1
|
Vachher M, Sen A, Kapila R, Nigam A. Microbial therapeutic enzymes: A promising area of biopharmaceuticals. CURRENT RESEARCH IN BIOTECHNOLOGY 2021. [DOI: 10.1016/j.crbiot.2021.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
2
|
Gene cloning, expression and homology modeling of first fibrinolytic enzyme from mushroom (Cordyceps militaris). Int J Biol Macromol 2019; 146:897-906. [PMID: 31726136 DOI: 10.1016/j.ijbiomac.2019.09.212] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 09/09/2019] [Accepted: 09/21/2019] [Indexed: 01/12/2023]
Abstract
Fibrinolytic enzymes are important thrombolytic agents for blood-clotting disorders like cardiovascular diseases. Availability of novel recombinant fibrinolytic enzymes can overcome the shortcomings of current thrombolytic drugs. With the objective of facilitating their cost-effective production for therapeutic applications and for gaining deeper insight into their structure-function, we have cloned and expressed the first fibrinolytic protease gene from Cordyceps militaris. Cordyceps militaris fibrinolytic enzyme (CmFE) has one open reading frame of 759 bp encoding "pre-pro-protein" of 252 amino acids. Recombinant CmFE was expressed as 28 kDa extracellular enzyme in Pichia pastoris which was capable of degrading fibrin clot. A structure homology model of CmFE was developed using urokinase-type plasminogen activator. The active site contains catalytic triad His41, Asp83, Ser177 and consensus sequence of GDSGG. The substrate binding residues are Asp (171), Gly (194) and Ser (192). Its trypsin-like specificity is determined by the critical Asp171 in S1 subsite. The "oxyanion hole" is formed by backbone amide hydrogen atoms of Gly-175 and Ser-177. CmFE contains six conserved cysteines forming three disulfide linkages. This is the first study describing cloning, expression and prediction of structure-function relationship of a mushroom fibrinolytic protease. Hence it has great relevance in application of fibrinolytic enzymes as thrombolytic agents.
Collapse
|
3
|
Sun X, Liu H, Wang P, Wang L, Ni W, Yang Q, Wang H, Tang H, Zhao G, Zheng Z. Construction of a novel MK-4 biosynthetic pathway in Pichia pastoris through heterologous expression of HsUBIAD1. Microb Cell Fact 2019; 18:169. [PMID: 31601211 PMCID: PMC6786277 DOI: 10.1186/s12934-019-1215-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023] Open
Abstract
Background With a variety of physiological and pharmacological functions, menaquinone is an essential prenylated product that can be endogenously converted from phylloquinone (VK1) or menadione (VK3) via the expression of Homo sapiens UBIAD1 (HsUBIAD1). The methylotrophic yeast, Pichia pastoris, is an attractive expression system that has been successfully applied to the efficient expression of heterologous proteins. However, the menaquinone biosynthetic pathway has not been discovered in P. pastoris. Results Firstly, we constructed a novel synthetic pathway in P. pastoris for the production of menaquinone-4 (MK-4) via heterologous expression of HsUBIAD1. Then, the glyceraldehyde-3-phosphate dehydrogenase constitutive promoter (PGAP) appeared to be mostsuitable for the expression of HsUBIAD1 for various reasons. By optimizing the expression conditions of HsUBIAD1, its yield increased by 4.37 times after incubation at pH 7.0 and 24 °C for 36 h, when compared with that under the initial conditions. We found HsUBIAD1 expressed in recombinant GGU-23 has the ability to catalyze the biosynthesis of MK-4 when using VK1 and VK3 as the isopentenyl acceptor. In addition, we constructed a ribosomal DNA (rDNA)-mediated multi-copy expression vector for the fusion expression of SaGGPPS and PpIDI, and the recombinant GGU-GrIG afforded higher MK-4 production, so that it was selected as the high-yield strain. Finally, the yield of MK-4 was maximized at 0.24 mg/g DCW by improving the GGPP supply when VK3 was the isopentenyl acceptor. Conclusions In this study, we constructed a novel synthetic pathway in P. pastoris for the biosynthesis of the high value-added prenylated product MK-4 through heterologous expression of HsUBIAD1 and strengthened accumulation of GGPP. This approach could be further developed and accomplished for the biosynthesis of other prenylated products, which has great significance for theoretical research and industrial application.
Collapse
Affiliation(s)
- Xiaowen Sun
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China.,University of Science and Technology of China, Hefei, 230026, Anhui, People's Republic of China
| | - Hui Liu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China
| | - Peng Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China
| | - Li Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China
| | - Wenfeng Ni
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China.,University of Science and Technology of China, Hefei, 230026, Anhui, People's Republic of China
| | - Qiang Yang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China.,University of Science and Technology of China, Hefei, 230026, Anhui, People's Republic of China
| | - Han Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China.,University of Science and Technology of China, Hefei, 230026, Anhui, People's Republic of China
| | - Hengfang Tang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China.,University of Science and Technology of China, Hefei, 230026, Anhui, People's Republic of China
| | - Genhai Zhao
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China.
| | - Zhiming Zheng
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China.
| |
Collapse
|
4
|
Mican J, Toul M, Bednar D, Damborsky J. Structural Biology and Protein Engineering of Thrombolytics. Comput Struct Biotechnol J 2019; 17:917-938. [PMID: 31360331 PMCID: PMC6637190 DOI: 10.1016/j.csbj.2019.06.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/25/2019] [Accepted: 06/27/2019] [Indexed: 12/22/2022] Open
Abstract
Myocardial infarction and ischemic stroke are the most frequent causes of death or disability worldwide. Due to their ability to dissolve blood clots, the thrombolytics are frequently used for their treatment. Improving the effectiveness of thrombolytics for clinical uses is of great interest. The knowledge of the multiple roles of the endogenous thrombolytics and the fibrinolytic system grows continuously. The effects of thrombolytics on the alteration of the nervous system and the regulation of the cell migration offer promising novel uses for treating neurodegenerative disorders or targeting cancer metastasis. However, secondary activities of thrombolytics may lead to life-threatening side-effects such as intracranial bleeding and neurotoxicity. Here we provide a structural biology perspective on various thrombolytic enzymes and their key properties: (i) effectiveness of clot lysis, (ii) affinity and specificity towards fibrin, (iii) biological half-life, (iv) mechanisms of activation/inhibition, and (v) risks of side effects. This information needs to be carefully considered while establishing protein engineering strategies aiming at the development of novel thrombolytics. Current trends and perspectives are discussed, including the screening for novel enzymes and small molecules, the enhancement of fibrin specificity by protein engineering, the suppression of interactions with native receptors, liposomal encapsulation and targeted release, the application of adjuvants, and the development of improved production systems.
Collapse
Key Words
- EGF, Epidermal growth factor domain
- F, Fibrin binding finger domain
- Fibrinolysis
- K, Kringle domain
- LRP1, Low-density lipoprotein receptor-related protein 1
- MR, Mannose receptor
- NMDAR, N-methyl-D-aspartate receptor
- P, Proteolytic domain
- PAI-1, Inhibitor of tissue plasminogen activator
- Plg, Plasminogen
- Plm, Plasmin
- RAP, Receptor antagonist protein
- SAK, Staphylokinase
- SK, Streptokinase
- Staphylokinase
- Streptokinase
- Thrombolysis
- Tissue plasminogen activator
- Urokinase
- t-PA, Tissue plasminogen activator
Collapse
Affiliation(s)
- Jan Mican
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Martin Toul
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| |
Collapse
|
5
|
马 洁, 吴 乐, 丁 向, 李 志, 王 盛. [Transient expression of bioactive recombinant human plasminogen activator in tobacco leaf]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:515-522. [PMID: 31140413 PMCID: PMC6743930 DOI: 10.12122/j.issn.1673-4254.2019.05.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To assess the potential of transient expression of recombinant human plasminogen activator (rhPA) in plants as a cost-effective approach for recombinant rhPA production. METHODS Tobacco mosaic virus-based expression vector pTMV rhPA-NSK and plant binary expression vector pJ Zera-rhPA were constructed by in vitro sequence synthesis and subcloning. The two vectors were inoculated on either Nicotiana benthamiana or N. excelsiana leaves via agroinfiltration. The expression of recombinant rhPA in Nicotiana leaves was examined using Western blotting and ELISA, and the in vitro fibrinolysis activity of plant-produced rhPA was assessed by fibrin agarose plate assay (FAPA). RESULTS Five to nine days after infiltration with an Agrobacterium inoculum containing pTMV rhPA-NSK, necrosis appeared in the infiltrated area on the leaves of both Nicotiana plants, but intact recombinant rhPA was still present in the necrotic leaf tissues. The accumulation level of recombinant rhPA in infiltrated N. benthamiana leaves was significantly higher than that in N. excelsiana leaves (P < 0.05). The yield of recombinant rhPA was up to 0.6% of the total soluble protein (or about 60.0 μg per gram) in the fresh leaf biomass at 7 days post-inoculation. The plant-derived rhPA was bioactive to convert inactive plasminogen to active plasmin. No necrosis occurred in pJ Zera-rhPA-infiltrated leaves. The Zera-rhPA protein was partially cleaved between the site of Zera tag and rhPA sequence in both Nicotiana leaves. We speculated that the formation of Zera tags-induced particles in the plant cells was a dynamic process of progressive aggregation in which some of the soluble polypeptides were encapsulated in these particles. CONCLUSIONS Enzymatically active recombinant rhPA can be rapidly expressed in tobacco plants using the plant viral ampliconbased system, which offers a promising alternative for cost-effective production of recombinant rhPA.
Collapse
Affiliation(s)
- 洁雪 马
- 西部特色生物资源保护与利用教育部重点实验室,宁夏 银川 750021Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in the Western China, Yinchuan 750021, China
| | - 乐乐 吴
- 西部特色生物资源保护与利用教育部重点实验室,宁夏 银川 750021Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in the Western China, Yinchuan 750021, China
| | - 向真 丁
- 西部特色生物资源保护与利用教育部重点实验室,宁夏 银川 750021Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in the Western China, Yinchuan 750021, China
- 宁夏优势特色作物现代分子育种重点实验室,宁夏 银川 750021Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan 750021, China
| | - 志英 李
- 西部特色生物资源保护与利用教育部重点实验室,宁夏 银川 750021Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in the Western China, Yinchuan 750021, China
- 宁夏优势特色作物现代分子育种重点实验室,宁夏 银川 750021Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan 750021, China
| | - 盛 王
- 西部特色生物资源保护与利用教育部重点实验室,宁夏 银川 750021Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in the Western China, Yinchuan 750021, China
- 宁夏优势特色作物现代分子育种重点实验室,宁夏 银川 750021Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan 750021, China
| |
Collapse
|
6
|
Jazayeri SH, Amiri-Yekta A, Bahrami S, Gourabi H, Sanati MH, Khorramizadeh MR. Vector and Cell Line Engineering Technologies Toward Recombinant Protein Expression in Mammalian Cell Lines. Appl Biochem Biotechnol 2018; 185:986-1003. [PMID: 29396733 DOI: 10.1007/s12010-017-2689-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 12/29/2017] [Indexed: 11/26/2022]
Abstract
The rapid growth of global biopharmaceutical market in the recent years has been a good indication of its significance in biotechnology industry. During a long period of time in recombinant protein production from 1980s, optimizations in both upstream and downstream processes were launched. In this regard, one of the most promising strategies is expression vector engineering technology based on incorporation of DNA opening elements found in the chromatin border regions of vectors as well as targeting gene integration. Along with these approaches, cell line engineering has revealed convenient outcomes in isolating high-producing clones. According to the fact that more than 50% of the approved therapeutic proteins is being manufactured in mammalian cell lines, in this review, we focus on several approaches and developments in vector and cell line engineering technologies in mammalian cell culture.
Collapse
Affiliation(s)
- Seyedeh Hoda Jazayeri
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Genetics, Reproductive Biomedicine Research Center, ACECR, Royan Institute for Reproductive Biomedicine, P.O. Box: 14155-6343, Tehran, Iran
| | - Amir Amiri-Yekta
- Department of Genetics, Reproductive Biomedicine Research Center, ACECR, Royan Institute for Reproductive Biomedicine, P.O. Box: 14155-6343, Tehran, Iran
| | - Salahadin Bahrami
- Department of Genetics, Reproductive Biomedicine Research Center, ACECR, Royan Institute for Reproductive Biomedicine, P.O. Box: 14155-6343, Tehran, Iran
| | - Hamid Gourabi
- Department of Genetics, Reproductive Biomedicine Research Center, ACECR, Royan Institute for Reproductive Biomedicine, P.O. Box: 14155-6343, Tehran, Iran
| | - Mohammad Hossein Sanati
- Department of Genetics, Reproductive Biomedicine Research Center, ACECR, Royan Institute for Reproductive Biomedicine, P.O. Box: 14155-6343, Tehran, Iran.
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| | - Mohammad Reza Khorramizadeh
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, P.O. Box: 1411413137, Tehran, Iran.
| |
Collapse
|
7
|
Mohseni AH, Soleimani M, Majidzadeh-A K, Taghinezhad-S S, Keyvani H. Active Expression of Human Tissue Plasminogen Activator (t-PA) c-DNA from Pulmonary Metastases in the Methylotrophic Yeast Pichia Pastoris KM71H Strain. Asian Pac J Cancer Prev 2017; 18:2249-2254. [PMID: 28843264 PMCID: PMC5697489 DOI: 10.22034/apjcp.2017.18.8.2249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Background: Human tissue-type plasminogen activator (t-PA) is a key protease of the trypsin family. It catalyzes the activation of zymogen plasminogen to the fibrin-degrading proteinase, plasmin, leading to digestion of fibrin clots. The recombinant enzyme produced by recombinant technology issued to dissolve blood clots in treatment of various human diseases such as coronary artery thrombosis, pulmonary embolism, acute ischemic stroke (AIS). Pichia pastoris expression system is a unique system for the production of high level of recombinant proteins. GS115 and KM71H are two kinds of Pichia pastoris strains whilst production of recombinant proteins in these strains is not predictable. The aim of the study was evaluation of t-PA expression in KM71H strains. Methods: In this study, the cDNA of the t-PA gene was amplified by PCR, sequenced and cloned into Pichia pastoris KM71H host strain using pPICZalphaA expression vector that allows methanol-induced expression and secretion of the protein. Results: Dot blotting results confirmed the presence oft-PA in the cell supernatant. Western blotting test revealed the approximate size of 70 KDa for recombinant t-PA. Quantitative ELISA experiment showed 810 µg/L of t-PA in the supernatant samples. Zymography analysis confirmed the proteolytic activity and biological function of the expressed recombinant t-PA. Conclusions: Correspondingly, Pichia pastoris KM71H is an appropriate strain for production of active recombinant protein.
Collapse
Affiliation(s)
- Amir Hossein Mohseni
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran.,Department of Microbiology, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | | | | | | | | |
Collapse
|
8
|
Adivitiya, Khasa YP. The evolution of recombinant thrombolytics: Current status and future directions. Bioengineered 2016; 8:331-358. [PMID: 27696935 DOI: 10.1080/21655979.2016.1229718] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cardiovascular disorders are on the rise worldwide due to alcohol abuse, obesity, hypertension, raised blood lipids, diabetes and age-related risks. The use of classical antiplatelet and anticoagulant therapies combined with surgical intervention helped to clear blood clots during the inceptive years. However, the discovery of streptokinase and urokinase ushered the way of using these enzymes as thrombolytic agents to degrade the fibrin network with an issue of systemic hemorrhage. The development of second generation plasminogen activators like anistreplase and tissue plasminogen activator partially controlled this problem. The third generation molecules, majorly t-PA variants, showed desirable properties of improved stability, safety and efficacy with enhanced fibrin specificity. Plasmin variants are produced as direct fibrinolytic agents as a futuristic approach with targeted delivery of these drugs using liposome technlogy. The novel molecules from microbial, plant and animal origin present the future of direct thrombolytics due to their safety and ease of administration.
Collapse
Affiliation(s)
- Adivitiya
- a Department of Microbiology , University of Delhi South Campus , New Delhi , India
| | - Yogender Pal Khasa
- a Department of Microbiology , University of Delhi South Campus , New Delhi , India
| |
Collapse
|
9
|
Ji J, Yang JA, He X, Ling WP, Chen XL. Cardiac-targeting transfection of tissue-type plasminogen activator gene to prevent the graft thrombosis and vascular anastomotic restenosis after coronary bypass. Thromb Res 2014; 134:440-8. [PMID: 24968958 DOI: 10.1016/j.thromres.2014.04.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/07/2014] [Accepted: 04/17/2014] [Indexed: 11/19/2022]
Abstract
AIM To observe the tissue-type plasminogen activator gene (t-PA) plasmid packaged with albumin nanoparticles crosslinked to albumin ultrasound microbubbles for targeting transfection to myocardium to prevent the graft thrombosis and vascular anastomotic restenosis after coronary bypass. METHODS A dog model of coronary bypass using the autoallergic saphenous vein as the graft was made. A highly expressive t-PA gene plasmid packaged with albumin nanoparticles crosslinked to albumin ultrasound microbubbles was constructed. Targeting myocardial transfection was performed with this gene vector under the aid of therapeutic ultrasound(1MHz, 1.5 w/cm2, 6minutes, intravenously) after the bypass. The expression of t-PA in myocardium was detected with a multiclonal antibody to t-PA by the indirect immunohistochemical method. Venous blood t-PA and D-dimer contents were tested before and 1, 2 and 4weeks after the operation. The effects of this gene vector on thrombosis of the grafts and the coronary intimal hyperplasia around the anastomotic stoma were observed using a routine pathological examination, a morphometry for intimal thickness and area and the immuno-histochemical stain with a monoclonal antibody to PCNA for estimating the intimal SMC proliferation. RESULTS The effective expression of t-PA protein by myocardium was obtained, followed by the persistent raises of blood t-PA and D-dimer 1, 2 and 4weeks after the transfection. Thrombosis of the grafts was successfully restrained. The expression of PCNA by coronary intimal vSMCs and intimal hyperplasia were remarkablely reduced. CONCLUSION This t-PA gene targeting vector could be used to prevent the dog thrombosis, which provided the experimental identification for prevention on human thrombotic diseases.
Collapse
Affiliation(s)
- Jun Ji
- Department of Pathology, Shenzhen Sun Yat-Sen Cardiovascular Hospital, Shenzhen 518020, Guangdong, China
| | - Jian-An Yang
- Cardiovascular Surgery, Shenzhen Sun Yat-Sen Cardiovascular Hospital, Shenzhen 518020, Guangdong, China.
| | - Xia He
- Department of Pathology, Shenzhen Sun Yat-Sen Cardiovascular Hospital, Shenzhen 518020, Guangdong, China
| | - Wen-Ping Ling
- Department of Pathology, Shenzhen Sun Yat-Sen Cardiovascular Hospital, Shenzhen 518020, Guangdong, China
| | - Xiao-Ling Chen
- Department of Pathology, Shenzhen Sun Yat-Sen Cardiovascular Hospital, Shenzhen 518020, Guangdong, China
| |
Collapse
|
10
|
Corchero JL, Gasser B, Resina D, Smith W, Parrilli E, Vázquez F, Abasolo I, Giuliani M, Jäntti J, Ferrer P, Saloheimo M, Mattanovich D, Schwartz S, Tutino ML, Villaverde A. Unconventional microbial systems for the cost-efficient production of high-quality protein therapeutics. Biotechnol Adv 2012; 31:140-53. [PMID: 22985698 DOI: 10.1016/j.biotechadv.2012.09.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 09/04/2012] [Accepted: 09/07/2012] [Indexed: 12/18/2022]
Abstract
Both conventional and innovative biomedical approaches require cost-effective protein drugs with high therapeutic potency, improved bioavailability, biocompatibility, stability and pharmacokinetics. The growing longevity of the human population, the increasing incidence and prevalence of age-related diseases and the better comprehension of genetic-linked disorders prompt to develop natural and engineered drugs addressed to fulfill emerging therapeutic demands. Conventional microbial systems have been for long time exploited to produce biotherapeutics, competing with animal cells due to easier operation and lower process costs. However, both biological platforms exhibit important drawbacks (mainly associated to intracellular retention of the product, lack of post-translational modifications and conformational stresses), that cannot be overcome through further strain optimization merely due to physiological constraints. The metabolic diversity among microorganisms offers a spectrum of unconventional hosts, that, being able to bypass some of these weaknesses, are under progressive incorporation into production pipelines. In this review we describe the main biological traits and potentials of emerging bacterial, yeast, fungal and microalgae systems, by comparing selected leading species with well established conventional organisms with a long run in protein drug production.
Collapse
|
11
|
Ji J, Ji SY, Yang JA, He X, Yang XH, Ling WP, Chen XL. Ultrasound-targeted transfection of tissue-type plasminogen activator gene carried by albumin nanoparticles to dog myocardium to prevent thrombosis after heart mechanical valve replacement. Int J Nanomedicine 2012; 7:2911-9. [PMID: 22787391 PMCID: PMC3392147 DOI: 10.2147/ijn.s32363] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background There are more than 300,000 prosthetic heart valve replacements each year worldwide. These patients are faced with a higher risk of thromboembolic events after heart valve surgery and long-term or even life-long anticoagulative and antiplatelet therapies are necessary. Some severe complications such as hemorrhaging or rebound thrombosis can occur when the therapy ceases. Tissue-type plasminogen activator (t-PA) is a thrombolytic agent. One of the best strategies is gene therapy, which offers a local high expression of t-PA over a prolonged time period to avoid both systemic hemorrhaging and local rebound thrombosis. There are some issues with t-PA that need to be addressed: currently, there is no up-to-date report on how the t-PA gene targets the heart in vivo and the gene vector for t-PA needs to be determined. Aims To fabricate an albumin nano-t-PA gene ultrasound-targeted agent and investigate its targeting effect on prevention of thrombosis after heart mechanic valve replacement under therapeutic ultrasound. Methods A dog model of mechanical tricuspid valve replacement was constructed. A highly expressive t-PA gene plasmid was constructed and packaged by nanoparticles prepared with bovine serum albumin. This nanopackaged t-PA gene plasmid was further cross-linked to ultrasonic microbubbles prepared with sucrose and bovine serum albumin to form the ultrasonic-targeted agent for t-PA gene transfection. The agent was given intravenously followed by a therapeutic ultrasound treatment (1 MHz, 1.5 w/cm2, 10 minutes) of the heart soon after valve replacement had been performed. The expression of t-PA in myocardium was detected with multiclonal antibodies to t-PA by the indirect immunohistochemical method. Venous blood t-PA and D-dimer contents were tested before and 1, 2, 4, and 8 weeks after the operation. Results The high expression of t-PA could be seen in myocardium with increases in blood t-PA and D-dimer contents and thrombosis was prevented 8 weeks after operation. Conclusion We successfully fabricated an albumin nano-t-PA gene ultrasound-targeted agent that could prevent dog thrombosis after mechanical heart valve replacement. Our study provides an experimental basis for prevention of human thrombosis-related diseases.
Collapse
Affiliation(s)
- Jun Ji
- Department of Pathology and Cardiovascular Surgery, Shenzhen Sun Yat-Sen Cardiovascular Hospital, Shenzhen, Guangdong, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|