1
|
De Brabander P, Uitterhaegen E, Delmulle T, De Winter K, Soetaert W. Challenges and progress towards industrial recombinant protein production in yeasts: A review. Biotechnol Adv 2023; 64:108121. [PMID: 36775001 DOI: 10.1016/j.biotechadv.2023.108121] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
Recombinant proteins (RP) are widely used as biopharmaceuticals, industrial enzymes, or sustainable food source. Yeasts, with their ability to produce complex proteins through a broad variety of cheap carbon sources, have emerged as promising eukaryotic production hosts. As such, the prevalence of yeasts as favourable production organisms in commercial RP production is expected to increase. Yet, with the selection of a robust production host on the one hand, successful scale-up is dependent on a thorough understanding of the challenging environment and limitations of large-scale bioreactors on the other hand. In the present work, several prominent yeast species, including Saccharomyces cerevisiae, Pichia pastoris, Yarrowia lipolytica, Kluyveromyces lactis and Kluyveromyces marxianus are reviewed for their current state and performance in commercial RP production. Thereafter, the impact of principal process control parameters, including dissolved oxygen, pH, substrate concentration, and temperature, on large-scale RP production are discussed. Finally, technical challenges of process scale-up are identified. To that end, process intensification strategies to enhance industrial feasibility are summarized, specifically highlighting fermentation strategies to ensure sufficient cooling capacity, overcome oxygen limitation, and increase protein quality and productivity. As such, this review aims to contribute to the pursuit of sustainable yeast-based RP production.
Collapse
Affiliation(s)
- Pieter De Brabander
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Bio Base Europe Pilot Plant (BBEPP), Rodenhuizekaai 1, 9042 Ghent (Desteldonk), Belgium
| | - Evelien Uitterhaegen
- Bio Base Europe Pilot Plant (BBEPP), Rodenhuizekaai 1, 9042 Ghent (Desteldonk), Belgium
| | - Tom Delmulle
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Karel De Winter
- Bio Base Europe Pilot Plant (BBEPP), Rodenhuizekaai 1, 9042 Ghent (Desteldonk), Belgium.
| | - Wim Soetaert
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Bio Base Europe Pilot Plant (BBEPP), Rodenhuizekaai 1, 9042 Ghent (Desteldonk), Belgium
| |
Collapse
|
2
|
Wang Z, Yan Y, Zhang H. Design and Characterization of an Optogenetic System in Pichia pastoris. ACS Synth Biol 2022; 11:297-307. [PMID: 34994189 DOI: 10.1021/acssynbio.1c00422] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pichia pastoris (P. pastoris) is the workhorse in the commercial production of many valuable proteins. Traditionally, the regulation of gene expression in P. pastoris is achieved through induction by methanol which is toxic and flammable. The emerging optogenetic technology provides an alternative and cleaner gene regulation method. Based on the photosensitive protein EL222, we designed a novel "one-component" optogenetic system. The highest induction ratio was 79.7-fold under blue light compared to the group under darkness. After switching cells from dark to blue illumination, the system induced expression in just 1 h. Only 2 h after the system was switched back to the darkness from blue illumination, the target gene expression was inactivated 5-fold. The induction intensity of the optogenetic system is positively correlated with the dose and periodicity of blue illumination, and it has good spatial control. These results provide the first credible case of optogenetically induced protein expression in P. pastoris.
Collapse
Affiliation(s)
- Zhiqian Wang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, People’s Republic of China
| | - Yunjun Yan
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, People’s Republic of China
| | - Houjin Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, People’s Republic of China
| |
Collapse
|
3
|
Rinnofner C, Felber M, Pichler H. Strains and Molecular Tools for Recombinant Protein Production in Pichia pastoris. Methods Mol Biol 2022; 2513:79-112. [PMID: 35781201 DOI: 10.1007/978-1-0716-2399-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Within the last two decades, the methylotrophic yeast Pichia pastoris (Komagataella phaffii) has become an important alternative to E. coli or mammalian cell lines for the production of recombinant proteins. Easy handling, strong promoters, and high cell density cultivations as well as the capability of posttranslational modifications are some of the major benefits of this yeast. The high secretion capacity and low level of endogenously secreted proteins further promoted the rapid development of a versatile Pichia pastoris toolbox. This chapter reviews common and new "Pichia tools" and their specific features. Special focus is given to expression strains, such as different methanol utilization, protease-deficient or glycoengineered strains, combined with application highlights. Different promoters and signal sequences are also discussed.
Collapse
Affiliation(s)
- Claudia Rinnofner
- Austrian Centre of Industrial Biotechnology (ACIB), Graz, Austria.
- Bisy GmbH, Hofstaetten/Raab, Austria.
| | - Michael Felber
- Austrian Centre of Industrial Biotechnology (ACIB), Graz, Austria
| | - Harald Pichler
- Austrian Centre of Industrial Biotechnology (ACIB), Graz, Austria
- Institute of Molecular Biotechnology, Graz University of Technology, Graz, Austria
| |
Collapse
|
4
|
Improved Production of Streptomyces sp. FA1 Xylanase in a Dual-Plasmid Pichia pastoris System. Curr Issues Mol Biol 2021; 43:2289-2304. [PMID: 34940135 PMCID: PMC8928940 DOI: 10.3390/cimb43030161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/16/2021] [Accepted: 12/16/2021] [Indexed: 12/18/2022] Open
Abstract
Methanol is considered as a potential hazard in the methanol-induced yeast expression of food-related enzymes. To increase the production efficiency of recombinant proteins in Pichia pastoris without methanol induction, a novel dual-plasmid system was constructed, for the first time, by a combining the strategies of genomic integration and episomal expression. To obtain a high copy number of the target gene, the autonomously replicating sequence derived from Kluyveromyces lactis (PARS) was used to construct episomal vectors carrying the constitutive promoters PGAP and PGCW14. In addition, an integrative vector carrying the PGCW14 promoter was constructed by replacing the PGAP promoter sequence with a partial PGCW14 promoter. Next, using xylanase XynA from Streptomyces sp. FA1 as the model enzyme, recombination strains were transformed with different combinations of integrating and episomal vectors that were constructed to investigate the changes in the protein yield. Results in shake flasks indicated that the highest enzyme yield was achieved when integrated PGAP and episomal PGCW14 were simultaneously transformed into the host strain. Meanwhile, the copy number of xynA increased from 1.14 ± 0.46 to 3.06 ± 0.35. The yield of XynA was successfully increased to 3925 U·mL-1 after 102 h of fermentation in a 3.6 L fermenter, which was 16.7-fold and 2.86-fold of the yields that were previously reported for the constitutive expression and methanol-induced expression of the identical protein, respectively. Furthermore, the high-cell-density fermentation period was shortened from 132 h to 102 h compared to that of methanol-induced system. Since the risk of methanol toxicity is removed, this novel expression system would be suitable for the production of proteins related to the food and pharmaceutical industries.
Collapse
|
5
|
Kant Bhatia S, Vivek N, Kumar V, Chandel N, Thakur M, Kumar D, Yang YH, Pugazendhi A, Kumar G. Molecular biology interventions for activity improvement and production of industrial enzymes. BIORESOURCE TECHNOLOGY 2021; 324:124596. [PMID: 33440311 DOI: 10.1016/j.biortech.2020.124596] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Metagenomics and directed evolution technology have brought a revolution in search of novel enzymes from extreme environment and improvement of existing enzymes and tuning them towards certain desired properties. Using advanced tools of molecular biology i.e. next generation sequencing, site directed mutagenesis, fusion protein, surface display, etc. now researchers can engineer enzymes for improved activity, stability, and substrate specificity to meet the industrial demand. Although many enzymatic processes have been developed up to industrial scale, still there is a need to overcome limitations of maintaining activity during the catalytic process. In this article recent developments in enzymes industrial applications and advancements in metabolic engineering approaches to improve enzymes efficacy and production are reviewed.
Collapse
Affiliation(s)
- Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea
| | - Narisetty Vivek
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Vinod Kumar
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Neha Chandel
- School of Medical and Allied Sciences, GD Goenka University, Gurugram 122103, Haryana, India
| | - Meenu Thakur
- Department of Biotechnology, Shoolini Institute of Life Sciences and Business Management, Solan 173212, Himachal Pradesh, India
| | - Dinesh Kumar
- School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea
| | - Arivalagan Pugazendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho ChiMinh City, Viet Nam
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036 Stavanger, Norway; School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
6
|
García-Ortega X, Cámara E, Ferrer P, Albiol J, Montesinos-Seguí JL, Valero F. Rational development of bioprocess engineering strategies for recombinant protein production in Pichia pastoris (Komagataella phaffii) using the methanol-free GAP promoter. Where do we stand? N Biotechnol 2019; 53:24-34. [DOI: 10.1016/j.nbt.2019.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 06/07/2019] [Accepted: 06/08/2019] [Indexed: 12/25/2022]
|
7
|
Use of low-cost substrates for cost-effective production of extracellular and cell-bound lipases by a newly isolated yeast Dipodascus capitatus A4C. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Wang J, Zhang T, Li Y, Li L, Wang Y, Yang B, Wang Y. High-level expression of Thermomyces dupontii thermo-alkaline lipase in Pichia pastoris under the control of different promoters. 3 Biotech 2019; 9:33. [PMID: 30622871 DOI: 10.1007/s13205-018-1531-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 12/05/2018] [Indexed: 01/19/2023] Open
Abstract
In this study, 15 methanol-inducible and 9 constitutive promoters were used to drive the expression of Thermomyces dupontii lipase (TDL) in Pichia pastoris. Of the 15 methanol-inducible promoters, formaldehyde dehydrogenase promoter (PFLD1) showed the highest efficiency in driving lipase production, followed by alcohol oxidase 1 (PAOX1) and dihydroxyacetone synthase (PDAS1) promoters. The maximum lipase activity of transformants with PFLD1, PAOX1 and PDAS1 promoters in 5-l bioreactor was 27,076, 24,159 and 22,342 U/ml, respectively. For the nine constitutive promoters, glycosyl phosphatidyl inositol-anchored protein promoter (PGCW14) produced the highest amount of lipases in a medium containing glucose or glycerol as the only carbon source, followed by mitochondrial alcohol dehydrogenase isozyme (P0472) and glyceraldehyde-3-phosphate dehydrogenase (PGAP) promoters. The maximum lipase yields in 5-l bioreactors under the control of PGCW14, P0472 and PGAP promoters were 17,353, 15,046 and 14,276 U/ml, respectively. The result of this study not only identifies a few highly efficient promoters for the heterologous expression of TDL in P. pastoris, but also casts some insight into the optimization of protein production in heterologous systems.
Collapse
|
9
|
Zepeda AB, Pessoa A, Farías JG. Carbon metabolism influenced for promoters and temperature used in the heterologous protein production using Pichia pastoris yeast. Braz J Microbiol 2018; 49 Suppl 1:119-127. [PMID: 29858140 PMCID: PMC6328845 DOI: 10.1016/j.bjm.2018.03.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 02/20/2018] [Accepted: 03/21/2018] [Indexed: 12/15/2022] Open
Abstract
Nowadays, it is necessary to search for different high-scale production strategies to produce recombinant proteins of economic interest. Only a few microorganisms are industrially relevant for recombinant protein production: methylotrophic yeasts are known to use methanol efficiently as the sole carbon and energy source. Pichia pastoris is a methylotrophic yeast characterized as being an economical, fast and effective system for heterologous protein expression. Many factors can affect both the product and the production, including the promoter, carbon source, pH, production volume, temperature, and many others; but to control all of them most of the time is difficult and this depends on the initial selection of each variable. Therefore, this review focuses on the selection of the best promoter in the recombination process, considering different inductors, and the temperature as a culture medium variable in methylotrophic Pichia pastoris yeast. The goal is to understand the effects associated with different factors that influence its cell metabolism and to reach the construction of an expression system that fulfills the requirements of the yeast, presenting an optimal growth and development in batch, fed-batch or continuous cultures, and at the same time improve its yield in heterologous protein production.
Collapse
Affiliation(s)
- Andrea B Zepeda
- Universidad de La Frontera, Facultad de Ingeniería, Ciencias y Administración, Departamento de Ingeniería Química, Temuco, Chile; Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Departamento de Tecnologia Bioquímico-Farmacêutica, São Paulo, Brazil
| | - Adalberto Pessoa
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Departamento de Tecnologia Bioquímico-Farmacêutica, São Paulo, Brazil
| | - Jorge G Farías
- Universidad de La Frontera, Facultad de Ingeniería, Ciencias y Administración, Departamento de Ingeniería Química, Temuco, Chile.
| |
Collapse
|
10
|
Puseenam A, Kocharin K, Tanapongpipat S, Eurwilaichitr L, Ingsriswang S, Roongsawang N. A novel sucrose-based expression system for heterologous proteins expression in thermotolerant methylotrophic yeast Ogataea thermomethanolica. FEMS Microbiol Lett 2018; 365:5106342. [DOI: 10.1093/femsle/fny238] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/21/2018] [Indexed: 12/31/2022] Open
Affiliation(s)
- Aekkachai Puseenam
- Biodiversity and Biotechnological Resource Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Kanokarn Kocharin
- Biodiversity and Biotechnological Resource Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Sutipa Tanapongpipat
- Biodiversity and Biotechnological Resource Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Lily Eurwilaichitr
- Biodiversity and Biotechnological Resource Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Supawadee Ingsriswang
- Biodiversity and Biotechnological Resource Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Niran Roongsawang
- Biodiversity and Biotechnological Resource Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| |
Collapse
|
11
|
Vieira Gomes AM, Souza Carmo T, Silva Carvalho L, Mendonça Bahia F, Parachin NS. Comparison of Yeasts as Hosts for Recombinant Protein Production. Microorganisms 2018; 6:microorganisms6020038. [PMID: 29710826 PMCID: PMC6027275 DOI: 10.3390/microorganisms6020038] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 12/21/2022] Open
Abstract
Recombinant protein production emerged in the early 1980s with the development of genetic engineering tools, which represented a compelling alternative to protein extraction from natural sources. Over the years, a high level of heterologous protein was made possible in a variety of hosts ranging from the bacteria Escherichia coli to mammalian cells. Recombinant protein importance is represented by its market size, which reached $1654 million in 2016 and is expected to reach $2850.5 million by 2022. Among the available hosts, yeasts have been used for producing a great variety of proteins applied to chemicals, fuels, food, and pharmaceuticals, being one of the most used hosts for recombinant production nowadays. Historically, Saccharomyces cerevisiae was the dominant yeast host for heterologous protein production. Lately, other yeasts such as Komagataella sp., Kluyveromyces lactis, and Yarrowia lipolytica have emerged as advantageous hosts. In this review, a comparative analysis is done listing the advantages and disadvantages of using each host regarding the availability of genetic tools, strategies for cultivation in bioreactors, and the main techniques utilized for protein purification. Finally, examples of each host will be discussed regarding the total amount of protein recovered and its bioactivity due to correct folding and glycosylation patterns.
Collapse
Affiliation(s)
- Antonio Milton Vieira Gomes
- Grupo Engenharia de Biocatalisadores, Departamento de Biologia Celular, Instituto de Ciências Biológicas Bloco K 1º andar, Universidade de Brasília, Campus Darcy Ribeiro, CEP 70.790-900 Brasília-DF, Brazil.
| | - Talita Souza Carmo
- Grupo Engenharia de Biocatalisadores, Departamento de Biologia Celular, Instituto de Ciências Biológicas Bloco K 1º andar, Universidade de Brasília, Campus Darcy Ribeiro, CEP 70.790-900 Brasília-DF, Brazil.
| | - Lucas Silva Carvalho
- Grupo Engenharia de Biocatalisadores, Departamento de Biologia Celular, Instituto de Ciências Biológicas Bloco K 1º andar, Universidade de Brasília, Campus Darcy Ribeiro, CEP 70.790-900 Brasília-DF, Brazil.
| | - Frederico Mendonça Bahia
- Grupo Engenharia de Biocatalisadores, Departamento de Biologia Celular, Instituto de Ciências Biológicas Bloco K 1º andar, Universidade de Brasília, Campus Darcy Ribeiro, CEP 70.790-900 Brasília-DF, Brazil.
| | - Nádia Skorupa Parachin
- Grupo Engenharia de Biocatalisadores, Departamento de Biologia Celular, Instituto de Ciências Biológicas Bloco K 1º andar, Universidade de Brasília, Campus Darcy Ribeiro, CEP 70.790-900 Brasília-DF, Brazil.
| |
Collapse
|
12
|
Yang S, Lv X, Wang X, Wang J, Wang R, Wang T. Cell-Surface Displayed Expression of Trehalose Synthase from Pseudomonas putida ATCC 47054 in Pichia Pastoris Using Pir1p as an Anchor Protein. Front Microbiol 2017; 8:2583. [PMID: 29312257 PMCID: PMC5742630 DOI: 10.3389/fmicb.2017.02583] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/11/2017] [Indexed: 01/29/2023] Open
Abstract
Yeast cell-surface display technologies have been widely applied in the fields of food, medicine, and feed enzyme production, including lipase, α-amylase, and endoglucanase. In this study, a treS gene was fused with the yeast cell-surface anchor protein gene Pir1p by overlap PCR, the Pir1p-treS fusion gene was ligated into pPICZαA and pGAPZαA and transformed into P. pastoris GS115 to obtain recombinant yeast strains that displays trehalose synthase(TreS) on its cell surface as an efficient and recyclable whole-cell biocatalyst. Firstly, the enhanced green fluorescence protein gene (egfp) was used as the reporter protein to fusion the Pir1p gene and treS gene to construct the recombinant plasmids containing treS-egfg-Pir1p fusion gene, and electrotransformed into P. pastoris GS115 to analyze the surface display characteristics of fusion gene by Western blot, fluorescence microscopy and flow cytometry. The analysis shown that the treS-egfg-Pir1p fusion protein can be successfully displayed on the surface of yeast cell, and the expression level increased with the extension of fermentation time. These results implied that the Pir1p-treS fusion gene can be well displayed on the cell surface. Secondly, in order to obtain surface active cells with high enzyme activity, the enzymatic properties of TreS displayed on the cell surface was analyzed, and the fermentation process of recombinant P. patoris GS115 containing pPICZαA-Pir1p-treS and pGAPZαA-Pir1p-treS was studied respectively. The cell surface display TreS was stable over a broad range of temperatures (10-45°C) and pH (6.0-8.5). The activity of TreS displayed on cell surface respectively reached 1,108 Ug-1 under PAOX1 control for 150 h, and 1,109 Ug-1 under PGAP control for 75h in a 5 L fermenter, respectively. Lastly, the cell-surface displayed TreS was used to product trehalose using high maltose syrup as substrate at pH 8.0 and 15°C. The surface display TreS cells can be recycled for three times and the weight conversion rate of trehalose was more than 60%. This paper revealed that the TreS can display on the P. pastoris cell surface and still had a higher catalytic activity after recycled three times, which was suitable for industrial application, especially the preparation of pharmaceutical grade trehalose products.
Collapse
Affiliation(s)
- Shaojie Yang
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (ShanDong Academy of Sciences), Jinan, China
| | - Xin Lv
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (ShanDong Academy of Sciences), Jinan, China
| | - Xihui Wang
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (ShanDong Academy of Sciences), Jinan, China
| | - Junqing Wang
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (ShanDong Academy of Sciences), Jinan, China
| | - Ruiming Wang
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (ShanDong Academy of Sciences), Jinan, China
| | - Tengfei Wang
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (ShanDong Academy of Sciences), Jinan, China
| |
Collapse
|
13
|
Trassaert M, Vandermies M, Carly F, Denies O, Thomas S, Fickers P, Nicaud JM. New inducible promoter for gene expression and synthetic biology in Yarrowia lipolytica. Microb Cell Fact 2017; 16:141. [PMID: 28810867 PMCID: PMC5557077 DOI: 10.1186/s12934-017-0755-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 08/05/2017] [Indexed: 12/02/2022] Open
Abstract
Background The oleaginous yeast Yarrowia lipolytica is increasingly used as alternative cell factory for the production of recombinant proteins. At present, several promoters with different strengths have been developed based either on the constitutive pTEF promoter or on oleic acid inducible promoters such as pPOX2 and pLIP2. Although these promoters are highly efficient, there is still a lack of versatile inducible promoters for gene expression in Y. lipolytica. Results We have isolated and characterized the promoter of the EYK1 gene coding for an erythrulose kinase. pEYK1 induction was found to be impaired in media supplemented with glucose and glycerol, while the presence of erythritol and erythrulose strongly increased the promoter induction level. Promoter characterization and mutagenesis allowed the identification of the upstream activating sequence UAS1EYK1. New hybrid promoters containing tandem repeats of either UAS1XPR2 or UAS1EYK1 were developed showing higher expression levels than the native pEYK1 promoter. Furthermore, promoter strength was improved in a strain carrying a deletion in the EYK1 gene, allowing thus the utilization of erythritol and erythrulose as free inducer. Conclusions Novel tunable and regulated promoters with applications in the field of heterologous protein production, metabolic engineering, and synthetic biology have been developed, thus filling the gap of the absence of versatile inducible promoter in the yeast Y. lipolytica. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0755-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marion Trassaert
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Marie Vandermies
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, University of Liège - Gembloux Agro-Bio Tech, Gembloux, Belgium
| | - Fréderic Carly
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,Unité de Biotechnologies et Bioprocédés, Université Libre de Bruxelles, Brussels, Belgium
| | - Olivia Denies
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, University of Liège - Gembloux Agro-Bio Tech, Gembloux, Belgium
| | - Stéphane Thomas
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Patrick Fickers
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, University of Liège - Gembloux Agro-Bio Tech, Gembloux, Belgium
| | - Jean-Marc Nicaud
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France. .,Micalis Institute, INRA-AgroParisTech, UMR1319, Team BIMLip: Integrative Metabolism of Microbial Lipids, Bâtiment 526, domaine de Vilvert, 78352, Jouy-en-Josas, France.
| |
Collapse
|
14
|
Rivera I, Robles M, Mateos-Díaz JC, Gutierrez-Ortega A, Sandoval G. Functional expression, extracellular production, purification, structure modeling and biochemical characterization of Carica papaya lipase 1. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
15
|
Su L, Ji D, Tao X, Yu L, Wu J, Xia Y. Recombinant expression, characterization, and application of a phospholipase B from Fusarium oxysporum. J Biotechnol 2017; 242:92-100. [DOI: 10.1016/j.jbiotec.2016.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 11/20/2016] [Accepted: 12/07/2016] [Indexed: 02/06/2023]
|
16
|
Wongwatanapaiboon J, Klinbunga S, Ruangchainikom C, Thummadetsak G, Chulalaksananukul S, Marty A, Chulalaksananukul W. Cloning, expression, and characterization of Aureobasidium melanogenum lipase in Pichia pastoris. Biosci Biotechnol Biochem 2016; 80:2231-2240. [DOI: 10.1080/09168451.2016.1206809] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Abstract
cDNA of Aureobasidium melanogenum lipase comprises 1254 bp encoding 417 amino acids, whereas genomic DNA of lipase comprises 1311 bp with one intron (57 bp). The lipase gene contains a putative signal peptide encoding 26 amino acids. The A. melanogenum lipase gene was successfully expressed in Pichia pastoris. Recombinant lipase in an inducible expression system showed the highest lipase activity of 3.8 U/mL after six days of 2% v/v methanol induction. The molecular mass of purified recombinant lipase was estimated as 39 kDa using SDS-PAGE. Optimal lipase activity was observed at 35–37 °C and pH 7.0 using p-nitrophenyl laurate as the substrate. Lipase activity was enhanced by Mg2+, Mn2+, Li+, Ca2+, Ni2+, CHAPS, DTT, and EDTA and inhibited by Hg2+, Ag+, SDS, Tween 20, and Triton X-100. The addition of 10% v/v acetone, DMSO, p-xylene, and octanol increased lipase activity, whereas that of propanol and butanol strongly inhibited it.
Collapse
Affiliation(s)
- Jinaporn Wongwatanapaiboon
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Biofuels by Biocatalysts Research Unit, Faculty of Science, Department of Botany, Chulalongkorn University, Bangkok, Thailand
| | - Sirawut Klinbunga
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
- Faculty of Science, Center of Excellence for Marine Biotechnology, Chulalongkorn University, Bangkok, Thailand
| | - Chalermchai Ruangchainikom
- Environmental Research and Management Department, PTT Research and Technology Institute, PTT Public Co. Ltd., Ayutthaya, Thailand
| | - Gamgarn Thummadetsak
- Environmental Research and Management Department, PTT Research and Technology Institute, PTT Public Co. Ltd., Ayutthaya, Thailand
| | - Suphang Chulalaksananukul
- Faculty of Engineering, Department of Chemical Engineering, Mahidol University, Nakhon Pathom, Thailand
| | - Alain Marty
- Université de Toulouse, INSA, UPS, INP, LISBP, Toulouse, France
- CNRS, UMR5504, Toulouse, France
- INRA, UMR792, Ingénierie des Systèmes Biologiques et des Procédés, Toulouse, France
| | - Warawut Chulalaksananukul
- Biofuels by Biocatalysts Research Unit, Faculty of Science, Department of Botany, Chulalongkorn University, Bangkok, Thailand
- Faculty of Science, Department of Botany, Chulalongkorn University, Bangkok, Thailand
- Aquatic Resources Research Institute, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
17
|
Sassi H, Delvigne F, Kar T, Nicaud JM, Coq AMCL, Steels S, Fickers P. Deciphering how LIP2 and POX2 promoters can optimally regulate recombinant protein production in the yeast Yarrowia lipolytica. Microb Cell Fact 2016; 15:159. [PMID: 27651221 PMCID: PMC5028966 DOI: 10.1186/s12934-016-0558-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/09/2016] [Indexed: 11/13/2022] Open
Abstract
Background In recent years, the non-conventional model yeast species Yarrowia lipolytica has received much attention because it is a useful cell factory for producing recombinant proteins. In this species, expression vectors involving LIP2 and POX2 promoters have been developed and used successfully for protein production at yields similar to or even higher than those of other cell factories, such as Pichia pastoris. However, production processes involving these promoters can be difficult to manage, especially if carried out at large scales in fed-batch bioreactors, because they require hydrophobic inducers, such as oleic acid or methyl oleate. Thus, the challenge has become to reduce loads of hydrophobic substrates while simultaneously promoting recombinant protein production. One possible solution is to replace a portion of the inducer with a co-substrate that can serve as an alternative energy source. However, implementing such an approach would require detailed knowledge of how carbon sources impact promoter regulation, which is surprisingly still lacking for the LIP2 and POX2 promoters. This study’s aim was thus to better characterize promoter regulation and cell metabolism in Y. lipolytica cultures grown in media supplemented with different carbon sources. Results pPOX2 induction could be detected when glucose or glycerol was used as sole carbon source, which meant these carbon source could not prevent promoter induction. In addition, when a mixture of glucose and oleic acid was used in complex medium, pPOX2 induction level was lower that that of pLIP2. In contrast, pLIP2 induction was absent when glucose was present in the culture medium, which meant that cell growth could occur without any recombinant gene expression. When a 40/60 mixture of glucose and oleic acid (w/w) was used, a tenfold increase in promoter induction, as compared to when an oleic-acid-only medium was observed. It was also clear that individual cells were adapting metabolically to use both glucose and oleic acid. Indeed, no distinct subpopulations that specialized on glucose versus oleic acid were observed; such an outcome would have led to producer and non-producer phenotypes. In medium containing both glucose and oleic acid, cells tended to directly metabolize oleic acid instead of storing it in lipid bodies. Conclusions This study found that pLIP2 is a promoter of choice as compared to pPOX2 to drive gene expression for recombinant protein production by Y. lipolytica used as cell factory. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0558-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hosni Sassi
- Biotechnology and Bioprocesses, Université libre de Bruxelles, Avenue F.D. Roosevelt 50, 1050, Brussels, Belgium
| | - Frank Delvigne
- Microbial Processes and Interactions, University of Liège-Gembloux AgroBio Tech, Passage des Déportés, 2, B-5030, Gembloux, Belgium
| | - Tambi Kar
- Microbial Processes and Interactions, University of Liège-Gembloux AgroBio Tech, Passage des Déportés, 2, B-5030, Gembloux, Belgium
| | - Jean-Marc Nicaud
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en Josas, France
| | - Anne-Marie Crutz-Le Coq
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en Josas, France
| | - Sebastien Steels
- Microbial Processes and Interactions, University of Liège-Gembloux AgroBio Tech, Passage des Déportés, 2, B-5030, Gembloux, Belgium
| | - Patrick Fickers
- Biotechnology and Bioprocesses, Université libre de Bruxelles, Avenue F.D. Roosevelt 50, 1050, Brussels, Belgium. .,Microbial Processes and Interactions, University of Liège-Gembloux AgroBio Tech, Passage des Déportés, 2, B-5030, Gembloux, Belgium.
| |
Collapse
|
18
|
High Cell Density Process for Constitutive Production of a Recombinant Phytase in Thermotolerant Methylotrophic Yeast Ogataea thermomethanolica Using Table Sugar as Carbon Source. Appl Biochem Biotechnol 2016; 180:1618-1634. [DOI: 10.1007/s12010-016-2191-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/11/2016] [Indexed: 10/21/2022]
|
19
|
Wongwatanapaiboon J, Malilas W, Ruangchainikom C, Thummadetsak G, Chulalaksananukul S, Marty A, Chulalaksananukul W. Overexpression of Fusarium solani lipase in Pichia pastoris and its application in lipid degradation. BIOTECHNOL BIOTEC EQ 2016. [DOI: 10.1080/13102818.2016.1202779] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Jinaporn Wongwatanapaiboon
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Biofuels by Biocatalysts Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Waraporn Malilas
- Biofuels by Biocatalysts Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Aquatic Resources Research Institute, Chulalongkorn University, Bangkok, Thailand
| | - Chalermchai Ruangchainikom
- Environmental Research and Management Department, PTT Research and Technology Institute, PTT Public Company Limited, Ayuthaya, Thailand
| | - Gamgarn Thummadetsak
- Environmental Research and Management Department, PTT Research and Technology Institute, PTT Public Company Limited, Ayuthaya, Thailand
| | - Suphang Chulalaksananukul
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, Thailand
| | - Alain Marty
- Université de Toulouse, INSA, UPS, INP, LISBP, Toulouse, France
- CNRS, UMR5504, Toulouse, France
- INRA, UMR792, Ingénierie des Systèmes Biologiques et des Procédés, Toulouse, France
| | - Warawut Chulalaksananukul
- Biofuels by Biocatalysts Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Aquatic Resources Research Institute, Chulalongkorn University, Bangkok, Thailand
- Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
20
|
Qiu Z, Guo Y, Bao X, Hao J, Sun G, Peng B, Bi W. Expression of Aspergillus niger glucose oxidase in yeast Pichia pastoris SMD1168. BIOTECHNOL BIOTEC EQ 2016. [DOI: 10.1080/13102818.2016.1193442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Zhanjun Qiu
- Department of Emergency and Critical Care Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, PR China
| | - Yuanfang Guo
- Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, PR China
| | - Xiaoming Bao
- State Key Laboratory of Microbial Technology, College of Life Science, Shandong University, Jinan, PR China
| | - Jianrong Hao
- Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, PR China
| | - Gaoying Sun
- Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, PR China
| | - Bingyin Peng
- State Key Laboratory of Microbial Technology, College of Life Science, Shandong University, Jinan, PR China
| | - Wenxiang Bi
- Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, PR China
| |
Collapse
|
21
|
Müller JM, Bruhn S, Flaschel E, Friehs K, Risse JM. GAP promoter-based fed-batch production of highly bioactive core streptavidin byPichia pastoris. Biotechnol Prog 2016; 32:855-64. [DOI: 10.1002/btpr.2283] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/02/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Jakob Michael Müller
- Lehrstuhl Für Fermentationstechnik, Technische Fakultät, Universität Bielefeld; PF 10 01 31 Bielefeld D-33501 Germany
| | - Simon Bruhn
- Lehrstuhl Für Fermentationstechnik, Technische Fakultät, Universität Bielefeld; PF 10 01 31 Bielefeld D-33501 Germany
| | - Erwin Flaschel
- Lehrstuhl Für Fermentationstechnik, Technische Fakultät, Universität Bielefeld; PF 10 01 31 Bielefeld D-33501 Germany
| | - Karl Friehs
- Lehrstuhl Für Fermentationstechnik, Technische Fakultät, Universität Bielefeld; PF 10 01 31 Bielefeld D-33501 Germany
| | - Joe Max Risse
- Lehrstuhl Für Fermentationstechnik, Technische Fakultät, Universität Bielefeld; PF 10 01 31 Bielefeld D-33501 Germany
| |
Collapse
|
22
|
Sun M, Tang H, Gao Y, Dai X, Yuan Y, Zhang C, Sun D. Constitutive expression and anticancer potency of a novel immunotoxin onconase-DV3. Oncol Rep 2016; 35:1987-94. [PMID: 26782924 DOI: 10.3892/or.2016.4570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/08/2015] [Indexed: 11/05/2022] Open
Abstract
Onconase is an RNase of the ribonuclease A superfamily that is purified from the Northern leopard frog (Rana pipiens). It targets several types of malignant tumors, digests cytoplasmic transfer RNA (tRNA), and causes tumor cell apoptosis. Onconase has been employed in clinical trials as an antitumor drug, and has revealed its valuable clinical activity in several types of tumors, particularly pleural mesothelioma. However, its inefficiency in targeting tumor cells and its non‑specific toxicity in normal tissues have diminished its clinical benefits. Furthermore, cyclization of the N-terminal glutamine residue (Gln), possesses more RNase activity than the structure of Met ahead of Glu in the N-terminal (99:1), which is more difficult for producing onconase by Pichia pastoris. Under the guidance of α-mating factor-pre (α-MF-pre) secretion signal, the secretion of the recombinant protein can reach a high level. In the present study, we constructed a constitutive expression vector for onconase-(DV3)2 (Onc-DV3) production in yeast Pichia pastoris with the GAP promoter, in which the Onc-DV3 gene is inserted downstream of the truncated Saccharomyces cerevisiae α-mating factor-pre (α-MF-pre) secretion signal. The immuno-RNase Onc-DV3 expressed a high level of production and bioactivity and possessed enhanced capability to deliver the Onc molecule to tumor cell monomeric counterparts. Notably, Onc-DV3 showed strong cytotoxicity to highly metastatic tumor cells, weak cytotoxicity to lowly metastatic tumor cells and no toxicity to normal cells. These results demonstrate that the specific toxicity to highly metastatic tumor cells has made Onc-DV3 a promising antitumor drug by using two copies of DV3 for the targeted delivery of onconase.
Collapse
Affiliation(s)
- Miaonan Sun
- Department of Biomedicine, Regeneration Medicine Institute, Jilin University, Changchun, Jilin 130061, P.R. China
| | - Huichun Tang
- Department of Biomedicine, Regeneration Medicine Institute, Jilin University, Changchun, Jilin 130061, P.R. China
| | - Yan Gao
- Jilin Zixin Pharmaceutical Co., Ltd., Changchun, Jilin 130041, P.R. China
| | - Xinxuan Dai
- Department of Biomedicine, Regeneration Medicine Institute, Jilin University, Changchun, Jilin 130061, P.R. China
| | - Yue Yuan
- Department of Biomedicine, Regeneration Medicine Institute, Jilin University, Changchun, Jilin 130061, P.R. China
| | - Chunmei Zhang
- Department of Biomedicine, Regeneration Medicine Institute, Jilin University, Changchun, Jilin 130061, P.R. China
| | - Dejun Sun
- Department of Biomedicine, Regeneration Medicine Institute, Jilin University, Changchun, Jilin 130061, P.R. China
| |
Collapse
|
23
|
Looser V, Bruhlmann B, Bumbak F, Stenger C, Costa M, Camattari A, Fotiadis D, Kovar K. Cultivation strategies to enhance productivity of Pichia pastoris: A review. Biotechnol Adv 2015; 33:1177-93. [DOI: 10.1016/j.biotechadv.2015.05.008] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 05/11/2015] [Accepted: 05/25/2015] [Indexed: 12/14/2022]
|
24
|
Vici AC, da Cruz AF, Facchini FDA, de Carvalho CC, Pereira MG, Fonseca-Maldonado R, Ward RJ, Pessela BC, Fernandez-Lorente G, Torres FAG, Jorge JA, Polizeli MLTM. Beauveria bassiana Lipase A expressed in Komagataella (Pichia) pastoris with potential for biodiesel catalysis. Front Microbiol 2015; 6:1083. [PMID: 26500628 PMCID: PMC4595793 DOI: 10.3389/fmicb.2015.01083] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 09/22/2015] [Indexed: 02/06/2023] Open
Abstract
Lipases (EC 3.1.1.3) comprise a biotechnologically important group of enzymes because they are able to catalyze both hydrolysis and synthesis reactions, depending on the amount of water in the system. One of the most interesting applications of lipase is in the biofuel industry for biodiesel production by oil and ethanol (or methanol) transesterification. Entomopathogenic fungi, which are potential source of lipases, are still poorly explored in biotechnological processes. The present work reports the heterologous expression and biochemical characterization of a novel Beauveria bassiana lipase with potential for biodiesel production. The His-tagged B. bassiana lipase A (BbLA) was produced in Komagataella pastoris in buffered methanol medium (BMM) induced with 1% methanol at 30°C. Purified BbLA was activated with 0.05% Triton X-100 and presented optimum activity at pH 6.0 and 50°C. N-glycosylation of the recombinant BbLA accounts for 31.5% of its molecular weight. Circular dichroism and molecular modeling confirmed a structure composed of α-helix and β-sheet, similar to α/β hydrolases. Immobilized BbLA was able to promote transesterification reactions in fish oil, demonstrating potential for biodiesel production. BbLA was successfully produced in K. pastoris and shows potential use for biodiesel production by the ethanolysis reaction.
Collapse
Affiliation(s)
- Ana C Vici
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto Brazil
| | - Andrezza F da Cruz
- Departamento de Biologia, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto Brazil
| | - Fernanda D A Facchini
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto Brazil
| | - Caio C de Carvalho
- Departamento de Biologia, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto Brazil
| | - Marita G Pereira
- Departamento de Biologia, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto Brazil
| | - Raquel Fonseca-Maldonado
- Departamento de Química, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto Brazil
| | - Richard J Ward
- Departamento de Química, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto Brazil
| | - Benevides C Pessela
- Departamento de Biotecnología y Microbiología de Alimentos, Instituto de Investigación en Ciencias de los Alimentos, Consejo Superior de Investigaciones Cientificas, Madrid España
| | - Gloria Fernandez-Lorente
- Departamento de Biotecnología y Microbiología de Alimentos, Instituto de Investigación en Ciencias de los Alimentos, Consejo Superior de Investigaciones Cientificas, Madrid España
| | - Fernando A G Torres
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília Brazil
| | - João A Jorge
- Departamento de Biologia, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto Brazil
| | - Maria L T M Polizeli
- Departamento de Biologia, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto Brazil
| |
Collapse
|
25
|
Bioprocess for efficient production of recombinant Pichia anomala phytase and its applicability in dephytinizing chick feed and whole wheat flat Indian breads. ACTA ACUST UNITED AC 2015; 42:1389-400. [DOI: 10.1007/s10295-015-1670-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 07/28/2015] [Indexed: 01/08/2023]
Abstract
Abstract
The phytase of the yeast Pichia anomala (PPHY) is a suitable biocatalyst as a food and feed additive because of its adequate thermostability, acid stability, protease insensitivity and broad substrate spectrum. The cell-bound nature and low phytase titres are the main bottlenecks for its utility in food and feed industries. In this investigation, we have overcome the problems by constitutive secretory expression of PPHY under glyceraldehyde phosphate dehydrogenase (GAP) promoter. A ~44-fold increase in rPPHY titre has been achieved after optimization of cultural variables by one-variable-at-a-time approach and two factorial statistical design. The use of GAP promoter makes the cultivation of the recombinant P. pastoris straight forward and eliminates the requirement of methanol for induction and hazards associated with its storage. Among metal-phytate complexes, Ca2+ phytate is hydrolyzed more efficiently by rPPHY than Co2+, Mn2+, Mg2+, Fe3+ and Zn2+ phytates. The enzyme is effective in dephytinizing whole wheat unleavened flat Indian breads (naan and tandoori) and different broiler feeds, thus mitigating anti-nutritional effects of phytates.
Collapse
|
26
|
Zhou WJ, Yang JK, Mao L, Miao LH. Codon optimization, promoter and expression system selection that achieved high-level production of Yarrowia lipolytica lipase in Pichia pastoris. Enzyme Microb Technol 2015; 71:66-72. [DOI: 10.1016/j.enzmictec.2014.10.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/19/2014] [Accepted: 10/24/2014] [Indexed: 12/31/2022]
|
27
|
Çalık P, Ata Ö, Güneş H, Massahi A, Boy E, Keskin A, Öztürk S, Zerze GH, Özdamar TH. Recombinant protein production in Pichia pastoris under glyceraldehyde-3-phosphate dehydrogenase promoter: From carbon source metabolism to bioreactor operation parameters. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2014.12.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Kumari A, Baronian K, Kunze G, Gupta R. Extracellular expression of YlLip11 with a native signal peptide from Yarrowia lipolytica MSR80 in three different yeast hosts. Protein Expr Purif 2015; 110:138-44. [PMID: 25725269 DOI: 10.1016/j.pep.2015.02.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 02/17/2015] [Accepted: 02/18/2015] [Indexed: 10/23/2022]
Abstract
Lipase YlLip11 from Yarrowia lipolytica was expressed with a signal peptide encoding sequence in Arxula adeninivorans, Saccharomyces cerevisiae and Hansenula polymorpha using the Xplor®2 transformation/expression platform and an expression module with the constitutive Arxula-derived TEF1 promoter. The YlLip11 signal peptide was functional in all of the yeast hosts with 97% of the recombinant enzyme being secreted into the culture medium. However, recombinant YlLip11 with His Tag fused at C-terminal was not active. The best recombinant YlLip11 producing A. adeninivorans G1212/YRC102-YlLip11 transformant cultivated in shake flasks produced 2654 U/L lipase, followed by S. cerevisiae SEY6210/YRC103-YlLip11 (1632U/L) and H. polymorpha RB11/YRC103-YlLip11 (1144U/L). Although the biochemical parameters of YlLip11 synthesized in different hosts were similar, their glycosylation level and thermo stability differed. The protein synthesized by the H. polymorpha transformant had the highest degree of glycosylation and with a t1/2 of 60min at 70°C, exhibited the highest thermostability.
Collapse
Affiliation(s)
- Arti Kumari
- Department of Microbiology, University of Delhi South Campus, New Delhi 110021, India
| | - Keith Baronian
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Gotthard Kunze
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstr. 3, 06466 Gatersleben, Germany.
| | - Rani Gupta
- Department of Microbiology, University of Delhi South Campus, New Delhi 110021, India.
| |
Collapse
|
29
|
Enhanced production of Thermomyces lanuginosus lipase in Pichia pastoris via genetic and fermentation strategies. ACTA ACUST UNITED AC 2014; 41:1541-51. [DOI: 10.1007/s10295-014-1491-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 07/10/2014] [Indexed: 11/27/2022]
Abstract
Abstract
This study attempted to enhance the expression level of Thermomyces lanuginosus lipase (TLL) in Pichia pastoris using a series of strategies. The tll gene was first inserted into the expression vector pPIC9 K and transformed into P. pastoris strain GS115. The maximum hydrolytic activity of TLL reached 4,350 U/mL under the optimal culture conditions of a 500 mL shaking flask containing 20 mL culture medium with the addition of 1.2 % (w/v) methanol, cultivation for 144 h at pH 7.0 and 27 °C. To further increase the TLL expression and copy number, strains containing two plasmids were obtained by sequential electroporation into GS115/9k-TLL #3 with a second vector, either pGAPZαA-TLL, pFZα-TLL, or pPICZαA-TLL. The maximum activity of the resultant strains GS115/9KTLL-ZαATLL #40, GS115/9KTLL-FZαATLL #46 and GS115/9KTLL-GAPTLL #45 was 6,600 U/mL, 6,000 U/mL and 4,800 U/mL, respectively. The tll copy number in these strains, as assessed by real-time quantitative PCR, was demonstrated to be seven, five, and three, respectively, versus two copies in GS115/9k-TLL #3. When a co-feeding strategy of sorbitol/methanol was adopted in a 3-L fermenter, the maximum TLL activity of GS115/9k-TLL #3 increased to 27,000 U/mL after 130 h of fed-batch fermentation, whereas, the maximum TLL activity was 19,500 U/mL after 145 h incubation when methanol was used as the sole carbon source.
Collapse
|
30
|
Kumari A, Gupta R. Novel strategy of using methyl esters as slow release methanol source during lipase expression by mut+ Pichia pastoris X33. PLoS One 2014; 9:e104272. [PMID: 25170843 PMCID: PMC4149357 DOI: 10.1371/journal.pone.0104272] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 07/08/2014] [Indexed: 11/21/2022] Open
Abstract
One of the major issues with heterologous production of proteins in Pichia pastoris X33 under AOX1 promoter is repeated methanol induction. To obviate repeated methanol induction, methyl esters were used as a slow release source of methanol in lipase expressing mut+ recombinant. Experimental design was based on the strategy that in presence of lipase, methyl esters can be hydrolysed to release their products as methanol and fatty acid. Hence, upon break down of methyl esters by lipase, first methanol will be used as a carbon source and inducer. Then P. pastoris can switch over to fatty acid as a carbon source for multiplication and biomass maintenance till further induction by methyl esters. We validated this strategy using recombinant P. pastoris expressing Lip A, Lip C from Trichosporon asahii and Lip11 from Yarrowia lipolytica. We found that the optimum lipase yield under repeated methanol induction after 120 h was 32866 U/L, 28271 U/L and 21978 U/L for Lip C, Lip A and Lip 11 respectively. In addition, we found that a single dose of methyl ester supported higher production than repeated methanol induction. Among various methyl esters tested, methyl oleate (0.5%) caused 1.2 fold higher yield for LipA and LipC and 1.4 fold for Lip11 after 120 h of induction. Sequential utilization of methanol and oleic acid by P. pastoris was observed and was supported by differential peroxisome proliferation studies by transmission electron microscopy. Our study identifies a novel strategy of using methyl esters as slow release methanol source during lipase expression.
Collapse
Affiliation(s)
- Arti Kumari
- Department of Microbiology, University of Delhi South Campus, New Delhi, India
| | - Rani Gupta
- Department of Microbiology, University of Delhi South Campus, New Delhi, India
- * E-mail:
| |
Collapse
|
31
|
Abstract
Within the last two decades, the methylotrophic yeast Pichia pastoris has become an important alternative to E. coli or mammalian cell lines for the production of recombinant proteins. Easy handling, strong promoters, and high cell density cultivations as well as the capability of posttranslational modifications are some of the major benefits of this yeast. The high secretion capacity and low level of endogenously secreted proteins further promoted the rapid development of a versatile Pichia pastoris toolbox. This chapter reviews common and new "Pichia tools" and their specific features. Special focus is given to expression strains, such as different methanol utilization, protease-deficient or glycoengineered strains, combined with application highlights. Different promoters and signal sequences are also discussed.
Collapse
|
32
|
Darvishi Harzevili F. Yarrowia lipolytica in Biotechnological Applications. SPRINGERBRIEFS IN MICROBIOLOGY 2014. [DOI: 10.1007/978-3-319-06437-6_2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
33
|
Use of the glyceraldehyde-3-phosphate dehydrogenase promoter from a thermotolerant yeast, Pichia thermomethanolica, for heterologous gene expression, especially at elevated temperature. ANN MICROBIOL 2013. [DOI: 10.1007/s13213-013-0765-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
34
|
Li B, Wang Z, Li S, Donelan W, Wang X, Cui T, Tang D. Preparation of lactose-free pasteurized milk with a recombinant thermostable β-glucosidase from Pyrococcus furiosus. BMC Biotechnol 2013; 13:73. [PMID: 24053641 PMCID: PMC4016594 DOI: 10.1186/1472-6750-13-73] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 09/16/2013] [Indexed: 11/10/2022] Open
Abstract
Background Lactose intolerance is a common health concern causing gastrointestinal symptoms and avoidance of dairy products by afflicted individuals. Since milk is a primary source of calcium and vitamin D, lactose intolerant individuals often obtain insufficient amounts of these nutrients which may lead to adverse health outcomes. Production of lactose-free milk can provide a solution to this problem, although it requires use of lactase from microbial sources and increases potential for contamination. Use of thermostable lactase enzymes can overcome this issue by functioning under pasteurization conditions. Results A thermostable β-glucosidase gene from Pyrococcus furiosus was cloned in frame with the Saccharomyces cerecisiae a-factor secretory signal and expressed in Pichia pastoris strain X-33. The recombinant enzyme was purified by a one-step method of weak anion exchange chromatography. The optimum temperature and pH for this β-glucosidase activity was 100°C and pH 6.0, respectively. The enzyme activity was not significantly inhibited by Ca2+. We tested the additive amount, hydrolysis time, and the influence of glucose on the enzyme during pasteurization and found that the enzyme possessed a high level of lactose hydrolysis in milk that was not obviously influenced by glucose. Conclusions The thermostablity of this recombinant β-glucosidase, combined with its neutral pH activity and favorable temperature activity optima, suggest that this enzyme is an ideal candidate for the hydrolysis of lactose in milk, and it would be suitable for application in low-lactose milk production during pasteurization.
Collapse
Affiliation(s)
| | | | | | | | | | - Taixing Cui
- Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan 250012, China.
| | | |
Collapse
|
35
|
Guan B, Chen F, Lei J, Li Y, Duan Z, Zhu R, Chen Y, Li H, Jin J. Constitutive Expression of a rhIL-2-HSA Fusion Protein in Pichia pastoris Using Glucose as Carbon Source. Appl Biochem Biotechnol 2013; 171:1792-804. [DOI: 10.1007/s12010-013-0423-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 08/05/2013] [Indexed: 01/30/2023]
|
36
|
Towards the development of systems for high-yield production of microbial lipases. Biotechnol Lett 2013; 35:1551-60. [PMID: 23743957 DOI: 10.1007/s10529-013-1256-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 05/24/2013] [Indexed: 10/26/2022]
Abstract
Microbial lipases are a versatile and attractive class of biocatalysts for a wide variety of applications. Lipases can be produced by bacteria, yeasts or filamentous fungi. Nevertheless, they are often not optimal for direct use in industrial conditions due to low yields, low specific activities and a limited spectrum of activities. Improvements in the productivity of lipases have been made by genetic manipulation of the cell factory production hosts and by optimizing production media and conditions. Advances in protein engineering technology, ranging from directed evolution to rational design, have also been able to tailor lipases to particular applications. This review describes various approaches used to improve lipase production and applications.
Collapse
|