1
|
Kaarmukhilnilavan RS, Wong JWC, Murugesan K. Treatment of polluted river water using potential bioflocculant produced by Klebsiella pneumonia UKD24. ENVIRONMENTAL TECHNOLOGY 2024; 45:6073-6082. [PMID: 38442742 DOI: 10.1080/09593330.2024.2323553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 01/21/2024] [Indexed: 03/07/2024]
Abstract
Chemically enhanced primary treatment (CEPT) is a rapid wastewater treatment process involving treating wastewater with two chemical-aided processes, coagulation, and flocculation. In the present study, a natural extracellular polymeric substance flocculant (EPSBF) produced by Klebsiella pneumonia UKD24, a bacterium isolated from the sewage treatment plant, and a synthetic polyacrylamide anionic polymer flocculant (PAM) were evaluated to treat polluted river water. The synthetic PAM showed immediate turbidity reduction after agitation, while the EPSBF expressed a rapid decrease in optical density. After 20 min of the settling period, the EPSBF showed reduced rates of turbidity, optical density, and chemical oxygen demand at 74.14 ± 5.2%, 89.37 ± 0.76%, and 87.21 ± 0.73%, respectively, while PAM showed 67.08 ± 4%, 85.68 ± 2%, and 86.57 ± 2%, respectively. EPSBF treatment significantly improved the water quality parameters in terms of total dissolved solids, total suspended solids, conductivity, and oxidation-reduction potential than PAM treatment. However, the EPSBF has shown a more water-holding capacity and relatively weak flock formation, producing more sludge volume than PAM. Furthermore, though the sludge produced by the EPSBF treatment had a higher moisture content, it showed shorter capillary suction time (CST). In contrast, sludge formed in PAM treatment had lower moisture content, but it exhibited prolonged CST value indicating that PAM treatment sludge showed slow dewaterability.
Collapse
Affiliation(s)
- R S Kaarmukhilnilavan
- Department of Environmental Science, School of Environmental Science and Technology, Periyar University, Salem, India
| | - J W C Wong
- Institute of Bioresource and Agriculture, Hong Kong Baptist University, Hong Kong, People's Republic of China
| | - K Murugesan
- Department of Environmental Science, School of Environmental Science and Technology, Periyar University, Salem, India
| |
Collapse
|
2
|
Tripathi G, Pandey VK, Ahmad S, Irum, Khujamshukurov NA, Farooqui A, Mishra V. Utilizing novel Aspergillus species for bio-flocculation: A cost-effective approach to harvest Scenedesmus microalgae for biofuel production. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100272. [PMID: 39296489 PMCID: PMC11408997 DOI: 10.1016/j.crmicr.2024.100272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024] Open
Abstract
The present study aimed to isolate a bioflocculating fungal strain from wastewater collected from a local bike garage. The isolate showed maximum similarity to Aspergillus species. The fungus was identified as Aspergillus flavus species F_GTAF1 IU (accession no OP703382). The isolated fungus was evaluated in terms of biomass recovery efficiency in Scenedesmus Sp. GTAF01. The extent of algal fungal co-pelletization was evaluated as a function of the algae-to-fungi ratio, volume of fungal culture in broth, agitation rate, and pH. results showed that at fungal culture volume of 60 ░ %v/v, fungal culture volume of 1:3 ░ %w/w, 100 rpm, and pH 3, 93.6 ░ % biomass was obtained during the initial 5 h. At wavenumbers 1384 and 1024 cm-1 a significant alteration in the transmission percentage was observed in co-pellet compared to algae and fungal cells. This shows the significant role of C-H-H and C-N stretches in co-pellet formation. This study provides deep insight into effective microalgal harvesting along with the simultaneous extraction of lipids that can be used for the sustainable production of biodiesel.
Collapse
Affiliation(s)
- Gyanendra Tripathi
- Department of Bioengineering, Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Vinay Kumar Pandey
- Research & Development Cell, Biotechnology Department, Manav Rachna International Institute of Research and Studies (Deemed to Be University), Faridabad 121004, Haryana, India
| | - Suhail Ahmad
- Department of Bioengineering, Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Irum
- Department of Biosciences, Integral University, Lucknow 226026, Uttar Pradesh, India
| | | | - Alvina Farooqui
- Department of Bioengineering, Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Vishal Mishra
- School of Biochemical Engineering, IIT(BHU) Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
3
|
Nkosi NC, Basson AK, Ntombela ZG, Dlamini NG, Maliehe TS, Pullabhotla RVSR. Production and characterization of a bioflocculant produced by Proteus mirabilis AB 932526.1 and its application in wastewater treatment and dye removal. PURE APPL CHEM 2023. [DOI: 10.1515/pac-2022-1002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Abstract
Microbial flocculants affect the aggregation of suspended solutes in solutions, thus, they are a viable alternative to inorganic and organic synthetic flocculants which are associated with deleterious health problems. Moreover, a potential solution for wastewater treatment. The study aimed to produce and characterize a bioflocculant from Proteus mirabilis AB 932526.1 and apply it in domestic wastewater treatment and dye removal. The bioflocculant was extracted using butanol and chloroform (5:2 v/v). Carbohydrates, proteins, and uronic acid were identified using phenol-sulphuric acid, Bradford, and Carbazole essays. The morphology, crystallinity and elemental composition of the purified bioflocculant were determined using a Scanning electron microscope (SEM), X-ray diffraction analysis and SEM energy dispersive elemental detector (SEM-EDX). The antimicrobial properties and dye removal efficiencies were evaluated. About 3.8 g/L yields of the purified bioflocculant were attained. Chemical composition analysis revealed the presence of 65 % carbohydrates, 10 % proteins, and 24 % uronic acids. The bioflocculant displayed an amorphous and crystalline structure. Bioflocculant further shows some remarkable properties as they can be able to inhibit the growth of both Gram-positive and Gram-negative microorganisms. The removal efficiencies of 85 % (COD), 82 % (BOD), and 81 % (SO4
2−) in domestic wastewater were achieved. Moreover, the high removal efficiency of staining dyes such as methylene blue (71 %), carbol fuchsin (81 %), safranin (83 %), methylene orange (90 %), and Congo red (90 %) were found. The produced bioflocculant can imply industrial applicability.
Collapse
Affiliation(s)
- Nkanyiso C. Nkosi
- Department of Biochemistry and Microbiology , Faculty of Science, Agriculture and Engineering, University of Zululand , P/Bag X 1001 , KwaDlangezwa 3886 , South Africa
| | - Albertus K. Basson
- Department of Biochemistry and Microbiology , Faculty of Science, Agriculture and Engineering, University of Zululand , P/Bag X 1001 , KwaDlangezwa 3886 , South Africa
| | - Zuzingcebo G. Ntombela
- Department of Biochemistry and Microbiology , Faculty of Science, Agriculture and Engineering, University of Zululand , P/Bag X 1001 , KwaDlangezwa 3886 , South Africa
| | - Nkosinathi G. Dlamini
- Department of Biochemistry and Microbiology , Faculty of Science, Agriculture and Engineering, University of Zululand , P/Bag X 1001 , KwaDlangezwa 3886 , South Africa
| | - Tsolanku S. Maliehe
- Department of Biochemistry and Microbiology , Faculty of Science, Agriculture and Engineering, University of Zululand , P/Bag X 1001 , KwaDlangezwa 3886 , South Africa
| | - Rajasekhar V. S. R. Pullabhotla
- Department of Chemistry , Faculty of Science, Agriculture and Engineering, University of Zululand , P/Bag X 1001 , KwaDlangezwa 3886 , South Africa
| |
Collapse
|
4
|
Wang L, Li D, Li X, Liang H, Yue W, Wang L, Pan Y, Huang Y. Recirculation of activated sludge for coagulant synthesis under hydrothermal conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:66519-66535. [PMID: 35503154 DOI: 10.1007/s11356-022-20490-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
A hypothesis was proposed that the activated sludge was converted into hydrochar full of phenolic hydroxyl and then was made into coagulant by graft copolymerization. The results show that under the addition of HCl, the content of phenolic hydroxyl on the surface of hydrochar (SBC) under hydrothermal conditions increased sharply, up to 1.586 mmol/g, showing that HCl dosage of 0.10 g/g dry sludge and holding time of 4 h was recommended. Under graft copolymerization with the addition of DMC, the coagulant was synthesized. Based on the analysis by FTIR, XPS, zeta potential, etc., the possible synthesis route of coagulant from SBC was that phenolic hydroxyl on SBC was activated by the initiator and then the polymerization between SBC and DMC was triggered. The optimal grafting conditions are gotten. It was named as SBCHCl0.10 g, 4 h-g-DMC0.7. The removal by SBCHCl0.10 g, 4 h-g-DMC0.7 on COD and turbidity in domestic wastewater is up to 69% and 93%, respectively. The component of COD indicated that almost all particulate COD and most of colloidal COD are removed. On the contrary, the removal on dissolved COD can be neglected. Most of NH3-N and P is kept in the wastewater. This is in favor of subsequent reuse and biological treatment.
Collapse
Affiliation(s)
- Lu Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No.1 Kerui Road, Hi-tech Development District, No.99 Xuefu Road, Suzhou, Jiangsu, China
| | - Dapeng Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No.1 Kerui Road, Hi-tech Development District, No.99 Xuefu Road, Suzhou, Jiangsu, China.
| | - Xueying Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No.1 Kerui Road, Hi-tech Development District, No.99 Xuefu Road, Suzhou, Jiangsu, China
| | - Hui Liang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No.1 Kerui Road, Hi-tech Development District, No.99 Xuefu Road, Suzhou, Jiangsu, China
| | - Wei Yue
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No.1 Kerui Road, Hi-tech Development District, No.99 Xuefu Road, Suzhou, Jiangsu, China
| | - Lingzhi Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No.1 Kerui Road, Hi-tech Development District, No.99 Xuefu Road, Suzhou, Jiangsu, China
| | - Yang Pan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No.1 Kerui Road, Hi-tech Development District, No.99 Xuefu Road, Suzhou, Jiangsu, China
| | - Yong Huang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No.1 Kerui Road, Hi-tech Development District, No.99 Xuefu Road, Suzhou, Jiangsu, China
| |
Collapse
|
5
|
Isolation and Optimization of Culture Conditions of a Bioflocculant-Producing Fungi from Kombucha Tea SCOBY. MICROBIOLOGY RESEARCH 2021. [DOI: 10.3390/microbiolres12040070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Biolocculants are gaining attention in research due to their environmental friendliness and innocuousness to human in comparison to the conventional flocculants. The present study aimed to investigate the ability of fungi from Kombucha tea SCOBY to produce effective bioflocculant in bulk. A 16S rRNA gene sequence analysis was utilized to identify the isolate. The medium composition (carbon and nitrogen sources) and culture conditions (inoculum size, temperature, shaking speed, pH, and time) were optimized using one-factor-at-a-time method. The functional groups, morphology, and crystallinity of the bioflocculant were evaluated using Fourier transform infrared (FT-IR), scan electron microscope (SEM) and X-ray diffractometry (XRD). The fungus was found to be Pichia kudriavzevii MH545928.1. It produced a bioflocculant with flocculating activity of 99.1% under optimum conditions; 1% (v/v) inoculum size, glucose and peptone as nutrient sources, 35 °C, pH 7 and the shaking speed of 140 rpm for 60 h. A cumulus-like structure was revealed by SEM; FT-IR displayed the presence of hydroxyl, carboxyl, amine, and thiocynates. The XRD analysis demonstrated the bioflocculant to have big particles with diffraction peaks at 10° and 40° indicating its crystallinity. Based on the obtained results, P. kudriavzevii MH545928.1 has potential industrial applicability as a bioflocculant producer.
Collapse
|
6
|
Nie Y, Wang Z, Zhang R, Ma J, Zhang H, Li S, Li J. Aspergillus oryzae, a novel eco-friendly fungal bioflocculant for turbid drinking water treatment. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
7
|
Zhang Y, Yang Q, Gao H, Zhao Y, Tang X, Zhao C, Fang C. Application of a modified biological flocculant in total nitrogen treatment of leather wastewater. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:2901-2910. [PMID: 34185687 DOI: 10.2166/wst.2021.192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Leather wastewater harms the ecological environment and human health. In this study, a modified bio-flocculant was prepared to facilitate treatment of leather wastewater. A bio-flocculant produced by Bacillus cereus was combined with amphoteric starch and modified using a cerium ammonium nitrate initiator. Single factor optimization and orthogonal optimization were used to determine the optimal preparation conditions as follows: amphoteric starch-to-flocculant ratio = 22:30; reaction temperature = 64 °C; initiator dosage = 2.00%; reaction time = 15 min; stirring speed = 600 rpm; and flocculation system pH = 8.0. At a dosage of 1 g/L added to simulated leather industry wastewater, the flocculation efficiency (98.17%) and the total nitrogen removal efficiency (100.00%) of modified bio-flocculant was superior to that achieved by 1 g/L of unmodified bio-flocculant (72.16% and 50.00%, respectively), amphoteric starch (8.50% and 0.00%) and polyacrylamide (95.55% and 75.00%). Analysis of natural and flocculated precipitates in the wastewater showed that the modified bio-flocculant significantly changed several characteristics of the flocculated particles; in addition, it promoted the removal of nitrogenous substances in the process of denitrification. These changes helped explain the material's flocculating ability. The results confirmed that the modified bio-flocculant was an effective additive for treating leather wastewater.
Collapse
Affiliation(s)
- Yizhuo Zhang
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, China E-mail:
| | - Qinhuan Yang
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Hongxia Gao
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, China E-mail:
| | - Yang Zhao
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, China E-mail:
| | - Xuan Tang
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, China E-mail:
| | - Changqing Zhao
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, China E-mail:
| | - Chunyu Fang
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, China E-mail:
| |
Collapse
|
8
|
Du M, Wang L, Ebrahimi A, Chen G, Shu S, Zhu K, Shen C, Li B, Wang G. Extracellular polymeric substances induced cell-surface interactions facilitate bacteria transport in saturated porous media. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 218:112291. [PMID: 33957420 DOI: 10.1016/j.ecoenv.2021.112291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 04/16/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Bacteria often respond to dynamic soil environment through the secretion of extracellular polymeric substances (EPS). The EPS modifies cell surface properties and soil pore-scale hydration status, which in turn, influences bacteria transport in soil. However, the effect of soil particle size and EPS-mediated surface properties on bacterial transport in the soil is not well understood. In this study, the simultaneous impacts of EPS and collector size on Escherichia coli (E. coli) transport and deposition in a sand column were investigated. E. coli transport experiments were carried out under steady-state flow in saturated columns packed with quartz sand with different size ranges, including 0.300-0.425 mm (sand-I), 0.212-0.300 mm (sand-II), 0.106-0.150 mm (sand-III) and 0.075-0.106 mm (sand-IV). Bacterial retention increased with decreasing sand collector size, suggesting that straining played an important role in fine-textured media. Both experiment and simulation results showed a clear drop in the retention rate of the bacterial population with the presence of additional EPS (200 mg L-1) (EPS+). The inhibited retention of cells in sand columns under EPS+ scenario was likely attributed to enhanced bacteria hydrophilicity and electrostatic repulsion between cells and sand particles as well as reduced straining. Calculations of the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) interactions energies revealed that high repulsive energy barrier existed between bacterial cells and sand particles in EPS+ environment, primarily due to high repulsive electrostatic force and Lewis acid-base force, as well as low attractive Lifshitz-van der Waals force, which retarded bacterial population deposition. Steric stabilization of EPS would also prevent the approaching of cells close to the quartz surface and thereby hinder cell attachment. This study was the first to show that EPS reduced bacterial straining in saturated porous media. These findings provide new insight into the functional effects of extrinsic EPS on bacterial transport behavior in the saturated soil environment, e.g., aquifers.
Collapse
Affiliation(s)
- Mengya Du
- Department of Soil and Water Sciences, China Agricultural University, Beijing 100193, China
| | - Lin Wang
- Department of Soil and Water Sciences, China Agricultural University, Beijing 100193, China
| | - Ali Ebrahimi
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Guowei Chen
- Department of Municipal Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Shangyi Shu
- Department of Soil and Water Sciences, China Agricultural University, Beijing 100193, China
| | - Kun Zhu
- Department of Soil and Water Sciences, China Agricultural University, Beijing 100193, China
| | - Chongyang Shen
- Department of Soil and Water Sciences, China Agricultural University, Beijing 100193, China
| | - Baoguo Li
- Department of Soil and Water Sciences, China Agricultural University, Beijing 100193, China
| | - Gang Wang
- Department of Soil and Water Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
9
|
Tang X, Wang T, Zhang S, Fang L, Zheng H. Enhanced performance of a novel flocculant containing rich fluorine groups in refractory dyeing wastewater treatment: Removal mechanisms. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118411] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
A Comparative Study between Bimetallic Iron@copper Nanoparticles with Iron and Copper Nanoparticles Synthesized Using a Bioflocculant: Their Applications and Biosafety. Processes (Basel) 2020. [DOI: 10.3390/pr8091125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Nanotechnology addresses numerous environmental problems such as wastewater treatment. Ground water, surface water and wastewater that is contaminated by toxic organic, inorganic solutes and pathogenic microorganisms can now be treated through the application of nanotechnology. The study reports iron@copper (Fe@Cu) nanoparticles, iron nanoparticles (FeNPs) and copper nanoparticles (CuNPs) synthesized using a bioflocculant in a green approach technique. Characterization of the as-synthesized materials was achieved using analytical techniques such as Fourier transform-Infrared spectroscopy (FT-IR), Thermogravimetric analysis (TGA), Scanning Electron Microscope (SEM), Transmission Electron Microscopy (TEM), UV-Vis spectroscopy (UV-Vis) and X-ray diffraction (XRD). The presence of hydroxyl (–OH) and amine (–NH2) groups was shown by FT-IR spectroscopy studies and the as-synthesized material was shown to be thermostable. Elements such as oxygen, carbon, iron and copper were found to be abundant in Wt%. Absorption peaks were found between 200 and 390 nm wavelength and diffraction peaks at 2θ –29°, 33° and 35° for FeNPs, CuNPs and Fe@Cu, respectively. In their application, the effect of various parameters on the flocculation activity were evaluated. Both the CuNPs and (Fe@Cu) nanoparticles have shown the best flocculation activity at a concentration of 0.2 mg/mL with over 90% activity, while the dosage size with a concentration of 0.4 mg/mL was optimal for FeNPs. The FeNPs were found to be cation dependent, while CuNPs and Fe@Cu nanoparticles flocculate in the absence of a cation and flocculate both in acidic and alkaline pH. All the synthesized nanoparticles are thermostable and maintain flocculation activity above 80% at 100 °C. Both the Fe@Cu and CuNPs were found to be effective in removing dyes with the removal efficiency above 89% and were found to be effective in removal of chemical oxygen demand (COD) and biochemical oxygen demand (BOD) in Mzingazi river water and coal mine wastewater with over 80% removal efficiency. Moreover, the synthesized nanoparticles showed some remarkable antimicrobial properties when evaluated against Gram-positive and Gram-negative bacteria. The as-synthesized material was found to be safe to use at low concentration when verified against human embryonic cells (HEK293) and breast cancer cells (MCF7) and biodegradable.
Collapse
|
11
|
Selecting Bacteria Candidates for the Bioaugmentation of Activated Sludge to Improve the Aerobic Treatment of Landfill Leachate. WATER 2020. [DOI: 10.3390/w12010140] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In this study, a multifaceted approach for selecting the suitable candidates for bioaugmentation of activated sludge (AS) that supports leachate treatment was used. To determine the exploitation of 10 bacterial strains isolated from the various matrices for inoculating the AS contaminated with the Kalina pond leachate (KPL), their degradative potential was analyzed along with their aptitude to synthesize compounds improving remediation of pollutants in wastewater and ability to incorporate into the AS flocs. Based on their capability to degrade aromatic compounds (primarily catechol, phenol, and cresols) at a concentration of 1 mg/mL and survive in 12.5% of the KPL, Pseudomonas putida OR45a and P. putida KB3 can be considered to be the best candidates for bioaugmentation of the AS among all of the bacteria tested. Genomic analyses of these two strains revealed the presence of the genes encoding enzymes related to the metabolism of aromatic compounds. Additionally, both microorganisms exhibited a high hydrophobic propensity (above 50%) and an ability to produce biosurfactants as well as high resistance to ammonium (above 600 µg/mL) and heavy metals (especially chromium). These properties enable the exploitation of both bacterial strains in the bioremediation of the AS contaminated with the KPL.
Collapse
|
12
|
Mohite BV, Koli SH, Rajput JD, Patil VS, Agarwal T, Patil SV. Production and characterization of multifacet exopolysaccharide from an agricultural isolate,Bacillus subtilis. Biotechnol Appl Biochem 2019; 66:1010-1023. [DOI: 10.1002/bab.1824] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/16/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Bhavana V. Mohite
- School of Life SciencesKavayitri Bahinabai Chaudhari North Maharashtra University Jalgaon Maharashtra India
| | - Sunil H. Koli
- School of Life SciencesKavayitri Bahinabai Chaudhari North Maharashtra University Jalgaon Maharashtra India
| | - Jamatsing D. Rajput
- School of Life SciencesKavayitri Bahinabai Chaudhari North Maharashtra University Jalgaon Maharashtra India
| | - Vikas S. Patil
- University Institute of Chemical TechnologyKavayitri Bahinabai Chaudhari North Maharashtra University Jalgaon Maharashtra India
| | - Tarun Agarwal
- Department of BiotechnologyIndian Institute of Technology Kharagpur West Bengal India
| | - Satish V. Patil
- School of Life SciencesKavayitri Bahinabai Chaudhari North Maharashtra University Jalgaon Maharashtra India
| |
Collapse
|
13
|
Zhang D, Ye Q, Zhang F, Shao X, Fan Y, Zhu X, Li Y, Yao L, Tian Y, Zheng T, Xu H. Flocculating properties and potential of Halobacillus sp. strain H9 for the mitigation of Microcystis aeruginosa blooms. CHEMOSPHERE 2019; 218:138-146. [PMID: 30471494 DOI: 10.1016/j.chemosphere.2018.11.082] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/12/2018] [Accepted: 11/12/2018] [Indexed: 06/09/2023]
Abstract
Microcystis aeruginosa can cause harmful algal blooms in freshwaters worldwide. It has already seriously affected human lives and prevented the use of water resources. Therefore, there is an urgent need to develop ecofriendly and effective methods to control and eliminate M. aeruginosa in aquatic environments. In this study, Halobacillus sp. strain H9, a bacterium that showed high M. aeruginosa flocculation activity, was isolated and selected to assess its potential for the removal of M. aeruginosa. The analyses of flocculation activity and mode indicated that the strain H9 induced M. aeruginosa flocculation by secreting active flocculating substance rather than by directly contacting algal cells. A 5% concentration of the H9 supernatant could efficiently flocculate M. aeruginosa cells with a density of up to 5 × 107 cells/mL. Dramatic increases in the zeta potential indicated that charge neutralization could be the mechanism of the flocculation process. The strain H9 flocculated M. aeruginosa with no damage to the algal cell membrane, and did not result in microcystin being released into the surrounding environment. The flocculated algal culture was less toxic to zebrafish larvae, suggesting an environmentally friendly benefit of the H9 supernatant. In addition to M. aeruginosa, the H9 strain was also able to flocculate two other species causing harmful algal blooms, Phaeocystis globose and Heterosigma akashiwo. Furthermore, the flocculation activity of the H9 supernatant was stable at different temperatures and over a wide pH range. These characteristics give the H9 strain great potential for mitigating the influences of harmful algal blooms.
Collapse
Affiliation(s)
- Danyang Zhang
- State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, 361102, PR China
| | - Qian Ye
- State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, 361102, PR China
| | - Fuxing Zhang
- State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, 361102, PR China
| | - Xueping Shao
- State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, 361102, PR China
| | - Yongxiang Fan
- State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, 361102, PR China
| | - Xiaoying Zhu
- State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, 361102, PR China
| | - Yinan Li
- State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, 361102, PR China
| | - Luming Yao
- State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, 361102, PR China
| | - Yun Tian
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, and School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, PR China
| | - Tianling Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, and School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, PR China
| | - Hong Xu
- State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, 361102, PR China; Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, and School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, PR China.
| |
Collapse
|
14
|
Xia X, Lan S, Li X, Xie Y, Liang Y, Yan P, Chen Z, Xing Y. Characterization and coagulation-flocculation performance of a composite flocculant in high-turbidity drinking water treatment. CHEMOSPHERE 2018; 206:701-708. [PMID: 29783055 DOI: 10.1016/j.chemosphere.2018.04.159] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/23/2018] [Accepted: 04/26/2018] [Indexed: 06/08/2023]
Abstract
Klebsiella variicola B16, a microbial bioflocculant (MBF-B16)-producing bacteria, was isolated and identified by its 16S rRNA sequence, biochemical properties, and physiological characteristics. The effects of culture conditions on MBF-B16 production, including carbon source, nitrogen source, C/N ratio, initial pH, and culture temperature, were investigated in this study. Results showed that 6.96 g of MBF-B16 could be extracted from a 1-L culture broth under optimized conditions. Chemical analysis showed that polysaccharide and protein were the main components. The neutral sugar consisted of galactose only, which was proposed in Klebsiella genus for the first time. In addition, a composite flocculant (CF) that contains polyaluminum ferric chloride (PAFC) and MBF-B16 for the removal of turbidity and SS in drinking water was optimized by response surface methodology. CF could reduce PAFC dosage by about 56.2-72%. Charge neutralization and adsorption bridging effect were the primary flocculation mechanisms.
Collapse
Affiliation(s)
- Xiang Xia
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Shuhuan Lan
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China
| | - Xudong Li
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Yifei Xie
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; University of Chinese Academy of Sciences, 100049, Beijing, PR China.
| | - Yajie Liang
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Peihan Yan
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Zhengyang Chen
- Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution (SEKL-SW), Chengdu University of Technology State Environmental Protection, Chengdu University of Technology, 610059, Chengdu, PR China
| | - Yunxiao Xing
- College of Chemistry and Materials Science, Sichuan Normal University, 610066, Sichuan, PR China
| |
Collapse
|
15
|
Srivastava A, Seo SH, Ko SR, Ahn CY, Oh HM. Bioflocculation in natural and engineered systems: current perspectives. Crit Rev Biotechnol 2018; 38:1176-1194. [DOI: 10.1080/07388551.2018.1451984] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Ankita Srivastava
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Seong-Hyun Seo
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - So-Ra Ko
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Chi-Yong Ahn
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Hee-Mock Oh
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| |
Collapse
|
16
|
Agunbiade M, Pohl C, Ashafa O. Bioflocculant production from Streptomyces platensis and its potential for river and waste water treatment. Braz J Microbiol 2018; 49:731-741. [PMID: 29674102 PMCID: PMC6175721 DOI: 10.1016/j.bjm.2017.02.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 02/10/2017] [Accepted: 02/11/2017] [Indexed: 11/26/2022] Open
Abstract
A bacterium isolated from Sterkfontein dam was confirmed to produce bioflocculant with excellent flocculation activity. The 16S rDNA nucleotide sequence analyses revealed the bacteria to have 99% similarity to Streptomyces platensis strain HBUM174787 and the sequence was deposited in the Genbank as Streptomyces platensis with accession number FJ 486385.1. Culture conditions for optimal production of the bioflocculant included glucose as a sole carbon source, resulting in flocculating activity of 90%. Other optimal conditions included: peptone as nitrogen source; presence of Mg2+ as cations and inoculum size of 1.0% (v/v) at neutral pH of 7. Optimum dose of the purified bioflocculant for the clarification of 4g/L kaolin clay suspension at neutral pH was 0.2mg/mL. Energy Dispersive X-ray analysis confirmed elemental composition of the purified bioflocculant in mass proportion (%w/w): carbon (21.41), oxygen (35.59), sulphur (26.16), nitrogen (0.62) and potassium (7.48). Fourier Transform Infrared Spectroscopy (FTIR) indicated the presence of hydroxyl, carboxyl, methoxyl and amino group in the bioflocculant. The bioflocculant produced by S. platensis removed chemical oxygen demand (COD) in river water and meat processing wastewater at efficiencies of 63.1 and 46.6% respectively and reduced their turbidity by 84.3 and 75.6% respectively. The high flocculating rate and removal efficiencies displayed by S. platensis suggests its industrial application in wastewater treatment.
Collapse
Affiliation(s)
- Mayowa Agunbiade
- University of the Free State, Qwaqwa Campus, Department of Plant Sciences, Phytomedicine and Phytopharmacology Research Group, Phuthaditjhaba, South Africa; University of the Free State, Department of Microbial, Biochemical & Food Biotechnology, Bloemfontein, South Africa
| | - Carolina Pohl
- University of the Free State, Department of Microbial, Biochemical & Food Biotechnology, Bloemfontein, South Africa
| | - Omotayo Ashafa
- University of the Free State, Qwaqwa Campus, Department of Plant Sciences, Phytomedicine and Phytopharmacology Research Group, Phuthaditjhaba, South Africa.
| |
Collapse
|
17
|
Chouchane H, Mahjoubi M, Ettoumi B, Neifar M, Cherif A. A novel thermally stable heteropolysaccharide-based bioflocculant from hydrocarbonoclastic strain Kocuria rosea BU22S and its application in dye removal. ENVIRONMENTAL TECHNOLOGY 2018; 39:859-872. [PMID: 28357896 DOI: 10.1080/09593330.2017.1313886] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 03/27/2017] [Indexed: 06/06/2023]
Abstract
A new bioflocculant named pKr produced by hydrocarbonoclastic strain Kocuria rosea BU22S (KC152976) was investigated. Gas chromatography-flame ionization detector (GC-FID) analysis confirmed the high potential of the strain BU22S in the degradation of n-alkanes. Plackett-Burman experimental design and response surface methodology were carried out to optimize pKr production. Glucose, peptone and incubation time were found to be the most significant factors affecting bioflocculant production. Maximum pKr production was about 4.72 ± 0.02 g/L achieved with 15.61 g/L glucose, 6.45 g/L peptone and 3 days incubation time. Chemical analysis of pKr indicated that it contained 71.62% polysaccharides, 16.36% uronic acid and 2.83% proteins. Thin layer chromatography analysis showed that polysaccharides fraction consisted of galactose and xylose. Fourier transform infrared analysis revealed the presence of many functional groups, hydroxyl, carboxyl, methoxyl, acetyl and amide that likely contribute to flocculation. K. rosea pKr showed high flocculant potential using kaolin clay at different pH (2-11), temperature (0-100°C) and cation concentrations. The bioflocculant was particularly effective in flocculating soluble anionic dyes, Reactive Blue 4 and Acid Yellow, with a decolorization efficiency of 76.4% and 72.6%, respectively. The outstanding flocculating performances suggest that pKr could be useful for bioremediation applications.
Collapse
Affiliation(s)
- Habib Chouchane
- a Univ. Manouba , ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020 , Ariana , Tunisia
| | - Mouna Mahjoubi
- a Univ. Manouba , ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020 , Ariana , Tunisia
- b Faculty of Science of Bizerte , University of Carthage , Bizerte , Tunisia
| | - Besma Ettoumi
- c Department of Food Environmental and Nutritional Sciences (DeFENS) , University of Milan , Milan , Italy
| | - Mohamed Neifar
- a Univ. Manouba , ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020 , Ariana , Tunisia
| | - Ameur Cherif
- a Univ. Manouba , ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020 , Ariana , Tunisia
| |
Collapse
|
18
|
Salehizadeh H, Yan N, Farnood R. Recent advances in polysaccharide bio-based flocculants. Biotechnol Adv 2017; 36:92-119. [PMID: 28993221 DOI: 10.1016/j.biotechadv.2017.10.002] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 09/09/2017] [Accepted: 10/05/2017] [Indexed: 01/03/2023]
Abstract
Natural polysaccharides, derived from biomass feedstocks, marine resources, and microorganisms, have been attracting considerable attention as benign and environmentally friendly substitutes for synthetic polymeric products. Besides many other applications, these biopolymers are rapidly emerging as viable alternatives to harmful synthetic flocculating agents for the removal of contaminants from water and wastewater. In recent years, a great deal of effort has been devoted to improve the production and performance of polysaccharide bio-based flocculants. In this review, current trends in preparation and chemical modification of polysaccharide bio-based flocculants and their flocculation performance are discussed. Aspects including mechanisms of flocculation, biosynthesis, classification, purification and characterization, chemical modification, the effect of physicochemical factors on flocculating activity, and recent applications of polysaccharide bio-based flocculants are summarized and presented.
Collapse
Affiliation(s)
- Hossein Salehizadeh
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, Ontario M5S 3E5, Canada.
| | - Ning Yan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, Ontario M5S 3E5, Canada; Faculty of Forestry, University of Toronto, 33 Willcocks St., Toronto, Ontario M5S 3B3, Canada.
| | - Ramin Farnood
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, Ontario M5S 3E5, Canada.
| |
Collapse
|
19
|
Guo J, Chen C. Removal of arsenite by a microbial bioflocculant produced from swine wastewater. CHEMOSPHERE 2017; 181:759-766. [PMID: 28478236 DOI: 10.1016/j.chemosphere.2017.04.119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/17/2017] [Accepted: 04/24/2017] [Indexed: 06/07/2023]
Abstract
This paper focused on the production and characteristics of a bioflocculant by using swine wastewater and its application in removing arsenite from aqueous solution. A series of experimental parameters including bioflocculant dose, calcium ions concentration, and solution pH value on arsenite uptake were evaluated. Results have demonstrated that a bioflocculant of 3.11 g L-1 was achieved as the maximum yield after 60 h fermentation, with a main backbone of polysaccharides. Maximum arsenite removal efficiency of 99.2% can be reached by adding bioflocculant in two stages: 3 × 10-3% (w/w) in the 1.0 min's rapid mixing (180 rpm) and 2 × 10-3% (w/w) after 2.0 min's slow mixing (80 rpm) with pH value fixed at 7. Negative Gibbs free energy change (ΔGo) indicated the spontaneous nature of arsenite removal. Arsenite was removed by the bioflocculant through bridging mechanisms.
Collapse
Affiliation(s)
- Junyuan Guo
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan, 610225, China.
| | - Cheng Chen
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan, 610225, China
| |
Collapse
|
20
|
Agunbiade MO, Van Heerden E, Pohl CH, Ashafa AT. Flocculating performance of a bioflocculant produced by Arthrobacter humicola in sewage waste water treatment. BMC Biotechnol 2017; 17:51. [PMID: 28606076 PMCID: PMC5469021 DOI: 10.1186/s12896-017-0375-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 06/07/2017] [Indexed: 11/14/2022] Open
Abstract
Background The discharge of poorly treated effluents into the environment has far reaching, consequential impacts on human and aquatic life forms. Thus, we evaluated the flocculating efficiency of our test bioflocculant and we report for the first time the ability of the biopolymeric flocculant produced by Arthrobacter humicola in the treatment of sewage wastewater. This strain was isolated from sediment soil sample at Sterkfontein dam in the Eastern Free State province of South Africa. Results Basic Local Alignment Search Tool (BLAST) analysis of the nucleotide sequence of the 16S rDNA revealed the bacteria to have 99% similarity to Arthrobacter humicola strain R1 and the sequence was deposited in the Gene bank as Arthrobacter humicola with accession number KC816574.1. Flocculating activity was enhanced with the aid of divalent cations, pH 12, at a dosage concentration of 0.8 mg/mL. The purified bioflocculant was heat stable and could retain more than 78% of its flocculating activity after heating at 100 °C for 25 min. Fourier Transform Infrared Spectroscopy analysis demonstrated the presence of hydroxyl and carboxyl moieties as the functional groups. The thermogravimetric analysis was used to monitor the pyrolysis profile of the purified bioflocculant and elemental composition revealed C: O: Na: P: K with 13.90: 41.96: 26.79: 16.61: 0.74 weight percentage respectively. The purified bioflocculant was able to remove chemical oxygen demand, biological oxygen demand, suspended solids, nitrate and turbidity from sewage waste water at efficiencies of 65.7%, 63.5%, 55.7%, 71.4% and 81.3% respectively. Conclusions The results of this study indicate the possibility of using the bioflocculant produced by Arthrobacter humicola as a potential alternative to synthesized chemical flocculants in sewage waste water treatment and other industrial waste water.
Collapse
Affiliation(s)
- Mayowa Oladele Agunbiade
- Phytomedicine and Phytopharmacology Research Group, Department of Plant Sciences, University of the Free State, Qwaqwa Campus, P. Bag X13, Phuthaditjabha, 9866, South Africa. .,Department of Microbial, Biochemical & Food Biotechnology, University of the Free State, P.O. Box 339, Nelson Mandela Drive, Bloemfontein, 9301, South Africa.
| | - Esta Van Heerden
- Department of Microbial, Biochemical & Food Biotechnology, University of the Free State, P.O. Box 339, Nelson Mandela Drive, Bloemfontein, 9301, South Africa
| | - Carolina H Pohl
- Department of Microbial, Biochemical & Food Biotechnology, University of the Free State, P.O. Box 339, Nelson Mandela Drive, Bloemfontein, 9301, South Africa
| | - Anofi Tom Ashafa
- Phytomedicine and Phytopharmacology Research Group, Department of Plant Sciences, University of the Free State, Qwaqwa Campus, P. Bag X13, Phuthaditjabha, 9866, South Africa
| |
Collapse
|
21
|
Guo H, Hong C, Zheng B, Lu F, Jiang D, Qin W. Bioflocculants' production in a biomass-degrading bacterium using untreated corn stover as carbon source and use of bioflocculants for microalgae harvest. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:306. [PMID: 29270220 PMCID: PMC5738095 DOI: 10.1186/s13068-017-0987-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/01/2017] [Indexed: 05/19/2023]
Abstract
BACKGROUND Bioflocculation has been developed as a cost-effective and environment-friendly method to harvest multiple microalgae. However, the high production cost of bioflocculants makes it difficult to scale up. In the current study, low-cost bioflocculants were produced from untreated corn stover by a biomass-degrading bacterium Pseudomonas sp. GO2. RESULTS Pseudomonas sp. GO2 showed excellent production ability of bioflocculants through directly hydrolyzing various biomasses. The untreated corn stover was selected as carbon source for bioflocculants' production due to its highest flocculating efficiency compared to that when using other biomasses as carbon source. The effects of fermentation parameters on bioflocculants' production were optimized via response surface methodology. According to the optimal model, an ideal flocculating efficiency of 99.8% was obtained with the fermentation time of 130.46 h, initial pH of 7.46, and biomass content of 0.64%. The relative importance of carboxymethyl cellulase and xylanase accounted for 51.8% in the process of bioflocculants' production by boosted regression tree analysis, further indicating that the bioflocculants were mainly from the hydrolysates of biomass. Biochemical analysis showed that it contained 59.0% polysaccharides with uronic acid (34.2%), 32.1% protein, and 6.1% nucleic acid in the bioflocculants, which had an average molecular weight as 1.33 × 106 Da. In addition, the bioflocculants showed the highest flocculating efficiency at a concentration of 12.5 mg L-1 and were stable over broad ranges of pH and temperature. The highest flocculating efficiencies obtained for Chlorella zofingiensis and Neochloris oleoabundans were 77.9 and 88.9%, respectively. CONCLUSIONS The results indicated that Pseudomonas sp. GO2 can directly utilize various untreated lignocellulolytic biomasses to produce low-cost bioflocculants, which showed the high efficiency to harvest two green microalgae in a low GO2 fermentation broth/algal culture ratio.
Collapse
Affiliation(s)
- Haipeng Guo
- Department of Biology, Lakehead University, Thunder Bay, ON P7B 5E1 Canada
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Chuntao Hong
- Academy of Agricultural Sciences of Ningbo City, Ningbo, 315040 China
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300 China
| | - Fan Lu
- School of Biological Engineering, Hubei University of Technology, Wuhan, 430068 China
| | - Dean Jiang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Wensheng Qin
- Department of Biology, Lakehead University, Thunder Bay, ON P7B 5E1 Canada
| |
Collapse
|
22
|
Czemierska M, Szcześ A, Pawlik A, Wiater A, Jarosz-Wilkołazka A. Production and characterisation of exopolymer from Rhodococcus opacus. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.04.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Zhao H, Zhong C, Chen H, Yao J, Tan L, Zhang Y, Zhou J. Production of bioflocculants prepared from formaldehyde wastewater for the potential removal of arsenic. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 172:71-76. [PMID: 26921567 DOI: 10.1016/j.jenvman.2016.02.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 02/08/2016] [Accepted: 02/15/2016] [Indexed: 06/05/2023]
Abstract
A novel bioflocculant (MBF-79) prepared using formaldehyde wastewater as carbon resource was investigated in the study. The optimal conditions for bioflocculant production were determined to be an inoculum size of 7.0%, initial pH of 6.0, and formaldehyde concentration of 350 mg/L. An MBF-79 of 8.97 g/L was achieved as the maximum yield. Three main elements, namely C, H, and O, were present in MBF-79 with relative weigh percentages of 39.17%, 6.74%, and 34.55%, respectively. The Gel permeation chromatography analysis indicated that the approximate molecular weight (MW) of MBF-79 was 230 kDa. MBF-79 primarily comprised polysaccharide (71.2%) and protein (27.9%). Additionally, conditions for the removal of arsenic by MBF-79 were found to be MBF-79 at 120 mg/L, an initial pH 7.0, and a contact time 60 min. Under the optimal conditions, the removal efficiencies of arsenate (0.5 mg/L) and arsenite (0.5 mg/L) were 98.9% and 84.6%, respectively. Overall, these findings indicate bioflocculation offers an effective alternative method of decreasing arsenic during water treatment.
Collapse
Affiliation(s)
- Haijuan Zhao
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China; School of Mathematics and Economics, Hubei University of Education, Wuhan 430205, China
| | - Chunying Zhong
- Hubei Key Laboratory of Purification and Application of Plant Anti-cancer Active Ingredients, Chemistry and Biology Science College, Hubei University of Education, Wuhan 430205, China
| | - Honggao Chen
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Jie Yao
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Liqing Tan
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Youlang Zhang
- Department of Political Science, Texas A&M University, College Station, 77843, USA
| | - Jiangang Zhou
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China.
| |
Collapse
|
24
|
Okaiyeto K, Nwodo UU, Okoli SA, Mabinya LV, Okoh AI. Implications for public health demands alternatives to inorganic and synthetic flocculants: bioflocculants as important candidates. Microbiologyopen 2016; 5:177-211. [PMID: 26914994 PMCID: PMC4831466 DOI: 10.1002/mbo3.334] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/05/2015] [Accepted: 11/24/2015] [Indexed: 12/11/2022] Open
Abstract
Chemical flocculants are generally used in drinking water and wastewater treatment due to their efficacy and cost effectiveness. However, the question of their toxicity to human health and environmental pollution has been a major concern. In this article, we review the application of some chemical flocculants utilized in water treatment, and bioflocculants as a potential alternative to these chemical flocculants. To the best of our knowledge, there is no report in the literature that provides an up‐to‐date review of the relevant literature on both chemical flocculants and bioflocculants in one paper. As a result, this review paper comprehensively discussed the various chemical flocculants used in water treatment, including their advantages and disadvantages. It also gave insights into bioflocculants production, challenges, various factors influencing their flocculating efficiency and their industrial applications, as well as future research directions including improvement of bioflocculants yields and flocculating activity, and production of cation‐independent bioflocculants. The molecular biology and synthesis of bioflocculants are also discussed.
Collapse
Affiliation(s)
- Kunle Okaiyeto
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa
| | - Uchechukwu U Nwodo
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa
| | - Stanley A Okoli
- GenØK - Centre for Biosafety, Science Park, University of Tromsø, Tromsø, 9291, Norway
| | - Leonard V Mabinya
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa
| | - Anthony I Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa
| |
Collapse
|
25
|
Zhong CY, Chen HG, Cao G, Wang J, Zhou JG. Bioflocculant production by Haloplanus vescus and its application in acid brilliant scarlet yellow/red removal. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2016; 73:707-715. [PMID: 26901711 DOI: 10.2166/wst.2015.549] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A novel bioflocculant MBF057 produced by a salt-tolerant Haloplanus vescus HW0579 was investigated in this study. The effects of culture conditions such as initial pH, inoculum size, and chemical oxygen demand (COD) of K-acid wastewater on MBF0579 production were studied. The result showed that 8.09 g/L purified MBF0579 was extracted with the following optimized conditions: 780 mg/L COD of K-acid wastewater as carbon source, inoculum size 12.5%, and initial pH 7.0. The biopolymer contained 78.6% polysaccharides and 21.1% proteins. The highest flocculating rate of 81.86 and 95.07% for the COD and chroma of acid brilliant scarlet gelb rot (yellow/red, GR) dye wastewater were achieved at a dosage of 150 mg/L, pH 2.0 and contact time 100 min. Overall, these findings indicate bioflocculation offers an effective alternative method of decreasing acid brilliant scarlet GR during dye wastewater treatment.
Collapse
Affiliation(s)
- Chun-Ying Zhong
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China E-mail: ; Hubei Key Laboratory of Purification and Application of Plant Anticancer Active Ingredients, Chemistry and Biology Science College, Hubei University of Education, Wuhan 430205, China; These two authors contributed equally to this work
| | - Hong-Gao Chen
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China E-mail: ; These two authors contributed equally to this work
| | - Gang Cao
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China E-mail:
| | - Jun Wang
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China E-mail:
| | - Jian-Gang Zhou
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China E-mail:
| |
Collapse
|
26
|
Lei X, Chen Y, Shao Z, Chen Z, Li Y, Zhu H, Zhang J, Zheng W, Zheng T. Effective harvesting of the microalgae Chlorella vulgaris via flocculation-flotation with bioflocculant. BIORESOURCE TECHNOLOGY 2015; 198:922-5. [PMID: 26391967 DOI: 10.1016/j.biortech.2015.08.095] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 08/24/2015] [Accepted: 08/25/2015] [Indexed: 05/22/2023]
Abstract
In this study, bioflocculant from Cobetia marina L03 could be used for effective harvesting of the microalgae Chlorella vulgaris via flocculation-flotation. A flotation efficiency of 92.7% was observed when 20 mg L(-1) bioflocculant was tested for flocculating the microalgal cells with 5mM CaCl2. The bioflocculant was stable at wide ranges of pH and temperature, which is advantageous for its application under various conditions. Chemical analysis of the bioflocculant indicated that it is composed of 31.6% total sugar and 0.2% protein (w/w). This bioflocculant has potential for the high-efficiency harvesting of microalgae and may be useful in reducing one of the barriers to microalgal biofuel production.
Collapse
Affiliation(s)
- Xueqian Lei
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yao Chen
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, SOA; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361005, China
| | - Zhangran Chen
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yi Li
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, China
| | - Hong Zhu
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jingyan Zhang
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, China
| | - Wei Zheng
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), Tsinghua University, 100084 Beijing, China
| | - Tianling Zheng
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
27
|
Cao G, Zhang Y, Chen L, Liu J, Mao K, Li K, Zhou J. Production of a bioflocculant from methanol wastewater and its application in arsenite removal. CHEMOSPHERE 2015; 141:274-81. [PMID: 26291913 DOI: 10.1016/j.chemosphere.2015.08.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 08/06/2015] [Accepted: 08/06/2015] [Indexed: 05/22/2023]
Abstract
A novel bioflocculant (MBF83) prepared using methanol wastewater as nutrient resource was systematically investigated in the study. The optimal conditions for bioflocculant production were determined to be an inoculum size of 8.6%, initial pH of 7.5, and a methanol concentration of 100.8mgL(-1). An MBF83 of 4.61gL(-1) was achieved as the maximum yield. MBF83 primarily comprised polysaccharide (74.1%) and protein (24.2%). The biopolymer, which was found to be safe in zebrafish in toxicity studies, was characterized using Fourier-transform infrared spectroscopy and elemental analysis. Additionally, conditions for the removal of arsenite by MBF83 were found to be MBF83 at 500mgL(-1), an initial pH of 7.0, and a contact time of 90min. Under the optimal conditions, the removal efficiency of arsenite was 86.1%. Overall, these findings indicate bioflocculation offers an effective alternative method of decreasing arsenite during wastewater treatment.
Collapse
Affiliation(s)
- Gang Cao
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Yanbo Zhang
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China; School of Chemical Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Li Chen
- Central China Normal University Library, Wuhan 430079, China
| | - Jie Liu
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Kewei Mao
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Kangju Li
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Jiangang Zhou
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China.
| |
Collapse
|
28
|
Genome sequence analysis of a flocculant-producing bacterium, Paenibacillus shenyangensis. Biotechnol Lett 2015; 38:447-53. [PMID: 26573635 DOI: 10.1007/s10529-015-1990-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/09/2015] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To explore the metabolic process of Paenibacillus shenyangensis that is an efficient bioflocculant-producing bacterium. The biosynthesis mechanism of bioflocculation was used to enrich the genome of Paenibacillus shenyangensis and provide a basis for molecular genetics and functional genomics analyses. RESULTS According to the analysis of de novo assembly, a total of 5,501,467 bp clean reads were generated, and were assembled into 92 contigs. 4800 unigenes were predicted of which 4393 were annotated showing a specific gene function in the NCBI-Nr database. 3423 genes were found in the database of cluster of orthologous groups. Among the 168 Kyoto Encyclopedia of Genes and Genomes database, cell growth and metabolism were the main biological processes, and a potential metabolic pathway was predicted from glucose to exopolysaccharide within the starch and sucrose metabolism pathway. CONCLUSION By using the high-throughput sequencing technology, we provide a genome analysis of Paenibacillus shenyangensis that predicts the main metabolic processes and a potential pathway of exopolysaccharide biosynthesis.
Collapse
|
29
|
Maloney AJ, Dong C, Campbell AS, Dinu CZ. Emerging Enzyme-Based Technologies for Wastewater Treatment. ACTA ACUST UNITED AC 2015. [DOI: 10.1021/bk-2015-1192.ch005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Affiliation(s)
- Andrew J. Maloney
- Department of Chemical Engineering, West Virginia University, 395 Evansdale Drive, Engineering Science Building, Room 445, Morgantown, West Virginia 26506
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, Houston, Texas 77005
- Department of Biomedical Engineering, Carnegie Mellon University, 15B S 25th Street, Pittsburgh, Pennsylvania 15203
| | - Chenbo Dong
- Department of Chemical Engineering, West Virginia University, 395 Evansdale Drive, Engineering Science Building, Room 445, Morgantown, West Virginia 26506
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, Houston, Texas 77005
- Department of Biomedical Engineering, Carnegie Mellon University, 15B S 25th Street, Pittsburgh, Pennsylvania 15203
| | - Alan S. Campbell
- Department of Chemical Engineering, West Virginia University, 395 Evansdale Drive, Engineering Science Building, Room 445, Morgantown, West Virginia 26506
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, Houston, Texas 77005
- Department of Biomedical Engineering, Carnegie Mellon University, 15B S 25th Street, Pittsburgh, Pennsylvania 15203
| | - Cerasela Zoica Dinu
- Department of Chemical Engineering, West Virginia University, 395 Evansdale Drive, Engineering Science Building, Room 445, Morgantown, West Virginia 26506
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, Houston, Texas 77005
- Department of Biomedical Engineering, Carnegie Mellon University, 15B S 25th Street, Pittsburgh, Pennsylvania 15203
| |
Collapse
|
30
|
Bacillus toyonensis strain AEMREG6, a bacterium isolated from South African marine environment sediment samples produces a glycoprotein bioflocculant. Molecules 2015; 20:5239-59. [PMID: 25806549 PMCID: PMC6272666 DOI: 10.3390/molecules20035239] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 03/15/2015] [Accepted: 03/17/2015] [Indexed: 11/17/2022] Open
Abstract
A bioflocculant-producing bacteria, isolated from sediment samples of a marine environment in the Eastern Cape Province of South Africa demonstrated a flocculating activity above 60% for kaolin clay suspension. Analysis of the 16S ribosomal deoxyribonucleic acid (rDNA) nucleotide sequence of the isolate in the GenBank database showed 99% similarity to Bacillus toyonensis strain BCT-7112 and it was deposited in the GenBank as Bacillus toyonensis strain AEMREG6 with accession number KP406731. The bacteria produced a bioflocculant (REG-6) optimally in the presence of glucose and NH4NO3 as the sole carbon and nitrogen source, respectively, initial medium pH of 5 and Ca2+ as the cation of choice. Chemical analysis showed that purified REG-6 was a glycoprotein mainly composed of polysaccharide (77.8%) and protein (11.5%). It was thermally stable and had strong flocculating activity against kaolin suspension over a wide range of pH values (3-11) with a relatively low dosage requirement of 0.1 mg/mL in the presence of Mn2+. Fourier transform infrared spectroscopy (FTIR) revealed the presence of hydroxyl, carboxyl and amide groups preferred for flocculation. Scanning electron microscopy (SEM) revealed that bridging was the main flocculation mechanism of REG-6. The outstanding flocculating performance of REG-6 holds great potential to replace the hazardous chemical flocculants currently used in water treatment.
Collapse
|
31
|
Characterization of haloglycan, an exopolysaccharide produced by Halomonas stenophila HK30. Int J Biol Macromol 2015; 72:117-24. [DOI: 10.1016/j.ijbiomac.2014.07.052] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 07/21/2014] [Accepted: 07/31/2014] [Indexed: 11/24/2022]
|
32
|
Li T, Wang J, Wei X, Zhao HY, Zhao ZX, Liu HB. Identification and characterization of a Bacillus methylotrophicus strain with high flocculating activity. RSC Adv 2015. [DOI: 10.1039/c5ra15766h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel bioflocculant-producing strain C412 was derived from Bacillus methylotrophicus. The bioflocculant is pH tolerant and thermostable; charge neutralization and bridging are the main flocculation mechanism.
Collapse
Affiliation(s)
- Tan Li
- School of Chemistry & Chemical Engineering
- Guangxi University
- Nanning
- China
| | - Jing Wang
- School of Chemistry & Chemical Engineering
- Guangxi University
- Nanning
- China
| | - Xiaoling Wei
- School of Chemistry & Chemical Engineering
- Guangxi University
- Nanning
- China
| | - Hong-Yi Zhao
- School of Chemistry & Chemical Engineering
- Guangxi University
- Nanning
- China
| | - Zhong-Xing Zhao
- School of Chemistry & Chemical Engineering
- Guangxi University
- Nanning
- China
| | - Hai-Bo Liu
- School of Chemistry & Chemical Engineering
- Guangxi University
- Nanning
- China
| |
Collapse
|
33
|
Salehizadeh H, Yan N. Recent advances in extracellular biopolymer flocculants. Biotechnol Adv 2014; 32:1506-22. [DOI: 10.1016/j.biotechadv.2014.10.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 10/02/2014] [Accepted: 10/07/2014] [Indexed: 10/24/2022]
|
34
|
More TT, Yadav JSS, Yan S, Tyagi RD, Surampalli RY. Extracellular polymeric substances of bacteria and their potential environmental applications. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2014; 144:1-25. [PMID: 24907407 DOI: 10.1016/j.jenvman.2014.05.010] [Citation(s) in RCA: 452] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 05/02/2014] [Accepted: 05/11/2014] [Indexed: 05/06/2023]
Abstract
Biopolymers are considered a potential alternative to conventional chemical polymers because of their ease of biodegradability, high efficiency, non-toxicity and non-secondary pollution. Recently, extracellular polymeric substances (EPS, biopolymers produced by the microorganisms) have been recognised by many researchers as a potential flocculent for their applications in various water, wastewater and sludge treatment processes. In this context, literature information on EPS is widely dispersed and is very scarce. Thus, this review marginalizes various studies conducted so far about EPS nature-production-recovery, properties, environmental applications and moreover, critically examines future research needs and advanced application prospective of the EPS. One of the most important aspect of chemical composition and structural details of different moieties of EPS in terms of carbohydrates, proteins, extracellular DNA, lipid and surfactants and humic substances are described. These chemical characteristics of EPS in relation to formation and properties of microbial aggregates as well as degradation of EPS in the matrix (biomass, flocs etc) are analyzed. The important engineering properties (based on structural characteristics) such as adsorption, biodegradability, hydrophilicity/hydrophobicity of EPS matrix are also discussed in details. Different aspects of EPS production process such as bacterial strain maintenance; inoculum and factors affecting EPS production were presented. The important factors affecting EPS production include growth phase, carbon and nitrogen sources and their ratio, role of other nutrients (phosphorus, micronutrients/trace elements, and vitamins), impact of pH, temperature, metals, aerobic versus anaerobic conditions and pure and mixed culture. The production of EPS in high concentration with high productivity is essential due to economic reasons. Therefore, the knowledge about all the aspects of EPS production (listed above) is highly essential to formulate a logical and scientific basis for the research and industrial activities. One of the very important issues in the production/application/biodegradation of EPS is how the EPS is extracted from the matrix or a culture broth. Moreover, EPS matrix available in different forms (crude, loosely bound, tightly bound, slime, capsular and purified) can be used as a bioflocculant material. Several chemical and physical methods for the extraction of EPS (crude form or purified form) from different sources have been analyzed and reported. There is ample information available in the literature about various EPS extraction methods. Flocculability, dewaterability and biosorption ability are the very attractive engineering properties of the EPS matrix. Recent information on important aspects of these properties qualitatively as well as quantitatively has been described. Recent information on the mechanism of flocculation mediated by EPS is presented. Potential role of EPS in sludge dewatering and biosorption phenomenon has been discussed in details. Different factors influencing the EPS ability to flocculate and dewaterability of different suspensions have been included. The factors considered for the discussion are cations, different forms of EPS, concentration of EPS, protein and carbohydrate content of EPS, molecular weight of EPS, pH of the suspension, temperature etc. These factors were selected for the study based upon their role in the flocculation and dewatering mechanism as well the most recent available literature findings on these factors. For example, only recently it has been demonstrated that there is an optimum EPS concentration for sludge flocculation/dewatering. High or low concentration of EPS can lead to destabilization of flocs. Role of EPS in environmental applications such as water treatment, wastewater flocculation and settling, colour removal from wastewater, sludge dewatering, metal removal and recovery, removal of toxic organic compounds, landfill leachate treatment, soil remediation and reclamation has been presented based on the most recent available information. However, data available on environmental application of EPS are very limited. Investigations are required for exploring the potential of field applications of EPS. Finally, the limitations in the knowledge gap are outlined and the research needs as well as future perspectives are highlighted.
Collapse
Affiliation(s)
- T T More
- Institut national de la recherche scientifique, Centre Eau, Terre & Environnement, Université du Québec, 490 de la Couronne, Québec, QC G1K 9A9, Canada.
| | - J S S Yadav
- Institut national de la recherche scientifique, Centre Eau, Terre & Environnement, Université du Québec, 490 de la Couronne, Québec, QC G1K 9A9, Canada
| | - S Yan
- Institut national de la recherche scientifique, Centre Eau, Terre & Environnement, Université du Québec, 490 de la Couronne, Québec, QC G1K 9A9, Canada
| | - R D Tyagi
- Institut national de la recherche scientifique, Centre Eau, Terre & Environnement, Université du Québec, 490 de la Couronne, Québec, QC G1K 9A9, Canada.
| | - R Y Surampalli
- U. S. Environmental Protection Agency, P.O. Box 17-2141, Kansas City, KS 66117, USA
| |
Collapse
|
35
|
Li Y, Li Q, Hao D, Hu Z, Song D, Yang M. Characterization and flocculation mechanism of an alkali-activated polysaccharide flocculant from Arthrobacter sp. B4. BIORESOURCE TECHNOLOGY 2014; 170:574-577. [PMID: 25149321 DOI: 10.1016/j.biortech.2014.07.112] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/26/2014] [Accepted: 07/28/2014] [Indexed: 06/03/2023]
Abstract
The characterization and flocculation mechanism of a bioflocculant produced by Arthrobacter sp. B4 were investigated. The bioflocculant's active ingredient was a polysaccharide (B4-PS) that consisted of three main fractions corresponding to the molecular weights of approximately 3.97×10(4)Da, 6.84×10(3)Da and 5.9×10(6)Da, respectively. These fractions were composed of galactose, glucose, mannose and glucuronic acid. Flocculation experiments showed that B4-PS could spontaneously flocculate in the presence of Ca(2+) ions at a high pH (>12.0), followed by the pH reduction to ∼6.0. The self-flocculation of B4-PS may be mediated by ionization and charge neutralization mechanism. Furthermore, B4-PS exhibited excellent capabilities for pollutant removal and pH reduction in alkaline wastewater. These data suggest B4-PS may be a promising tool for use in industrial alkaline wastewater pretreatment.
Collapse
Affiliation(s)
- Yumei Li
- School of Biological Science and Biotechnology, University of Jinan, 250022 Jinan, PR China.
| | - Qiang Li
- School of Biological Science and Biotechnology, University of Jinan, 250022 Jinan, PR China
| | - Dakui Hao
- School of Biological Science and Biotechnology, University of Jinan, 250022 Jinan, PR China
| | - Zhiheng Hu
- School of Biological Science and Biotechnology, University of Jinan, 250022 Jinan, PR China
| | - Dongxue Song
- School of Biological Science and Biotechnology, University of Jinan, 250022 Jinan, PR China
| | - Min Yang
- School of Biological Science and Biotechnology, University of Jinan, 250022 Jinan, PR China
| |
Collapse
|
36
|
More T, Mahmoudi A, Yan S, Tyagi RD. Extracellular polymeric substances production kinetics of 13 sludge isolates using wastewater sludge as raw material and its flocculation potential. ENVIRONMENTAL TECHNOLOGY 2014; 36:3022-3035. [PMID: 25196662 DOI: 10.1080/09593330.2014.952344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The kinetics of batch fermentation of 13 extracellular polymeric substances (EPS) producing bacterial strains (9 Bacillus, 2 Serratia and 2 Yersinia) were carried out using sterilized sludge as a raw material. The most of Bacillus (µ(max): 0.11-0.27 h⁻¹), Serratia (µ(max): 0.23-0.27 h⁻¹) and Yersinia (µ(max): 0.18-0.19 h⁻¹) strains had capability to grow and produce EPS (1.36-2.12 g/L) in the sterilized sludge. In general, EPS production was mixed growth associated for all the bacterial strains cultivated independently. Bacillus sp. 7, Serratia sp. 2 and Yersinia sp. 2 produced higher concentration (1.95-2.12 g/L) of EPS than the other remaining bacterial strains. Protein and carbohydrate contents of EPS remained constant during fermentation. Broth EPS (B-EPS) exhibited high kaolin flocculation activity (≥ 75%) in most of the cases except Bacillus sp. 1, Bacillus sp. 5 and Bacillus sp. 9, respectively. In general, high flocculation activities (FAs) (≥ 75%), were attained using 1.31-1.70 mg B-EPS/g kaolin, 0.45-0.97 mg protein/g kaolin and 0.11-0.21 mg carbohydrates/g kaolin. The study suggests that further systematic exploration is required for optimizing the process of EPS production. EPS produced in the sludge can potentially be used for different water and wastewater treatments.
Collapse
Affiliation(s)
- Tanaji More
- a Université du Québec, Institut national de la recherche scientifique, Centre Eau, Terre et Environnement , 490 de la Couronne, Québec ( QC ), Canada G1 K 9A9
| | - Amine Mahmoudi
- a Université du Québec, Institut national de la recherche scientifique, Centre Eau, Terre et Environnement , 490 de la Couronne, Québec ( QC ), Canada G1 K 9A9
| | - Song Yan
- a Université du Québec, Institut national de la recherche scientifique, Centre Eau, Terre et Environnement , 490 de la Couronne, Québec ( QC ), Canada G1 K 9A9
| | - Rajeshwar Dayal Tyagi
- a Université du Québec, Institut national de la recherche scientifique, Centre Eau, Terre et Environnement , 490 de la Couronne, Québec ( QC ), Canada G1 K 9A9
| |
Collapse
|
37
|
A laboratory case study of efficient polyhydoxyalkonates production by Bacillus cereus, a contaminant in Saccharophagus degradans ATCC 43961 in minimal sea salt media. Curr Microbiol 2014; 69:832-8. [PMID: 25085545 DOI: 10.1007/s00284-014-0664-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 06/14/2014] [Indexed: 10/25/2022]
Abstract
A contaminating bacterium growing along with the stock culture of Saccharophagus degradans ATCC 43961 (Sde 2-40) on marine agar plate was isolated and investigated for its ability to produce polyhydoxyalkonates (PHA). Preliminary screening by Sudan black B and Nile blue A staining indicated positive characteristic of the isolate to produce PHA. The isolate was able to grow and produce PHA in minimal sea salt medium broth. PHA quantification studies with gas chromatographic analyses of the dry cells derived from culture broths revealed accumulation of PHA in bacterial cells. PHA production started after 20 h and increased with cell growth and attained maximum values of 61 % of dry cell weight at 70 h of cultivation. After 70 h, a slight decrease in the level of PHA content was observed. The nature/type of PHA was found to be poly(3-hydroxybutyraye) by Fourier transform-infrared spectroscopy. Microbiological and 16S rRNA gene sequencing analyses suggested that the PHA producing bacterial isolate belongs to Bacillus genera and shows 100 % nucleotide sequence similarity with Bacillus cereus species in GenBank. This study is a first report for ability of Bacillus species to grow in marine sea salt media and produce PHA. The media used for the polymer production was novel in the context of the genus Bacillus and the production of PHA was three-fold higher than Sde 2-40 using same growth medium. This study shows that the contaminant bacteria once properly investigated can be used for advantageous characteristic of metabolites production in place of original cultures.
Collapse
|
38
|
Zhong C, Xu A, Wang B, Yang X, Hong W, Yang B, Chen C, Liu H, Zhou J. Production of a value added compound from the H-acid waste water-Bioflocculants by Klebsiella pneumoniae. Colloids Surf B Biointerfaces 2014; 122:583-590. [PMID: 25127749 DOI: 10.1016/j.colsurfb.2014.07.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 07/20/2014] [Accepted: 07/22/2014] [Indexed: 11/25/2022]
Abstract
A novel strain (designated as ZCY-7) which could convert H-acid into bioflocculants was isolated from H-acid wastewater sludge. Conditions for bioflocculants production were optimized by response surface methodology (RSM) and determined to be inoculum size 9.65%, initial pH 7.0, and CODCr of the H-acid wastewater 520mg/L. The highest flocculating efficiency achieved for kaolin suspension was 95.1%, after 60h cultivation. The yielded bioflocculant was mainly composed of polysaccharide (82.4%) and protein (14.2%), and maintained its flocculating activity in 0.4% (w/w) kaolin suspensions over pH 2-8 and 20-80°C. Fourier transform infrared (FTIR) spectra showed that amino, amide and hydroxyl groups were present in the bioflocculant molecules. A viable alternative treatment technology of H-acid wastewater using this novel strain is suggested, which could largely reduce bioflocculants costs. In addition, flocculating mechanism investigation reveals that the bioflocculant could cause kaolin suspension instability by means of charge neutralization firstly and then promoted the aggregation of suspension particles by adsorption and bridge. It is evident from the results that H-acid wastewater could be used as a source to manufacture bioflocculants.
Collapse
Affiliation(s)
- Chunying Zhong
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China; School of Chemistry and Life Science, Hubei University of Education, Wuhan 430205, China
| | - Aihua Xu
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Buyun Wang
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Xianghui Yang
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Wentao Hong
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Baokun Yang
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Changhong Chen
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Hongtao Liu
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Jiangang Zhou
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China.
| |
Collapse
|
39
|
Srinivasan R. Natural Polysaccharides as Treatment Agents for Wastewater. GREEN MATERIALS FOR SUSTAINABLE WATER REMEDIATION AND TREATMENT 2013. [DOI: 10.1039/9781849735001-00051] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
This chapter gives an account of recent developments in biopolymers with an emphasis on natural polysaccharides as treatment agents in wastewater remediation. Almost all sources of water around the world are polluted to some degree, owing to a heavy influx of industrial effluents, domestic and agricultural wastes. These discharges vary from simple nutrients to highly toxic hazardous chemicals. Numerous approaches have been studied for the development of cheaper and more effective water remediation agents containing natural polymers. Among these, natural polysaccharides deserve particular attention. These materials have proved to be better treatment alternatives compared to their synthetic counterparts because of their particular structure, physicochemical characteristics, chemical stability, high reactivity and excellent selectivity towards aromatic compounds, metals and other contaminants that cause water pollution.
Collapse
Affiliation(s)
- Rajani Srinivasan
- Department of Chemistry Geosciences and Physics, College of Science and Technology, Tarleton State University, Stephenville, TX 76401 USA
| |
Collapse
|
40
|
Wan C, Zhao XQ, Guo SL, Asraful Alam M, Bai FW. Bioflocculant production from Solibacillus silvestris W01 and its application in cost-effective harvest of marine microalga Nannochloropsis oceanica by flocculation. BIORESOURCE TECHNOLOGY 2013; 135:207-12. [PMID: 23218529 DOI: 10.1016/j.biortech.2012.10.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 10/02/2012] [Accepted: 10/04/2012] [Indexed: 05/12/2023]
Abstract
Microalgae are widely studied for biofuel production, however, current technologies to harvest microalgae for this purpose are not well developed. In this work, a bacterial strain W01 was isolated from activated sludge and identified as Solibacillus silvestris. Bioflocculant in the culture broth of W01 showed 90% flocculating efficiency on marine microalga Nannochloropsis oceanica, and no metal ion was required for the flocculation process. Chemical analysis of the purified bioflocculant indicated that it is a proteoglycan composed of 75.1% carbohydrate and 24.9% protein (w/w). The bioflocculant exhibits no effect on the growth of microalgal cells and can be reused to for economical harvesting of N. oceanica. This is the first report that strain of S. silvestris can produce bioflocculant for microalgae harvest. The novel bioflocculant produced by W01 has the potential to harvest marine microalgae for cost-effective production of microalgal bioproducts.
Collapse
Affiliation(s)
- Chun Wan
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | | | | | | | | |
Collapse
|
41
|
Gauri SS, Mandal SM, Pati BR. Impact of Azotobacter exopolysaccharides on sustainable agriculture. Appl Microbiol Biotechnol 2012; 95:331-8. [PMID: 22615056 DOI: 10.1007/s00253-012-4159-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 05/04/2012] [Accepted: 05/04/2012] [Indexed: 11/25/2022]
Abstract
Recently, increasing attention have lead to search other avenue of biofertilizers with multipurpose activities as a manner of sustainable soil health to improve the plant productivity. Azotobacter have been universally accepted as a major inoculum used in biofertilizer to restore the nitrogen level into cultivated field. Azotobacter is well characterized for their profuse production of exopolysaccharides (EPS). Several reviews on biogenesis and multifunctional role of Azotobacter EPS have been documented with special emphasis on industrial applications. But the impact of Azotobacter EPS in plant growth promotion has not received adequate attention. This review outlines the evidence that demonstrates not only the contribution of Azotobacter EPS in global nutrient cycle but also help to compete successfully in different adverse ecological and edaphic conditions. This also focuses on new insights and concepts of Azotobacter EPS which have positive effects caused by the biofilm formation on overall plant growth promotion with other PGPRs. In addition, their potentials in agricultural improvement are also discussed. Recent data realized that Azotobacter EPS have an immense agro-economical importance including the survivability and maintenance of microbial community in their habitat. This leads us to confirm that the next generation Azotobacter inoculum with high yielding EPS and high nitrogen fixing ability can be utilized to satisfy the future demand of augmented crop production attributed to increase plant growth promoting agents.
Collapse
Affiliation(s)
- Samiran S Gauri
- Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | | | | |
Collapse
|
42
|
Identification of Highly Active Flocculant Proteins in Bovine Blood. Appl Biochem Biotechnol 2011; 166:1203-14. [DOI: 10.1007/s12010-011-9505-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 12/11/2011] [Indexed: 11/25/2022]
|
43
|
Nie M, Yin X, Jia J, Wang Y, Liu S, Shen Q, Li P, Wang Z. Production of a novel bioflocculant MNXY1 by Klebsiella pneumoniae strain NY1 and application in precipitation of cyanobacteria and municipal wastewater treatment. J Appl Microbiol 2011; 111:547-58. [PMID: 21679283 PMCID: PMC4385668 DOI: 10.1111/j.1365-2672.2011.05080.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIMS To isolate and characterize the novel bioflocculant-producing bacteria, to optimize the bioflocculant production and to evaluate its potential applications. METHODS AND RESULTS Klebsiella pneumoniae strain NY1, a bacterium that produces a novel bioflocculant (MNXY1), was selected on the chemically defined media. It was classified according to the 16S rRNA gene sequence, morphological and microscopic characteristics. MNXY1 was characterized to contain 26% protein and 66% total sugar. The constituent sugar monomers of MNXY1, revealed by NMR analysis, are glucose, galactose and quinovose. Favourable culture conditions for MNXY1 production were determined. Strain NY1 produces a high level (14.9 g l(-1)) of MNXY1. MNXY1 is thermostable and tolerant to the extreme pH. It precipitated 54% of cyanobacteria from laboratory culture and 72% of the total suspended solids from raw wastewater. CONCLUSIONS Strain NY1 was identified to produce a novel bioflocculant MNXY1. The outstanding performance of MNXY1 in practical applications and its availability in copious amounts make it attractive for further investigation and development for industrial scale applications. SIGNIFICANCE AND IMPACT OF THE STUDY This is first report for the identification of a quinovose-containing bioflocculant and application of a protein-polysaccharide complex bioflocculant in precipitation of cyanobacteria. These findings suggest that MNXY1 holds great potential for use in management of harmful algae and city wastewater treatment.
Collapse
Affiliation(s)
- M Nie
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi Province, China
| | | | | | | | | | | | | | | |
Collapse
|