1
|
Koo A, Ghate V, Zhou W. Direct seeding compromised the vitamin C content of baby vegetables and the glucosinolate content of mature vegetables in Asian leafy brassicas. Food Chem 2024; 437:137783. [PMID: 37948796 DOI: 10.1016/j.foodchem.2023.137783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 10/08/2023] [Accepted: 10/15/2023] [Indexed: 11/12/2023]
Abstract
This study hypothesised that direct seeding may compromise the nutritional quality of crops, as they may not release the nutrients that are triggered by the stress of transplantation. To that end, the effect of direct seeding on the nutrient content of bok choy (Brassica rapa subsp. chinensis), choy sum (Brassica rapa subsp. chinensis var. parachinensis) and mao bai (Brassica oleracea var. capitata) was investigated at the baby- and commercially-mature stages. Direct seeding had distinct effects on each stage. Directly seeded baby vegetables had 39 to 51 % less ascorbic acid and 21 to 30 % less vitamin K than transplanted baby vegetables (p < 0.05). For mature crops, direct seeding decreased the total glucosinolate content by 12 to 40 % (p < 0.05). Thus, while direct seeding may profit vegetable producers, its impact on nutrient quality merits careful consideration.
Collapse
Affiliation(s)
- Andrea Koo
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, University Hall, Tan Chin Tuan Wing Level 5, #05-03, 21 Lower Kent Ridge Road, Singapore 119077, Singapore; Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore 117542, Singapore
| | - Vinayak Ghate
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore 117542, Singapore
| | - Weibiao Zhou
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, University Hall, Tan Chin Tuan Wing Level 5, #05-03, 21 Lower Kent Ridge Road, Singapore 119077, Singapore; Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou Industrial Park, Jiangsu 215123, People's Republic of China.
| |
Collapse
|
2
|
Nicolas-Espinosa J, Garcia-Ibañez P, Lopez-Zaplana A, Yepes-Molina L, Albaladejo-Marico L, Carvajal M. Confronting Secondary Metabolites with Water Uptake and Transport in Plants under Abiotic Stress. Int J Mol Sci 2023; 24:ijms24032826. [PMID: 36769147 PMCID: PMC9917477 DOI: 10.3390/ijms24032826] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Phenolic compounds and glucosinolates are secondary plant metabolites that play fundamental roles in plant resistance to abiotic stress. These compounds have been found to increase in stress situations related to plant adaptive capacity. This review assesses the functions of phenolic compounds and glucosinolates in plant interactions involving abiotic stresses such as drought, salinity, high temperature, metals toxicity, and mineral deficiency or excess. Furthermore, their relation with water uptake and transport mediated through aquaporins is reviewed. In this way, the increases of phenolic compounds and glucosinolate synthesis have been related to primary responses to abiotic stress and induction of resistance. Thus, their metabolic pathways, root exudation, and external application are related to internal cell and tissue movement, with a lack of information in this latter aspect.
Collapse
|
3
|
Renner IE, Gardner G, Fritz VA. Manipulation of Continuous and End-of-Day Red/Far-Red Light Ratios Affects Glucobrassicin and Gluconasturtiin Accumulation in Cabbage ( Brassica oleracea) and Watercress ( Nasturtium officinale), Respectively. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14126-14142. [PMID: 34787406 DOI: 10.1021/acs.jafc.1c02343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cabbage (Brassica oleracea) and watercress (Nasturtium officinale) produce glucobrassicin (GBS) and gluconasturtiin (GNST), precursors of chemopreventive compounds. Their accumulation is affected by environmental signals. We studied the impact of the red to far-red light (R/FR) ratio on GBS concentration in red ″Ruby Ball″ and green ″Tiara″ cabbage. Foliar shading, via weed surrogates that competed with cabbage plants for specific durations, induced R/FR variation among treatments. ″Ruby Ball″ GBS concentrations were the highest when R/FR within the canopy was the lowest. ″Tiara″ was unaffected by competition. The same trend was observed in a controlled environment using R and FR LEDs without weeds present. ″Ruby Ball″ subjected to an R/FR = 0.3 treatment had 2.5- and 1.4-fold greater GBS concentration compared to R/FR = 1.1 and 5.0 treatments combined. Watercress given end-of-day (EOD) R and/or FR pulses after the main photoperiod had the lowest GNST concentrations after an EOD FR pulse but the highest concentrations after an R followed by FR pulse.
Collapse
Affiliation(s)
- Ilse E Renner
- Department of Horticultural Science, University of Minnesota-Twin Cities, 1970 Folwell Avenue, Saint Paul, Minnesota 55108, United States
| | - Gary Gardner
- Department of Horticultural Science, University of Minnesota-Twin Cities, 1970 Folwell Avenue, Saint Paul, Minnesota 55108, United States
| | - Vincent A Fritz
- Southern Research and Outreach Center, University of Minnesota-Twin Cities, 35838 120th Street, Waseca, Minnesota 56093, United States
| |
Collapse
|
4
|
Ortega-Hernández E, Antunes-Ricardo M, Jacobo-Velázquez DA. Improving the Health-Benefits of Kales ( Brassica oleracea L. var. acephala DC) through the Application of Controlled Abiotic Stresses: A Review. PLANTS (BASEL, SWITZERLAND) 2021; 10:2629. [PMID: 34961097 PMCID: PMC8706317 DOI: 10.3390/plants10122629] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 12/16/2022]
Abstract
Kale (Brassica oleracea L. var. acephala DC) is a popular cruciferous vegetable originating from Central Asia, and is well known for its abundant bioactive compounds. This review discusses the main kale phytochemicals and emphasizes molecules of nutraceutical interest, including phenolics, carotenoids, and glucosinolates. The preventive and therapeutic properties of kale against chronic and degenerative diseases are highlighted according to the most recent in vitro, in vivo, and clinical studies reported. Likewise, it is well known that the application of controlled abiotic stresses can be used as an effective tool to increase the content of phytochemicals with health-promoting properties. In this context, the effect of different abiotic stresses (saline, exogenous phytohormones, drought, temperature, and radiation) on the accumulation of secondary metabolites in kale is also presented. The information reviewed in this article can be used as a starting point to further validate through bioassays the effects of abiotically stressed kale on the prevention and treatment of chronic and degenerative diseases.
Collapse
Affiliation(s)
- Erika Ortega-Hernández
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo León C.P. 64849, Mexico;
| | - Marilena Antunes-Ricardo
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo León C.P. 64849, Mexico;
| | - Daniel A. Jacobo-Velázquez
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramón Corona 2514, Nuevo México, Zapopan, Jalisco C.P. 45138, Mexico
| |
Collapse
|
5
|
Liu S, Huang H, Yi X, Zhang Y, Yang Q, Zhang C, Fan C, Zhou Y. Dissection of genetic architecture for glucosinolate accumulations in leaves and seeds of Brassica napus by genome-wide association study. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1472-1484. [PMID: 31820843 PMCID: PMC7206990 DOI: 10.1111/pbi.13314] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/01/2019] [Accepted: 12/04/2019] [Indexed: 05/04/2023]
Abstract
Glucosinolates (GSLs), whose degradation products have been shown to be increasingly important for human health and plant defence, compose important secondary metabolites found in the order Brassicales. It is highly desired to enhance pest and disease resistance by increasing the leaf GSL content while keeping the content low in seeds of Brassica napus, one of the most important oil crops worldwide. Little is known about the regulation of GSL accumulation in the leaves. We quantified the levels of 9 different GSLs and 15 related traits in the leaves of 366 accessions and found that the seed and leaf GSL content were highly correlated (r = 0.79). A total of 78 loci were associated with GSL traits, and five common and eleven tissue-specific associated loci were related to total leaf and seed GSL content. Thirty-six candidate genes were inferred to be involved in GSL biosynthesis. The candidate gene BnaA03g40190D (BnaA3.MYB28) was validated by DNA polymorphisms and gene expression analysis. This gene was responsible for high leaf/low seed GSL content and could explain 30.62% of the total leaf GSL variation in the low seed GSL panel and was not fixed during double-low rapeseed breeding. Our results provide new insights into the genetic basis of GSL variation in leaves and seeds and may facilitate the metabolic engineering of GSLs and the breeding of high leaf/low seed GSL content in B. napus.
Collapse
Affiliation(s)
- Sheng Liu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of Agriculture and Rural AffairsOil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhanChina
| | - Huibin Huang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Xinqi Yi
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Yuanyuan Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Qingyong Yang
- Hubei Key Laboratory of Agricultural BioinformaticsCollege of InformaticsHuazhong Agricultural UniversityWuhanChina
| | - Chunyu Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Chuchuan Fan
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Yongming Zhou
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
6
|
Zhang CL, Jiang HS, Gu SP, Zhou XH, Lu ZW, Kang XH, Yin L, Huang J. Combination analysis of the physiology and transcriptome provides insights into the mechanism of silver nanoparticles phytotoxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:1539-1549. [PMID: 31277023 DOI: 10.1016/j.envpol.2019.06.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/14/2019] [Accepted: 06/09/2019] [Indexed: 06/09/2023]
Abstract
Silver nanoparticles (AgNPs) have adverse impacts on plants when released into environments, but their toxic mechanism is still a matter of debate. Here we present a combined analysis of physiology and transcriptome of Arabidopsis thaliana leaves exposure to 30 mg L-1 AgNPs and Ag+ for six days to explore the toxicity mechanism of AgNPs on Arabidopsis. Both transcriptomic and physiological results showed that AgNPs induced reactive oxygen species (ROS) accumulation and damaged photosynthesis. The toxicity of AgNPs is not merely attributable to Ag+ release and much higher photosynthetic toxicity and ROS accumulation were observed in 30 mg L-1 AgNPs than that in 0.12 mg L-1 Ag+. About 60% genes were similarly up- or down-regulated at the same concentration of AgNPs and Ag+ and these genes were enriched in photosynthesis and response to the stimulus. However, 302 genes, including those involved in glucosinolates synthesis, were specifically regulated under AgNPs treatments. In conclusion, more than the released Ag+, nanoparticle-specific effects are responsible for the toxicity of AgNPs in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Chuan Ling Zhang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, HaiKou, 570228, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Hong Sheng Jiang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Center For Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Shu Ping Gu
- Shanghai Sequen Bio-info Studio, Shanghai, 200092, China
| | - Xiao Hao Zhou
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, HaiKou, 570228, China
| | - Zhen Wei Lu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, HaiKou, 570228, China
| | - Xiu Han Kang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, HaiKou, 570228, China
| | - Liyan Yin
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, HaiKou, 570228, China
| | - Jiaquan Huang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, HaiKou, 570228, China.
| |
Collapse
|
7
|
Chung IM, Venkidasamy B, Thiruvengadam M. Nickel oxide nanoparticles cause substantial physiological, phytochemical, and molecular-level changes in Chinese cabbage seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:92-101. [PMID: 30884416 DOI: 10.1016/j.plaphy.2019.03.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/06/2019] [Accepted: 03/06/2019] [Indexed: 06/09/2023]
Abstract
Nickel oxide nanoparticles (NiO NPs) are utilized in various industries and their release into the environment may lead to the pollution of agricultural areas. However, assessing the toxicity of NiO NPs in major food crops is difficult due to the limited information available on their toxicity. The present investigation was carried out to evaluate how NiO NPs affect plant growth, photosynthetic efficiency, and phytochemical content, as well as changes at the transcriptional level of these phytochemicals in Chinese cabbage seedlings. Chlorophyll, carotenoid, and sugar contents were reduced, while proline and the anthocyanins were significantly upregulated in NiO NPs-treated seedlings. The levels of malondialdehyde, hydrogen peroxide, and reactive oxygen species, as well as peroxidase (POD) enzyme activity, were all enhanced in seedlings exposed to NiO NPs. The levels of glucosinolates and phenolic compounds were also significantly increased in NiO NPs-treated seedlings compared to control seedlings. The expression of genes related to oxidative stress (CAT, POD, and GST), MYB transcription factors (BrMYB28, BrMYB29, BrMYB34, and BrMYB51), and phenolic compounds (ANS, PAP1, and PAL) were significantly upregulated. We suggest that NiO NPs application stimulates toxic effects and enhances the levels of phytochemicals (glucosinolates and phenolic compounds) in Chinese cabbage seedlings.
Collapse
Affiliation(s)
- Ill-Min Chung
- Department of Applied Bioscience, College of Life and Environmental Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Baskar Venkidasamy
- Department of Biotechnology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Sciences, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
8
|
Ouassou M, Mukhaimar M, El Amrani A, Kroymann J, Chauveau O. [Biosynthesis of indole glucosinolates and ecological role of secondary modification pathways]. C R Biol 2019; 342:58-80. [PMID: 31088733 DOI: 10.1016/j.crvi.2019.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 11/26/2022]
Abstract
Indole glucosinolates are plant secondary metabolites derived from the amino acid tryptophan. They are part of a large group of sulfur-containing molecules almost exclusively found among Brassicales, which include the mustard family (Brassicaceae) with many edible plant species of major nutritional importance. These compounds mediate numerous interactions between these plants and their natural enemies and are therefore of major biological and economical interest. This literature review aims at taking stock of recent advances of our knowledge about the biosynthetic pathways of indole glucosinolates, but also about the defense strategies and ecological processes involving these metabolites.
Collapse
Affiliation(s)
- Malika Ouassou
- Unité « Écologie, systématique et évolution », UMR 8079, université Paris-Sud, CNRS, AgroParisTech, université Paris-Saclay, 91405 Orsay, France; Laboratory of Biochemistry and Molecular Genetics, Department of Biology, Faculty of Science and Technics, Abdelmalek Essaadi University, Tangier, Maroc
| | - Maisara Mukhaimar
- National Agricultural Research Center (NARC)-Jenin/Gaza, Ministry of Agriculture, Jenin, Palestine
| | - Amal El Amrani
- Laboratory of Biochemistry and Molecular Genetics, Department of Biology, Faculty of Science and Technics, Abdelmalek Essaadi University, Tangier, Maroc
| | - Juergen Kroymann
- Unité « Écologie, systématique et évolution », UMR 8079, université Paris-Sud, CNRS, AgroParisTech, université Paris-Saclay, 91405 Orsay, France
| | - Olivier Chauveau
- Unité « Écologie, systématique et évolution », UMR 8079, université Paris-Sud, CNRS, AgroParisTech, université Paris-Saclay, 91405 Orsay, France.
| |
Collapse
|
9
|
Genome-Wide Analysis of Glycoside Hydrolase Family 1 β-glucosidase Genes in Brassica rapa and Their Potential Role in Pollen Development. Int J Mol Sci 2019; 20:ijms20071663. [PMID: 30987159 PMCID: PMC6480273 DOI: 10.3390/ijms20071663] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 12/03/2022] Open
Abstract
Glycoside hydrolase family 1 (GH1) β-glucosidases (BGLUs) are encoded by a large number of genes, and are involved in many developmental processes and stress responses in plants. Due to their importance in plant growth and development, genome-wide analyses have been conducted in model plants (Arabidopsis and rice) and maize, but not in Brassica species, which are important vegetable crops. In this study, we systematically analyzed B. rapaBGLUs (BrBGLUs), and demonstrated the involvement of several genes in pollen development. Sixty-four BrBGLUs were identified in Brassica databases, which were anchored onto 10 chromosomes, with 10 tandem duplications. Phylogenetic analysis revealed that 64 genes were classified into 10 subgroups, and each subgroup had relatively conserved intron/exon structures. Clustering with Arabidopsis BGLUs (AtBGLUs) facilitated the identification of several important subgroups for flavonoid metabolism, the production of glucosinolates, the regulation of abscisic acid (ABA) levels, and other defense-related compounds. At least six BrBGLUs might be involved in pollen development. The expression of BrBGLU10/AtBGLU20, the analysis of co-expressed genes, and the examination of knocked down Arabidopsis plants strongly suggests that BrBGLU10/AtBGLU20 has an indispensable function in pollen development. The results that are obtained from this study may provide valuable information for the further understanding of β-glucosidase function and Brassica breeding, for nutraceuticals-rich Brassica crops.
Collapse
|
10
|
Rutter BD, Innes RW. Extracellular vesicles as key mediators of plant-microbe interactions. CURRENT OPINION IN PLANT BIOLOGY 2018; 44:16-22. [PMID: 29452903 DOI: 10.1016/j.pbi.2018.01.008] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 01/18/2018] [Accepted: 01/23/2018] [Indexed: 05/21/2023]
Abstract
Extracellular vesicles (EVs) are lipid compartments capable of trafficking proteins, lipids, RNA and metabolites between cells. Plant cells have been shown to secrete EVs during immune responses, but virtually nothing is known about their formation, contents or ultimate function. Recently developed methods for isolating plant EVs have revealed that these EVs are enriched in stress response proteins and signaling lipids, and appear to display antifungal activity. Comparison to work on animal EVs, and the observation that host-derived small interfering RNAs and microRNAs can silence fungal genes, suggests that plant EVs may also mediate trans-kingdom RNA interference. Many fundamental questions remain, however, regarding how plant EVs are produced, how they move, and if and how they are taken up by target cells.
Collapse
Affiliation(s)
- Brian D Rutter
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Roger W Innes
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
11
|
Moreira-Rodríguez M, Nair V, Benavides J, Cisneros-Zevallos L, Jacobo-Velázquez DA. UVA, UVB Light, and Methyl Jasmonate, Alone or Combined, Redirect the Biosynthesis of Glucosinolates, Phenolics, Carotenoids, and Chlorophylls in Broccoli Sprouts. Int J Mol Sci 2017; 18:E2330. [PMID: 29113068 PMCID: PMC5713299 DOI: 10.3390/ijms18112330] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/25/2017] [Accepted: 10/31/2017] [Indexed: 12/17/2022] Open
Abstract
Broccoli sprouts contain health-promoting phytochemicals that can be enhanced by applying ultraviolet light (UV) or phytohormones. The separate and combined effects of methyl jasmonate (MJ), UVA, or UVB lights on glucosinolate, phenolic, carotenoid, and chlorophyll profiles were assessed in broccoli sprouts. Seven-day-old broccoli sprouts were exposed to UVA (9.47 W/m²) or UVB (7.16 W/m²) radiation for 120 min alone or in combination with a 25 µM MJ solution, also applied to sprouts without UV supplementation. UVA + MJ and UVB + MJ treatments increased the total glucosinolate content by ~154% and ~148%, respectively. MJ induced the biosynthesis of indole glucosinolates, especially neoglucobrassicin (~538%), showing a synergistic effect with UVA stress. UVB increased the content of aliphatic and indole glucosinolates, such as glucoraphanin (~78%) and 4-methoxy-glucobrassicin (~177%). UVA increased several phenolics such as gallic acid (~57%) and a kaempferol glucoside (~25.4%). MJ treatment decreased most phenolic levels but greatly induced accumulation of 5-sinapoylquinic acid (~239%). MJ treatments also reduced carotenoid and chlorophyll content, while UVA increased lutein (~23%), chlorophyll b (~31%), neoxanthin (~34%), and chlorophyll a (~67%). Results indicated that UV- and/or MJ-treated broccoli sprouts redirect the carbon flux to the biosynthesis of specific glucosinolates, phenolics, carotenoids, and chlorophylls depending on the type of stress applied.
Collapse
Affiliation(s)
- Melissa Moreira-Rodríguez
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSA, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, N.L., México.
| | - Vimal Nair
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-2133, USA.
| | - Jorge Benavides
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSA, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, N.L., México.
| | - Luis Cisneros-Zevallos
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-2133, USA.
| | - Daniel A Jacobo-Velázquez
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSA, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, N.L., México.
| |
Collapse
|
12
|
Borpatragohain P, Rose TJ, King GJ. Fire and Brimstone: Molecular Interactions between Sulfur and Glucosinolate Biosynthesis in Model and Crop Brassicaceae. FRONTIERS IN PLANT SCIENCE 2016; 7:1735. [PMID: 27917185 PMCID: PMC5116641 DOI: 10.3389/fpls.2016.01735] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/03/2016] [Indexed: 05/20/2023]
Abstract
Glucosinolates (GSLs) represent one of the most widely studied classes of plant secondary metabolite, and have a wide range of biological activities. Their unique properties also affect livestock and human health, and have been harnessed for food and other end-uses. Since GSLs are sulfur (S)-rich there are many lines of evidence suggesting that plant S status plays a key role in determining plant GSL content. However, there is still a need to establish a detailed knowledge of the distribution and remobilization of S and GSLs throughout the development of Brassica crops, and to represent this in terms of primary and secondary sources and sinks. The increased genome complexity, gene duplication and divergence within brassicas, together with their ontogenetic plasticity during crop development, appear to have a marked effect on the regulation of S and GSLs. Here, we review the current understanding of inorganic S (sulfate) assimilation into organic S forms, including GSLs and their precursors, the intracellular and inter-organ transport of inorganic and organic S forms, and the accumulation of GSLs in specific tissues. We present this in the context of overlapping sources and sinks, transport processes, signaling molecules and their associated molecular interactions. Our analysis builds on recent insights into the molecular regulation of sulfate uptake and transport by different transporters, transcription factors and miRNAs, and the role that these may play in GSL biosynthesis. We develop a provisional model describing the key processes that could be targeted in crop breeding programs focused on modifying GSL content.
Collapse
Affiliation(s)
| | - Terry J. Rose
- Southern Cross Plant Science, Southern Cross University, LismoreNSW, Australia
- Southern Cross GeoScience, Southern Cross University, LismoreNSW, Australia
| | - Graham J. King
- Southern Cross Plant Science, Southern Cross University, LismoreNSW, Australia
| |
Collapse
|
13
|
O’Neill EC, Kelly S. Engineering biosynthesis of high-value compounds in photosynthetic organisms. Crit Rev Biotechnol 2016; 37:779-802. [DOI: 10.1080/07388551.2016.1237467] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | - Steven Kelly
- Department of Plant Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
14
|
Glutathione Transferases Superfamily: Cold-Inducible Expression of Distinct GST Genes in Brassica oleracea. Int J Mol Sci 2016; 17:ijms17081211. [PMID: 27472324 PMCID: PMC5000609 DOI: 10.3390/ijms17081211] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/15/2016] [Accepted: 07/15/2016] [Indexed: 02/08/2023] Open
Abstract
Plants, as sessile organisms, can suffer serious growth and developmental consequences under cold stress conditions. Glutathione transferases (GSTs, EC 2.5.1.18) are ubiquitous and multifunctional conjugating proteins, which play a major role in stress responses by preventing oxidative damage by reactive oxygen species (ROS). Currently, understanding of their function(s) during different biochemical and signaling pathways under cold stress condition remain unclear. In this study, using combined computational strategy, we identified 65 Brassica oleracea glutathione transferases (BoGST) and characterized them based on evolutionary analysis into 11 classes. Inter-species and intra-species duplication was evident between BoGSTs and Arabidopsis GSTs. Based on localization analyses, we propose possible pathways in which GST genes are involved during cold stress. Further, expression analysis of the predicted putative functions for GST genes were investigated in two cold contrasting genotypes (cold tolerance and susceptible) under cold condition, most of these genes were highly expressed at 6 h and 1 h in the cold tolerant (CT) and cold susceptible (CS) lines, respectively. Overall, BoGSTU19, BoGSTU24, BoGSTF10 are candidate genes highly expressed in B. oleracea. Further investigation of GST superfamily in B. oleracea will aid in understanding complex mechanism underlying cold tolerance in plants.
Collapse
|
15
|
Baskar V, Gangadhar BH, Park SW, Nile SH. A simple and efficient Agrobacterium tumefaciens-mediated plant transformation of Brassica rapa ssp. pekinensis. 3 Biotech 2016; 6:88. [PMID: 28330158 PMCID: PMC4781812 DOI: 10.1007/s13205-016-0402-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 02/02/2016] [Indexed: 11/26/2022] Open
Abstract
The present study aims to investigate the numerous factors influencing Agrobacterium tumefaciens-mediated genetic transformation of Chinese cabbage (Brassica rapa ssp. pekinensis). Factors affecting transformation efficiency, such as age of explants, Agrobacterium concentration, and effect of acetosyringone, pre-cultivation, infection and co-cultivation time of Agrobacterium were examined. The pre-cultured hypocotyls from young seedlings prior to exposure to Agrobacterium showed higher shoot regeneration. The plant transformation with the modest A. tumefaciens concentrations (0.8 OD) and the 3 days co-cultivation periods increased transformation efficiency. Plant growth hormones [1-naphthyl acetic acid (NAA) and 6-benzyl amino purine (BAP)] were essential for callus and shoot formation. Root formation was effective in half strength MS medium without supplementation of root-inducing hormones. To maintain selection pressure, plant subculture was carried out every 2 weeks with selective antibiotics. The putative transgenic plants were acclimatized in the greenhouse. Polymerase chain reaction was performed to confirm the integration of T-DNA into the genome of transgenic plants. A transformation efficiency of 15 % was obtained. This protocol allows effective transformation and indirect regeneration of Brassica rapa.
Collapse
Affiliation(s)
- Venkidasamy Baskar
- Department of Bioresources and Food Science, School of Life and Environmental Sciences, Konkuk University, Seoul, 143701, South Korea
| | - Baniekal H Gangadhar
- Department of Bioresources and Food Science, School of Life and Environmental Sciences, Konkuk University, Seoul, 143701, South Korea
| | - Se Won Park
- Department of Bioresources and Food Science, School of Life and Environmental Sciences, Konkuk University, Seoul, 143701, South Korea
| | - Shivraj Hariram Nile
- Department of Bioresources and Food Science, School of Life and Environmental Sciences, Konkuk University, Seoul, 143701, South Korea.
| |
Collapse
|
16
|
Camejo D, Guzmán-Cedeño Á, Moreno A. Reactive oxygen species, essential molecules, during plant-pathogen interactions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 103:10-23. [PMID: 26950921 DOI: 10.1016/j.plaphy.2016.02.035] [Citation(s) in RCA: 211] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 02/24/2016] [Accepted: 02/25/2016] [Indexed: 05/18/2023]
Abstract
Reactive oxygen species (ROS) are continually generated as a consequence of the normal metabolism in aerobic organisms. Accumulation and release of ROS into cell take place in response to a wide variety of adverse environmental conditions including salt, temperature, cold stresses and pathogen attack, among others. In plants, peroxidases class III, NADPH oxidase (NOX) locates in cell wall and plasma membrane, respectively, may be mainly enzymatic systems involving ROS generation. It is well documented that ROS play a dual role into cells, acting as important signal transduction molecules and as toxic molecules with strong oxidant power, however some aspects related to its function during plant-pathogen interactions remain unclear. This review focuses on the principal enzymatic systems involving ROS generation addressing the role of ROS as signal molecules during plant-pathogen interactions. We described how the chloroplasts, mitochondria and peroxisomes perceive the external stimuli as pathogen invasion, and trigger resistance response using ROS as signal molecule.
Collapse
Affiliation(s)
- Daymi Camejo
- CEBAS-CSIC, Centro de Edafología y Biología Aplicada del Segura, Department of Stress Biology and Plant Pathology, E-30100, Murcia, Spain; ESPAM-MES, Escuela Superior Politécnica Agropecuaria de Manabí, Manuel Félix López, Agricultural School, Manabí, Ecuador.
| | - Ángel Guzmán-Cedeño
- ESPAM-MES, Escuela Superior Politécnica Agropecuaria de Manabí, Manuel Félix López, Agricultural School, Manabí, Ecuador; ULEAM-MES, "Eloy Alfaro" University, Agropecuary School, Manabí, Ecuador.
| | - Alexander Moreno
- UTMachala-MES, Universidad Técnica de Machala, Botany Laboratory, Machala, Ecuador.
| |
Collapse
|
17
|
Liu T, Zhang X, Yang H, Agerbirk N, Qiu Y, Wang H, Shen D, Song J, Li X. Aromatic Glucosinolate Biosynthesis Pathway in Barbarea vulgaris and its Response to Plutella xylostella Infestation. FRONTIERS IN PLANT SCIENCE 2016; 7:83. [PMID: 26904055 PMCID: PMC4744896 DOI: 10.3389/fpls.2016.00083] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/17/2016] [Indexed: 05/22/2023]
Abstract
The inducibility of the glucosinolate resistance mechanism is an energy-saving strategy for plants, but whether induction would still be triggered by glucosinolate-tolerant Plutella xylostella (diamondback moth, DBM) after a plant had evolved a new resistance mechanism (e.g., saponins in Barbara vulgaris) was unknown. In B. vulgaris, aromatic glucosinolates derived from homo-phenylalanine are the dominant glucosinolates, but their biosynthesis pathway was unclear. In this study, we used G-type (pest-resistant) and P-type (pest-susceptible) B. vulgaris to compare glucosinolate levels and the expression profiles of their biosynthesis genes before and after infestation by DBM larvae. Two different stereoisomers of hydroxylated aromatic glucosinolates are dominant in G- and P-type B. vulgaris, respectively, and are induced by DBM. The transcripts of genes in the glucosinolate biosynthesis pathway and their corresponding transcription factors were identified from an Illumina dataset of G- and P-type B. vulgaris. Many genes involved or potentially involved in glucosinolate biosynthesis were induced in both plant types. The expression patterns of six DBM induced genes were validated by quantitative PCR (qPCR), while six long-fragment genes were validated by molecular cloning. The core structure biosynthetic genes showed high sequence similarities between the two genotypes. In contrast, the sequence identity of two apparent side chain modification genes, the SHO gene in the G-type and the RHO in P-type plants, showed only 77.50% identity in coding DNA sequences and 65.48% identity in deduced amino acid sequences. The homology to GS-OH in Arabidopsis, DBM induction of the transcript and a series of qPCR and glucosinolate analyses of G-type, P-type and F1 plants indicated that these genes control the production of S and R isomers of 2-hydroxy-2-phenylethyl glucosinolate. These glucosinolates were significantly induced by P. xylostella larvae in both the susceptiple P-type and the resistant G-type, even though saponins are the main DBM-resistance causing metabolites in G-type plants. Indol-3-ylmethylglucosinolate was induced in the G-type only. These data will aid our understanding of the biosynthesis and induction of aromatic glucosinolates at the molecular level and also increase our knowledge of the complex mechanisms underpinning defense induction in plants.
Collapse
Affiliation(s)
- Tongjin Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of AgricultureBeijing, China
| | - Xiaohui Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of AgricultureBeijing, China
| | - Haohui Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of AgricultureBeijing, China
| | - Niels Agerbirk
- Copenhagen Plant Science Center and Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of CopenhagenFrederiksberg, Denmark
| | - Yang Qiu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of AgricultureBeijing, China
| | - Haiping Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of AgricultureBeijing, China
| | - Di Shen
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of AgricultureBeijing, China
| | - Jiangping Song
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of AgricultureBeijing, China
| | - Xixiang Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of AgricultureBeijing, China
- *Correspondence: Xixiang Li
| |
Collapse
|
18
|
Payne AC, Clarkson GJ, Rothwell S, Taylor G. Diversity in global gene expression and morphology across a watercress (Nasturtium officinale R. Br.) germplasm collection: first steps to breeding. HORTICULTURE RESEARCH 2015; 2:15029. [PMID: 26504575 PMCID: PMC4591680 DOI: 10.1038/hortres.2015.29] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/23/2015] [Accepted: 05/26/2015] [Indexed: 06/05/2023]
Abstract
Watercress (Nasturtium officinale R. Br.) is a nutrient intense, leafy crop that is consumed raw or in soups across the globe, but for which, currently no genomic resources or breeding programme exists. Promising morphological, biochemical and functional genomic variation was identified for the first time in a newly established watercress germplasm collection, consisting of 48 watercress accessions sourced from contrasting global locations. Stem length, stem diameter and anti-oxidant (AO) potential varied across the accessions. This variation was used to identify three extreme contrasting accessions for further analysis. Variation in global gene expression was investigated using an Affymetrix Arabidopsis ATH1 microarray gene chip, using the commercial control (C), an accession selected for dwarf phenotype with a high AO potential (dwarfAO, called 'Boldrewood') and one with high AO potential alone. A set of transcripts significantly differentially expressed between these three accessions, were identified, including transcripts involved in the regulation of growth and development and those involved in secondary metabolism. In particular, when differential gene expression was compared between C and dwarfAO, the dwarfAO was characterised by increased expression of genes encoding glucosinolates, which are known precursors of phenethyl isothiocyanate, linked to the anti-carcinogenic effects well-documented in watercress. This study provides the first analysis of natural variation across the watercress genome and has identified important underpinning information for future breeding for enhanced anti-carcinogenic properties and morphology traits in this nutrient-intense crop.
Collapse
Affiliation(s)
- Adrienne C. Payne
- Centre for Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Graham J.J. Clarkson
- Vitacress Salads Ltd, Lower Link Farm, St Mary Bourne, Andover, Hampshire, SP11 6DB, UK
| | - Steve Rothwell
- Vitacress Salads Ltd, Lower Link Farm, St Mary Bourne, Andover, Hampshire, SP11 6DB, UK
| | - Gail Taylor
- Centre for Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
19
|
Baskar V, Park SW. Molecular characterization of BrMYB28 and BrMYB29 paralogous transcription factors involved in the regulation of aliphatic glucosinolate profiles in Brassica rapa ssp. pekinensis. C R Biol 2015; 338:434-42. [DOI: 10.1016/j.crvi.2015.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 04/02/2015] [Accepted: 04/02/2015] [Indexed: 11/24/2022]
|
20
|
Brown AF, Yousef GG, Reid RW, Chebrolu KK, Thomas A, Krueger C, Jeffery E, Jackson E, Juvik JA. Genetic analysis of glucosinolate variability in broccoli florets using genome-anchored single nucleotide polymorphisms. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:1431-47. [PMID: 25930056 DOI: 10.1007/s00122-015-2517-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 04/11/2015] [Indexed: 05/09/2023]
Abstract
The identification of genetic factors influencing the accumulation of individual glucosinolates in broccoli florets provides novel insight into the regulation of glucosinolate levels in Brassica vegetables and will accelerate the development of vegetables with glucosinolate profiles tailored to promote human health. Quantitative trait loci analysis of glucosinolate (GSL) variability was conducted with a B. oleracea (broccoli) mapping population, saturated with single nucleotide polymorphism markers from a high-density array designed for rapeseed (Brassica napus). In 4 years of analysis, 14 QTLs were associated with the accumulation of aliphatic, indolic, or aromatic GSLs in floret tissue. The accumulation of 3-carbon aliphatic GSLs (2-propenyl and 3-methylsulfinylpropyl) was primarily associated with a single QTL on C05, but common regulation of 4-carbon aliphatic GSLs was not observed. A single locus on C09, associated with up to 40 % of the phenotypic variability of 2-hydroxy-3-butenyl GSL over multiple years, was not associated with the variability of precursor compounds. Similarly, QTLs on C02, C04, and C09 were associated with 4-methylsulfinylbutyl GSL concentration over multiple years but were not significantly associated with downstream compounds. Genome-specific SNP markers were used to identify candidate genes that co-localized to marker intervals and previously sequenced Brassica oleracea BAC clones containing known GSL genes (GSL-ALK, GSL-PRO, and GSL-ELONG) were aligned to the genomic sequence, providing support that at least three of our 14 QTLs likely correspond to previously identified GSL loci. The results demonstrate that previously identified loci do not fully explain GSL variation in broccoli. The identification of additional genetic factors influencing the accumulation of GSL in broccoli florets provides novel insight into the regulation of GSL levels in Brassicaceae and will accelerate development of vegetables with modified or enhanced GSL profiles.
Collapse
Affiliation(s)
- Allan F Brown
- Department of Horticultural Science, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, 28081, USA,
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
De Coninck B, Timmermans P, Vos C, Cammue BPA, Kazan K. What lies beneath: belowground defense strategies in plants. TRENDS IN PLANT SCIENCE 2015; 20:91-101. [PMID: 25307784 DOI: 10.1016/j.tplants.2014.09.007] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 09/12/2014] [Accepted: 09/16/2014] [Indexed: 05/17/2023]
Abstract
Diseases caused by soil-borne pathogens result worldwide in significant yield losses in economically important crops. In contrast to foliar diseases, relatively little is known about the nature of root defenses against these pathogens. This review summarizes the current knowledge on root infection strategies, root-specific preformed barriers, pathogen recognition, and defense signaling. Studies reviewed here suggest that many commonalities as well as differences exist in defense strategies employed by roots and foliar tissues during pathogen attack. Importantly, in addition to pathogens, plant roots interact with a plethora of non-pathogenic and symbiotic microorganisms. Therefore, a good understanding of how plant roots interact with the microbiome would be particularly important to engineer resistance to root pathogens without negatively altering root-beneficial microbe interactions.
Collapse
Affiliation(s)
- Barbara De Coninck
- Centre of Microbial and Plant Genetics, Katholieke Universiteit (KU) Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium; Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), Technologiepark 927, 9052 Gent, Belgium
| | - Pieter Timmermans
- Centre of Microbial and Plant Genetics, Katholieke Universiteit (KU) Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium
| | - Christine Vos
- Centre of Microbial and Plant Genetics, Katholieke Universiteit (KU) Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium; Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), Technologiepark 927, 9052 Gent, Belgium
| | - Bruno P A Cammue
- Centre of Microbial and Plant Genetics, Katholieke Universiteit (KU) Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium; Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), Technologiepark 927, 9052 Gent, Belgium.
| | - Kemal Kazan
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Queensland Bioscience Precinct, Brisbane, Queensland, 4067, Australia; Queensland Alliance for Agriculture & Food Innovation (QAAFI), The University of Queensland, St Lucia, Brisbane, Queensland 4067, Australia
| |
Collapse
|
22
|
Baskar V, Park SW, Nile SH. An Update on Potential Perspectives of Glucosinolates on Protection against Microbial Pathogens and Endocrine Dysfunctions in Humans. Crit Rev Food Sci Nutr 2015; 56:2231-49. [DOI: 10.1080/10408398.2014.910748] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Guo P, Qi YP, Yang LT, Ye X, Jiang HX, Huang JH, Chen LS. cDNA-AFLP analysis reveals the adaptive responses of citrus to long-term boron-toxicity. BMC PLANT BIOLOGY 2014; 14:284. [PMID: 25348611 PMCID: PMC4219002 DOI: 10.1186/s12870-014-0284-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 10/14/2014] [Indexed: 05/02/2023]
Abstract
BACKGROUND Boron (B)-toxicity is an important disorder in agricultural regions across the world. Seedlings of 'Sour pummelo' (Citrus grandis) and 'Xuegan' (Citrus sinensis) were fertigated every other day until drip with 10 μM (control) or 400 μM (B-toxic) H3BO3 in a complete nutrient solution for 15 weeks. The aims of this study were to elucidate the adaptive mechanisms of citrus plants to B-toxicity and to identify B-tolerant genes. RESULTS B-toxicity-induced changes in seedlings growth, leaf CO2 assimilation, pigments, total soluble protein, malondialdehyde (MDA) and phosphorus were less pronounced in C. sinensis than in C. grandis. B concentration was higher in B-toxic C. sinensis leaves than in B-toxic C. grandis ones. Here we successfully used cDNA-AFLP to isolate 67 up-regulated and 65 down-regulated transcript-derived fragments (TDFs) from B-toxic C. grandis leaves, whilst only 31 up-regulated and 37 down-regulated TDFs from B-toxic C. sinensis ones, demonstrating that gene expression is less affected in B-toxic C. sinensis leaves than in B-toxic C. grandis ones. These differentially expressed TDFs were related to signal transduction, carbohydrate and energy metabolism, nucleic acid metabolism, protein and amino acid metabolism, lipid metabolism, cell wall and cytoskeleton modification, stress responses and cell transport. The higher B-tolerance of C. sinensis might be related to the findings that B-toxic C. sinensis leaves had higher expression levels of genes involved in photosynthesis, which might contribute to the higher photosyntheis and light utilization and less excess light energy, and in reactive oxygen species (ROS) scavenging compared to B-toxic C. grandis leaves, thus preventing them from photo-oxidative damage. In addition, B-toxicity-induced alteration in the expression levels of genes encoding inorganic pyrophosphatase 1, AT4G01850 and methionine synthase differed between the two species, which might play a role in the B-tolerance of C. sinensis. CONCLUSIONS C. sinensis leaves could tolerate higher level of B than C. grandis ones, thus improving the B-tolerance of C. sinensis plants. Our findings reveal some novel mechanisms on the tolerance of plants to B-toxicity at the gene expression level.
Collapse
Affiliation(s)
- Peng Guo
- />College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- />Institute of Horticultural Plant Physiology, Biochemistry and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Yi-Ping Qi
- />Institute of Materia Medica, Fujian Academy of Medical Sciences, Fuzhou, 350001 China
| | - Lin-Tong Yang
- />College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- />Institute of Horticultural Plant Physiology, Biochemistry and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Xin Ye
- />College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Huan-Xin Jiang
- />Institute of Horticultural Plant Physiology, Biochemistry and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- />College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Jing-Hao Huang
- />Institute of Horticultural Plant Physiology, Biochemistry and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- />College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- />Institute of Fruit Tree Science, Fujian Academy of Agricultural Sciences, Fuzhou, 350013 China
| | - Li-Song Chen
- />College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- />Institute of Horticultural Plant Physiology, Biochemistry and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- />Fujian Key Laboratory for Plant Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- />The Higher Educational Key Laboratory of Fujian Province for Soil Ecosystem Health and Regulation, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| |
Collapse
|
24
|
Farré G, Blancquaert D, Capell T, Van Der Straeten D, Christou P, Zhu C. Engineering complex metabolic pathways in plants. ANNUAL REVIEW OF PLANT BIOLOGY 2014; 65:187-223. [PMID: 24579989 DOI: 10.1146/annurev-arplant-050213-035825] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Metabolic engineering can be used to modulate endogenous metabolic pathways in plants or introduce new metabolic capabilities in order to increase the production of a desirable compound or reduce the accumulation of an undesirable one. In practice, there are several major challenges that need to be overcome, such as gaining enough knowledge about the endogenous pathways to understand the best intervention points, identifying and sourcing the most suitable metabolic genes, expressing those genes in such a way as to produce a functional enzyme in a heterologous background, and, finally, achieving the accumulation of target compounds without harming the host plant. This article discusses the strategies that have been developed to engineer complex metabolic pathways in plants, focusing on recent technological developments that allow the most significant bottlenecks to be overcome.
Collapse
Affiliation(s)
- Gemma Farré
- Departament de Producció Vegetal i Ciència Forestal, Universitat de Lleida, Agrotecnio Center, 25198 Lleida, Spain;
| | | | | | | | | | | |
Collapse
|
25
|
Rahal A, . M, Verma AK, . AK, . RT, . SK, . SC, . KD. Phytonutrients and Nutraceuticals in Vegetables and Their Multi-dimensional Medicinal and Health Benefits for Humans and Their Companion Animals: A Review. ACTA ACUST UNITED AC 2013. [DOI: 10.3923/jbs.2014.1.19] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
26
|
Ku KM, Choi JH, Kim HS, Kushad MM, Jeffery EH, Juvik JA. Methyl jasmonate and 1-methylcyclopropene treatment effects on quinone reductase inducing activity and post-harvest quality of broccoli. PLoS One 2013; 8:e77127. [PMID: 24146962 PMCID: PMC3797761 DOI: 10.1371/journal.pone.0077127] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 09/07/2013] [Indexed: 12/11/2022] Open
Abstract
Effect of pre-harvest methyl jasmonate (MeJA) and post-harvest 1-methylcyclopropene (1-MCP) treatments on broccoli floret glucosinolate (GS) concentrations and quinone reductase (QR, an in vitro anti-cancer biomarker) inducing activity were evaluated two days prior to harvest, at harvest and at 10, 20, and 30 days of post-harvest storage at 4 °C. MeJA treatments four days prior to harvest of broccoli heads was observed to significantly increase floret ethylene biosynthesis resulting in chlorophyll catabolism during post-harvest storage and reduced product quality. Post-harvest treatment with 1-methylcyclopropene (1-MCP), which competitively binds to protein ethylene receptors, maintained post-harvest floret chlorophyll concentrations and product visual quality in both control and MeJA-treated broccoli. Transcript abundance of BoPPH, a gene which is responsible for the synthesis of pheophytinase, the primary enzyme associated with chlorophyll catabolism in broccoli, was reduced by 1-MCP treatment and showed a significant, negative correlation with floret chlorophyll concentrations. The GS, glucobrassicin, neoglucobrassicin, and gluconasturtiin were significantly increased by MeJA treatments. The products of some of the GS from endogenous myrosinase hydrolysis [sulforaphane (SF), neoascorbigen (NeoASG), N-methoxyindole-3-carbinol (NI3C), and phenethyl isothiocyanate (PEITC)] were also quantified and found to be significantly correlated with QR. Sulforaphane, the isothiocyanate hydrolysis product of the GS glucoraphanin, was found to be the most potent QR induction agent. Increased sulforaphane formation from the hydrolysis of glucoraphanin was associated with up-regulated gene expression of myrosinase (BoMyo) and the myrosinase enzyme co-factor gene, epithiospecifier modifier1 (BoESM1). This study demonstrates the combined treatment of MeJA and 1-MCP increased QR activity without post-harvest quality loss.
Collapse
Affiliation(s)
- Kang Mo Ku
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Jeong Hee Choi
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- The Distribution System Research Group, Korea Food Research Institute, Gyeonggi-do, South Korea
| | - Hyoung Seok Kim
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Mosbah M. Kushad
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Elizabeth H. Jeffery
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - John A. Juvik
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
27
|
Ku KM, Jeffery EH, Juvik JA. Influence of seasonal variation and methyl jasmonate mediated induction of glucosinolate biosynthesis on quinone reductase activity in broccoli florets. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:9623-31. [PMID: 24032372 DOI: 10.1021/jf4027734] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Methyl jasmonate spray treatments (250 μM) were utilized to alter glucosinolate composition in the florets of the commercial broccoli F1 hybrids 'Pirate', 'Expo', 'Green Magic', 'Imperial', and 'Gypsy' grown in replicated field plantings in 2009 and 2010. MeJA treatment significantly increased glucoraphanin (11%), gluconasturtiin (59%), and neoglucobrassicin (248%) concentrations and their hydrolysis products including sulforaphane (152%), phenethyl isothiocyanate (318%), N-methoxyindole-3-carbinol (313%), and neoascorbigen (232%) extracted from florets of these genotypes over two seasons. Increased quinone reductase (QR) activity was significantly correlated with increased levels of sulforaphane, N-methoxyindole-3-carbinol, and neoascorbigen. Partitioning experiment-wide trait variances indicated that the variability in concentrations of sulforaphane (29%), neoascorbigen (48%), and QR activity (72%) was influenced by year-associated weather variables, whereas variation in neoglucobrassicin (63%) and N-methoxyindole-3-carbinol (46%) concentrations was primarily attributed to methyl jasmonate treatment. These results suggest that methyl jasmonate treatment can enhance QR inducing activity by increased hydrolysis of glucoraphanin into sulforaphane and the hydrolysis products of neoglucobrassicin.
Collapse
Affiliation(s)
- Kang Mo Ku
- Department of Crop Sciences, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801-3838, United States
| | | | | |
Collapse
|
28
|
Kessel-Vigelius SK, Wiese J, Schroers MG, Wrobel TJ, Hahn F, Linka N. An engineered plant peroxisome and its application in biotechnology. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 210:232-40. [PMID: 23849130 DOI: 10.1016/j.plantsci.2013.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 06/08/2013] [Accepted: 06/10/2013] [Indexed: 05/06/2023]
Abstract
Plant metabolic engineering is a promising tool for biotechnological applications. Major goals include enhancing plant fitness for an increased product yield and improving or introducing novel pathways to synthesize industrially relevant products. Plant peroxisomes are favorable targets for metabolic engineering, because they are involved in diverse functions, including primary and secondary metabolism, development, abiotic stress response, and pathogen defense. This review discusses targets for manipulating endogenous peroxisomal pathways, such as fatty acid β-oxidation, or introducing novel pathways, such as the synthesis of biodegradable polymers. Furthermore, strategies to bypass peroxisomal pathways for improved energy efficiency and detoxification of environmental pollutants are discussed. In sum, we highlight the biotechnological potential of plant peroxisomes and indicate future perspectives to exploit peroxisomes as biofactories.
Collapse
Affiliation(s)
- Sarah K Kessel-Vigelius
- Heinrich-Heine University, Plant Biochemistry, Universitätsstrasse 1, Building 26.03.01, D-40225 Düsseldorf, Germany.
| | | | | | | | | | | |
Collapse
|
29
|
Senthil-Kumar M, Mysore KS. Nonhost resistance against bacterial pathogens: retrospectives and prospects. ANNUAL REVIEW OF PHYTOPATHOLOGY 2013; 51:407-27. [PMID: 23725473 DOI: 10.1146/annurev-phyto-082712-102319] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nonhost resistance is a broad-spectrum plant defense that provides immunity to all members of a plant species against all isolates of a microorganism that is pathogenic to other plant species. Upon landing on the surface of a nonhost plant species, a potential bacterial pathogen initially encounters preformed and, later, induced plant defenses. One of the initial defense responses from the plant is pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI). Nonhost plants also have mechanisms to detect nonhost-pathogen effectors and can trigger a defense response referred to as effector-triggered immunity (ETI). This nonhost resistance response often results in a hypersensitive response (HR) at the infection site. This review provides an overview of these plant defense strategies. We enumerate plant genes that impart nonhost resistance and the bacterial counter-defense strategies. In addition, prospects for application of nonhost resistance to achieve broad-spectrum and durable resistance in crop plants are also discussed.
Collapse
Affiliation(s)
- Muthappa Senthil-Kumar
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73402, USA.
| | | |
Collapse
|