1
|
Liu X, Bian DD, Jiang Q, Jiang JJ, Jin Y, Chen FX, Zhang DZ, Liu QN, Tang BP, Dai LS. Insights into chlorantraniliprole exposure via activating cytochrome P450-mediated xenobiotic metabolism pathway in the Procambarus clarkii: Identification of P450 genes involved in detoxification. Int J Biol Macromol 2024; 277:134231. [PMID: 39074699 DOI: 10.1016/j.ijbiomac.2024.134231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Abstract
To investigate the impact of chlorantraniliprole on Procambarus clarkii, acute toxicity tests were performed. Results indicated that 96 h post-exposure to chlorantraniliprole (60 mg/L) led to the separation of the hepatopancreas basement membrane, causing cell swelling, rupture, and vacuolation. Moreover, acid phosphatase (ACP) and alkaline phosphatase (AKP) activities exhibited divergent trends across four concentrations of chlorantraniliprole (0, 30, 60, and 90 mg/L). Hydrogen peroxide (H2O2) and catalase (CAT) levels significantly increased, while total superoxide dismutase (T-SOD) and malonaldehyde (MDA) activities decreased, indicating oxidative stress in the hepatopancreas. A total of 276 differentially expressed genes (DEGs) were identified, with 204 up-regulated and 72 down-regulated. Out of these, 114 DEGs were successfully annotated and classified into 99 pathways, with a primary focus on the cytochrome P450-mediated xenobiotic metabolism pathway. The DEGs enriched in this pathway, along with transcriptome data, were validated using quantitative-polymerase chain reaction. This study enhances the transcriptome database of P. clarkii and provides fundamental insights into its immune defense and antioxidant mechanisms. Additionally, it lays a theoretical foundation for future research on disease prevention in P. clarkii within rice-shrimp culture systems.
Collapse
Affiliation(s)
- Xin Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, College of Aquaculture and Life Science, Shanghai Ocean University, Shanghai 201306, People's Republic of China
| | - Dan-Dan Bian
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China; Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, College of Life Sciences, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Qi Jiang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Jun-Jie Jiang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, College of Aquaculture and Life Science, Shanghai Ocean University, Shanghai 201306, People's Republic of China
| | - Ye Jin
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Fan-Xing Chen
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Dai-Zhen Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China.
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China.
| | - Li-Shang Dai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China.
| |
Collapse
|
2
|
Zhao R, Guo X, Meng L, Li B. Identification and validation of reference genes for RT-qPCR analysis in Sclerodermus guani (Hymenoptera: Bethylidae). BULLETIN OF ENTOMOLOGICAL RESEARCH 2024; 114:613-621. [PMID: 39371021 DOI: 10.1017/s0007485324000427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Gene expression studies in organisms are often conducted using reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR), and the accuracy of RT-qPCR results relies on the stability of reference genes. We examined ten candidate reference genes in Sclerodermus guani, a parasitoid wasp that is a natural enemy of long-horned beetle pests in forestry, including ACT, EF1α, Hsc70, Hsp70, SRSF7, α-tubulin, RPL7A, 18S, 28S, and SOD1, regarding variable biotic and abiotic factors such as body part, life stage, hormone, diet, and temperature. Data were analysed using four dedicated algorithms (ΔCt, BestKeeper, NormFinder, and geNorm) and one comparative tool (RefFinder). Our results showed that the most stable reference genes were RPL7A and EF1α regarding the body part, SRSF7 and Hsc70 regarding the diet, RPL7A and α-tubulin regarding the hormone, SRSF7 and RPL7A regarding the life stage, and SRSF7 and α-tubulin regarding temperature. To ascertain the applicability of specific reference genes, the expression level of the target gene (ACPase) was estimated regarding the body part using the most stable reference genes, RPL7A and EF1α, and the least stable one, SOD1. The highest expression level of ACPase was observed in the abdomen, and the validity of RPL7A and EF1α was confirmed. This study provides, for the first time, an extensive list of reliable reference genes for molecular biology studies in S. guani.
Collapse
Affiliation(s)
- Rina Zhao
- Department of Entomology, School of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province, PR China
| | - Xiaomeng Guo
- Department of Entomology, School of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province, PR China
- Research Institute of Agricultural Sciences of Zhenjiang city, Zhenjiang, Jiangsu Province, PR China
| | - Ling Meng
- Department of Entomology, School of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province, PR China
| | - Baoping Li
- Department of Entomology, School of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province, PR China
| |
Collapse
|
3
|
Chen Y, Xu L, Zhao S, Miao C, Chen Y, Wang Z, Feng F, Lin M, Weng S. One-pot hydrothermal synthesis of silicon, nitrogen co-doped carbon dots for enhancing enzyme activity of acid phosphatase (ACP) to dopamine and for cell imaging. Talanta 2024; 278:126451. [PMID: 38917549 DOI: 10.1016/j.talanta.2024.126451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/06/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
Developing water-soluble nanomaterials with high photoluminescence emission and high yield for biological analysis and imaging is urgently needed. Herein, water-soluble blue emitting silicon and nitrogen co-doped carbon dots (abbreviated as Si-CDs) of a high photoluminescence quantum yield of 80 % were effectively prepared with high yield rate (59.1 %) via one-step hydrothermal treatment of N-[3-(trimethoxysilyl)propyl]ethylenediamine (DAMO) and trans-aconitic acid. Furthermore, the Si-CDs demonstrate environmental robustness, photo-stability and biocompatibility. Given the importance of the potentially abnormal levels of acid phosphatase (ACP) in cancer diagnosis, developing a reliable and sensitive ACP measurement method is of significance for clinical research. The Si-CDs unexpectedly promote the catalytic oxidation of ACP on dopamine (DA) to polydopamine under acidic conditions through the produced reactive oxygen species (ROS). Correspondingly, a fluorescence response strategy using Si-CDs as the dual functions of probes and promoting enzyme activity of ACP on catalyzing DA was constructed to sensitively determine ACP. The quantitative analysis of ACP displayed a linear range of 0.1-60 U/L with a detection limit of 0.056 U/L. The accurate detection of ACP was successfully achieved in human serum through recovery tests. As a satisfactory fluorescent probe, Si-CDs were successfully applied to fluorescent imaging of A549 cells in cytoplasmic with long-term and safe staining. The Si-CDs have the dual properties of outstanding fluorescent probes and auxiliary oxidase activity, indicating their great potential in multifunctional applications.
Collapse
Affiliation(s)
- Yuanting Chen
- Department of Pharmacy, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China; Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China; Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, China
| | - Linlin Xu
- Department of Pharmacy, Maternal and Child Health Hospital of Fuzhou Second General Hospital, Fuzhou, 350001, China; Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Sheng Zhao
- Department of Pharmacy, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China; Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China; Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, China
| | - Chenfang Miao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Yuyuan Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Zhenzhen Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Feng Feng
- Department of Pharmacy, Fujian Provincial Governmental Hospital, Affiliated Hospital of Fujian Health College, Fuzhou, 350003, China.
| | - Mingrui Lin
- Department of Pharmacy, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China; Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, China.
| | - Shaohuang Weng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|
4
|
Mei J, Yang Q, Jiang L, Wang T, Li Y, Yu X, Wu Z. Immune protection of grass carp by oral vaccination with recombinant Bacillus methylotrophicus expressing the heterologous tolC gene. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109701. [PMID: 38878911 DOI: 10.1016/j.fsi.2024.109701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/06/2024] [Accepted: 06/13/2024] [Indexed: 06/19/2024]
Abstract
In the field of aquaculture, the enhancement of animal health and disease prevention is progressively being tackled using alternatives to antibiotics, including vaccines and probiotics. This study was designed to evaluate the potential of a recombinant Bacillus methylotrophicus, engineered to express the outer membrane channel protein TolC of Aeromonas hydrophila AH3 and the green fluorescent protein GFP, as an oral vaccine. Initially, the genes encoding tolC and GFP were cloned into a prokaryotic expression system, and anti-TolC mouse antiserum was generated. Subsequently, the tolC gene was subcloned into a modified pMDGFP plasmid, which was transformed into B. methylotrophicus WM-1 for protein expression. The recombinant B. methylotrophicus BmT was then administered to grass carp via co-feeding, and its efficacy as an oral vaccine was assessed. Our findings demonstrated successful expression of the 55 kDa TolC and 28 kDa GFP proteins, and the preparation of polyclonal antibodies with high specificity. The BmT exhibited stable expression of the GFP-TolC fusion protein and excellent genetic stability. Following oral immunization, significant elevations were observed in serum-specific IgM levels and the activities of acid phosphatase (ACP), alkaline phosphatase (AKP), superoxide dismutase (SOD), and lysozyme (LZM) in grass carp. Concurrently, significant upregulation of immune-related genes, including IFN-I, IL-10, IL-1β, TNF-α, and IgT, was noted in the intestines, head kidney, and spleen of the grass carp. Colonization tests further revealed that the BmT persisted in the gut of immunized fish even after a fasting period of 7 days. Notably, oral administration of BmT enhanced the survival rate of grass carp following A. hydrophila infection. These results suggest that the oral BmT vaccine developed in this study holds promise for future applications in aquaculture.
Collapse
Affiliation(s)
- Jing Mei
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Aquatic Biodiversity Protection Research Center, Southwest University, Chongqing, 400715, China
| | - Qinglin Yang
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Aquatic Biodiversity Protection Research Center, Southwest University, Chongqing, 400715, China
| | - Liyan Jiang
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Aquatic Biodiversity Protection Research Center, Southwest University, Chongqing, 400715, China
| | - Tao Wang
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Aquatic Biodiversity Protection Research Center, Southwest University, Chongqing, 400715, China
| | - Yanhong Li
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Aquatic Biodiversity Protection Research Center, Southwest University, Chongqing, 400715, China
| | - Xiaobo Yu
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Aquatic Biodiversity Protection Research Center, Southwest University, Chongqing, 400715, China
| | - Zhengli Wu
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Aquatic Biodiversity Protection Research Center, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
5
|
Pawłowska M, Mila-Kierzenkowska C. Effect of Alpha-1 Antitrypsin and Irisin on Post-Exercise Inflammatory Response: A Narrative Review. IRANIAN JOURNAL OF MEDICAL SCIENCES 2024; 49:205-218. [PMID: 38680225 PMCID: PMC11053258 DOI: 10.30476/ijms.2023.97480.2925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/12/2023] [Accepted: 02/16/2023] [Indexed: 05/01/2024]
Abstract
Physical activity has a positive effect on human health and emotional well-being. However, in both amateur and professional athletes, training poses a risk of acute or chronic injury through repetitive overloading of bones, joints, and muscles. Inflammation can be an adverse effect of intense exercise caused by several factors including oxidative stress. The present narrative review summarizes current knowledge on inflammatory markers induced by physical exercise. Post-exercise recovery may reduce inflammatory responses and is key to effective training and adaptation of muscle tissues to sustained physical exertion.
Collapse
Affiliation(s)
- Marta Pawłowska
- Department of Medical Biology and Biochemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Poland
| | - Celestyna Mila-Kierzenkowska
- Department of Medical Biology and Biochemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Poland
| |
Collapse
|
6
|
Zheng J, Li Y, Zhao S, Dong G, Yi S, Li X. Inhibition effect of epicatechin gallate on acid phosphatases from rainbow trout (Oncorhynchus mykiss) liver by multispectral and molecular docking. Int J Biol Macromol 2024; 261:129794. [PMID: 38296148 DOI: 10.1016/j.ijbiomac.2024.129794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/06/2024]
Abstract
Inhibition of acid phosphatase, which significantly contributes to inosine 5'-monophosphate (IMP) degradation, is crucial for preventing flavor deterioration of aquatic products during storage. In this study, the inhibitory effect of epicatechin gallate (ECG) on the activity of acid phosphatase isozymes (ACPI and ACPII) was analyzed using inhibition kinetics, fluorescence spectroscopy, isothermal titration calorimetry, and molecular simulation. ACPI and ACPII with molecular weights of 59.5 and 37.3 kDa, respectively, were purified from rainbow trout liver. ECG reversibly inhibited ACPI and ACPII activities via mixed-type inhibition, with half maximal inhibitory concentration (IC50) of 0.24 ± 0.01 mmol/L and 0.27 ± 0.03 mmol/L, respectively. Fluorescence spectra indicated that ECG statically quenched the intrinsic fluorescence of ACPI and ACPII. ECG could spontaneously bind to ACPI and ACPII through hydrogen bonding and van der Waals forces and exhibited a higher affinity for ACPI than for ACPII. In addition, molecular dynamic simulation revealed that ECG-ACPI and ECG-ACPII complexes were relatively stable during the entire simulation process. Our findings provide a theoretical basis for the use of ECG as an inhibitor of ACP to improve the flavor of aquatic products.
Collapse
Affiliation(s)
- Jie Zheng
- College of Food Science and Technology, Bohai University, Food Safety Key Laboratory of Liaoning Province, National & Local Joint Engineering Research Center for Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China
| | - Yingchang Li
- College of Food Science and Technology, Bohai University, Food Safety Key Laboratory of Liaoning Province, National & Local Joint Engineering Research Center for Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China; Institute of Ocean Research of Bohai University, Jinzhou 121013, China.
| | - Songmin Zhao
- College of Food Science and Technology, Bohai University, Food Safety Key Laboratory of Liaoning Province, National & Local Joint Engineering Research Center for Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China
| | - Gaoyuan Dong
- College of Food Science and Technology, Bohai University, Food Safety Key Laboratory of Liaoning Province, National & Local Joint Engineering Research Center for Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China
| | - Shumin Yi
- College of Food Science and Technology, Bohai University, Food Safety Key Laboratory of Liaoning Province, National & Local Joint Engineering Research Center for Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China; Institute of Ocean Research of Bohai University, Jinzhou 121013, China
| | - Xuepeng Li
- College of Food Science and Technology, Bohai University, Food Safety Key Laboratory of Liaoning Province, National & Local Joint Engineering Research Center for Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China; Institute of Ocean Research of Bohai University, Jinzhou 121013, China.
| |
Collapse
|
7
|
Peng M, Félix RC, Canário AVM, Power DM. The physiological effect of polystyrene nanoplastic particles on fish and human fibroblasts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169979. [PMID: 38215851 DOI: 10.1016/j.scitotenv.2024.169979] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
Numerous studies have identified the detrimental effects for the biosphere of large plastic debris, the effect of microplastics (MPs) and nanoplastics (NPs) is less clear. The skin is the first point of contact with NPs, and skin fibroblasts have a vital role in maintaining skin structure and function. Here, a comparative approach is taken using three fibroblast cell lines from the zebrafish (SJD.1), human male newborn (BJ-5ta) and female adult (HDF/TERT164) and their response to polystyrene NP (PS-NPs) exposure is characterized. Cells were exposed to environmentally relevant PS-NP sizes (50, 500 and 1000 nm) and concentrations (0.001 to 10 μg/ml) and their uptake (1000 nm), and effect on cell viability, proliferation, migration, reactive oxygen species (ROS) production, apoptosis, alkaline phosphatase (ALP) and acid phosphatase (AP) determined. All fibroblasts took up PS-NPs, and a relationship between PS-NP particle size and concentration and the inhibition of proliferation and cell migration was identified. The inhibitory effect of PS-NPs on proliferation was more pronounced for human skin fibroblasts. The presence of PS-NPs negatively affected fibroblast migration in a time-, size- and concentration-dependent manner with larger PS-NPs at higher concentrations causing a more significant inhibition of cell migration, with human fibroblasts being the most affected. No major changes were detected in ROS production or apoptosis in NP challenged fibroblasts. While the ALP activity was increased in all fibroblast cell lines, only fish fibroblasts showed a significant increase in AP activity. The heterogeneous response of fibroblasts induced by PS-NPs was clearly revealed by the segregation of HDF, BJ.5ta and SJD.1 fibroblasts in principal component analysis. Our results demonstrate that PS-NP exposure adversely affected cellular processes in a cell-type and dose-specific manner in distinct fibroblast cell lines, emphasizing the need for further exploration of NP interactions with different cell types to better understand potential implications for human health.
Collapse
Affiliation(s)
- Maoxiao Peng
- Centre of Marine Sciences (CCMAR/CIMAR), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Rute C Félix
- Centre of Marine Sciences (CCMAR/CIMAR), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Adelino V M Canário
- Centre of Marine Sciences (CCMAR/CIMAR), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; International Institution of Marine Science, Shanghai Ocean University, Shanghai, China
| | - Deborah M Power
- Centre of Marine Sciences (CCMAR/CIMAR), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; International Institution of Marine Science, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
8
|
Kong DH, Ji YX, Zhang BY, Li KC, Liao ZY, Wang H, Zhou JX, Wang QJ. Effects of hydroxy methionine zinc on growth performance, immune response, antioxidant capacity, and intestinal microbiota of red claw crayfish (Procambarus clarkii). FISH & SHELLFISH IMMUNOLOGY 2024; 144:109231. [PMID: 37984613 DOI: 10.1016/j.fsi.2023.109231] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 11/07/2023] [Accepted: 11/12/2023] [Indexed: 11/22/2023]
Abstract
This study aimed to evaluate the effects of varying zinc (Zn) levels on the growth performance, non-specific immune response, antioxidant capacity, and intestinal microbiota of red claw crayfish (Procambarus clarkii (P. clarkii)). Adopting hydroxy methionine zinc (Zn-MHA) as the Zn source, 180 healthy crayfish with an initial body mass of 6.50 ± 0.05 g were randomly divided into the following five groups: X1 (control group) and groups X2, X3, X4, and X5, which were fed the basal feed supplemented with Zn-MHA with 0, 15, 30, 60, and 90 mg kg-1, respectively. The results indicated that following the addition of various concentrations of Zn-MHA to the diet, the following was observed: Specific growth rate (SGR), weight gain rate (WGR), total protein (TP), total cholesterol (TC), the activities of alkaline phosphatase (AKP), phenoloxidase (PO), total antioxidant capacity (T-AOC), total superoxide dismutase (T-SOD) and catalase (CAT), the expression of CTL, GPX, and CuZn-SOD genes demonstrated a trend of rising and then declining-with a maximum value in group X4-which was significantly higher than that in group X1 (P < 0.05). Zn deposition in the intestine and hepatopancreas, the activity of GSH-PX, and the expression of GSH-PX were increased, exhibiting the highest value in group X5. The malonaldehyde (MDA) content was significantly reduced, with the lowest value in group X4, and the MDA content of the Zn-MHA addition groups were significantly lower than the control group (P < 0.05). In the analysis of the intestinal microbiota of P. clarkii, the number of operational taxonomic units in group X4 was the highest, and the richness and diversity indexes of groups X3 and X4 were significantly higher than those in group X1 (P < 0.05). Meanwhile, the dietary addition of Zn-MHA decreased and increased the relative abundance of Proteobacteria and Tenericutes, respectively. These findings indicate that supplementation of dietary Zn-MHA at an optimum dose of 60 mg kg-1 may effectively improve growth performance, immune response, antioxidant capacity, and intestinal microbiota richness and species diversity in crayfish.
Collapse
Affiliation(s)
- De-Hua Kong
- College of Animal Science and Technology, Jilin Agricultural University, Jilin Changchun, 130118, China
| | - Yu-Xiang Ji
- College of Animal Science and Technology, Jilin Agricultural University, Jilin Changchun, 130118, China
| | - Bao-Yuan Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Jilin Changchun, 130118, China
| | - Kuo-Chen Li
- College of Animal Science and Technology, Jilin Agricultural University, Jilin Changchun, 130118, China
| | - Zi-Yan Liao
- College of Animal Science and Technology, Jilin Agricultural University, Jilin Changchun, 130118, China
| | - Hao Wang
- College of Animal Medicine, Jilin Agricultural University, Jilin Changchun, 130118, China
| | - Jing-Xiang Zhou
- College of Animal Science and Technology, Jilin Agricultural University, Jilin Changchun, 130118, China; College of Animal Medicine, Jilin Agricultural University, Jilin Changchun, 130118, China.
| | - Qiu-Ju Wang
- College of Life Sciences, Jilin Agricultural University, Jilin Changchun, 130118, China; College of Animal Medicine, Jilin Agricultural University, Jilin Changchun, 130118, China.
| |
Collapse
|
9
|
Lu S, Andersen JF, Bosio CF, Hinnebusch BJ, Ribeiro JM. Acid phosphatase-like proteins, a biogenic amine and leukotriene-binding salivary protein family from the flea Xenopsylla cheopis. Commun Biol 2023; 6:1280. [PMID: 38110569 PMCID: PMC10728186 DOI: 10.1038/s42003-023-05679-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/06/2023] [Indexed: 12/20/2023] Open
Abstract
The salivary glands of hematophagous arthropods contain pharmacologically active molecules that interfere with host hemostasis and immune responses, favoring blood acquisition and pathogen transmission. Exploration of the salivary gland composition of the rat flea, Xenopsylla cheopis, revealed several abundant acid phosphatase-like proteins whose sequences lacked one or two of their presumed catalytic residues. In this study, we undertook a comprehensive characterization of the tree most abundant X. cheopis salivary acid phosphatase-like proteins. Our findings indicate that the three recombinant proteins lacked the anticipated catalytic activity and instead, displayed the ability to bind different biogenic amines and leukotrienes with high affinity. Moreover, X-ray crystallography data from the XcAP-1 complexed with serotonin revealed insights into their binding mechanisms.
Collapse
Affiliation(s)
- Stephen Lu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA.
| | - John F Andersen
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Christopher F Bosio
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - B Joseph Hinnebusch
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - José M Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| |
Collapse
|
10
|
Sharma L, Kahandal A, Kanagare A, Kulkarni A, Tagad CK. The multifaceted nature of plant acid phosphatases: purification, biochemical features, and applications. J Enzyme Inhib Med Chem 2023; 38:2282379. [PMID: 37985663 PMCID: PMC11003492 DOI: 10.1080/14756366.2023.2282379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023] Open
Abstract
Acid phosphatases (EC 3.1.3.2) are the enzymes that catalyse transphosphorylation reactions and promotes the hydrolysis of numerous orthophosphate esters in acidic media, as a crucial element for the metabolism of phosphate in tissues. Inorganic phosphate (Pi) utilisation and scavenging, as well as the turnover of Pi-rich sources found in plant vacuoles, are major processes in which intracellular and secretory acid phosphatases function. Therefore, a thorough understanding of these enzymes' structural characteristics, specificity, and physiochemical properties is required to comprehend the function of acid phosphatases in plant energy metabolism. Furthermore, acid phosphatases are gaining increasing importance in industrial biotechnology due to their involvement in transphosphorylation processes and their ability to reduce phosphate levels in food products. Hence, this review aims to provide a comprehensive overview of the purification methods employed for isolating acid phosphatases from diverse plant sources, as well as their structural and functional properties. Additionally, the review explores the potential applications of these enzymes in various fields.
Collapse
Affiliation(s)
- Lokesh Sharma
- School of Bioengineering Sciences & Research, MIT Art, Design and Technology University, Pune, India
| | - Amol Kahandal
- School of Bioengineering Sciences & Research, MIT Art, Design and Technology University, Pune, India
| | - Anant Kanagare
- Department of Chemistry, Deogiri College, Aurangabad, India
| | - Atul Kulkarni
- Symbiosis Centre for Nanoscience and Nanotechnology, Symbiosis International (Deemed University), Lavale, India
| | - Chandrakant K. Tagad
- School of Bioengineering Sciences & Research, MIT Art, Design and Technology University, Pune, India
- Department of Biochemistry, S.B.E.S. College of Science, Chhatrapati Sambhajinagar, India
| |
Collapse
|
11
|
He X, Chen A, Liao Z, Zhang Y, Lin G, Zhuang Z, Liu Y, Wei H, Wang Z, Wang Y, Niu J. Diet supplementation of organic zinc positively affects growth, antioxidant capacity, immune response and lipid metabolism in juvenile largemouth bass, Micropterus salmoides. Br J Nutr 2023; 130:1689-1703. [PMID: 37039459 DOI: 10.1017/s0007114523000909] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Zn is an important trace element involved in various biochemical processes in aquatic species. An 8-week rearing trial was thus conducted to investigate the effects of Zn on juvenile largemouth bass (Micropterus salmoides) by feeding seven diets, respectively, supplemented with no Zn (Con), 60 and 120 mg/kg inorganic Zn (Sul60 and Sul120), and 30, 60, 90 and 120 mg/kg organic Zn (Bio30, Bio60, Bio90 and Bio120). Sul120 and Bio120 groups showed significantly higher weight gain and specific growth rate than Con group, with Bio60 group obtaining the lowest viscerosomatic index and hepatosomatic index. 60 or 90 mg/kg organic Zn significantly facilitated whole body Zn retention. Up-regulation of hepatic superoxide dismutase, glutathione peroxidase and catalase activities and decline of malondialdehyde contents indicated augmented antioxidant capacities by organic Zn. Zn treatment also lowered plasma aminotransferase levels while promoting acid phosphatase activity and hepatic transcription levels of alp1, acp1 and lyz-c than deprivation of Zn. The alterations in whole body and liver crude lipid and plasma TAG contents illustrated the regulatory effect of Zn on lipid metabolism, which could be possibly attributed to the changes in hepatic expressions of acc1, pparγ, atgl and cpt1. These findings demonstrated the capabilities of Zn in potentiating growth and morphological performance, antioxidant capacity, immunity as well as regulating lipid metabolism in M. salmoides. Organic Zn could perform comparable effects at same or lower supplementation levels than inorganic Zn, suggesting its higher efficiency. 60 mg/kg supplementation of organic Zn could effectively cover the requirements of M. salmoides.
Collapse
Affiliation(s)
- Xuanshu He
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Anqi Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Zhihong Liao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yufan Zhang
- Beijing Alltech Biological Products Co Ltd, Beijing, People's Republic of China
| | - Gang Lin
- Beijing Alltech Biological Products Co Ltd, Beijing, People's Republic of China
| | - Zhenxiao Zhuang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yantao Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Hanlin Wei
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Ziqiao Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yingjie Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jin Niu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
12
|
Zhang J, Keibler MA, Dong W, Ghelfi J, Cordes T, Kanashova T, Pailot A, Linster CL, Dittmar G, Metallo CM, Lautenschlaeger T, Hiller K, Stephanopoulos G. Stable Isotope-Assisted Untargeted Metabolomics Identifies ALDH1A1-Driven Erythronate Accumulation in Lung Cancer Cells. Biomedicines 2023; 11:2842. [PMID: 37893215 PMCID: PMC10604529 DOI: 10.3390/biomedicines11102842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Using an untargeted stable isotope-assisted metabolomics approach, we identify erythronate as a metabolite that accumulates in several human cancer cell lines. Erythronate has been reported to be a detoxification product derived from off-target glycolytic metabolism. We use chemical inhibitors and genetic silencing to define the pentose phosphate pathway intermediate erythrose 4-phosphate (E4P) as the starting substrate for erythronate production. However, following enzyme assay-coupled protein fractionation and subsequent proteomics analysis, we identify aldehyde dehydrogenase 1A1 (ALDH1A1) as the predominant contributor to erythrose oxidation to erythronate in cell extracts. Through modulating ALDH1A1 expression in cancer cell lines, we provide additional support. We hence describe a possible alternative route to erythronate production involving the dephosphorylation of E4P to form erythrose, followed by its oxidation by ALDH1A1. Finally, we measure increased erythronate concentrations in tumors relative to adjacent normal tissues from lung cancer patients. These findings suggest the accumulation of erythronate to be an example of metabolic reprogramming in cancer cells, raising the possibility that elevated levels of erythronate may serve as a biomarker of certain types of cancer.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (J.Z.); (M.A.K.); (W.D.)
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4367 Belvaux, Luxembourg (A.P.)
- Biomia Aps, Kemitorvet 220, 2800 Kongens Lyngby, Denmark
| | - Mark A. Keibler
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (J.Z.); (M.A.K.); (W.D.)
- Alnylam Pharmaceuticals, Cambridge, MA 02139, USA
| | - Wentao Dong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (J.Z.); (M.A.K.); (W.D.)
- Department of Chemical Engineering, Department of Genetics, Institute for Chemistry, Engineering & Medicine for Human Health, Stanford University, Stanford, CA 94305, USA
| | - Jenny Ghelfi
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4367 Belvaux, Luxembourg (A.P.)
| | - Thekla Cordes
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4367 Belvaux, Luxembourg (A.P.)
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Tamara Kanashova
- Max-Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Arnaud Pailot
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4367 Belvaux, Luxembourg (A.P.)
| | - Carole L. Linster
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4367 Belvaux, Luxembourg (A.P.)
| | - Gunnar Dittmar
- Max-Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
- Luxembourg Institute of Health, L-1445 Strassen, Luxembourg
| | - Christian M. Metallo
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (J.Z.); (M.A.K.); (W.D.)
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Tim Lautenschlaeger
- Department of Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, OH 43221, USA
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Karsten Hiller
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4367 Belvaux, Luxembourg (A.P.)
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (J.Z.); (M.A.K.); (W.D.)
| |
Collapse
|
13
|
Alster CJ, van de Laar A, Goodrich JP, Arcus VL, Deslippe JR, Marshall AJ, Schipper LA. Quantifying thermal adaptation of soil microbial respiration. Nat Commun 2023; 14:5459. [PMID: 37673868 PMCID: PMC10482979 DOI: 10.1038/s41467-023-41096-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023] Open
Abstract
Quantifying the rate of thermal adaptation of soil microbial respiration is essential in determining potential for carbon cycle feedbacks under a warming climate. Uncertainty surrounding this topic stems in part from persistent methodological issues and difficulties isolating the interacting effects of changes in microbial community responses from changes in soil carbon availability. Here, we constructed a series of temperature response curves of microbial respiration (given unlimited substrate) using soils sampled from around New Zealand, including from a natural geothermal gradient, as a proxy for global warming. We estimated the temperature optima ([Formula: see text]) and inflection point ([Formula: see text]) of each curve and found that adaptation of microbial respiration occurred at a rate of 0.29 °C ± 0.04 1SE for [Formula: see text] and 0.27 °C ± 0.05 1SE for [Formula: see text] per degree of warming. Our results bolster previous findings indicating thermal adaptation is demonstrably offset from warming, and may help quantifying the potential for both limitation and acceleration of soil C losses depending on specific soil temperatures.
Collapse
Affiliation(s)
- Charlotte J Alster
- Te Aka Mātuatua School of Science, The University of Waikato, Hamilton, 3240, Aotearoa New Zealand.
- Department of Soil & Physical Sciences, Faculty of Agricultural & Life Sciences, Lincoln University, Lincoln, 7647, Aotearoa New Zealand.
| | - Allycia van de Laar
- Te Aka Mātuatua School of Science, The University of Waikato, Hamilton, 3240, Aotearoa New Zealand
- Manaaki Whenua-LandcareResearch, Hamilton, 3216, Aotearoa New Zealand
| | - Jordan P Goodrich
- Te Aka Mātuatua School of Science, The University of Waikato, Hamilton, 3240, Aotearoa New Zealand
- Ministry for the Environment, Wellington, 6143, Aotearoa New Zealand
| | - Vickery L Arcus
- Te Aka Mātuatua School of Science, The University of Waikato, Hamilton, 3240, Aotearoa New Zealand
| | - Julie R Deslippe
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6012, Aotearoa New Zealand
| | - Alexis J Marshall
- Te Aka Mātuatua School of Science, The University of Waikato, Hamilton, 3240, Aotearoa New Zealand
| | - Louis A Schipper
- Te Aka Mātuatua School of Science, The University of Waikato, Hamilton, 3240, Aotearoa New Zealand
| |
Collapse
|
14
|
Song HC, Yang YX, Lan QG, Cong W. Immunological effects of recombinant Lactobacillus casei expressing pilin MshB fused with cholera toxin B subunit adjuvant as an oral vaccine against Aeromonas veronii infection in crucian carp. FISH & SHELLFISH IMMUNOLOGY 2023:108934. [PMID: 37419434 DOI: 10.1016/j.fsi.2023.108934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/08/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023]
Abstract
Aeromonas veronii is a zoonotic agent capable of infecting fish and mammals, including humans, posing a serious threat to the development of aquaculture and public health safety. Currently, few effective vaccines are available through convenient routes against A. veronii infection. Herein, we developed vaccine candidates by inserting MSH type VI pili B (MshB) from A. veronii as an antigen and cholera toxin B subunit (CTB) as a molecular adjuvant into Lactobacillus casei and evaluated their immunological effect as vaccines in a crucian carp (Carassius auratus) model. The results suggested that recombinant L. casei Lc-pPG-MshB and Lc-pPG-MshB-CTB can be stably inherited for more than 50 generations. Oral administration of recombinant L. casei vaccine candidates stimulated the production of high levels of serum-specific immunoglobulin M (IgM) and increased the activity of acid phosphatase (ACP), alkaline phosphatase (AKP) superoxide dismutase (SOD), lysozyme (LZM), complement 3 (C3) and C4 in crucian carp (carassius auratus) compared to the control group (Lc-pPG612 group and PBS group) without significant changes. Moreover, the expression levels of interleukin-10 (IL-10), interleukin-1β (IL-1β), tumour necrosis factor-α (TNF-α) and transforming growth factor-β (TGF-β) genes in the gills, liver, spleen, kidney and gut of crucian carp orally immunized with recombinant L. casei were significantly upregulated compared to the control groups, indicating that recombinant L. casei induced a significant cellular immune response. In addition, viable recombinant L. casei can be detected and stably colonized in the intestine tract of crucian carp. Particularly, crucian carp immunized orally with Lc-pPG-MshB and Lc-pPG-MshB-CTB exhibited higher survival rates (48% for Lc-pPG-MshB and 60% for Lc-pPG-MshB-CTB) and significantly reduced loads of A. veronii in the major immune organs after A. veronii challenge. Our findings indicated that both recombinant L. casei strains provide favorable immune protection, with Lc-pPG-MshB-CTB in particular being more effective and promising as an ideal candidate for oral vaccination.
Collapse
Affiliation(s)
- Hai-Chao Song
- Marine College, Shandong University, Weihai, Shandong Province, 264209, PR China
| | - Yi-Xuan Yang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, PR China
| | - Qi-Guan Lan
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, PR China
| | - Wei Cong
- Marine College, Shandong University, Weihai, Shandong Province, 264209, PR China.
| |
Collapse
|
15
|
Sang ZW, Bao MN, Liang Y, Chu KH, Wang L. Identification of acid phosphatase (ShACP) from the freshwater crab Sinopotamon henanense and its expression pattern changes in response to cadmium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114762. [PMID: 36931085 DOI: 10.1016/j.ecoenv.2023.114762] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Acid phosphatase(ACP) is an important immune enzyme in crustacean humoral immunity. At present, the research on ACP mainly focuses on the biochemical properties of the enzyme, while few studies on gene expression. In this study, ShACP was cloned and the effect of cadmium stress on the expression and function of ShACP in the freshwater crab Sinopotamon henanense was studied. Analysis of the ShACP sequence and tissue distribution results showed that the cDNA sequence of ShACP was 1629 bp, including 48 bp 5' untranslated region, 1209 bp open reading frame region, and 372 bp 3' untranslated region, encoding 402 amino acids. ShACP contained multiple phosphorylation sites and mainly played a role in the hemolymph. Under low-concentration cadmium stress, the body improved immunity by enhancing the expression of ShACP, while high-concentration cadmium stress inhibited the expression of ShACP. ShACP can promote the phagocytosis of hemocytes, while cadmium stress reduced the phagocytosis of hemocytes. This study provides a theoretical basis for further research on the immune system of crabs and is of great significance for the study of crustacean immune responses under heavy metal stress.
Collapse
Affiliation(s)
- Zhi-Wen Sang
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Min-Nan Bao
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Yue Liang
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Ka-Hou Chu
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Lan Wang
- School of Life Science, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
16
|
Moreira J, Saraiva L, Pinto MM, Cidade H. Bioactive Diarylpentanoids: Insights into the Biological Effects beyond Antitumor Activity and Structure-Activity Relationships. Molecules 2022; 27:6340. [PMID: 36234878 PMCID: PMC9572019 DOI: 10.3390/molecules27196340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 12/03/2022] Open
Abstract
Diarylpentanoids, a class of natural products and their synthetic analogs which are structurally related to chalcones, have gained increasing attention due to their wide array of biological activities, including antitumor, anti-infective, antioxidant, anti-inflammatory, antidiabetic, anti-hyperuricemic, and neuroprotective properties. Previously, we reviewed diarylpentanoids with promising antitumor activity. However, in view of the wide range of biological activities described for this class of compounds, the purpose of this review is to provide a more detailed overview of the synthetic bioactive diarylpentanoids that have been described over the last two decades, beyond simply their antitumor effects. A total of 745 compounds were found, highlighting the main synthetic methodologies used in their synthesis as well as the structure-activity relationship studies and structural features for all activities reported. Collectively, this review highlights the diarylpentanoid scaffold as a promising starting point for the development of new therapeutic agents.
Collapse
Affiliation(s)
- Joana Moreira
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Lucilia Saraiva
- LAQV/REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Madalena M. Pinto
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Honorina Cidade
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| |
Collapse
|
17
|
Kurhaluk N, Tkachenko H, Kamiński P. Biomarkers of oxidative stress, metabolic processes, and lysosomal activity in the muscle tissue of the great tit (Parus major) living in sodium industry and agricultural areas in Inowrocław region (central part of northern Poland). ENVIRONMENTAL RESEARCH 2022; 210:112907. [PMID: 35150715 DOI: 10.1016/j.envres.2022.112907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
An region of ecological hazard (EHR) is an area where, as a result of intensive human economic activity, degradation of components of the natural environment has taken place, leading to the deterioration of the ecological balance. EHR management is a globalised ever-increasing challenge. To eliminate the hazardous effect of these pollutants, research has been accelerated worldwide. The current study analyzed the specific biomarkers of the lipid and protein oxidation, total antioxidative status, activities of antioxidant enzymes (superoxide dismutase, catalase, glutathione reductase and peroxidase), lysosomal enzymes (alanyl aminopeptidase, leucyl aminopeptidase, acid phosphatase), and biomarkers of aerobic and anaerobic metabolic pathways (activities of alanine and aspartate aminotransferases, succinate dehydrogenase, lactate dehydrogenase, lactate and pyruvate levels) in skeletal muscle tissue of wild great tit nestlings in environments with different levels of anthropogenic pressure such as sodium industry and agriculture in the central part of northern Poland (Inowrocław EHR). Control samples were collected from Tuchola Forest and Borkowo village, where no direct sources of contamination were found. The relevance of the study was to assess the changes in lysosomal functioning caused by pollution-induced oxidative stress that may indicate multidirectional adaptative mechanisms of metabolic processes occurring in the wild birds to compensate for the negative effects of contamination. It was shown that the initiation of oxidative stress caused by anthropogenic pollution shifted the balance of the normal functioning of lysosomal enzymes towards their increased activity. A general tendency towards an increase in the intensity of lipid peroxidation processes with an increasing level of oxidatively modified proteins (aldehydic and ketonic derivatives) and a simultaneous reduction in the TAS was observed in the muscle tissue of great tits living in the anthropogenically modified areas. The intensity of lipid peroxidation and protein damage caused changes and reorganization of the energy-related metabolic pathways in the muscle tissue of wild great tits living in the sodium industry and agricultural areas of the EHR.
Collapse
Affiliation(s)
- Natalia Kurhaluk
- Department of Biology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Arciszewski Str. 1b, 76-200, Słupsk, Poland.
| | - Halyna Tkachenko
- Department of Biology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Arciszewski Str. 1b, 76-200, Słupsk, Poland
| | - Piotr Kamiński
- Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Faculty of Medicine, Department of Medical Biology and Biochemistry, Department of Ecology and Environmental Protection, M. Skłodowska-Curie Str. 9, PL, 85094, Bydgoszcz, Poland; University of Zielona Góra, Faculty of Biological Sciences, Department of Biotechnology, Prof. Z. Szafran Str. 1, PL, 65516, Zielona Góra, Poland
| |
Collapse
|
18
|
Song Y, Wang X, Bu X, Huang Q, Qiao F, Chen X, Shi Q, Qin J, Chen L. A Comparation Between Different Iron Sources on Growth Performance, Iron Utilization, Antioxidant Capacity and Non-specific Immunity in Eriocheir sinensis. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
19
|
Alves Lima F, Rola JC, Gomes de Freitas MM, de Almeida Afonso JMM, de Resende MM. Acid Phosphatase Immobilization and Production Study by
Trichoderma
spp. in Soybean Molasses. Chem Eng Technol 2022. [DOI: 10.1002/ceat.202100208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Frederico Alves Lima
- Federal University of Uberlândia Chemical Engineering Faculty Av. João Naves de Ávila 2121, Campus Santa Mônica, Bloco 1K 38408-144 Uberlândia MG Brazil
| | - Juliana Cristina Rola
- Federal University of Uberlândia Chemical Engineering Faculty Av. João Naves de Ávila 2121, Campus Santa Mônica, Bloco 1K 38408-144 Uberlândia MG Brazil
| | - Matheus Marçal Gomes de Freitas
- Federal University of Uberlândia Chemical Engineering Faculty Av. João Naves de Ávila 2121, Campus Santa Mônica, Bloco 1K 38408-144 Uberlândia MG Brazil
| | | | - Miriam Maria de Resende
- Federal University of Uberlândia Chemical Engineering Faculty Av. João Naves de Ávila 2121, Campus Santa Mônica, Bloco 1K 38408-144 Uberlândia MG Brazil
| |
Collapse
|
20
|
Han Y, Quan K, Chen J, Qiu H. Advances and prospects on acid phosphatase biosensor. Biosens Bioelectron 2020; 170:112671. [DOI: 10.1016/j.bios.2020.112671] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/21/2020] [Accepted: 09/30/2020] [Indexed: 02/01/2023]
|
21
|
Amoozadeh M, Behbahani M, Mohabatkar H, Keyhanfar M. Analysis and comparison of alkaline and acid phosphatases of Gram-negative bacteria by bioinformatic and colorimetric methods. J Biotechnol 2020; 308:56-62. [DOI: 10.1016/j.jbiotec.2019.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/20/2019] [Accepted: 11/03/2019] [Indexed: 11/17/2022]
|
22
|
A Novel Optical Method To Reversibly Control Enzymatic Activity Based On Photoacids. Sci Rep 2019; 9:14372. [PMID: 31591434 PMCID: PMC6779743 DOI: 10.1038/s41598-019-50867-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/20/2019] [Indexed: 01/31/2023] Open
Abstract
Most biochemical reactions depend on the pH value of the aqueous environment and some are strongly favoured to occur in an acidic environment. A non-invasive control of pH to tightly regulate such reactions with defined start and end points is a highly desirable feature in certain applications, but has proven difficult to achieve so far. We report a novel optical approach to reversibly control a typical biochemical reaction by changing the pH and using acid phosphatase as a model enzyme. The reversible photoacid G-acid functions as a proton donor, changing the pH rapidly and reversibly by using high power UV LEDs as an illumination source in our experimental setup. The reaction can be tightly controlled by simply switching the light on and off and should be applicable to a wide range of other enzymatic reactions, thus enabling miniaturization and parallelization through non-invasive optical means.
Collapse
|
23
|
CdSe/ZnS quantum dots coated with carboxy-PEG and modified with the terbium(III) complex of guanosine 5'-monophosphate as a fluorescent nanoprobe for ratiometric determination of arsenate via its inhibition of acid phosphatase activity. Mikrochim Acta 2019; 186:45. [PMID: 30610384 DOI: 10.1007/s00604-018-3125-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/27/2018] [Indexed: 10/27/2022]
Abstract
A ratiometric fluorometric method is described for the determination of arsenate via its inhibitory effect on the activity of the enzyme acid phosphatase. A nanoprobe was designed that consists of CdSe/ZnS quantum dots (QDs) coated with the terbium(III) complex of guanosine monophosphate (Tb-GMP). The nanoprobe was synthesized from carboxylated QDs, Tb(III) and GMP via binding of Tb(III) by both the carboxy and the phosphate groups. The nanoprobe, under single-wavelength excitation (at 280 nm), displays dual (red and green) emission, with peaks at around 652 nm from the QDs, and at 547 nm from the Tb-GMP coordination polymers. It is shown to be a viable nanoprobe for fluorometric determination of As(V) detection through it inhibitory action on the activity of acid phosphatase (ACP). The enzyme destroys the Tb-GMP structure via hydrolysis of GMP, and hence the fluorescence of the Tb-GMP complex is quenched. In contrast, the fluorescence of the CdSe/ZnS QDs remains inert to ACP. It therefore can serve as an internal reference signal. In the presence of arsenate (an analog of phosphate), the activity of ACP is inhibited due to competitive binding. Thus, hydrolysis of GMP is prevented. These findings were used to design a ratiometric fluorometric method for the quantification of As(V). The ratio of fluorescences at 547 and 652 nm increases linearly in the 0.5 to 200 ppb As(V) concentation range, and the limit of detection is 0.39 ppb. Under a UV lamp, the probe shows distinguishable color from green to red on increasing the concentration of As(V). Graphical abstract Schematic illustration of CdSe/ZnS quantum dot coated with carboxy-PEG and modified with the terbium(III)-GMP complex as a fluorescent nanoprobe for ratiometric determination of arsenate via its inhibition of ACP activity.
Collapse
|
24
|
Sun L, Wang L, Zheng Z, Liu D. Identification and characterization of an Arabidopsis phosphate starvation-induced secreted acid phosphatase as a vegetative storage protein. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 277:278-284. [PMID: 30466593 DOI: 10.1016/j.plantsci.2018.09.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 09/17/2018] [Accepted: 09/21/2018] [Indexed: 06/09/2023]
Abstract
Induction and secretion of acid phosphatases is an adaptive response of plants to phosphate starvation. The secreted acid phosphatases are believed to scavenge phosphate from organophosphate compounds in the rhizosphere, thereby increasing phosphate availability for plant absorption. To date, however, all of the characterized phosphate starvation-induced secreted acid phosphatases in plants belong to a unique acid phosphatases subfamily, called purple acid phosphatase. In this work, we identified a phosphate starvation-induced secreted acid phosphatase in Arabidopsis as a vegetative storage protein, AtVSP3. AtVSP3 exists as a monomer with molecular weight of 29 kDa. The activity of recombinant AtVSP3 protein is activated by Mg2+, Co2+, and Ca2+. AtVSP3 has an optimal pH of 6.5 for its APase activity and is relatively thermostable. The transcription of AtVSP3 is induced in roots by phosphate starvation, and the accumulation of AtVSP3 protein is high in roots and siliques. Additional research is needed to determine the function of AtVSP3 in plant responses to stress conditions.
Collapse
Affiliation(s)
- Lichao Sun
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Liangsheng Wang
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Zai Zheng
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Dong Liu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, People's Republic of China.
| |
Collapse
|
25
|
孟 超, 汤 传, 梁 军. [Progress of Biomarkers in Diagnosis of Bone Metastases of Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2018; 21:615-619. [PMID: 30172269 PMCID: PMC6105350 DOI: 10.3779/j.issn.1009-3419.2018.08.07] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/06/2018] [Accepted: 06/08/2018] [Indexed: 12/02/2022]
Abstract
Bone is one of the most metastatic sites of advanced malignant tumors. With the continuous improvement of diagnosis and treatment of malignant tumors, the survival time of patients is prolonged and incidence of bone metastases also increases. Lung cancer is the leading cause of cancer-related mortality worldwide. It is estimated that the incidence of bone metastases in patients advanced lung cancer is about 30%-40%. The traditional diagnosis of bone metastases in lung cancer is based on clinical symptoms, X ray, computed tomography (CT), magnetic resonance imaging (MRI) and pathology. Recently, a large number of exploratory studies have reported blood biomarkers as indicators of bone metastasis screening and efficacy evaluation. In this review, we summarize the progress of biomarkers in diagnosis of bone metastases of lung cancer.
.
Collapse
Affiliation(s)
- 超 孟
- />102206 北京,北京大学国际医院肿瘤内科Department of Oncology, Peking University International Hospital, Beijing 102206, China
| | - 传昊 汤
- />102206 北京,北京大学国际医院肿瘤内科Department of Oncology, Peking University International Hospital, Beijing 102206, China
| | - 军 梁
- />102206 北京,北京大学国际医院肿瘤内科Department of Oncology, Peking University International Hospital, Beijing 102206, China
| |
Collapse
|
26
|
Dorsey BM, McLauchlan CC, Jones MA. Evidence That Speciation of Oxovanadium Complexes Does Not Solely Account for Inhibition of Leishmania Acid Phosphatases. Front Chem 2018; 6:109. [PMID: 29707535 PMCID: PMC5906595 DOI: 10.3389/fchem.2018.00109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 03/26/2018] [Indexed: 11/13/2022] Open
Abstract
Leishmaniasis is an endemic disease affecting a diverse spectra of populations, with 1.6 million new cases reported each year. Current treatment options are costly and have harsh side effects. New therapeutic options that have been previously identified, but still underappreciated as potential pharmaceutical targets, are Leishmania secreted acid phosphatases (SAP). These acid phosphatases, which are reported to play a role in the survival of the parasite in the sand fly vector, and in homing to the host macrophage, are inhibited by orthovanadate and decavanadate. Here, we use L. tarentolae to further evaluate these inhibitors. Using enzyme assays, and UV-visible spectroscopy, we investigate which oxovanadium starting material (orthovanadate or decavanadate) is a better inhibitor of L. tarentolae secreted acid phosphatase activity in vitro at the same total moles of vanadium. Considering speciation and total vanadium concentration, decavanadate is a consistently better inhibitor of SAP in our conditions, especially at low substrate:inhibitor ratios.
Collapse
Affiliation(s)
- Benjamin M Dorsey
- Department of Chemistry, Illinois State University, Normal, IL, United States
| | - Craig C McLauchlan
- Department of Chemistry, Illinois State University, Normal, IL, United States
| | - Marjorie A Jones
- Department of Chemistry, Illinois State University, Normal, IL, United States
| |
Collapse
|
27
|
Alster CJ, Baas P, Wallenstein MD, Johnson NG, von Fischer JC. Temperature Sensitivity as a Microbial Trait Using Parameters from Macromolecular Rate Theory. Front Microbiol 2016; 7:1821. [PMID: 27909429 PMCID: PMC5112240 DOI: 10.3389/fmicb.2016.01821] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/28/2016] [Indexed: 11/21/2022] Open
Abstract
The activity of soil microbial extracellular enzymes is strongly controlled by temperature, yet the degree to which temperature sensitivity varies by microbe and enzyme type is unclear. Such information would allow soil microbial enzymes to be incorporated in a traits-based framework to improve prediction of ecosystem response to global change. If temperature sensitivity varies for specific soil enzymes, then determining the underlying causes of variation in temperature sensitivity of these enzymes will provide fundamental insights for predicting nutrient dynamics belowground. In this study, we characterized how both microbial taxonomic variation as well as substrate type affects temperature sensitivity. We measured β-glucosidase, leucine aminopeptidase, and phosphatase activities at six temperatures: 4, 11, 25, 35, 45, and 60°C, for seven different soil microbial isolates. To calculate temperature sensitivity, we employed two models, Arrhenius, which predicts an exponential increase in reaction rate with temperature, and Macromolecular Rate Theory (MMRT), which predicts rate to peak and then decline as temperature increases. We found MMRT provided a more accurate fit and allowed for more nuanced interpretation of temperature sensitivity in all of the enzyme × isolate combinations tested. Our results revealed that both the enzyme type and soil isolate type explain variation in parameters associated with temperature sensitivity. Because we found temperature sensitivity to be an inherent and variable property of an enzyme, we argue that it can be incorporated as a microbial functional trait, but only when using the MMRT definition of temperature sensitivity. We show that the Arrhenius metrics of temperature sensitivity are overly sensitive to test conditions, with activation energy changing depending on the temperature range it was calculated within. Thus, we propose the use of the MMRT definition of temperature sensitivity for accurate interpretation of temperature sensitivity of soil microbial enzymes.
Collapse
Affiliation(s)
- Charlotte J. Alster
- Department of Biology, Colorado State University, Fort CollinsCO, USA
- Graduate Degree Program in Ecology, Colorado State University, Fort CollinsCO, USA
| | - Peter Baas
- Natural Resource Ecology Laboratory, Colorado State University, Fort CollinsCO, USA
| | - Matthew D. Wallenstein
- Graduate Degree Program in Ecology, Colorado State University, Fort CollinsCO, USA
- Natural Resource Ecology Laboratory, Colorado State University, Fort CollinsCO, USA
- Department of Ecosystem Science and Sustainability, Colorado State University, Fort CollinsCO, USA
| | - Nels G. Johnson
- National Institute for Mathematical and Biological Synthesis, University of Tennessee, KnoxvilleTN, USA
| | - Joseph C. von Fischer
- Department of Biology, Colorado State University, Fort CollinsCO, USA
- Graduate Degree Program in Ecology, Colorado State University, Fort CollinsCO, USA
| |
Collapse
|
28
|
Souza AA, Leitão VO, Ramada MH, Mehdad A, Georg RDC, Ulhôa CJ, de Freitas SM. Trichoderma harzianum Produces a New Thermally Stable Acid Phosphatase, with Potential for Biotechnological Application. PLoS One 2016; 11:e0150455. [PMID: 26938873 PMCID: PMC4777480 DOI: 10.1371/journal.pone.0150455] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/12/2016] [Indexed: 11/18/2022] Open
Abstract
Acid phosphatases (ACPases) are produced by a variety of fungi and have gained attention due their biotechnological potential in industrial, diagnosis and bioremediation processes. These enzymes play a specific role in scavenging, mobilization and acquisition of phosphate, enhancing soil fertility and plant growth. In this study, a new ACPase from Trichoderma harzianum, named ACPase II, was purified and characterized as a glycoprotein belonging to the acid phosphatase family. ACPase II presents an optimum pH and temperature of 3.8 and 65 °C, respectively, and is stable at 55 °C for 120 min, retaining 60% of its activity. The enzyme did not require metal divalent ions, but was inhibited by inorganic phosphate and tungstate. Affinity for several phosphate substrates was observed, including phytate, which is the major component of phosphorus in plant foods. The inhibition of ACPase II by tungstate and phosphate at different pH values is consistent with the inability of the substrate to occupy its active site due to electrostatic contacts that promote conformational changes, as indicated by fluorescence spectroscopy. A higher affinity for tungstate rather than phosphate at pH 4.0 was observed, in accordance with its highest inhibitory effect. Results indicate considerable biotechnological potential of the ACPase II in soil environments.
Collapse
Affiliation(s)
- Amanda Araújo Souza
- Laboratory of Biophysics, Department of Cellular Biology, University of Brasília, 70910-900, Brasília, Brazil
| | - Vanessa Oliveira Leitão
- Laboratory of Enzymology, Department of Cellular Biology, University of Brasília, 70910-900, Brasília, Brazil
| | - Marcelo Henrique Ramada
- Laboratory of Mass Espectrometry, Embrapa Recursos Genéticos e Biotecnologia – 70770-917, Brasília, Brazil
| | - Azadeh Mehdad
- Laboratory of Biophysics, Department of Cellular Biology, University of Brasília, 70910-900, Brasília, Brazil
| | - Raphaela de Castro Georg
- Laboratory of Enzymology, Institute of Biology, University Federal of Goiás, 74001-970, Goiania, Brazil
| | - Cirano José Ulhôa
- Laboratory of Enzymology, Institute of Biology, University Federal of Goiás, 74001-970, Goiania, Brazil
| | - Sonia Maria de Freitas
- Laboratory of Biophysics, Department of Cellular Biology, University of Brasília, 70910-900, Brasília, Brazil
- * E-mail:
| |
Collapse
|
29
|
Leyria J, Fruttero LL, Nazar M, Canavoso LE. The Role of DmCatD, a Cathepsin D-Like Peptidase, and Acid Phosphatase in the Process of Follicular Atresia in Dipetalogaster maxima (Hemiptera: Reduviidae), a Vector of Chagas' Disease. PLoS One 2015; 10:e0130144. [PMID: 26091289 PMCID: PMC4474837 DOI: 10.1371/journal.pone.0130144] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 05/18/2015] [Indexed: 11/18/2022] Open
Abstract
In this work, we have investigated the involvement of DmCatD, a cathepsin D-like peptidase, and acid phosphatase in the process of follicular atresia of Dipetalogaster maxima, a hematophagous insect vector of Chagas' disease. For the studies, fat bodies, ovaries and hemolymph were sampled from anautogenous females at representative days of the reproductive cycle: pre-vitellogenesis, vitellogenesis as well as early and late atresia. Real time PCR (qPCR) and western blot assays showed that DmCatD was expressed in fat bodies and ovaries at all reproductive stages, being the expression of its active form significantly higher at the atretic stages. In hemolymph samples, only the immunoreactive band compatible with pro-DmCatD was observed by western blot. Acid phosphatase activity in ovarian tissues significantly increased during follicular atresia in comparison to pre-vitellogenesis and vitellogenesis. A further enzyme characterization with inhibitors showed that the high levels of acid phosphatase activity in atretic ovaries corresponded mainly to a tyrosine phosphatase. Immunofluorescence assays demonstrated that DmCatD and tyrosine phosphatase were associated with yolk bodies in vitellogenic follicles, while in atretic stages they displayed a different cellular distribution. DmCatD and tyrosine phosphatase partially co-localized with vitellin. Moreover, their interaction was supported by FRET analysis. In vitro assays using homogenates of atretic ovaries as the enzyme source and enzyme inhibitors demonstrated that DmCatD, together with a tyrosine phosphatase, were necessary to promote the degradation of vitellin. Taken together, the results strongly suggested that both acid hydrolases play a central role in early vitellin proteolysis during the process of follicular atresia.
Collapse
Affiliation(s)
- Jimena Leyria
- Departamento de Bioquímica Clínica, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, CP 5000, Argentina
| | - Leonardo L. Fruttero
- Departamento de Bioquímica Clínica, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, CP 5000, Argentina
| | - Magalí Nazar
- Departamento de Bioquímica Clínica, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, CP 5000, Argentina
| | - Lilián E. Canavoso
- Departamento de Bioquímica Clínica, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, CP 5000, Argentina
- * E-mail:
| |
Collapse
|
30
|
Zhou ZY, Packialakshmi B, Makkar SK, Dridi S, Rath NC. Effect of butyrate on immune response of a chicken macrophage cell line. Vet Immunol Immunopathol 2014; 162:24-32. [PMID: 25278494 DOI: 10.1016/j.vetimm.2014.09.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/22/2014] [Accepted: 09/12/2014] [Indexed: 12/14/2022]
Abstract
Butyric acid is a major short chain fatty acid (SCFA), produced in the gastrointestinal tract by anaerobic bacterial fermentation, that has beneficial health effects in many species including poultry. To understand the immunomodulating effects of butyrate on avian macrophage, we treated a naturally transformed line of chicken macrophage cells named HTC with Na-butyrate in the absence or presence of Salmonella typhimurium lipopolysaccharide (LPS) or phorbol-12-myristate-13-acetate (PMA), a metabolic activator, evaluating its various functional parameters. The results demonstrate that, butyrate by itself had no significant effect on variables such as nitric oxide (NO) production and the expression of genes associated with various inflammatory cytokines but it inhibited NO production, and reduced the expression of cytokines such as IL-1β, IL-6, IFN-γ, and IL-10 in LPS-stimulated cells. Butyrate decreased the expression of TGF-β3 in the presence or absence of LPS, while it had no effect on IL-4, Tβ4, and MMP2 gene expression. In addition, butyrate augmented PMA induced oxidative burst indicated by DCF-DA oxidation and restored LPS induced attenuation of tartrate resistant acid phosphatase (TRAP) activity. Although butyrate had no significant effect on phagocytosis or matrix metalloproteinase (MMP) activities of resting macrophages, it significantly suppressed the effects induced by their respective stimulants such as LPS induced phagocytosis and PMA induced MMP expression. These results suggest that butyrate has immunomodulatory property in the presence of agents that incite the cells thus, has potential to control inflammation and restore immune homeostasis.
Collapse
Affiliation(s)
- Z Y Zhou
- Department of Veterinary Medicine, Rongchang Campus of Southwest University, 160 Xueyuan Road, Chongqing 402460, Rongchang County, China; USDA/ARS, Poultry Production and Product Safety Research Unit, Poultry Science Center, University of Arkansas, Fayetteville, AR 72701, USA
| | - B Packialakshmi
- USDA/ARS, Poultry Production and Product Safety Research Unit, Poultry Science Center, University of Arkansas, Fayetteville, AR 72701, USA; Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA
| | - S K Makkar
- USDA/ARS, Poultry Production and Product Safety Research Unit, Poultry Science Center, University of Arkansas, Fayetteville, AR 72701, USA; Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - S Dridi
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - N C Rath
- USDA/ARS, Poultry Production and Product Safety Research Unit, Poultry Science Center, University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
31
|
Srivastava PK, Anand A. The inhibitory effect of metals and other ions on acid phosphatase activity from Vigna aconitifolia seeds. Prep Biochem Biotechnol 2014; 45:33-41. [PMID: 24547935 DOI: 10.1080/10826068.2014.887578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Sensitivity of acid phosphatase from Vigna aconitifolia seeds to metal ions, fluoride, and phosphate was examined. All the effectors had different degree of inhibitory effect on the enzyme. Among metal ions, molybdate and ferric ion were observed to be most potent inhibitors and both exhibited mixed type of inhibition. Acid phosphatase activity was inhibited by Cu2+ in a noncompetitive manner. Zn and Mn showed mild inhibition on the enzyme activity. Inhibition kinetics analysis explored molybdate as a potent inhibitor for acid phosphatase in comparison with other effectors used in this study. Fluoride was the next most strong inhibitor for the enzyme activity, and caused a mixed type of inhibition. Phosphate inhibited the enzyme competitively, which demonstrates that inhibition due to phosphate is one of the regulatory factors for enzyme activity.
Collapse
Affiliation(s)
- Pramod Kumar Srivastava
- a Department of Biochemistry, Faculty of Science , Banaras Hindu University , Varanasi , India
| | | |
Collapse
|
32
|
Freitas-Mesquita AL, Meyer-Fernandes JR. Ecto-nucleotidases and Ecto-phosphatases from Leishmania and Trypanosoma parasites. Subcell Biochem 2014; 74:217-252. [PMID: 24264248 DOI: 10.1007/978-94-007-7305-9_10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Ecto-enzymes can be defined as membrane-bound proteins that have their active site facing the extracellular millieu. In trypanosomatids, the physiological roles of these enzymes remain to be completed elucidated; however, many important events have already been related to them, such as the survival of parasites during their complex life cycle and the successful establishment of host infection. This chapter focuses on two remarkable classes of ecto-enzymes: ecto-nucleotidases and ecto-phosphatases, summarizing their occurrence and possible physiological roles in Leishmania and Trypanosoma genera. Ecto-nucleotidases are characterized by their ability to hydrolyze extracellular nucleotides, playing an important role in purinergic signaling. By the action of these ecto-enzymes, parasites are capable of modulating the host immune system, which leads to a successful parasite infection. Furthermore, ecto-nucleotidases are also involved in the purine salvage pathway, acting in the generation of nucleosides that are able to cross plasma membrane via specialized transporters. Another important ecto-enzyme present in a vast number of pathogenic organisms is the ecto-phosphatase. These enzymes are able to hydrolyze extracellular phosphorylated substrates, releasing free inorganic phosphate that can be internalized by the cell, crossing the plasma membrane through a Pi-transporter. Ecto-phosphatases are also involved in the invasion and survival of parasite in the host cells. Several alternative functions have been suggested for these enzymes in parasites, such as participation in their proliferation, differentiation, nutrition and protection. In this context, the present chapter provides an overview of recent discoveries related to the occurrence of ecto-nucleotidase and ecto-phosphatase activities in Leishmania and Trypanosoma parasites.
Collapse
|
33
|
Buchowiecka AK. Puzzling over protein cysteine phosphorylation – assessment of proteomic tools for S-phosphorylation profiling. Analyst 2014; 139:4118-23. [DOI: 10.1039/c4an00724g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The article provides useful information necessary for designing experiments in the emerging cysteine phosphoproteomics.
Collapse
Affiliation(s)
- A. K. Buchowiecka
- Institute of Technical Biochemistry
- Lodz University of Technology
- 90-924 Lodz, Poland
| |
Collapse
|
34
|
Anand A, Srivastava PK. Isolation and enzymatic properties of a nonspecific acid phosphatase from Vigna aconitifolia seeds. Biotechnol Appl Biochem 2013; 61:145-52. [PMID: 23745690 DOI: 10.1002/bab.1131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 06/04/2013] [Indexed: 11/11/2022]
Abstract
Acid phosphatase (EC 3.1.3.2) from Vigna aconitifolia seeds was purified to apparent homogeneity by using ammonium sulfate fractionation and cation-exchange chromatography [carboxymethyl (CM) cellulose]. The enzyme was 228-fold purified with 14.6% recovery. Analytical gel filtration chromatography on Sephadex G-200 column showed that Mr of native enzyme was 58 kDa and denaturing PAGE demonstrated that it was made up of two subunits of 24 and 27 kDa. The enzyme showed its optimum activity at pH 5.0 and 60°C. It exhibited broad substrate specificity and showed a higher specificity constant for para-nitrophenyl phosphate, Na β-naphthyl phosphate, and adenosine monophosphate (AMP). Cu²⁺, Mo⁶⁺, Fe³⁺, phosphate, and fluoride ions were reported as strong inhibitors for the enzyme. Active site study for the enzyme demonstrated that tryptophan and aspartic acid may be important for the catalysis.
Collapse
Affiliation(s)
- Asha Anand
- Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi, India
| | | |
Collapse
|