1
|
de Souza TC, Schwarz MGA, da Silva DM, Maia CR, de Araújo CPM, Balieiro AADS, de Oliveira LA, Degrave WMS, Fernandes OCC, Mendonça-Lima L. Penicillium citrinum CFAM 521 Isolated From the Amazon Region: A Novel Source of a Fibrinolytic Enzyme. Int J Microbiol 2024; 2024:5306083. [PMID: 39502513 PMCID: PMC11537737 DOI: 10.1155/2024/5306083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 08/29/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
Fibrinolytic agents are essential in treating thrombosis, playing a critical role in improving survival rates in cardiovascular diseases. Microbial fibrinolytic proteases have emerged as promising alternatives due to their affordability, specificity, lower toxicity, and reduced side effects. Consequently, the search for microorganisms capable of producing these enzymes has gained significant economic importance in the pharmaceutical industry. This study reports and characterizes a novel fibrinolytic enzyme produced by Penicillium citrinum CFAM 521, a strain isolated from the Amazon region. The enzyme was purified using a polyethylene glycol (PEG)-phosphate salt aqueous two-phase system (ATPS). The effects of PEG molecular weight, PEG concentration, and phosphate concentration on the protease partition coefficient (K) were evaluated through a 22 full factorial design. The enzyme exhibited both fibrinolytic and fibrinogenolytic activities. After partitioning in a two-phase system with 10% (w/w) PEG and 15% (w/w) sodium phosphate, the fibrinolytic proteases were predominantly retained in the salt-rich bottom phase (K = 0.33). The enzyme has a molecular weight of 34 kDa, with optimal pH and temperature at 9°C and 37°C, respectively. Inhibitory analysis confirmed that it is a serine protease, and its activity was enhanced by the addition of Mn2+. Notably, the enzyme exhibited no hemolytic activity. Therefore, P. citrinum CFAM 521 represents a novel source of fibrinolytic enzymes, highlighting its potential as an alternative for the development of thrombolytic agents.
Collapse
Affiliation(s)
- Thayana Cruz de Souza
- Leônidas and Maria Deane Institute, ILMD/Fiocruz, Rua Teresina, 476, Adrianópolis, Manaus, Amazonas 69057-070, Brazil
| | - Marcos Gustavo Araujo Schwarz
- Oswaldo Cruz Institute, Fiocruz, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, State of Rio de Janeiro 21040-360, Brazil
| | - Daniela Marinho da Silva
- Leônidas and Maria Deane Institute, ILMD/Fiocruz, Rua Teresina, 476, Adrianópolis, Manaus, Amazonas 69057-070, Brazil
| | - Carolina Rabelo Maia
- Leônidas and Maria Deane Institute, ILMD/Fiocruz, Rua Teresina, 476, Adrianópolis, Manaus, Amazonas 69057-070, Brazil
| | | | | | - Luiz Antonio de Oliveira
- National Institute for Amazon Research, INPA, Av. André Araújo, 2.936, Petrópolis, Manaus, Amazonas 69080-971, Brazil
| | - Wim Maurits Sylvain Degrave
- Oswaldo Cruz Institute, Fiocruz, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, State of Rio de Janeiro 21040-360, Brazil
| | | | - Leila Mendonça-Lima
- Oswaldo Cruz Institute, Fiocruz, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, State of Rio de Janeiro 21040-360, Brazil
| |
Collapse
|
2
|
Ma Z, Elango J, Hao J, Wu W. Purification and Characterization of a Novel Fibrinolytic Enzyme from Marine Bacterium Bacillus sp. S-3685 Isolated from the South China Sea. Mar Drugs 2024; 22:267. [PMID: 38921578 PMCID: PMC11204972 DOI: 10.3390/md22060267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/09/2024] [Accepted: 06/09/2024] [Indexed: 06/27/2024] Open
Abstract
A novel fibrinolytic enzyme, BSFE1, was isolated from the marine bacterium Bacillus sp. S-3685 (GenBank No.: KJ023685) found in the South China Sea. This enzyme, with a molecular weight of approximately 42 kDa and a specific activity of 736.4 U/mg, exhibited its highest activity at 37 °C in a phosphate buffer at pH 8.0. The fibrinolytic enzyme remained stable over a pH range of 7.5 to 10.0 and retained about 76% of its activity after being incubated at 37 °C for 2 h. The Km and Vmax values of the enzyme at 37 °C were determined to be 2.1 μM and 49.0 μmol min-1 mg-1, respectively. The fibrinolytic activity of BSFE1 was enhanced by Na+, Ba2+, K+, Co2+, Mn2+, Al3+, and Cu2+, while it was inhibited by Fe3+, Ca2+, Mg2+, Zn2+, and Fe2+. These findings indicate that the fibrinolytic enzyme isolated in this study exhibits a strong affinity for fibrin. Moreover, the enzyme we have purified demonstrates thrombolytic enzymatic activity. These characteristics make BSFE1 a promising candidate for thrombolytic therapy. In conclusion, the results obtained from this study suggest that our work holds potential in the development of agents for thrombolytic treatment.
Collapse
Affiliation(s)
- Zibin Ma
- School of Agriculture and Bioengineering, Taizhou Vocational College of Science & Technology, Taizhou 318020, China;
| | - Jeevithan Elango
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China;
- Center of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India
- Department of Biomaterials Engineering, Faculty of Health Sciences, UCAM Universidad Católica San Antonio de Murcia, Guadalupe, 30107 Murcia, Spain
| | - Jianhua Hao
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Wenhui Wu
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China;
| |
Collapse
|
3
|
Hazare C, Bhagwat P, Singh S, Pillai S. Diverse origins of fibrinolytic enzymes: A comprehensive review. Heliyon 2024; 10:e26668. [PMID: 38434287 PMCID: PMC10907686 DOI: 10.1016/j.heliyon.2024.e26668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 02/16/2024] [Indexed: 03/05/2024] Open
Abstract
Fibrinolytic enzymes cleave fibrin which plays a crucial role in thrombus formation which otherwise leads to cardiovascular diseases. While different fibrinolytic enzymes have been purified, only a few have been utilized as clinical and therapeutic agents; hence, the search continues for a fibrinolytic enzyme with high specificity, fewer side effects, and one that can be mass-produced at a lower cost with a higher yield. In this context, this review discusses the physiological mechanism of thrombus formation and fibrinolysis, and current thrombolytic drugs in use. Additionally, an overview of the optimization, production, and purification of fibrinolytic enzymes and the role of Artificial Intelligence (AI) in optimization and the patents granted is provided. This review classifies microbial as well as non-microbial fibrinolytic enzymes isolated from food sources, including fermented foods and non-food sources, highlighting their advantages and disadvantages. Despite holding immense potential for the discovery of novel fibrinolytic enzymes, only a few fermented food sources limited to Asian countries have been studied, necessitating the research on fibrinolytic enzymes from fermented foods of other regions. This review will aid researchers in selecting optimal sources for screening fibrinolytic enzymes and is the first one to provide insights and draw a link between the implication of source selection and in vivo application.
Collapse
Affiliation(s)
- Chinmay Hazare
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, University of Technology, P.O. Box 1334, Durban, 4000, South AfricaDurban
| | - Prashant Bhagwat
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, University of Technology, P.O. Box 1334, Durban, 4000, South AfricaDurban
| | - Suren Singh
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, University of Technology, P.O. Box 1334, Durban, 4000, South AfricaDurban
| | - Santhosh Pillai
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, University of Technology, P.O. Box 1334, Durban, 4000, South AfricaDurban
| |
Collapse
|
4
|
Tian Z, Xiang F, Peng K, Qin Z, Feng Y, Huang B, Ouyang P, Huang X, Chen D, Lai W, Geng Y. The cAMP Receptor Protein (CRP) of Vibrio mimicus Regulates Its Bacterial Growth, Type II Secretion System, Flagellum Formation, Adhesion Genes, and Virulence. Animals (Basel) 2024; 14:437. [PMID: 38338079 PMCID: PMC10854923 DOI: 10.3390/ani14030437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/12/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Vibrio mimicus is a serious pathogen in aquatic animals, resulting in significant economic losses. The cAMP receptor protein (CRP) often acts as a central regulator in highly pathogenic pathogens. V. mimicus SCCF01 is a highly pathogenic strain isolated from yellow catfish; the crp gene deletion strain (Δcrp) was constructed by natural transformation to determine whether this deletion affects the virulence phenotypes. Their potential molecular connections were revealed by qRT-PCR analysis. Our results showed that the absence of the crp gene resulted in bacterial and colony morphological changes alongside decreases in bacterial growth, hemolytic activity, biofilm formation, enzymatic activity, motility, and cell adhesion. A cell cytotoxicity assay and animal experiments confirmed that crp contributes to V. mimicus pathogenicity, as the LD50 of the Δcrp strain was 73.1-fold lower compared to the WT strain. Moreover, qRT-PCR analysis revealed the inhibition of type II secretion system genes, flagellum genes, adhesion genes, and metalloproteinase genes in the deletion strain. This resulted in the virulence phenotype differences described above. Together, these data demonstrate that the crp gene plays a core regulatory role in V. mimicus virulence and pathogenicity.
Collapse
Affiliation(s)
- Ziqi Tian
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Z.T.); (F.X.); (K.P.); (Z.Q.); (Y.F.); (B.H.); (P.O.); (W.L.)
| | - Fei Xiang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Z.T.); (F.X.); (K.P.); (Z.Q.); (Y.F.); (B.H.); (P.O.); (W.L.)
- Agricultural and Rural Bureau of Zhongjiang County, Deyang 618100, China
| | - Kun Peng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Z.T.); (F.X.); (K.P.); (Z.Q.); (Y.F.); (B.H.); (P.O.); (W.L.)
| | - Zhenyang Qin
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Z.T.); (F.X.); (K.P.); (Z.Q.); (Y.F.); (B.H.); (P.O.); (W.L.)
| | - Yang Feng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Z.T.); (F.X.); (K.P.); (Z.Q.); (Y.F.); (B.H.); (P.O.); (W.L.)
| | - Bowen Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Z.T.); (F.X.); (K.P.); (Z.Q.); (Y.F.); (B.H.); (P.O.); (W.L.)
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Z.T.); (F.X.); (K.P.); (Z.Q.); (Y.F.); (B.H.); (P.O.); (W.L.)
| | - Xiaoli Huang
- Department of Aquaculture, Sichuan Agricultural University, Chengdu 611130, China; (X.H.); (D.C.)
| | - Defang Chen
- Department of Aquaculture, Sichuan Agricultural University, Chengdu 611130, China; (X.H.); (D.C.)
| | - Weimin Lai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Z.T.); (F.X.); (K.P.); (Z.Q.); (Y.F.); (B.H.); (P.O.); (W.L.)
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Z.T.); (F.X.); (K.P.); (Z.Q.); (Y.F.); (B.H.); (P.O.); (W.L.)
| |
Collapse
|
5
|
Muniasamy R, Rathnasaamy S. Sustainable production and preparative purification of thermostable alkaline α-amylase by Bacillus simplex (ON754233) employing natural deep eutectic solvent-based extractive fermentation. Sci Rep 2024; 14:481. [PMID: 38177253 PMCID: PMC10766970 DOI: 10.1038/s41598-024-51168-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/01/2024] [Indexed: 01/06/2024] Open
Abstract
Using PEG-based deep eutectic solvents (PDES), the current study proposes extractive fermentation as a sustainable process integration for the production and purification of α-amylase from Bacillus simplex (ON754233). Glucose: PEG 400 outperformed five PDES in terms of tie lie length (58) and slope value (1.23) against sodium sulphatt. Apple cider pomace was used as a low-cost, sustainable carbon source to produce-amylase, with a maximum enzyme production of 2200.13 U/mL. PDES concentration (20% w/v), salt (12.75 w/v), and apple waste (2.75 g/mL) were all optimized using response surface methodology. When scaled upto 3 L benchtop bioreactor, extractive fermentation was proved to be better technology with maximum recovery of 92.4% with highest partition coefficient (3.59). The partially purified enzyme was further purified using a Sephadex G 100 followed by DEAE-Sephadex anion exchange chromatography with a purity fold of 33. The enzyme was found to be thermostable at the temperature (60 °C), remains alkaline (pH 8), and the activity was stimulated in the presence of Mg2+ ions. With SDS PAGE electrophoresis, the molecular weight was found to be around 140 kDa. Finally, the enzyme kinetics parameters were evaluated with observed Km (0.00396 mM) and Vmax (37.87 U/mL). Thus scaling up extractive fermentation entails increasing production capacity with improved extraction efficiency using green solvents.
Collapse
Affiliation(s)
- Ramya Muniasamy
- Green Separation Engineering Laboratory, School of Chemical and Biotechnology, SASTRA Deemed to Be University, Thanjavur, Tamilnadu, India
| | - Senthilkumar Rathnasaamy
- Green Separation Engineering Laboratory, School of Chemical and Biotechnology, SASTRA Deemed to Be University, Thanjavur, Tamilnadu, India.
| |
Collapse
|
6
|
Purification, biochemical characterization and fibrinolytic potential of proteases produced by bacteria of the genus Bacillus: a systematic literature review. Arch Microbiol 2022; 204:503. [PMID: 35852634 DOI: 10.1007/s00203-022-03134-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/03/2022] [Accepted: 07/10/2022] [Indexed: 11/02/2022]
Abstract
Thrombosis is a hematological disorder characterized by the formation of intravascular thrombi, which contributes to the development of cardiovascular diseases. Fibrinolytic enzymes are proteases that promote the hydrolysis of fibrin, promoting the dissolution of thrombi, contributing to the maintenance of adequate blood flow. The characterization of new effective, safe and low-cost fibrinolytic agents is an important strategy for the prevention and treatment of thrombosis. However, the development of new fibrinolytics requires the use of complex methodologies for purification, physicochemical characterization and evaluation of the action potential and toxicity of these enzymes. In this context, microbial enzymes produced by bacteria of the Bacillus genus are promising and widely researched sources to produce new fibrinolytics, with high thrombolytic potential and reduced toxicity. Thus, this review aims to provide a current and comprehensive understanding of the different Bacillus species used for the production of fibrinolytic proteases, highlighting the purification techniques, biochemical characteristics, enzymatic activity and toxicological evaluations used.
Collapse
|
7
|
Couto MTTD, Silva AVD, Sobral RVDS, Rodrigues CH, Cunha MNCD, Leite ACL, Figueiredo MDVB, de Paula Oliveira J, Costa RMPB, Conniff AES, Porto ALF, Nascimento TP. Production, extraction and characterization of a serine protease with fibrinolytic, fibrinogenolytic and thrombolytic activity obtained by Paenibacillus graminis. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Kee PE, Yim HS, Kondo A, Lan JCW, Ng HS. Extractive fermentation of Kytococcus sedentarius TWHKC01 using the aqueous biphasic system for direct recovery of keratinase. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Muniasamy R, Balamurugan BS, Rajamahendran D, Rathnasamy S. Switchable deep eutectic solvent driven micellar extractive fermentation of ultrapure fibrin digesting enzyme from Bacillus subtilis. Sci Rep 2022; 12:903. [PMID: 35042908 PMCID: PMC8766521 DOI: 10.1038/s41598-022-04788-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 01/03/2022] [Indexed: 11/09/2022] Open
Abstract
Fibrinolytic protease (FLP) is a therapeutic enzyme used in the treatment of thrombolytic diseases. The present study proposed the concept of pH-driven swappable micellar two-phase extraction for the concurrent production and purification of FLP from Bacillus subtilis at cloud point extraction. Extractive fermentation was carried out with a pH swap mechanism and FLP was extracted to the top phase by surfactant deep eutectic solvents (SDES). Shrimp waste was chosen as a sustainable low-cost substrate that yielded a maximum protease of 185 U/mg. Six SDESs were synthesized with nonionic surfactants as hydrogen bond donors and quaternary ammonium salts as hydrogen bond acceptors and their association was confirmed by H1 NMR. Thermophysical investigation of the synthetic SDES was accomplished as a function of temperature. Response surface methodology for extractive fermentation was performed with the concentration of SADES (35% w/v), Na2SO4 (15% w/v) and pH (6.3) as variables and the enzyme activity (248 IU/mg) as a response. Furthermore, purification using gel filtration chromatography was used to quantify the amount of enzyme obtained in the extraction phase (849 IU/ml). After final purification with an anion exchange column, the maximum purity fold (22.32) with enzyme activity (1172 IU/ml) was achieved. The in-vitro fibrinolytic activity has been confirmed using a fibrin plate assay.
Collapse
Affiliation(s)
- Ramya Muniasamy
- Green Separation Engineering Laboratory, School of Chemical and Biotechnology, SASTRA Deemed To Be University, Thanjavur, Tamil Nadu, 613401, India
| | - Bhavani Sowndharya Balamurugan
- Green Separation Engineering Laboratory, School of Chemical and Biotechnology, SASTRA Deemed To Be University, Thanjavur, Tamil Nadu, 613401, India
| | - Devi Rajamahendran
- Green Separation Engineering Laboratory, School of Chemical and Biotechnology, SASTRA Deemed To Be University, Thanjavur, Tamil Nadu, 613401, India
| | - Senthilkumar Rathnasamy
- Green Separation Engineering Laboratory, School of Chemical and Biotechnology, SASTRA Deemed To Be University, Thanjavur, Tamil Nadu, 613401, India.
| |
Collapse
|
10
|
Alencar VNS, Nascimento MCDO, Ferreira JVDS, Batista JMDAS, Cunha MNCDA, Nascimento JMDO, Sobral RVDAS, Couto MTTDO, Nascimento TP, Costa RMPB, Porto ALF, Leite ACL. Purification and characterization of fibrinolytic protease from Streptomyces parvulus by polyethylene glycol-phosphate aqueous two-phase system. AN ACAD BRAS CIENC 2021; 93:e20210335. [PMID: 34909841 DOI: 10.1590/0001-3765202120210335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 08/20/2021] [Indexed: 11/21/2022] Open
Abstract
Fibrinolytic proteases are a promising alternative in the pharmaceutical industry, they are used in the treatment of cardiovascular diseases, especially thrombosis. Microorganisms are the most interesting source of fibrinolytic proteases. The aim of this study was the production of fibrinolytic protease from Streptomyces parvulus DPUA 1573, the recovery of the protease by aqueous two-phase system and partial biochemical characterization of the enzyme. The aqueous two-phase system was performed according to a 24-full factorial design using polyethylene glycol molar mass, polyethylene glycol concentration, citrate concentration and pH as independent variables. It was analyzed the effect of different ions, surfactants, inhibitors, pH and temperature on enzyme activity. The best conditions for purifying the enzyme were 17.5% polyethylene glycol 8,000, 15% Phosphate and pH 8.0, it was obtained a partition coefficient of 7.33, a yield of 57.49% and a purification factor of 2.10-fold. There was an increase in enzyme activity in the presence of Fe2+ and a decrease in the presence of $\beta$-Mercaptoethanol, phenylmethylsulfonyl fluoride and Iodoacetic acid. The optimum pH was 7.0 and the optimum temperature was 40 ºC. The purified protease exhibited a molecular mass of 41 kDa. The fibrinolytic protease from Streptomyces parvulus proved to be a viable option for the development of a possible drug with fibrinolytic action.
Collapse
Affiliation(s)
- Viviane N S Alencar
- Laboratório de Biotecnologia e Hemoderivados, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Avenida Artur de Sá, 50740-520 Recife, PE, Brazil
| | - Maria Clara DO Nascimento
- Laboratório de Produtos Bioativos e Tecnológicos, Departamento de Morfologia Animal, Universidade Federal Rural de Pernambuco, Avenida Dom Manuel de Medeiros, 52171-900 Recife, PE, Brazil
| | - Julyanne V Dos Santos Ferreira
- Laboratório Avançado em Biotecnologia de Proteínas, Instituto de Ciências Biológicas, Universidade de Pernambuco, Rua Arnóbio Marques, 310, 50100-130 Recife, PE, Brazil
| | - Juanize M DA Silva Batista
- Laboratório de Produtos Bioativos e Tecnológicos, Departamento de Morfologia Animal, Universidade Federal Rural de Pernambuco, Avenida Dom Manuel de Medeiros, 52171-900 Recife, PE, Brazil
| | - Marcia N C DA Cunha
- Laboratório de Produtos Bioativos e Tecnológicos, Departamento de Morfologia Animal, Universidade Federal Rural de Pernambuco, Avenida Dom Manuel de Medeiros, 52171-900 Recife, PE, Brazil
| | - Jéssica M DO Nascimento
- Laboratório de Produtos Bioativos e Tecnológicos, Departamento de Morfologia Animal, Universidade Federal Rural de Pernambuco, Avenida Dom Manuel de Medeiros, 52171-900 Recife, PE, Brazil
| | - Renata V DA Silva Sobral
- Laboratório de Biotecnologia e Hemoderivados, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Avenida Artur de Sá, 50740-520 Recife, PE, Brazil
| | - Milena T T DO Couto
- Laboratório de Biotecnologia e Hemoderivados, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Avenida Artur de Sá, 50740-520 Recife, PE, Brazil
| | - Thiago P Nascimento
- Laboratório de Produtos Bioativos e Tecnológicos, Departamento de Morfologia Animal, Universidade Federal Rural de Pernambuco, Avenida Dom Manuel de Medeiros, 52171-900 Recife, PE, Brazil
| | - Romero M P B Costa
- Laboratório Avançado em Biotecnologia de Proteínas, Instituto de Ciências Biológicas, Universidade de Pernambuco, Rua Arnóbio Marques, 310, 50100-130 Recife, PE, Brazil
| | - Ana Lúcia F Porto
- Laboratório de Produtos Bioativos e Tecnológicos, Departamento de Morfologia Animal, Universidade Federal Rural de Pernambuco, Avenida Dom Manuel de Medeiros, 52171-900 Recife, PE, Brazil
| | - Ana Cristina L Leite
- Laboratório de Biotecnologia e Hemoderivados, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Avenida Artur de Sá, 50740-520 Recife, PE, Brazil
| |
Collapse
|
11
|
Altaf F, Wu S, Kasim V. Role of Fibrinolytic Enzymes in Anti-Thrombosis Therapy. Front Mol Biosci 2021; 8:680397. [PMID: 34124160 PMCID: PMC8194080 DOI: 10.3389/fmolb.2021.680397] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/10/2021] [Indexed: 12/11/2022] Open
Abstract
Thrombosis, a major cause of deaths in this modern era responsible for 31% of all global deaths reported by WHO in 2017, is due to the aggregation of fibrin in blood vessels which leads to myocardial infarction or other cardiovascular diseases (CVDs). Classical agents such as anti-platelet, anti-coagulant drugs or other enzymes used for thrombosis treatment at present could leads to unwanted side effects including bleeding complication, hemorrhage and allergy. Furthermore, their high cost is a burden for patients, especially for those from low and middle-income countries. Hence, there is an urgent need to develop novel and low-cost drugs for thrombosis treatment. Fibrinolytic enzymes, including plasmin like proteins such as proteases, nattokinase, and lumbrokinase, as well as plasminogen activators such as urokinase plasminogen activator, and tissue-type plasminogen activator, could eliminate thrombi with high efficacy rate and do not have significant drawbacks by directly degrading the fibrin. Furthermore, they could be produced with high-yield and in a cost-effective manner from microorganisms as well as other sources. Hence, they have been considered as potential compounds for thrombosis therapy. Herein, we will discuss about natural mechanism of fibrinolysis and thrombus formation, the production of fibrinolytic enzymes from different sources and their application as drugs for thrombosis therapy.
Collapse
Affiliation(s)
- Farwa Altaf
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Shourong Wu
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.,The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, China
| | - Vivi Kasim
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.,The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
12
|
Alves RO, de Oliveira RL, da Silva OS, Porto ALF, Porto CS, Porto TS. Extractive fermentation for process integration of protease production by Aspergillus tamarii Kita UCP1279 and purification by PEG-Citrate Aqueous Two-Phase System. Prep Biochem Biotechnol 2021; 52:30-37. [PMID: 33787455 DOI: 10.1080/10826068.2021.1904257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The present study evaluated the influence of the variables polyethylene glycol (PEG) molar mass, pH, PEG concentration and sodium citrate concentration in the integrated production of the protease from Aspergillus tamarii Kita UCP1279 by extractive fermentation, obtaining as a response the partition coefficient (K), activity yield (Y) and concentration factor (CF). The enzyme preferably partitioned to the top phase and obtained in the system formed by variables MPEG = 400 g mol-1, CPEG = 20% (w w-1), and CCIT = 20% (w w-1) and pH 6, in this condition were obtained CF = 1.90 and Y = 79.90%. The protease showed stability at a temperature of 60 °C for 180 min, with optimum temperature 40 °C and pH 8.0. For the ions and inhibitors effects, the protease activity increased when exposed to Fe2+, Ca2+ and Zn2 + and inhibited by EDTA, being classified as metalloprotease. The kinetic parameters Km (35.63 mg mL-1) and Vmax (1.205 mg mL-1 min-1) were also estimated. Thus, the protease showed desirable characteristics that enable future industrial applications, especially, for beer industry.
Collapse
Affiliation(s)
| | | | - Osmar Soares da Silva
- Laboratory of Basic Biology Teaching Azarias Salgado/LABAS, Reference High School Azarias Salgado, Angelim, Brazil
| | - Ana Lúcia Figueiredo Porto
- Laboratory of Bioactives Technology (LABTECBIO), Department of Morphology and Animal Physiology, Federal Rural University of Pernambuco, Brazil
| | - Camila Souza Porto
- Laboratory of Bioproducts and Bioprocesses Development (LADBIOPROS), Education Unit of Penedo, Federal University of Alagoas, Penedo, Brazil
| | - Tatiana Souza Porto
- Academic Unit of Garanhuns, Federal Rural University of Pernambuco, Garanhuns, Brazil
| |
Collapse
|
13
|
Lu M, Gao Z, Xing S, Long J, Li C, He L, Wang X. Purification, characterization, and chemical modification of Bacillus velezensis SN-14 fibrinolytic enzyme. Int J Biol Macromol 2021; 177:601-609. [PMID: 33636270 DOI: 10.1016/j.ijbiomac.2021.02.167] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/14/2021] [Accepted: 02/22/2021] [Indexed: 11/17/2022]
Abstract
Fermented bean foods are a crucial source of fibrinolytic enzymes. The presented study aimed to purify, characterize, and chemically modify Bacillus velezensis SN-14 fibrinolytic enzyme. The fibrinolytic enzyme was purified using CTAB/isooctane/hexyl alcohol/n-butyl alcohol reverse micellar system, and the purified enzyme was chemically modified to improve its enzymatic activity and stability. Enzyme activity recovery and the purification fold for this enzyme were 44.5 ± 1.9% and 4.93 ± 0.05 fold, respectively. SDS-PAGE results showed that the molecular weight of the purified fibrinolytic enzyme was around 28 kDa. Besides, the optimum temperature and pH of the purified fibrinolytic enzyme were 37 °C and 8-9, respectively. Fe2+, mPEG5000, and pepsin were used for chemical modification and for improving the activity and stability of the purified enzyme. Thermal and acid-base stability of chemically modified enzymes increased significantly, whereas enzymatic activity increased by 7.3 times. After 30 d of frozen storage, the modified enzyme's activity was remarkably lower (33.2%) than the unmodified enzyme (60.6%). The current study on B. velezensis SN-14 fibrinolytic enzyme and chemical modification method using Fe2+, mPEG5000, and pepsin provide a reference for developing fibrinolytic drugs and foods.
Collapse
Affiliation(s)
- Mingyuan Lu
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China; College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Zexin Gao
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China; College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Shuqi Xing
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China; College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Jia Long
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China; College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Cuiqin Li
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China; College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, PR China
| | - Laping He
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China; College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China.
| | - Xiao Wang
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China; College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| |
Collapse
|
14
|
Moula Ali AM, Bavisetty SCB. Purification, physicochemical properties, and statistical optimization of fibrinolytic enzymes especially from fermented foods: A comprehensive review. Int J Biol Macromol 2020; 163:1498-1517. [PMID: 32781120 DOI: 10.1016/j.ijbiomac.2020.07.303] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022]
Abstract
Fibrinolytic enzymes are proteases responsible for cleavage of fibrin mesh in thrombus clots, which are the primary causative agents in cardiovascular diseases. Developing safe, effective and cheap thrombolytic agents are important for prevention and cure of thrombosis. Although a wide variety of sources have been discovered for fibrinolytic enzymes, only few of them have been employed in clinical and therapeutic applications due to the drawbacks such as high cost of production, low stability of enzyme or therapeutic side effects. However, the discovery of new fibrinolytic enzymes requires complex purification stages and characterization, which gives an insight into their diverse modes of action. Post-discovery, approaches such as a) statistical optimization for fermentative bioprocessing and b) genetic engineering are advantageous in providing economic viability by finding simple and cost-effective medium, strain development with sufficient nutrient supplements for stable and high-level production of recombinant enzyme. This review provides a comprehensive understanding of different sources, purification techniques, production through genetic engineering approaches and statistical optimization of fermentation parameters as proteases have a wide variety of industrial and biotechnological applications making 60% of total enzyme market worldwide. New strategies targeting increased enzyme yields, non-denaturing environments, improved stability, enzyme activity and strain improvement have been discussed.
Collapse
Affiliation(s)
- Ali Muhammed Moula Ali
- Department of Food Science and Technology, Faculty of Food-Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Sri Charan Bindu Bavisetty
- Department of Fermentation Technology, Faculty of Food-Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand.
| |
Collapse
|
15
|
Fernandes LMG, Carneiro-da-Cunha MN, Silva JDC, Porto ALF, Porto TS. Purification and characterization of a novel Aspergillus heteromorphus URM 0269 protease extracted by aqueous two-phase systems PEG/citrate. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
16
|
Santos AG, de Albuquerque TL, Ribeiro BD, Coelho MAZ. In situ product recovery techniques aiming to obtain biotechnological products: A glance to current knowledge. Biotechnol Appl Biochem 2020; 68:1044-1057. [PMID: 32931049 DOI: 10.1002/bab.2024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/07/2020] [Indexed: 11/07/2022]
Abstract
Biotechnology and bioengineering techniques have been widely used in the production of biofuels, chemicals, pharmaceuticals, and food additives, being considered a "green" form of production because they use renewable and nonpolluting energy sources. On the other hand, in the traditional processes of production, the target product obtained by biotechnological routes must undergo several stages of purification, which makes these processes more expensive. In the past few years, some works have focused on processes that integrate fermentation to the recovery and purification steps necessary to obtain the final product required. This type of process is called in situ product recovery or extractive fermentation. However, there are some differences in the concepts of the techniques used in these bioprocesses. In this way, this review sought to compile relevant content on considerations and procedures that are being used in this field, such as evaporation, liquid-liquid extraction, permeation, and adsorption techniques. Also, the objective of this review was to approach the different configurations in the recent literature of the processes employed and the main bioproducts obtained, which can be used in the food, pharmaceutical, chemical, and/or fuel additives industry. We intended to elucidate concepts of these techniques, considered very recent, but which emerge as a promising alternative for the integration of bioprocesses.
Collapse
Affiliation(s)
- Ariane G Santos
- Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tiago L de Albuquerque
- Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bernardo D Ribeiro
- Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Alice Z Coelho
- Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
17
|
Rathnasamy SK, Durai A, Vigneshkumar AA, Purushothaman C, Rajendran DS, Chandramouliswaran K. One-pot simultaneous production and sustainable purification of fibrinolytic protease from Bacillus cereus using natural deep eutectic solvents. Sci Rep 2020; 10:13356. [PMID: 32770127 PMCID: PMC7414877 DOI: 10.1038/s41598-020-70414-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/29/2020] [Indexed: 01/10/2023] Open
Abstract
The present study report for the first time on the one-pot production and purification of fibrinolytic protease from Bacillus cereus by extractive fermentation using natural deep eutectic solvents (NADES). Cheese whey was chosen as a sustainable low-cost production alternative yielding a significantly high amount of protease (185.7 U/mg). Five natural deep eutectic solvents with menthol as hydrogen bond donor and sugar molecules as corresponding hydrogen bond acceptors were synthesized and their association was confirmed with H1 NMR. Thermophysical investigation of the synthetic NADES was accomplished as a function of temperature to define their extraction ability. Response surface methodology based optimization of concentration of NADES (77.5% w/w), Na2SO4 (14% w/v) and cheese whey (1% w/w) were accomplished for extractive fermentation. Further, preparative purification using size exclusion chromatography was used to quantify the amount of enzyme obtained in the extraction phase (190 U/ml). On subsequent purification with an anion exchange column, the maximum purity fold (21.2) with enzyme activity (2,607.8 U/ml) was attained. The optimal pH (8.0), temperature (50 °C) were determined and the in-vitro fibrinolytic activity has been confirmed using a fibrin plate assay.
Collapse
Affiliation(s)
- Senthil Kumar Rathnasamy
- Green Separation Engineering Laboratory, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, 613401, India.
| | - Aadhavan Durai
- Green Separation Engineering Laboratory, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, 613401, India
| | - A A Vigneshkumar
- Green Separation Engineering Laboratory, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, 613401, India
| | - C Purushothaman
- Green Separation Engineering Laboratory, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, 613401, India
| | - Devi Sri Rajendran
- Green Separation Engineering Laboratory, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, 613401, India
| | - K Chandramouliswaran
- Green Separation Engineering Laboratory, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, 613401, India
| |
Collapse
|
18
|
Gimenes NC, Silveira E, Tambourgi EB. An Overview of Proteases: Production, Downstream Processes and Industrial Applications. SEPARATION & PURIFICATION REVIEWS 2019. [DOI: 10.1080/15422119.2019.1677249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
| | - Edgar Silveira
- Biotechnology Institute, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
- Brazilian Savanna’s, Diversity Research Center, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
| | | |
Collapse
|
19
|
Pan S, Chen G, Wu R, Cao X, Liang Z. Non-sterile Submerged Fermentation of Fibrinolytic Enzyme by Marine Bacillus subtilis Harboring Antibacterial Activity With Starvation Strategy. Front Microbiol 2019; 10:1025. [PMID: 31156576 PMCID: PMC6533532 DOI: 10.3389/fmicb.2019.01025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/24/2019] [Indexed: 01/17/2023] Open
Abstract
Microbial fibrinolytic enzyme is a promising candidate for thrombolytic therapy. Non-sterile production of fibrinolytic enzyme by marine Bacillus subtilis D21-8 under submerged fermentation was realized at a mild temperature of 34°C, using a unique combination of starvation strategy and self-production of antibacterial agents. A medium composed of 18.5 g/L glucose, 6.3 g/L yeast extract, 7.9 g/L tryptone, and 5 g/L NaCl was achieved by conventional and statistical methods. Results showed efficient synthesis of fibrinolytic enzyme and antibacterial compounds required the presence of both yeast extract and tryptone in the medium. At shake-flask level, the non-sterile optimized medium resulted in higher productivity of fibrinolytic enzyme than the sterile one, with an enhanced yield of 3,129 U/mL and a production cost reduced by 24%. This is the first report dealing with non-sterile submerged fermentation of fibrinolytic enzyme, which may facilitate the development of feasible techniques for non-sterile production of raw materials for the preparation of potential drugs with low operation cost.
Collapse
Affiliation(s)
- Shihan Pan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Guiguang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Rui Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Xiaoyan Cao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Zhiqun Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
20
|
Silva OSD, Alves RO, Porto TS. PEG-sodium citrate aqueous two-phase systems to in situ recovery of protease from Aspergillus tamarii URM4634 by extractive fermentation. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
da Silva OS, Gomes MHG, de Oliveira RL, Porto ALF, Converti A, Porto TS. Partitioning and extraction protease from Aspergillus tamarii URM4634 using PEG-citrate aqueous two-phase systems. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2016.12.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Optimization of production, biochemical characterization and in vitro evaluation of the therapeutic potential of fibrinolytic enzymes from a new Bacillus amyloliquefaciens. Macromol Res 2016. [DOI: 10.1007/s13233-016-4089-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Nascimento TP, Sales AE, Porto CS, Brandão RMP, de Campos-Takaki GM, Teixeira JAC, Porto TS, Porto ALF, Converti A. Purification of a fibrinolytic protease from Mucor subtilissimus UCP 1262 by aqueous two-phase systems (PEG/sulfate). J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1025:16-24. [DOI: 10.1016/j.jchromb.2016.04.046] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/13/2016] [Accepted: 04/29/2016] [Indexed: 11/24/2022]
|
24
|
Gurpilhares DB, Pessoa A, Roberto IC. Process Integration for the Disruption of Candida guilliermondii Cultivated in Rice Straw Hydrolysate and Recovery of Glucose-6-Phosphate Dehydrogenase by Aqueous Two-Phase Systems. Appl Biochem Biotechnol 2015; 176:1596-612. [PMID: 25987135 DOI: 10.1007/s12010-015-1664-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/07/2015] [Indexed: 11/26/2022]
Abstract
Remaining cells of Candida guilliermondii cultivated in hemicellulose-based fermentation medium were used as intracellular protein source. Recovery of glucose-6-phosphate dehydrogenase (G6PD) was attained in conventional aqueous two-phase systems (ATPS) was compared with integrated process involving mechanical disruption of cells followed by ATPS. Influences of polyethylene glycol molar mass (M PEG) and tie line lengths (TLL) on purification factor (PF), yields in top (Y T ) and bottom (Y B ) phases and partition coefficient (K) were evaluated. First scheme resulted in 65.9 % enzyme yield and PF of 2.16 in salt-enriched phase with clarified homogenate (M PEG 1500 g mol(-1), TLL 40 %); Y B of 75.2 % and PF B of 2.9 with unclarified homogenate (M PEG 1000 g mol(-1), TLL 35 %). The highest PF value of integrated process was 2.26 in bottom phase (M PEG 1500 g mol(-1), TLL 40 %). In order to optimize this response, a quadratic model was predicted for the response PFB for process integration. Maximum response achieved was PFB = 3.3 (M PEG 1500 g mol(-1), TLL 40 %). Enzyme characterization showed G6P Michaelis-Menten constant (K M ) equal 0.07-0.05, NADP(+) K M 0.02-1.98 and optimum temperature 70 °C, before and after recovery. Overall, our data confirmed feasibility of disruption/extraction integration for single-step purification of intracellular proteins from remaining yeast cells.
Collapse
Affiliation(s)
- Daniela B Gurpilhares
- Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo, Estrada Municipal do Campinho s/n, 12602-810, Lorena, SP, Brazil
| | | | | |
Collapse
|
25
|
Zhao C, Ju J. Molecular cloning, expression, and anti-tumor activity of a novel serine protease from Arenicola cristata. Acta Biochim Biophys Sin (Shanghai) 2014; 46:450-9. [PMID: 24709333 DOI: 10.1093/abbs/gmu020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Arenicola cristata, a marine annelid, is a well-known and prized traditional Chinese medicine. However, the serine protease gene of A. cristata has not been cloned yet. In this study, a novel protease of A. cristata was cloned, sequenced, and expressed in Escherichia coli, and the functions of this recombinant protease were also investigated. The whole complementary DNA (cDNA) of this novel protease was of 980 bp in length and consisted of an open reading frame of 861 bp encoding 286 aa. Sequence analysis of the deduced amino acid sequence revealed that the protease belongs to the serine protease family. The active enzyme of the proposed A. cristata protease is composed of a signal peptide, a propeptide, and a mature polypeptide. The molecular weight of the recombinant mature protein was ~26 kDa after over-expression in E. coli. The recombinant protein significantly inhibited cell growth and induced cell apoptosis of esophageal squamous cell carcinoma (ESCC) in vitro, and reduced tumorigenicity in vivo. Furthermore, administration of the recombinant protein led to the activation of caspase-9 as well as down-regulation of Mcl-1 and Bcl-2. Taken together, our findings indicated that the recombinant serine protease of A. cristata could inhibit ESCC cell growth by mitochondrial apoptotic pathway and might act as a potential pharmacological agent for ESCC therapy.
Collapse
Affiliation(s)
- Chunling Zhao
- College of Pharmacy and Biological Science, Weifang Medical University, Weifang 261053, China
| | - Jiyu Ju
- College of Basic Medicine, Weifang Medical University, Weifang 261053, China
| |
Collapse
|