitor of the mitochondrial NADH dehydrogenase complex I (CINADH), increasing ethanol yield by 18%. Furthermore, trajectories for uptakes rates, specific productivity and specific growth rate were determined by modeling the batch culture, to calculate ARC associated to the addition of CINADH inhibitor. Results showed that the increment in ethanol production via respiratory inhibition is due to excess in ARC, which generates an increase in ethanol production. Thus ethanol production improvement could be predicted by a change in ARC.
Collapse
Affiliation(s)
- Alejandro Acevedo
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso, Chile
| | - Raúl Conejeros
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso, Chile
- * E-mail:
| | - Germán Aroca
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso, Chile
| |
Collapse
|
16
|
Effects of agitation and volume of inoculum on ferulic acid production by co-culture. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Zhao X, Xiong L, Zhang M, Bai F. Towards efficient bioethanol production from agricultural and forestry residues: Exploration of unique natural microorganisms in combination with advanced strain engineering. BIORESOURCE TECHNOLOGY 2016; 215:84-91. [PMID: 27067672 DOI: 10.1016/j.biortech.2016.03.158] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 05/14/2023]
Abstract
Production of fuel ethanol from lignocellulosic feedstocks such as agricultural and forestry residues is receiving increasing attention due to the unsustainable supply of fossil fuels. Three key challenges include high cellulase production cost, toxicity of the cellulosic hydrolysate to microbial strains, and poor ability of fermenting microorganisms to utilize certain fermentable sugars in the hydrolysate. In this article, studies on searching of natural microbial strains for production of unique cellulase for biorefinery of agricultural and forestry wastes, as well as development of strains for improved cellulase production were reviewed. In addition, progress in the construction of yeast strains with improved stress tolerance and the capability to fully utilize xylose and glucose in the cellulosic hydrolysate was also summarized. With the superior microbial strains for high titer cellulase production and efficient utilization of all fermentable sugars in the hydrolysate, economic biofuels production from agricultural residues and forestry wastes can be realized.
Collapse
Affiliation(s)
- Xinqing Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Liang Xiong
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Mingming Zhang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Fengwu Bai
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
18
|
Genetic Enhancement of Saccharomyces cerevisiae for First and Second Generation Ethanol Production. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1201/b19347-11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
19
|
Milessi TSS, Antunes FAF, Chandel AK, da Silva SS. Hemicellulosic ethanol production by immobilized cells of Scheffersomyces stipitis: effect of cell concentration and stirring. Bioengineered 2014; 6:26-32. [PMID: 25488725 DOI: 10.4161/21655979.2014.983403] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Bioconversion of hemicellulosic hydrolysate into ethanol plays a pivotal role in the overall success of biorefineries. For the efficient fermentative conversion of hemicellulosic hydrolysates into ethanol, the use of immobilized cells system could provide the enhanced ethanol productivities with significant time savings. Here, we investigated the effect of 2 important factors (e.g., cell concentration and stirring) on ethanol production from sugarcane bagasse hydrolysate using the yeast Scheffersomyces stipitis immobilized in calcium alginate matrix. A 2(2) full factorial design of experiment was performed considering the process variables- immobilized cell concentration (3.0, 6.5 and 10.0 g/L) and stirring (100, 200 and 300 rpm). Statistical analysis showed that stirring has the major influence on ethanol production. Maximum ethanol production (8.90 g/l) with ethanol yield (Yp/s) of 0.33 g/g and ethanol productivity (Qp) of 0.185 g/l/h was obtained under the optimized process conditions (10.0 g/L of cells and 100 rpm).
Collapse
Key Words
- 2G, second generation
- ANOVA, analysis of variance
- CO2, carbon di-oxide
- Ca-alginate, calcium alginate
- HPLC, high performance liquid chromatography
- Min, minutes
- Qp, ethanol productivity
- SB, sugarcane bagasse
- Scheffersomyces stipitis
- Yp/s, ethanol yield
- bioethanol
- cell immobilization
- df, degree of freedom
- dilute acid hydrolysis
- sugarcane bagasse hydrolysate
Collapse
Affiliation(s)
- Thais S S Milessi
- a Department of Biotechnology, Engineering School of Lorena , University of São Paulo ; Lorena , Brazil
| | | | | | | |
Collapse
|
20
|
Keskin Gündoğdu T, Deniz İ, Çalışkan G, Şahin ES, Azbar N. Experimental design methods for bioengineering applications. Crit Rev Biotechnol 2014; 36:368-88. [DOI: 10.3109/07388551.2014.973014] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
21
|
|
22
|
Poli JS, da Silva MAN, Siqueira EP, Pasa VMD, Rosa CA, Valente P. Microbial lipid produced by Yarrowia lipolytica QU21 using industrial waste: a potential feedstock for biodiesel production. BIORESOURCE TECHNOLOGY 2014; 161:320-6. [PMID: 24727354 DOI: 10.1016/j.biortech.2014.03.083] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 03/14/2014] [Accepted: 03/17/2014] [Indexed: 05/11/2023]
Abstract
This study aimed to evaluate the effect of medium composition and culture conditions on lipid content, fatty acid profile and biomass production by the yeast Yarrowia lipolytica QU21. Lipid production by the yeast growing on glycerol/(NH4)2SO4 (10%/0.1%) reached 1.48g/L (30.1% according to total cell dry weight). When glycerol was replaced by crude glycerol (industrial waste), the lipid yield was 1.27g/L, with no significant difference. Some particular fatty acids were found when crude glycerol was combined with fresh yeast extract (FYE, brewery waste), as linolenic acid (C18:3n3), eicosadienoic acid (C20:2), eicosatrienoic acid (C20:3n3) and eicosapentaenoic acid (C20:5n3). In addition, the FYE promoted an increase of more than 300% on polyunsaturated fatty acid content (PUFA), which is an undesirable feature for biodiesel production. The fatty acid composition of the oil produced by Y. lipolytica QU21 growing on crude glycerol/(NH4)2SO4 presented a potential use as biodiesel feedstock, with low PUFA content.
Collapse
Affiliation(s)
- Jandora Severo Poli
- Department of Microbiology, Immunology and Parasitology, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500 sala 154, CEP 90050-170 Porto Alegre, RS, Brazil; Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, CEP 31270-901 Belo Horizonte, MG, Brazil.
| | - Mirra Angelina Neres da Silva
- Fuel Laboratory, Chemistry Department, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, CEP 31270-901 Belo Horizonte, MG, Brazil
| | - Ezequias P Siqueira
- Centro de Pesquisas René Rachou, Av. Augusto de Lima 1715, CEP 30190-002 Belo Horizonte, MG, Brazil
| | - Vânya M D Pasa
- Fuel Laboratory, Chemistry Department, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, CEP 31270-901 Belo Horizonte, MG, Brazil
| | - Carlos Augusto Rosa
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, CEP 31270-901 Belo Horizonte, MG, Brazil
| | - Patricia Valente
- Department of Microbiology, Immunology and Parasitology, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500 sala 154, CEP 90050-170 Porto Alegre, RS, Brazil
| |
Collapse
|
23
|
Acevedo A, Aroca G, Conejeros R. Genome-scale NAD(H/(+)) availability patterns as a differentiating feature between Saccharomyces cerevisiae and Scheffersomyces stipitis in relation to fermentative metabolism. PLoS One 2014; 9:e87494. [PMID: 24489927 PMCID: PMC3906188 DOI: 10.1371/journal.pone.0087494] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 12/26/2013] [Indexed: 11/18/2022] Open
Abstract
Scheffersomyces stipitis is a yeast able to ferment pentoses to ethanol, unlike Saccharomyces cerevisiae, it does not present the so-called overflow phenomenon. Metabolic features characterizing the presence or not of this phenomenon have not been fully elucidated. This work proposes that genome-scale metabolic response to variations in NAD(H/+) availability characterizes fermentative behavior in both yeasts. Thus, differentiating features in S. stipitis and S. cerevisiae were determined analyzing growth sensitivity response to changes in available reducing capacity in relation to ethanol production capacity and overall metabolic flux span. Using genome-scale constraint-based metabolic models, phenotypic phase planes and shadow price analyses, an excess of available reducing capacity for growth was found in S. cerevisiae at every metabolic phenotype where growth is limited by oxygen uptake, while in S. stipitis this was observed only for a subset of those phenotypes. Moreover, by using flux variability analysis, an increased metabolic flux span was found in S. cerevisiae at growth limited by oxygen uptake, while in S. stipitis flux span was invariant. Therefore, each yeast can be characterized by a significantly different metabolic response and flux span when growth is limited by oxygen uptake, both features suggesting a higher metabolic flexibility in S. cerevisiae. By applying an optimization-based approach on the genome-scale models, three single reaction deletions were found to generate in S. stipitis the reducing capacity availability pattern found in S. cerevisiae, two of them correspond to reactions involved in the overflow phenomenon. These results show a close relationship between the growth sensitivity response given by the metabolic network and fermentative behavior.
Collapse
Affiliation(s)
- Alejandro Acevedo
- Escuela de Ingeniería Bioquímica/Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Bioenercel S.A., Barrio Universitario, Concepción, Chile
| | - German Aroca
- Escuela de Ingeniería Bioquímica/Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Bioenercel S.A., Barrio Universitario, Concepción, Chile
| | - Raul Conejeros
- Escuela de Ingeniería Bioquímica/Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Bioenercel S.A., Barrio Universitario, Concepción, Chile
- * E-mail:
| |
Collapse
|
24
|
Lima FCS, Silva FLH, Gomes JP, Muniz MB, Santiago AM. Evaluation of Cashew Apple Bagasse for Xylitol Production. TRANSPORT PHENOMENA AND DRYING OF SOLIDS AND PARTICULATE MATERIALS 2014. [DOI: 10.1007/978-3-319-04054-7_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
25
|
Fonseca BG, Puentes JG, Mateo S, Sánchez S, Moya AJ, Roberto IC. Detoxification of rice straw and olive tree pruning hemicellulosic hydrolysates employing Saccharomyces cerevisiae and its effect on the ethanol production by Pichia stipitis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:9658-9665. [PMID: 23992561 DOI: 10.1021/jf402474s] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The aim of this work was to study the ability of Saccharomyces cerevisiae (baker's yeast) to metabolize a variety of aromatic compounds found in rice straw (RSHH) and olive tree pruning (OTHH) hemicellulosic hydrolysates, obtained by acid hydrolysis at different sugar and toxic compound concentrations. Initially, the hydrolysates were inoculated with S. cerevisiae (10 g L(-1)) and incubated at 30 °C under agitation at 200 rpm for 6 h. The results showed that this yeast was able to utilize phenolic and furan compounds in both hemicellulose hydrolysates. Next, the treated hydrolysates were inoculated with Pichia stipitis NRRL Y-7124 to evaluate the effect of biotransformation of aromatic compounds on ethanol production, and better fermentation results were obtained in this case compared to untreated ones. The untreated hemicellulose hydrolysates were not able to be fermented when they were incubated with Pichia stipitis. However, in RSHH treated hydrolysates, ethanol (Y(P/S)) and biomass (Y(X/S)) yields and volumetric ethanol productivity (Q(P)) were 0.17 g g(-1), 0.15 g g(-1) and 0.09 g L(-1) h(-1), respectively. The OTHH-treated hydrolysates showed less favorable results compared to RSHH, but the fermentation process was favored with regard to untreated hydrolysate. These results showed that the fermentation by P. stipitis in untreated hydrolysates was strongly inhibited by toxic compounds present in the media and that treatment with S. cerevisiae promoted a significant reduction in their toxicities.
Collapse
Affiliation(s)
- Bruno Guedes Fonseca
- Department of Biotechnology, Engineering College of Lorena, University of São Paulo , 12.602-810 Lorena, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
26
|
Bellido C, González-Benito G, Coca M, Lucas S, García-Cubero MT. Influence of aeration on bioethanol production from ozonized wheat straw hydrolysates using Pichia stipitis. BIORESOURCE TECHNOLOGY 2013; 133:51-58. [PMID: 23422301 DOI: 10.1016/j.biortech.2013.01.104] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 01/15/2013] [Accepted: 01/17/2013] [Indexed: 06/01/2023]
Abstract
The influence of aeration on ethanol production by Pichia stipitis was studied in wheat straw hydrolysates subjected to ozone pretreatment for the first time. In a first stage, different aeration rates ranging from 0.03 to 0.50 L air/min, which corresponds to a volumetric oxygen transfer coefficient from 1.1 to 9.6 h(-1), were applied to model glucose/xylose substrates. The most promising value was found to be 3.3 h(-1) (0.1 L air/min) leading to better xylose utilization, an ethanol yield of 0.40 g ethanol/g sugars and complete depletion of sugars at 72 h. In a second stage, the effect of aeration was analyzed in ozonized wheat straw hydrolysates. Sugars were completely depleted at 96 h and ethanol yield reached a value of 0.41 g ethanol/g sugars. The addition of controlled oxygen (K(L)a=3.8 h(-1)) enhances the efficiency of the process causing an increase of 29.1% in ethanol production and a considerable reduction of 42.9% in fermentation time as compared to non-aerated hydrolysates.
Collapse
Affiliation(s)
- Carolina Bellido
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Valladolid, Spain
| | | | | | | | | |
Collapse
|
27
|
Optimized Fed-Batch Fermentation of Scheffersomyces stipitis for Efficient Production of Ethanol from Hexoses and Pentoses. Appl Biochem Biotechnol 2013; 169:1895-909. [DOI: 10.1007/s12010-013-0100-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 01/10/2013] [Indexed: 12/21/2022]
|
28
|
Characterization of a recombinant flocculent Saccharomyces cerevisiae strain that co-ferments glucose and xylose: I. Influence of the ratio of glucose/xylose on ethanol production. Appl Biochem Biotechnol 2012; 169:712-21. [PMID: 23271622 DOI: 10.1007/s12010-012-0013-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 11/30/2012] [Indexed: 10/27/2022]
Abstract
Glucose/xylose mixtures (90 g/L total sugar) were evaluated for their effect on ethanol fermentation by a recombinant flocculent Saccharomyces cerevisiae, MA-R4. Glucose was utilized faster than xylose at any ratio of glucose/xylose, although MA-R4 can simultaneously co-ferment both sugars. A high percentage of glucose can increase cell biomass production and therefore increase the rate of glucose utilization (1.224 g glucose/g biomass/h maximum) and ethanol formation (0.493 g ethanol/g biomass/h maximum). However, the best ratio of glucose/xylose for the highest xylose consumption rate (0.209 g xylose/g biomass/h) was 2:3. Ethanol concentration and yield increased and by-product (xylitol, glycerol, and acetic acid) concentration decreased as the proportion of glucose increased. The maximum ethanol concentration was 41.6 and 21.9 g/L after 72 h of fermentation with 90 g/L glucose and 90 g/L xylose, respectively, while the ethanol yield was 0.454 and 0.335 g/g in 90 g/L glucose and 90 g/L xylose media, respectively. High ethanol yield when a high percentage of glucose is available is likely due to decreased production of by-products, such as glycerol and acetic acid. These results suggest that ethanol selectivity is increased when a higher proportion of glucose is available and reduced when a higher proportion of xylose is available.
Collapse
|
29
|
Krahulec S, Kratzer R, Longus K, Nidetzky B. Comparison of Scheffersomyces stipitis strains CBS 5773 and CBS 6054 with regard to their xylose metabolism: implications for xylose fermentation. Microbiologyopen 2012; 1:64-70. [PMID: 22950013 PMCID: PMC3426399 DOI: 10.1002/mbo3.5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 11/18/2011] [Accepted: 11/30/2011] [Indexed: 12/11/2022] Open
Abstract
The various strains of Scheffersomyces stipitis (Pichia stipitis) differ substantially with respect to their ability to ferment xylose into ethanol. Two P. stipitis strains CBS 5773 and CBS 6054 have been most often used in literature but comparison of their performance in xylose fermentation under identical conditions has not been reported so far. Conversion of xylose (22 g/L) by each of these P. stipitis strain was analyzed under anaerobic and microaerobic conditions. Ethanol yields of ∼0.41 g/g were independent of strain and conditions used. Glycerol and acetate were formed in constant yields of 0.006 g/g and 0.02 g/g, respectively. Xylitol formation decreased from ∼0.08 g/g to ∼0.05 g/g upon switch from anaerobic to microaerobic conditions. Specific activities of enzymes of the two-step oxidoreductive xylose conversion pathway (xylose reductase and xylitol dehydrogenase) matched for both strains within limits of error. When xylose was offered at 76 g/L under microaerobic reaction conditions, ethanol yields were still high (0.37-0.39 g/g) for both strains even though the xylitol yields (0.12-0.13 g/g) were increased as compared to the conditions of low xylose concentration. P. stipitis strains CBS 5773 and CBS 6054 are therefore identical by the criteria selected and show useful performance during conversion of xylose into ethanol, irrespective of the supply of oxygen.
Collapse
Affiliation(s)
- Stefan Krahulec
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology Petersgasse 12/I A-8010, Graz Austria
| | | | | | | |
Collapse
|
30
|
Kassim MA, Kheang LS, Bakar NA, Aziz AA, Som RM. Biothanol Production from Enzymatically Saccharified Empty Fruit Bunches Hydrolysate using Saccharomyces cerevisiae. ACTA ACUST UNITED AC 2011. [DOI: 10.3923/rjes.2011.573.586] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
31
|
Ferreira AD, Mussatto SI, Cadete RM, Rosa CA, Silva SS. Ethanol production by a new pentose-fermenting yeast strain, Scheffersomyces stipitis UFMG-IMH 43.2, isolated from the Brazilian forest. Yeast 2011; 28:547-54. [PMID: 21626536 DOI: 10.1002/yea.1858] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 04/20/2011] [Indexed: 11/06/2022] Open
Abstract
The ability of a recently isolated Scheffersomyces stipitis strain (UFMG-IMH 43.2) to produce ethanol from xylose was evaluated. For the assays, a hemicellulosic hydrolysate produced by dilute acid hydrolysis of sugarcane bagasse was used as the fermentation medium. Initially, the necessity of adding nutrients (MgSO(4)·7H(2)O, yeast extract and/or urea) to this medium was verified, and the yeast extract supplementation favoured ethanol production by the yeast. Then, in a second stage, assays under different initial xylose and cell concentrations, supplemented or not with yeast extract, were performed. All these three variables showed significant (p < 0.05) influence on ethanol production. The best results (ethanol yield and productivity of 0.19 g/g and 0.13 g/l/h, respectively) were obtained using the hydrolysate containing an initial xylose concentration of 30 g/l, supplemented with 5.0 g/l yeast extract and inoculated with an initial cell concentration of 2.0 g/l. S. stipitis UFMG-IMH 43.2 was demonstrated to be a yeast strain with potential for use in xylose conversion to ethanol. The establishment of the best fermentation conditions was also proved to be of great importance to increasing the product formation by this yeast strain. These findings open up new perspectives for the establishment of a feasible technology for ethanol production from hemicellulosic hydrolysates.
Collapse
Affiliation(s)
- Adriana D Ferreira
- Department of Biotechnology, Engineering College of Lorena, University of São Paulo, Lorena, SP, Brazil
| | | | | | | | | |
Collapse
|
32
|
Effect of Agitation Rate on Ethanol Production from Sugar Maple Hemicellulosic Hydrolysate by Pichia stipitis. Appl Biochem Biotechnol 2011; 168:29-36. [DOI: 10.1007/s12010-011-9285-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 05/05/2011] [Indexed: 10/18/2022]
|
33
|
Mussatto SI, Machado EMS, Martins S, Teixeira JA. Production, Composition, and Application of Coffee and Its Industrial Residues. FOOD BIOPROCESS TECH 2011. [DOI: 10.1007/s11947-011-0565-z] [Citation(s) in RCA: 395] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Mussatto SI, Dragone G, Guimarães PM, Silva JPA, Carneiro LM, Roberto IC, Vicente A, Domingues L, Teixeira JA. Technological trends, global market, and challenges of bio-ethanol production. Biotechnol Adv 2010; 28:817-30. [DOI: 10.1016/j.biotechadv.2010.07.001] [Citation(s) in RCA: 479] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 07/02/2010] [Indexed: 11/27/2022]
|