1
|
Qiu M, Jiang J, Jiang W, Zhang W, Jiang Y, Xin F, Jiang M. The biosynthesis of L-phenylalanine-derived compounds by engineered microbes. Biotechnol Adv 2024; 77:108448. [PMID: 39260779 DOI: 10.1016/j.biotechadv.2024.108448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/16/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
L-Phenylalanine (L-Phe) is an important aromatic amino acid, which has been widely used in food, health care products, medicine and other fields. Based on the relatively mature microbial biosynthesis process, a variety of L-phenylalanine-derived compounds have attracted more and more attentions owing to their extensively potential applications in the fields of food, medicine, spices, cosmetics, and pesticides. However, the challenge of biosynthesis of L-phenylalanine-derived compounds remains the issue of low production and productivity. With the development of metabolic engineering and synthetic biology, the biosynthesis of L-phenylalanine has reached a high level. Therefore, the synthesis of L-phenylalanine-derived compounds based on high production strains of L-phenylalanine has broad prospects. In addition, some L-phenylalanine-derived compounds are more suitable for efficient synthesis by exogenous addition of precursors due to their longer metabolic pathways and the inhibitory effects of many intermediate products. This review systematically summarized the research progress of L-phenylalanine-derived compounds, including phenylpyruvate derivatives, trans-cinnamic derivatives, p-coumaric acid derivatives and other L-phenylalanine-derived compounds (such as flavonoids). Finally, the main strategies to improve the production of L-phenylalanine-derived compounds were summarized, and the development trends of the synthesis of L-phenylalanine-derived compounds by microbial method were also prospected.
Collapse
Affiliation(s)
- Min Qiu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Jie Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Wankui Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China.
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China.
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| |
Collapse
|
2
|
Meruvu H. Redefining methods for augmenting lactic acid bacteria robustness and phenyllactic acid biocatalysis: Integration valorizes simplicity. Crit Rev Food Sci Nutr 2022; 64:4397-4409. [PMID: 36322699 DOI: 10.1080/10408398.2022.2141681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The production of phenyllactic acid (PLA) has been reported by several researchers, but so far, no mention has been made of augmented PLA production using an orchestrated assembly of simple techniques integrated to improve lactic acid bacteria (LAB) metabolism for the same. This review summarizes sequentially tailoring LAB growth and metabolism for augmented PLA catalysis through several strategies like monitoring LAB sustenance by choosing appropriate starter PLA-producing LAB strains isolated from natural environments, with desirably fastidious growth rates, properties like acidification, proteolysis, bacteriophage-resistance, aromatic/texturing-features, etc.; entrapping chosen LAB strains in novel cryogels and/or co-cultivating two/more LAB strains to improve their biotransformation potential and promote growth dependency/sustainability; adopting adaptive evolution methods designed to improve LAB strains under selection pressure inducing desired phenotypes tolerant to stress factors like heat, salt, acid, and solvent; monitoring physico-chemical LAB fermentation factors like temperature, pH, dissolved oxygen content, enzymes, and cofactors for PLA biosynthesis; and modulating purification/downstream processes to extract substantial PLA yields. This review paper serves as a comprehensive preliminary guide that can evoke a strategic experimental plan to produce industrial-scale PLA yields using simple techniques orchestrated together in the pursuit of conserving time, effort, and resources.
Collapse
Affiliation(s)
- Haritha Meruvu
- Department of Food Engineering, Faculty of Engineering, İzmir Institute of Technology, Urla, İzmir, Turkey
| |
Collapse
|
3
|
Ashokbhai JK, Basaiawmoit B, Sakure A, Das S, Patil GB, Mankad M, Hati S. Purification and characterization of antioxidative and antimicrobial peptides from lactic-fermented sheep milk. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:4262-4272. [PMID: 36193483 PMCID: PMC9525493 DOI: 10.1007/s13197-022-05493-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/29/2022] [Accepted: 05/18/2022] [Indexed: 06/16/2023]
Abstract
This study aims to identify antioxidant and antimicrobial peptides from sheep milk produced using Lactobacillus plantarum (KGL3A). It was inferred that antioxidative and antimicrobial activities increased with increasing incubation time, and antioxidative properties (ABTS assay, superoxide free radical & hydroxyl free radical scavenging activity were 34.5, 34.7, and 29.2% respectively) and antimicrobial properties against Escherichia coli, S. typhimurium, E. faecalis, & B. cereus were 11.3, 12.7, 13.3, & 12.3 mm. However, inoculation of culture at a level of 2.5% and 48 h fermentation give the highest proteolysis activities. Fermented sheep milk fractions of 3 & 10 kDa were analysed for antioxidative and antimicrobial activity, and the 10 kDa permeate showed the highest ABTS assay. The hydroxyl free radical scavenging activity was greatest in 10 kDa retentate and superoxide free radical scavenging activity was observed in 3 kDa permeate (34.7, 43.4, and 34.6%, respectively). Antimicrobial activity of 10 kDa retentate against B. cereus & E. coli (13.3 mm) was greater than 3 and 10 kDa retentate against S. typhimurium (13 mm) and 3 kDa retentate against E. faecalis (13.7 mm). The molecular weight of the protein was estimated using SDS-PAGE. On electrophoresis on a 2-D gel, 6 peptides were identified using RP-LC/MS. BIOPEP, a database for antioxidative and antimicrobial peptides, validated the antioxidative & antimicrobial activities of several peptides in sheep's milk that has been fermented. Sheep milk fermented using Lactobacillus could be considered a novel source of antioxidative and antimicrobial proteins. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-022-05493-2.
Collapse
Affiliation(s)
- Jodhani Keyur Ashokbhai
- Department of Dairy Microbiology, Anand Agricultural University, Anand, 388110 Gujarat India
| | - Bethsheba Basaiawmoit
- Department of Rural Development and Agricultural Production, North-Eastern Hill University, Tura campus, Tura, 794002 Meghalaya India
| | - Amar Sakure
- Department of Agriculture Biotechnology, Anand Agricultural University, Anand, 388110 Gujarat India
| | - Sujit Das
- Department of Rural Development and Agricultural Production, North-Eastern Hill University, Tura campus, Tura, 794002 Meghalaya India
| | - G. B. Patil
- Department of Tissue Culture, Anand Agricultural University, Anand, 388110 Gujarat India
| | - Maunil Mankad
- Department of Tissue Culture, Anand Agricultural University, Anand, 388110 Gujarat India
| | - Subrota Hati
- Department of Dairy Microbiology, Anand Agricultural University, Anand, 388110 Gujarat India
| |
Collapse
|
4
|
Doderlin: Isolation and Characterization of a Broad-Spectrum Antimicrobial Peptide from Lactobacillus acidophilus. Res Microbiol 2022. [DOI: 10.1016/j.resmic.2022.103995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
5
|
Inhibitory Effect of Lactiplantibacillusplantarum and Lactococcus lactis Autochtonous Strains against Listeria monocytogenes in a Laboratory Cheese Model. Foods 2022; 11:foods11050715. [PMID: 35267348 PMCID: PMC8909851 DOI: 10.3390/foods11050715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/05/2023] Open
Abstract
In the present study, six Lactococcus lactis and seven Lactiplantibacillus plantarum strains isolated from artisanal Sardinian dairy products were evaluated for their efficacy in controlling the growth of Listeria monocytogenes during the storage of miniature fresh cheese manufactured on a laboratory scale to exploit their possible use as biopreservatives. The strains were tested for antimicrobial activity and some technological characteristics before using them in miniature fresh cheese to evaluate their in situ antilisterial effect. Our results showed that five strains (L. lactis 16FS16-9/20234-11FS16 and Lpb. plantarum 1/14537-4A/20045) could be considered suitable candidates for use as protective cultures in fresh cheese manufacture since they significantly lowered the pathogen counts by 3–4 log units compared to the control; however, all strains tested were capable of decreasing L. monocytogenes numbers. Our results suggest that the single and combined action of the acidifying power and the production of bacteriocin of these strains was capable of controlling and/or reducing the growth of L. monocytogenes. Considering their technological characteristics, they might be used as starter/adjunct cultures to increase the safety of the products, perhaps in association with other antimicrobial hurdles.
Collapse
|
6
|
Pan X, Zhang S, Xu X, Lao F, Wu J. Volatile and non-volatile profiles in jujube pulp co-fermented with lactic acid bacteria. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Xiong T, Bai Y, Fan TP, Zheng X, Cai Y. Biosynthesis of phenylpyruvic acid from l-phenylalanine using chromosomally engineered Escherichia coli. Biotechnol Appl Biochem 2021; 69:1909-1916. [PMID: 34554609 DOI: 10.1002/bab.2256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 09/14/2021] [Indexed: 11/09/2022]
Abstract
The efficiency of whole-cell biotransformation is often affected by the genetic instability of plasmid-based expression systems, which require selective pressure to maintain the stability of the plasmids. To circumvent this shortcoming, we constructed a chromosome engineering strain for the synthesis of phenylpyruvic acid (PPA) from l-phenylalanine. First, l-amino acid deaminase (pmLAAD) from Proteus myxofaciens was incorporated into Escherichia coli BL21 (DE3) chromosome and the copy numbers of pmLAAD were increased by chemically induced chromosomal evolution (CIChE). Fifty-nine copies of pmLAAD were obtained in E. coli BL8. The PPA titer of E. coli BL8 reached 2.22 g/L at 6 h. Furthermore, the deletion of lacI improved PPA production. In the absence of isopropyl-β-d-thiogalactopyranoside, the resulting strain, E. coli BL8△recA△lacI, produced 2.65 g/L PPA at 6 h and yielded a 19.37% increase in PPA production compared to E. coli BL8△recA. Finally, the engineered E. coli BL8△recA△lacI strain achieved 19.14 g/L PPA at 24 h in a 5-L bioreactor.
Collapse
Affiliation(s)
- Tianzhen Xiong
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,College of Life Science, Xinyang Normal University, Xinyang, Henan, China
| | - Yajun Bai
- College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Tai-Ping Fan
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Xiaohui Zheng
- College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
8
|
Zhang H, HuangFu H, Wang X, Zhao S, Liu Y, Lv H, Qin G, Tan Z. Antibacterial Activity of Lactic Acid Producing Leuconostoc mesenteroides QZ1178 Against Pathogenic Gallibacterium anatis. Front Vet Sci 2021; 8:630294. [PMID: 33969032 PMCID: PMC8100202 DOI: 10.3389/fvets.2021.630294] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/22/2021] [Indexed: 12/01/2022] Open
Abstract
Lactic acid bacteria (LAB) convert carbohydrates into organic acids [mainly lactic acid (LA)], which reportedly have bactericidal activities. Gallibacterium anatis is a Gram-negative bacteria which infects birds, and causes significant economic losses. In this study, we investigated the antibacterial activity of the LA producing, Leuconostoc mesenteroides QZ1178 from Qula (fermented food), against G. anatis, using the Oxford cup method. Our data showed that L. mesenteroides QZ1178 inhibited G. anatis isolates from different origins; however, L. mesenteroides QZ1178 antibacterial activity dropped dramatically at pH 5.5–pH 6. The LA concentration and pH of the liquid broth containing L. mesenteroides QZ1178 after 24 h culture was 29 mg/mL and 3.6, respectively. This concentration (29 mg/mL at pH 3.6) and the antibiotic, cefotaxime (minimum inhibitory concentration (MIC) 2.5 μg/mL) effectively inhibited G. anatis (GAC026) growth as observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Gallibacterium anatis treated with LA exhibited extensive cell surface collapse, increased cell damage, cell membrane disruption, and cytoplasmic leakage, indicative of cell lysis. We suggest L. mesenteroides QZ1178 exerts potential antibacterial effects against the poultry pathogen, G. anatis via LA.
Collapse
Affiliation(s)
- Hua Zhang
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China.,School of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou, China.,Henan Key Laboratory of Ion-Beam Bioengineering, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, China
| | - HePing HuangFu
- School of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Xing Wang
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Ion-Beam Bioengineering, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, China
| | - ShanShan Zhao
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Ion-Beam Bioengineering, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, China
| | - Yuan Liu
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Ion-Beam Bioengineering, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, China
| | - Haoxin Lv
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - GuangYong Qin
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhongfang Tan
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Pedrozo HA, Dallagnol AM, Schvezov CE. Genetic algorithm applied to simultaneous parameter estimation in bacterial growth. J Bioinform Comput Biol 2021; 19:2050045. [PMID: 33504290 DOI: 10.1142/s0219720020500456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Several mathematical models have been developed to understand the interactions of microorganisms in foods and predict their growth. The resulting model equations for the growth of interacting cells include several parameters that must be determined for the specific conditions to be modeled. In this study, these parameters were determined by using inverse engineering and a multi-objective optimization procedure that allows fitting more than one experimental growth curve simultaneously. A genetic algorithm was applied to obtain the best parameter values of a model that permit the construction of the front of Pareto with 50 individuals or phenotypes. The method was applied to three experimental data sets of simultaneous growth of lactic acid bacteria (LAB) and Listeria monocytogenes (LM). Then, the proposed method was compared with a conventional mono-objective sequential fit. We concluded that the multi-objective fit by the genetic algorithm gives superior results with more parameter identifiability than the conventional sequential approach.
Collapse
Affiliation(s)
- Hector A Pedrozo
- Instituto de Materiales de Misiones (CONICET-UNaM), Felix de Azara 1552, 3300 Posadas, Argentina
| | - Andrea M Dallagnol
- Instituto de Materiales de Misiones (CONICET-UNaM), Felix de Azara 1552, 3300 Posadas, Argentina
| | - Carlos E Schvezov
- Instituto de Materiales de Misiones (CONICET-UNaM), Felix de Azara 1552, 3300 Posadas, Argentina
| |
Collapse
|
10
|
Amiri S, Rezaei Mokarram R, Sowti Khiabani M, Rezazadeh Bari M, Alizadeh Khaledabad M. In situ production of conjugated linoleic acid by Bifidobacterium lactis BB12 and Lactobacillus acidophilus LA5 in milk model medium. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109933] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Nataraj BH, Ali SA, Behare PV, Yadav H. Postbiotics-parabiotics: the new horizons in microbial biotherapy and functional foods. Microb Cell Fact 2020; 19:168. [PMID: 32819443 PMCID: PMC7441679 DOI: 10.1186/s12934-020-01426-w] [Citation(s) in RCA: 246] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/13/2020] [Indexed: 12/20/2022] Open
Abstract
Probiotics have several health benefits by modulating gut microbiome; however, techno-functional limitations such as viability controls have hampered their full potential applications in the food and pharmaceutical sectors. Therefore, the focus is gradually shifting from viable probiotic bacteria towards non-viable paraprobiotics and/or probiotics derived biomolecules, so-called postbiotics. Paraprobiotics and postbiotics are the emerging concepts in the functional foods field because they impart an array of health-promoting properties. Although, these terms are not well defined, however, for time being these terms have been defined as here. The postbiotics are the complex mixture of metabolic products secreted by probiotics in cell-free supernatants such as enzymes, secreted proteins, short chain fatty acids, vitamins, secreted biosurfactants, amino acids, peptides, organic acids, etc. While, the paraprobiotics are the inactivated microbial cells of probiotics (intact or ruptured containing cell components such as peptidoglycans, teichoic acids, surface proteins, etc.) or crude cell extracts (i.e. with complex chemical composition)". However, in many instances postbiotics have been used for whole category of postbiotics and parabiotics. These elicit several advantages over probiotics like; (i) availability in their pure form, (ii) ease in production and storage, (iii) availability of production process for industrial-scale-up, (iv) specific mechanism of action, (v) better accessibility of Microbes Associated Molecular Pattern (MAMP) during recognition and interaction with Pattern Recognition Receptors (PRR) and (vi) more likely to trigger only the targeted responses by specific ligand-receptor interactions. The current review comprehensively summarizes and discussed various methodologies implied to extract, purify, and identification of paraprobiotic and postbiotic compounds and their potential health benefits.
Collapse
Affiliation(s)
- Basavaprabhu H Nataraj
- Technofunctional Starters Lab, National Collection of Dairy Cultures (NCDC), Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Syed Azmal Ali
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Pradip V Behare
- Technofunctional Starters Lab, National Collection of Dairy Cultures (NCDC), Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India.
| | - Hariom Yadav
- Department of Internal Medicine-Molecular Medicine and Microbiology and Immunology, Wake Forest School of Medicine, Biotech Place, Room 2E-034, 575 North Patterson Ave, Winston-Salem, NC, 27101, USA.
| |
Collapse
|
12
|
Cai W, Tang F, Zhao X, Guo Z, Zhang Z, Dong Y, Shan C. Different lactic acid bacteria strains affecting the flavor profile of fermented jujube juice. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14095] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wenchao Cai
- School of Food Science Shihezi University Shihezi PR China
- Research Institute of Traditional Fermented Food, School of Chemical Engineering and Food Science Hubei university of arts and sciences Xiangyang PR China
| | - Fengxian Tang
- School of Food Science Shihezi University Shihezi PR China
| | - Xinxin Zhao
- School of Food Science Shihezi University Shihezi PR China
- Research Institute of Traditional Fermented Food, School of Chemical Engineering and Food Science Hubei university of arts and sciences Xiangyang PR China
| | - Zhuang Guo
- Research Institute of Traditional Fermented Food, School of Chemical Engineering and Food Science Hubei university of arts and sciences Xiangyang PR China
| | - Zhendong Zhang
- Research Institute of Traditional Fermented Food, School of Chemical Engineering and Food Science Hubei university of arts and sciences Xiangyang PR China
| | - Yun Dong
- Research Institute of Traditional Fermented Food, School of Chemical Engineering and Food Science Hubei university of arts and sciences Xiangyang PR China
| | - Chunhui Shan
- School of Food Science Shihezi University Shihezi PR China
| |
Collapse
|
13
|
Assessment of the Antimicrobial Potentiality and Functionality of Lactobacillus plantarum Strains Isolated from the Conventional Inner Mongolian Fermented Cheese Against Foodborne Pathogens. Pathogens 2019; 8:pathogens8020071. [PMID: 31117307 PMCID: PMC6631976 DOI: 10.3390/pathogens8020071] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/07/2019] [Accepted: 05/13/2019] [Indexed: 12/23/2022] Open
Abstract
Lactobacillus plantarum are amongst the diversified lactic acid bacteria (LAB) species which are being utilized abundantly in the food industry. Numerous L. plantarum strains have been reported to produce several antimicrobial compounds. Diacetyl, hydrogen peroxide, organic acids, as well as bacteriocins can also be exemplified by a variable spectrum of actions. The current study was intended to conduct the screening and characterization of antimicrobial prospective of L. plantarum from traditional Inner Mongolian fermented hard cheese. Foodborne pathogens, Salmonella typhimurium, Escherichia coli O157:H7, Listeria monocytogenes, and Staphylococcus aureus, were examined by using the Oxford cup technique and the mixed culture inhibition assays. The resulting analyses disclosed that L. plantarum KLDS1.0344 indicated broad antimicrobial spectrum against all selected pathogens as compared to other LAB used in this study. Additionally, the decrement of the pathogen population was observed up to 3.47 logs in mixed culture inhibition assays. L. plantarum KLDS 1.0344 acid production was recorded up to 71.8 ± 3.59 °D in mixed culture while antimicrobial particles released in cell free supernatants demonstrated bacteriocin-like characteristics showing substantial pH stability (2.0–6.0), proteolytic enzyme reduced the antibacterial activity (15.2 ± 0.6 mm–20.4 ± 0.8 mm), heat stability (20 min at 120 °C) against selected pathogens. Moreover, the spectrum range of antimicrobial peptides after the partial purification was decreased as compared to the crude bacteriocin-like compound. The SDS-PAGE analysis showed the molecular weight range of partially purified bacteriocin from 12 to 45 kDa. After analyzing the obtained data from the current experimentation showed that the capability of L. plantarum KLDS 1.0344 to oppose the pathogen growth in vitro relies on the occurrence of organic acids along with bacteriocin-like compounds proving L. plantarum KLDS 1.0344 as a potentially appropriate candidate as an alternative bio-control agent against foodborne pathogens.
Collapse
|
14
|
Using brewer's spent grain to formulate culture media for the production of bacteriocins using Patagonian strains. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.05.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
|
16
|
Zhu Y, Wang Y, Xu J, Chen J, Wang L, Qi B. Enantioselective Biosynthesis of l-Phenyllactic Acid by Whole Cells of Recombinant Escherichia coli. Molecules 2017; 22:E1966. [PMID: 29140277 PMCID: PMC6150373 DOI: 10.3390/molecules22111966] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND l-Phenyllactic acid (l-PLA)-a valuable building block in the pharmaceutical and chemical industry-has recently emerged as an important monomer in the composition of the novel degradable biocompatible material of polyphenyllactic acid. However, both normally chemically synthesized and naturally occurring phenyllactic acid are racemic, and the product yields of reported l-PLA synthesis processes remain unsatisfactory. METHODS We developed a novel recombinant Escherichia coli strain, co-expressing l-lactate dehydrogenase (l-LDH) from Lactobacillus plantarum subsp. plantarum and glucose dehydrogenase (GDH) from Bacillus megaterium, to construct a recombinant oxidation/reduction cycle for whole-cell biotransformation of phenylpyruvic acid (PPA) into chiral l-PLA in an enantioselective and continuous manner. RESULTS During fed-batch bioconversion with intermittent PPA feeding, l-PLA yield reached 103.8 mM, with an excellent enantiomeric excess of 99.7%. The productivity of l-PLA was as high as 5.2 mM·h-1 per OD600 (optical density at 600 nm) of whole cells. These results demonstrate the efficient production of l-PLA by the one-pot biotransformation system. Therefore, this stereoselective biocatalytic process might be a promising alternative for l-PLA production.
Collapse
Affiliation(s)
- Yibo Zhu
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China.
- Key Laboratory of Food and Biotechnology of Suzhou, Changshu Institute of Technology, Changshu 215500, China.
| | - Ying Wang
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China.
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China.
| | - Jiayuzi Xu
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China.
| | - Jiahao Chen
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China.
| | - Limei Wang
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China.
- Key Laboratory of Food and Biotechnology of Suzhou, Changshu Institute of Technology, Changshu 215500, China.
| | - Bin Qi
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China.
- Key Laboratory of Food and Biotechnology of Suzhou, Changshu Institute of Technology, Changshu 215500, China.
| |
Collapse
|
17
|
da Silva Sabo S, Pérez-Rodríguez N, Domínguez JM, de Souza Oliveira RP. Inhibitory substances production by Lactobacillus plantarum ST16Pa cultured in hydrolyzed cheese whey supplemented with soybean flour and their antimicrobial efficiency as biopreservatives on fresh chicken meat. Food Res Int 2017; 99:762-769. [PMID: 28784542 DOI: 10.1016/j.foodres.2017.05.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/27/2017] [Accepted: 05/27/2017] [Indexed: 10/19/2022]
Abstract
Cheese whey, the main byproduct of the dairy industry, is one of the most worrisome types of industrial waste, not only because of its abundant annual global production but also because it is a notable source of environmental pollution. However, cheese whey can serve as a raw material for the production of biocomposites. In this context, in this study, we assayed the production of a bacteriocin-like inhibitory substance (BLIS) and lactate by culturing Lactobacillus plantarum ST16Pa in hydrolyzed fresh cheese whey. The process was improved by studying the enzymatic hydrolysis of cheese whey as well as its supplementation with soybean flour under microaerophilic or anaerobic conditions. Thus, the highest values of BLIS (7367.23 arbitrary units [AU]/mL) and lactate yield (Ylactate/lactose=1.39g/g) were achieved after addition of 10g/L soybean flour in microaerophilia. These conditions were successfully scaled up in a bioreactor because during complete anaerobiosis at 150rpm, L. plantarum ST16Pa attained considerable cell growth (3.14g/L), lactate concentration (14.33g/L), and BLIS activity (8082.56AU/mL). In addition, the cell-free supernatant resulting from this bioprocess showed high biopreservative efficiency in chicken breast fillets artificially contaminated with Enterococcus faecium 711 during 7days of refrigerated storage, thus indicating the potential use of this BLIS as a biopreservative in the food industry.
Collapse
Affiliation(s)
- Sabrina da Silva Sabo
- Department of Biochemical and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Noelia Pérez-Rodríguez
- Chemical Engineering Department, Sciences Faculty, University of Vigo (Ourense Campus), Ourense, Spain
| | - José Manuel Domínguez
- Chemical Engineering Department, Sciences Faculty, University of Vigo (Ourense Campus), Ourense, Spain
| | - Ricardo Pinheiro de Souza Oliveira
- Department of Biochemical and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
18
|
Comparison of Antibacterial Activity of Lactobacillus plantarum Strains Isolated from Two Different Kinds of Regional Cheeses from Poland: Oscypek and Korycinski Cheese. BIOMED RESEARCH INTERNATIONAL 2017. [PMID: 28626762 PMCID: PMC5463104 DOI: 10.1155/2017/6820369] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Oscypek and korycinski are traditional Polish cheeses, exclusively produced in Tatra and in Podlasie region, respectively, produced from raw, unpasteurized milk. The 29 Lactobacillus plantarum strains were isolated on MRS agar from 12 cheese samples and used as a material for study. The main purpose of the work was to assess the antimicrobial properties and recognition of selected strains for the unique antagonistic activity and preservation role in food. It has been found that the highest antimicrobial activity was observed in the case of L. monocytogenes strains; however, the level of that activity was different depending on the Lb. plantarum strain. Strains from oscypek produced broad spectrum, and a few strains isolated from korycinski cheese produced a narrow spectrum of antimicrobial compounds, other than organic acids and hydrogen peroxide. Moreover, the antagonistic activity shown by Lb. plantarum strains is connected with the source from which a given strain was isolated. Strains isolated from oscypek cheese represented stronger activity against L. monocytogenes, whereas strains isolated from korycinski cheese were more active against E. coli. Strains Lb. plantarum Os13 and Kor14 could be considered as good candidates for protective cultures to extend durability of food products.
Collapse
|
19
|
Optimisation of cheese whey enzymatic hydrolysis and further continuous production of antimicrobial extracts by Lactobacillus plantarum CECT-221. J DAIRY RES 2016; 83:402-11. [DOI: 10.1017/s0022029916000352] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The enzymatic hydrolysis of cheese whey was optimised using the enzymes iZyme, Alcalase or Flavourzyme under different conditions. Hydrolysates supplemented with commercial nutrients were evaluated as fermentation broths to produce DL-3-Phenyllactic acid (PLA) from phenylalanine (Phe) by Lactobacillus plantarum CECT-221. Optimised hydrolysates were obtained using Flavourzyme at 50 °C and 100 rpm during 12 h, and assayed in 250 ml Erlenemyer flasks using different proportions of vinasses as economic nutrient. The process was then scaled up using a 2 litres Bioreactor working under the continuous modality. Under the intermediate dilution rate of 0·0207 h−1 0·81 ± 0·026 mM of PLA and 38·8 ± 3·253 g/l of lactic acid were produced. A final evaluation revealed that lactic acid, and bacteriocins exerted the highest inhibitory effect among the extracted components of cell-free supernatants.
Collapse
|
20
|
Josephs-Spaulding J, Beeler E, Singh OV. Human microbiome versus food-borne pathogens: friend or foe. Appl Microbiol Biotechnol 2016; 100:4845-63. [PMID: 27102132 DOI: 10.1007/s00253-016-7523-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 03/30/2016] [Accepted: 04/03/2016] [Indexed: 12/16/2022]
Abstract
As food safety advances, there is a great need to maintain, distribute, and provide high-quality food to a much broader consumer base. There is also an ever-growing "arms race" between pathogens and humans as food manufacturers. The human microbiome is a collective organ of microbes that have found community niches while associating with their host and other microorganisms. Humans play an important role in modifying the environment of these organisms through their life choices, especially through individual diet. The composition of an individual's diet influences the digestive system-an ecosystem with the greatest number and largest diversity of organisms currently known. Organisms living on and within food have the potential to be either friends or foes to the consumer. Maintenance of this system can have multiple benefits, but lack of maintenance can lead to a host of chronic and preventable diseases. Overall, this dynamic system is influenced by intense competition from food-borne pathogens, lifestyle, overall diet, and presiding host-associated microbiota.
Collapse
Affiliation(s)
- Jonathan Josephs-Spaulding
- Division of Biological and Health Sciences, University of Pittsburgh, 300 Campus Drive, Bradford, PA, 16701, USA
| | - Erik Beeler
- Division of Biological and Health Sciences, University of Pittsburgh, 300 Campus Drive, Bradford, PA, 16701, USA
| | - Om V Singh
- Division of Biological and Health Sciences, University of Pittsburgh, 300 Campus Drive, Bradford, PA, 16701, USA.
| |
Collapse
|
21
|
Arena MP, Silvain A, Normanno G, Grieco F, Drider D, Spano G, Fiocco D. Use of Lactobacillus plantarum Strains as a Bio-Control Strategy against Food-Borne Pathogenic Microorganisms. Front Microbiol 2016; 7:464. [PMID: 27148172 PMCID: PMC4829616 DOI: 10.3389/fmicb.2016.00464] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 03/21/2016] [Indexed: 12/28/2022] Open
Abstract
Lactobacillus plantarum is one of the most versatile species extensively used in the food industry both as microbial starters and probiotic microorganisms. Several L. plantarum strains have been shown to produce different antimicrobial compounds such as organic acids, hydrogen peroxide, diacetyl, and also bacteriocins and antimicrobial peptides, both denoted by a variable spectrum of action. In recent decades, the selection of microbial molecules and/or bacterial strains able to produce antagonistic molecules to be used as antimicrobials and preservatives has been attracting scientific interest, in order to eliminate or reduce chemical additives, because of the growing attention of consumers for healthy and natural food products. The aim of this work was to investigate the antimicrobial activity of several food-isolated L. plantarum strains, analyzed against the pathogenic bacteria Listeria monocytogenes, Salmonella Enteritidis, Escherichia coli O157:H7 and Staphylococcus aureus. Antagonistic activity was assayed by agar spot test and revealed that strain L. plantarum 105 had the strongest ability to contrast the growth of L. monocytogenes, while strains L. plantarum 106 and 107 were the most active microorganisms against E. coli O157:H7. The antimicrobial ability was also screened by well diffusion assay and broth micro-dilution method using cell-free supernatants (CFS) from each Lactobacillus strain. Moreover, the chemical nature of the molecules released in the CFS, and possibly underlying the antagonistic activity, was preliminary characterized by exposure to different constraints such as pH neutralization, heating, catalase, and proteinase treatments. Our data suggest that the ability of L. plantarum cultures to contrast pathogens growth in vitro depends, at least in part, on a pH-lowering effect of supernatants and/or on the presence of organic acids. Cluster analysis was performed in order to group L. plantarum strains according to their antimicrobial effect. This study emphasizes the tempting use of the tested L. plantarum strains and/or their CFS as antimicrobial agents against food-borne pathogens.
Collapse
Affiliation(s)
- Mattia Pia Arena
- Department of Science of Agriculture, Food and Environment, University of Foggia Foggia, Italy
| | - Amandine Silvain
- Laboratoire Régional de Recherche en Agroalimentaire et Biotechnologies, Institut Charles Viollette-Université Lille 1, Université de Lille Lille, France
| | - Giovanni Normanno
- Department of Science of Agriculture, Food and Environment, University of Foggia Foggia, Italy
| | - Francesco Grieco
- Institute of Sciences of Food Production (ISPA), Lecce Section, Consiglio Nazionale delle Ricerche Lecce, Italy
| | - Djamel Drider
- Laboratoire Régional de Recherche en Agroalimentaire et Biotechnologies, Institut Charles Viollette-Université Lille 1, Université de Lille Lille, France
| | - Giuseppe Spano
- Department of Science of Agriculture, Food and Environment, University of Foggia Foggia, Italy
| | - Daniela Fiocco
- Department of Clinical and Experimental Medicine, University of Foggia Foggia, Italy
| |
Collapse
|
22
|
Valerio F, Di Biase M, Lattanzio VMT, Lavermicocca P. Improvement of the antifungal activity of lactic acid bacteria by addition to the growth medium of phenylpyruvic acid, a precursor of phenyllactic acid. Int J Food Microbiol 2016; 222:1-7. [PMID: 26827290 DOI: 10.1016/j.ijfoodmicro.2016.01.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 01/11/2016] [Accepted: 01/20/2016] [Indexed: 11/15/2022]
Abstract
The aim of the current study was to improve the antifungal activity of eight lactic acid bacterial (LAB) strains by the addition of phenylpyruvic acid (PPA), a precursor of the antifungal compound phenyllactic acid (PLA), to a defined growth medium (DM). The effect of PPA addition on the LABs antifungal activity related to the production of organic acids (PLA, d-lactic, l-lactic, acetic, citric, formic and 4-hydroxy-phenyllactic acids) and of other phenylpyruvic-derived molecules, was investigated. In the presence of PPA the inhibitory activity (expressed as growth inhibition percentage) against fungal bread contaminants Aspergillus niger and Penicillium roqueforti significantly increased and was, even if not completely, associated to PLA increase (from a mean value of 0.44 to 0.93 mM). While the inhibitory activity against Endomyces fibuliger was mainly correlated to the low pH and to lactic, acetic and p-OH-PLA acids. When the PCA analysis based on data of growth inhibition percentage and organic acid concentrations was performed, strains grown in DM+PPA separated from those grown in DM and the most active strains Lactobacillus plantarum 21B, Lactobacillus fermentum 18B and Lactobacillus brevis 18F grouped together. The antifungal activity resulted to be strain-related, based on a different mechanism of action for filamentous fungi and the yeast and was not exclusively associated to the increase of PLA. Therefore, a further investigation on the unique unidentified peak in HPLC-UV chromatograms, was performed by LC-MS/MS analysis. Actually, full scan mass spectra (negative ion mode) recorded at the retention time of the unknown compound, showed a main peak of m/z 291.0 which was consistent with the nominal mass of the molecular ion [M-H](-) of polyporic acid, a PPA derivative whose antifungal activity has been previously reported (Brewer et al., 1977). In conclusion, the addition of PPA to the growth medium contributed to improve the antifungal activity of LAB strains and resulted in the production of the polyporic acid, here ascertained in LAB strains.
Collapse
Affiliation(s)
- Francesca Valerio
- Institute of Sciences of Food Production (ISPA), National Research Council of Italy (CNR), Bari, Italy
| | - Mariaelena Di Biase
- Institute of Sciences of Food Production (ISPA), National Research Council of Italy (CNR), Bari, Italy
| | - Veronica M T Lattanzio
- Institute of Sciences of Food Production (ISPA), National Research Council of Italy (CNR), Bari, Italy
| | - Paola Lavermicocca
- Institute of Sciences of Food Production (ISPA), National Research Council of Italy (CNR), Bari, Italy.
| |
Collapse
|
23
|
Coban HB, Demirci A, Patterson PH, Elias RJ. Enhanced phenylpyruvic acid production with Proteus vulgaris in fed-batch and continuous fermentation. Prep Biochem Biotechnol 2016; 46:157-60. [DOI: 10.1080/10826068.2014.995813] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Hasan B. Coban
- Department of Agricultural and Biological Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Ali Demirci
- Department of Agricultural and Biological Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
- The Huck Institutes of Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Paul H. Patterson
- Department of Animal Science, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Ryan J. Elias
- Department of Food Science, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
24
|
Sharma D, Saharan BS, Kapil S. Biosurfactants of Probiotic Lactic Acid Bacteria. SPRINGERBRIEFS IN MICROBIOLOGY 2016. [DOI: 10.1007/978-3-319-26215-4_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
25
|
Zheng Z, Zhao M, Zang Y, Zhou Y, Ouyang J. Production of optically pure L-phenyllactic acid by using engineered Escherichia coli coexpressing L-lactate dehydrogenase and formate dehydrogenase. J Biotechnol 2015; 207:47-51. [PMID: 26008622 DOI: 10.1016/j.jbiotec.2015.05.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 04/10/2015] [Accepted: 05/18/2015] [Indexed: 10/23/2022]
Abstract
L-Phenyllactic acid (L-PLA) is a novel antiseptic agent with broad and effective antimicrobial activity. In addition, L-PLA has been used for synthesis of poly(phenyllactic acid)s, which exhibits better mechanical properties than poly(lactic acid)s. However, the concentration and optical purity of L-PLA produced by native microbes was rather low. An NAD-dependent L-lactate dehydrogenase (L-nLDH) from Bacillus coagulans NL01 was confirmed to have a good ability to produce L-PLA from phenylpyruvic acid (PPA). In the present study, l-nLDH gene and formate dehydrogenase gene were heterologously coexpressed in Escherichia coli. Through two coupled reactions, 79.6mM l-PLA was produced from 82.8mM PPA in 40min and the enantiomeric excess value of L-PLA was high (>99%). Therefore, this process suggested a promising alternative for the production of chiral l-PLA.
Collapse
Affiliation(s)
- Zhaojuan Zheng
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Nanjing 210037, People's Republic of China
| | - Mingyue Zhao
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Ying Zang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Ying Zhou
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Jia Ouyang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Nanjing 210037, People's Republic of China.
| |
Collapse
|
26
|
Capillary Electrophoresis Method Validation for Organic Acids Assessment in Probiotics. FOOD ANAL METHOD 2014. [DOI: 10.1007/s12161-014-0018-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
27
|
González-Quijano GK, Dorantes-Alvarez L, Hernández-Sánchez H, Jaramillo-Flores ME, de Jesús Perea-Flores M, Vera-Ponce de León A, Hernández-Rodríguez C. Halotolerance and Survival Kinetics of Lactic Acid Bacteria Isolated from Jalapeño Pepper (Capsicum annuumL.) Fermentation. J Food Sci 2014; 79:M1545-53. [DOI: 10.1111/1750-3841.12498] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 04/14/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Génesis Karendash González-Quijano
- Depto. de Graduados en Alimentos; Escuela Nacional de Ciencias Biológicas; Inst. Politécnico Nacional; Prolongación de Carpio y Plan de Ayala. Col. Sto. Tomás; México; Distrito Federal; C.P. 11340. México
| | - Lidia Dorantes-Alvarez
- Depto. de Graduados en Alimentos; Escuela Nacional de Ciencias Biológicas; Inst. Politécnico Nacional; Prolongación de Carpio y Plan de Ayala. Col. Sto. Tomás; México; Distrito Federal; C.P. 11340. México
| | - Humberto Hernández-Sánchez
- Depto. de Graduados en Alimentos; Escuela Nacional de Ciencias Biológicas; Inst. Politécnico Nacional; Prolongación de Carpio y Plan de Ayala. Col. Sto. Tomás; México; Distrito Federal; C.P. 11340. México
| | - María Eugenia Jaramillo-Flores
- Depto. de Graduados en Alimentos; Escuela Nacional de Ciencias Biológicas; Inst. Politécnico Nacional; Prolongación de Carpio y Plan de Ayala. Col. Sto. Tomás; México; Distrito Federal; C.P. 11340. México
| | - María de Jesús Perea-Flores
- Perea-Flores is with Centro de Nanociencias y Micro y Nanotecnologías del Inst. Politécnico Nacional; México Distrito Federal
| | - Arturo Vera-Ponce de León
- Depto. de Microbiología; Escuela Nacional de Ciencias Biológicas; Inst. Politécnico Nacional; Prolongación de Carpio y Plan de Ayala. Col. Sto. Tomás; México; Distrito Federal; C.P. 11340. México
| | - César Hernández-Rodríguez
- Depto. de Microbiología; Escuela Nacional de Ciencias Biológicas; Inst. Politécnico Nacional; Prolongación de Carpio y Plan de Ayala. Col. Sto. Tomás; México; Distrito Federal; C.P. 11340. México
| |
Collapse
|
28
|
Zhang X, Zhang S, Shi Y, Shen F, Wang H. A new high phenyl lactic acid-yieldingLactobacillus plantarum IMAU10124 and a comparative analysis of lactate dehydrogenase gene. FEMS Microbiol Lett 2014; 356:89-96. [DOI: 10.1111/1574-6968.12483] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 05/05/2014] [Accepted: 05/19/2014] [Indexed: 11/30/2022] Open
Affiliation(s)
- Xiqing Zhang
- Key Laboratory of Industrial Fermentation Microbiology; Ministry of Education; College of Biotechnology; Tianjin University of Science and Technology; Tianjin China
| | - Shuli Zhang
- Key Laboratory of Industrial Fermentation Microbiology; Ministry of Education; College of Biotechnology; Tianjin University of Science and Technology; Tianjin China
| | - Yan Shi
- Key Laboratory of Industrial Fermentation Microbiology; Ministry of Education; College of Biotechnology; Tianjin University of Science and Technology; Tianjin China
| | - Fadi Shen
- Key Laboratory of Industrial Fermentation Microbiology; Ministry of Education; College of Biotechnology; Tianjin University of Science and Technology; Tianjin China
| | - Haikuan Wang
- Key Laboratory of Industrial Fermentation Microbiology; Ministry of Education; College of Biotechnology; Tianjin University of Science and Technology; Tianjin China
| |
Collapse
|