1
|
Chauhan JK, Kumar P, Dubey PK, Tripathi A. Phyto-Fingerprinting of Putranjiva roxburghii Wall. Leaf Extract and its In Vitro Anti-Inflammatory Activity. Cell Biochem Biophys 2025:10.1007/s12013-025-01676-8. [PMID: 39871023 DOI: 10.1007/s12013-025-01676-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2025] [Indexed: 01/29/2025]
Abstract
Putranjiva roxburghii is an important medicinal plant utilized for remedy of female reproductive ailments. Its seed extract is being used as a uterine health booster due to the presence of several pharmaceutically important phytochemicals. However, the presence of phytochemicals in its leaf is still unexplored. The present study was designed to explore phytochemical finger printing and assessment of anti-oxidant and anti-inflammatory activities of hydroalcoholic leaf extract of P. roxburghii (HALEPR). The qualitative, quantitative phytochemical of flavonoid, phenol and HRA-MS analysis of HALEPR carried out along with antioxidant and in vitro membrane stabilization and protein denaturation assay of anti-inflammatory activity were have been analyzed. Results of qualitative phytochemical screening of HALEPR denotes the existence of phenol, flavonoids, alkaloids, coumarins, steroids, saponins, tannins, anthroquinone and carbohydrates. The quantitative phytochemical of flavonoid and phenol was done which revealed the presents of total phenol and flavonoid. High resolution accurate-mass spectrometry (HRA-MS) study was also done for the identification of bioactive compounds from the HALEPR, which showed the presence of various phytochemicals such as luteolin 3'- (3″-acetylglucuronide), luteolin 4'-methyl ether 7-glucoside, quercetin-3β-D-glucoside, 8-hydroxyluteolin 4'-methyl ether 8-glucuronide, quercetin 3-xylosyl- (1- > 2) -rha mnosyl- (1- > 6) -glucoside, quercetin-3β-D-glucoside, myricetin 3- (3-6-diacetylglucosyl) - (1- > 4) - (2″,3″-diacetylrhamnoside), apigetrin, isorhamnetin, catechin 7,3'-Di-O-β-D glucopyranoside, luteolin 7-methylglucuronide, apigenin-8-C-α -l-arabinopyranoside, naringenin 7- O-β-D-glucoside 6″-acetate,ohobanin, shogaol, ginkgetin and amoritin. The HELPER is shown to have the presence of anti-oxidant and anti-inflammatory activities as demonstrated by DPPH (1, 1-diphenyl,2-picrylhydrazyl) and membrane lysis assays. Our findings reveal the presence of phytochemicals in HALEPR that have significant antioxidant and anti-inflammatory activity. The bioactivities were identified using chemical characterization like HRA/MS and biological assessments like anti-inflammatory and antioxidant assays. Future research may focus on isolating specific molecules, conducting in vivo tests, and creating HALEPR-based formulations for clinical application as anti-inflammatory drugs.
Collapse
Affiliation(s)
| | - Pradeep Kumar
- Department of Zoology, MMV, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Pawan K Dubey
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Anima Tripathi
- Department of Zoology, MMV, Banaras Hindu University, Varanasi, 221005, UP, India.
| |
Collapse
|
2
|
Rode S, Kaur H, Sharma M, Shah V, Singh SS, Gubyad M, Ghosh DK, Sircar D, Kumar P, Roy P, Sharma AK. Characterization of Type1 Lipid Transfer Protein from Citrus sinensis: Unraveling its potential as an antimicrobial and insecticidal agent. Int J Biol Macromol 2024; 265:130811. [PMID: 38490399 DOI: 10.1016/j.ijbiomac.2024.130811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/27/2023] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
Lipid Transfer Protein1 (LTP1) is a cationic, multifaceted protein belonging to the pathogenesis-related protein (PR14) family. Despite being involved in diverse physiological processes and defense mechanisms, the precise in-vivo role of LTP1 remains undiscovered. This work presents the characterization of recombinant Citrus sinensis LTP1 (CsLTP1) along with lipid binding studies through in-silico and in-vitro approaches. CsLTP1 demonstrated great thermal and pH stability with a huge biotechnological potential. It showed in-vitro binding capacity with jasmonic acid and lipids involved in regulating plant immune responses. Gene expression profiling indicated a significant upregulation of CsLTP1 in Candidatus-infected Citrus plants. CsLTP1 disrupted the cell membrane integrity of various pathogens, making it a potent antimicrobial agent. Further, in-vivo antimicrobial and insecticidal properties of CsLTP1 have been explored. The impact of exogenous CsLTP1 treatment on rice crop metabolism for managing blight disease has been studied using GC-MS. CsLTP1 triggered crucial metabolic pathways in rice plants while controlling the blight disease. CsLTP1 effectively inhibited Helicoverpa armigera larvae by impeding mid-gut α-amylase activity and obstructing its developmental stages. This study highlights the pivotal role of CsLTP1 in plant defense by offering insights for developing multi-target therapeutic agent or disease-resistant varieties to comprehensively tackle the challenges towards crop protection.
Collapse
Affiliation(s)
- Surabhi Rode
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Harry Kaur
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Monica Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Vivek Shah
- Division of Crop Protection, ICAR Central Institute for Cotton Research, Nagpur, India
| | - Shiv Shakti Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Mrugendra Gubyad
- Plant Virology Laboratory, Central Citrus Research Institute, Nagpur, India
| | - Dilip Kumar Ghosh
- Plant Virology Laboratory, Central Citrus Research Institute, Nagpur, India
| | - Debabrata Sircar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Partha Roy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Ashwani Kumar Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India.
| |
Collapse
|
3
|
Ghosh D, Kokane S, Savita BK, Kumar P, Sharma AK, Ozcan A, Kokane A, Santra S. Huanglongbing Pandemic: Current Challenges and Emerging Management Strategies. PLANTS (BASEL, SWITZERLAND) 2022; 12:plants12010160. [PMID: 36616289 PMCID: PMC9824665 DOI: 10.3390/plants12010160] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 05/09/2023]
Abstract
Huanglongbing (HLB, aka citrus greening), one of the most devastating diseases of citrus, has wreaked havoc on the global citrus industry in recent decades. The culprit behind such a gloomy scenario is the phloem-limited bacteria "Candidatus Liberibacter asiaticus" (CLas), which are transmitted via psyllid. To date, there are no effective long-termcommercialized control measures for HLB, making it increasingly difficult to prevent the disease spread. To combat HLB effectively, introduction of multipronged management strategies towards controlling CLas population within the phloem system is deemed necessary. This article presents a comprehensive review of up-to-date scientific information about HLB, including currently available management practices and unprecedented challenges associated with the disease control. Additionally, a triangular disease management approach has been introduced targeting pathogen, host, and vector. Pathogen-targeting approaches include (i) inhibition of important proteins of CLas, (ii) use of the most efficient antimicrobial or immunity-inducing compounds to suppress the growth of CLas, and (iii) use of tools to suppress or kill the CLas. Approaches for targeting the host include (i) improvement of the host immune system, (ii) effective use of transgenic variety to build the host's resistance against CLas, and (iii) induction of systemic acquired resistance. Strategies for targeting the vector include (i) chemical and biological control and (ii) eradication of HLB-affected trees. Finally, a hypothetical model for integrated disease management has been discussed to mitigate the HLB pandemic.
Collapse
Affiliation(s)
- Dilip Ghosh
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Nagpur 440033, India
- Correspondence: (D.G.); (A.K.S.); (S.S.)
| | - Sunil Kokane
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Nagpur 440033, India
| | - Brajesh Kumar Savita
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Pranav Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Ashwani Kumar Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
- Correspondence: (D.G.); (A.K.S.); (S.S.)
| | - Ali Ozcan
- Vocational School of Technical Sciences, Karamanoglu Mehmetbey University, 70200 Karaman, Turkey
- Scientific and Technological Studies Application and Research Center, Karamanoglu Mehmetbey University, 70200 Karaman, Turkey
| | - Amol Kokane
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Nagpur 440033, India
| | - Swadeshmukul Santra
- Departments of Chemistry, Nano Science Technology Center, and Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA
- Correspondence: (D.G.); (A.K.S.); (S.S.)
| |
Collapse
|
4
|
Chiu T, Poucet T, Li Y. The potential of plant proteins as antifungal agents for agricultural applications. Synth Syst Biotechnol 2022; 7:1075-1083. [PMID: 35891944 PMCID: PMC9305310 DOI: 10.1016/j.synbio.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/24/2022] [Accepted: 06/30/2022] [Indexed: 11/22/2022] Open
Abstract
Fungal pathogens induce a variety of diseases in both plants and post-harvest food crops, resulting in significant crop losses for the agricultural industry. Although the usage of chemical-based fungicides is the most common way to control these diseases, they damage the environment, have the potential to harm human and animal life, and may lead to resistant fungal strains. Accordingly, there is an urgent need for diverse and effective agricultural fungicides that are environmentally- and eco-friendly. Plants have evolved various mechanisms in their innate immune system to defend against fungal pathogens, including soluble proteins secreted from plants with antifungal activities. These proteins can inhibit fungal growth and infection through a variety of mechanisms while exhibiting diverse functionality in addition to antifungal activity. In this mini review, we summarize and discuss the potential of using plant antifungal proteins for future agricultural applications from the perspective of bioengineering and biotechnology.
Collapse
Affiliation(s)
- Tiffany Chiu
- Graduate Program in Genetics, Genomics, And Bioinformatics, 1140 Batchelor Hall, University of California Riverside, California, 92521, USA
| | - Theo Poucet
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, 92521, USA
| | - Yanran Li
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
5
|
Savita BK, Dalal V, Choudhary S, Gupta DN, Das N, Tomar S, Kumar P, Roy P, Sharma AK. Characterization of recombinant pumpkin 2S albumin and mutation studies to unravel potential DNA/RNA binding site. Biochem Biophys Res Commun 2021; 580:28-34. [PMID: 34610489 DOI: 10.1016/j.bbrc.2021.09.076] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 09/27/2021] [Indexed: 11/25/2022]
Abstract
The native pumpkin 2S albumin, a multifunctional protein, possess a variety of potential biotechnologically exploitable properties. The present study reports the characterization of recombinant pumpkin 2S albumin (rP2SA) and unraveling of its potential DNA/RNA binding site. The purification and characterization of the rP2SA established that it retains the characteristic α-helical structure and exhibited comparable DNase, RNase, antifungal and anti-proliferative activities as native protein. In vitro studies revealed that rP2SA exhibits potent antiviral activity against chikungunya virus (CHIKV) at a non-toxic concentration with an IC50 of 114.5 μg/mL. In silico studies and site-directed mutagenesis were employed to unravel the potential DNA/RNA binding site. A strong positive charge distribution due to presence of many arginine residues in proximity of helix 5 was identified as a potential site. The two of the arginine residues, conserved in some 2S albumins, were selected for the mutation studies. The mutated forms of recombinant protein (R84A and R91A) showed a drastic reduction in DNase and RNase activities suggesting their presence at binding site and involvement in the nuclease activity. A metal binding site was also identified adjacent to DNA/RNA binding site. The present study demonstrated the structural and functional integrity of the rP2SA and reports potential antiviral activity against CHIKV. Further, potential DNA/RNA binding site was unraveled through mutation studies and bioinformatics analysis.
Collapse
Affiliation(s)
- Brajesh Kumar Savita
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, India
| | - Vikram Dalal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, India
| | - Shweta Choudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, India
| | - Deena Nath Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, India
| | - Neeladrisingha Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, India
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, India
| | - Partha Roy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, India
| | - Ashwani Kumar Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, India.
| |
Collapse
|
6
|
Arif R, Zia MA, Mustafa G. Structural and Functional Annotation of Napin-Like Protein from Momordica charantia to Explore its Medicinal Importance. Biochem Genet 2021; 60:415-432. [PMID: 34282529 DOI: 10.1007/s10528-021-10113-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 07/12/2021] [Indexed: 11/26/2022]
Abstract
Seed storage proteins not just provide essential nutritional ingredients for growth of seedlings but also have their potential role in defense mechanisms of plants. Napin is a seed storage protein and belongs to 2S albumin family. Napin and napin-like protein have many biological defensive activities including antifungal, antimicrobial, trypsin inhibitor, and also act as antagonist of calmodulin. Napin protein possesses various isoforms with different biological activities. In this study, the protein sequence of napin from Momordica charantia was retrieved from GenPept database for characterization. A complete annotation of napin including its physicochemical properties was done. Three dimensional (3D) modeling and interactions of napin-like protein with other proteins were also predicted using various bioinformatics tools. A phylogram of napin-like protein from M. charantia with its homologs was also reconstructed to reveal its evolutionary relationships with napins and other 2S albumin proteins from various plants. The study has revealed the structural characterization, biological interactions, and evolutionary background which will play crucial role in exploring the medicinal and biological potentials of napin-like protein from M. charantia as well as worth of napin and napin-like protein has been disclosed.
Collapse
Affiliation(s)
- Rawaba Arif
- Department of Biochemistry, Government College University, Faisalabad, 38060, Pakistan
| | - Muhammad Anjum Zia
- Department of Biochemistry, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Ghulam Mustafa
- Department of Biochemistry, Government College University, Faisalabad, 38060, Pakistan.
| |
Collapse
|
7
|
Freire JEC, Moreno FBMB, Monteiro-Júnior JE, Sousa AJS, Vasconcelos IM, Oliveira JTA, Monteiro-Moreira ACO, Rocha BAM, Grangeiro TB. Mo-CBP 3, a 2S albumin from Moringa oleifera, is a complex mixture of isoforms that arise from different post-translational modifications. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 140:68-77. [PMID: 31085448 DOI: 10.1016/j.plaphy.2019.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 06/09/2023]
Abstract
Mo-CBP3 is a chitin-binding 2S albumin from Moringa oleifera. This seed storage protein is resistant to thermal denaturation and shows biological activities that might be of practical use, such as antifungal properties against Candida sp., a pathogen that causes candidiasis, and against Fusarium solani, a soil fungus that can cause diseases in plants and humans. Previous work has demonstrated that Mo-CBP3 is a mixture of isoforms encoded by members of a small multigene family. Mature Mo-CBP3 is a small protein (∼14 kDa), constituted by a small chain of approximately 4 kDa and a large chain of 8 kDa, which are held together by disulfide bridges. However, a more comprehensive picture on the spectrum of Mo-CBP3 isoforms which are found in mature seeds, is still lacking. In this work, genomic DNA fragments were obtained from M. oleifera leaves, cloned and completely sequenced, thus revealing new genes encoding Mo-CBP3. Moreover, mass spectrometry analysis showed that the mature protein is a complex mixture of isoforms with a remarkable number of molecular mass variants. Using computational predictions and calculations, most (∼86%) of the experimentally determined masses were assigned to amino acid sequences deduced from DNA fragments. The results suggested that the complex mixture of Mo-CBP3 isoforms originates from proteins encoded by closely related genes, whose products undergo different combinations of distinct post-translational modifications, including cleavage at the N- and C-terminal ends of both subunits, cyclization of N-terminal Gln, as well as Pro hydroxylation, Ser/Thr phosphorylation, and Met oxidation.
Collapse
Affiliation(s)
- José E C Freire
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências, Universidade Federal do Ceará (UFC), Fortaleza, CE, Brazil
| | - Frederico B M B Moreno
- Núcleo de Biologia Experimental, Centro de Ciências da Saúde, Universidade de Fortaleza, Fortaleza, CE, 60810-431, Brazil
| | | | - Antônio J S Sousa
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências, Universidade Federal do Ceará (UFC), Fortaleza, CE, Brazil
| | - Ilka M Vasconcelos
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências, Universidade Federal do Ceará (UFC), Fortaleza, CE, Brazil
| | - José T A Oliveira
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências, Universidade Federal do Ceará (UFC), Fortaleza, CE, Brazil
| | - Ana C O Monteiro-Moreira
- Núcleo de Biologia Experimental, Centro de Ciências da Saúde, Universidade de Fortaleza, Fortaleza, CE, 60810-431, Brazil
| | - Bruno A M Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências, Universidade Federal do Ceará (UFC), Fortaleza, CE, Brazil
| | | |
Collapse
|
8
|
Garcia TB, Soares AA, Costa JH, Costa HPS, Neto JXS, Rocha-Bezerra LCB, Silva FDA, Arantes MR, Sousa DOB, Vasconcelos IM, Oliveira JTA. Gene expression and spatiotemporal localization of antifungal chitin-binding proteins during Moringa oleifera seed development and germination. PLANTA 2019; 249:1503-1519. [PMID: 30706136 DOI: 10.1007/s00425-019-03103-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Chitin-binding proteins behave as storage and antifungal proteins in the seeds of Moringa oleifera. Moringa oleifera is a tropical multipurpose tree. Its seed constituents possess coagulant, bactericidal, fungicidal, and insecticidal properties. Some of these properties are attributed to a group of polypeptides denominated M. oleifera chitin-binding proteins (in short, Mo-CBPs). Within this group, Mo-CBP2, Mo-CBP3, and Mo-CBP4 were previously purified to homogeneity. They showed high amino acid similarity with the 2S albumin storage proteins. These proteins also presented antimicrobial activity against human pathogenic yeast and phytopathogenic fungi. In the present study, the localization and expression of genes that encode Mo-CBPs and the biosynthesis and degradation of the corresponding proteins during morphogenesis and maturation of M. oleifera seeds at 15, 30, 60, and 90 days after anthesis (DAA) and germination, respectively, were assessed. The Mo-CBP transcripts and corresponding proteins were not detected at 15 and 30 days after anthesis (DAA). However, they accumulated at the latter stages of seed maturation (60 and 90 DAA), reaching the maximum level at 60 DAA. The degradation kinetics of Mo-CBPs during seed germination by in situ immunolocalization revealed a reduction in the protein content 48 h after sowing (HAS). Moreover, Mo-CBPs isolated from seeds at 60 and 90 DAA prevented the spore germination of Fusarium spp. Taken together, these results suggest that Mo-CBPs play a dual role as storage and defense proteins in the seeds of M. oleifera.
Collapse
Affiliation(s)
- Tarcymara B Garcia
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, CE, 60440-900, Brazil
| | - Arlete A Soares
- Department of Biology, Federal University of Ceara, Fortaleza, CE, 60440-900, Brazil
| | - Jose H Costa
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, CE, 60440-900, Brazil
| | - Helen P S Costa
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, CE, 60440-900, Brazil
| | - João X S Neto
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, CE, 60440-900, Brazil
| | | | - Fredy Davi A Silva
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, CE, 60440-900, Brazil
| | - Mariana R Arantes
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, CE, 60440-900, Brazil
| | - Daniele O B Sousa
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, CE, 60440-900, Brazil
| | - Ilka M Vasconcelos
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, CE, 60440-900, Brazil.
| | - Jose T A Oliveira
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, CE, 60440-900, Brazil.
| |
Collapse
|
9
|
Alinovskaya LI, Sedykh SE, Ivanisenko NV, Soboleva SE, Nevinsky GA. How human serum albumin recognizes DNA and RNA. Biol Chem 2018; 399:347-360. [PMID: 29252186 DOI: 10.1515/hsz-2017-0243] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/28/2017] [Indexed: 11/15/2022]
Abstract
We show here for the first time that HSA possesses two nucleic acid-(NA) binding sites and we estimated the relative contributions of the nucleotide links of (pN)n to their total affinity for these binding sites with higher and lower affinity for NAs. The minimal ligands of these binding sites are orthophosphate (Kd=3.0 and 20.0 mm), various dNMPs (5.6-400 μm and 0.063-18 mm) and different rNMPs (4.9-30 μm and 14-250 μm). Maximal contribution to the total affinity of all NAs to the first and second sites was observed for one nucleotide and was remarkably lower for three additional nucleotide units of (pN)n (n=1-4) with a significant decrease in the contribution at n=5-6, and at n≥7-8 all dependencies reached plateaus. For d(pA)n and r(pA)n a relatively gradual decrease in the contribution to the affinity at n=1-6 was observed, while several d(pN)n, demonstrated a sharp increase in the contribution at n=2-4. Finally, all (pN)n>10 demonstrated high affinity for the first (1.4-150 nm) and the second (80-2400 nm) sites of HSA. Double-stranded NAs showed significantly lower affinity comparing with single-stranded ligands. The thermodynamic parameters characterizing the specific contribution of every nucleotide link of all (pN)1-9 (ΔG°) to their total affinity for HSA were estimated.
Collapse
Affiliation(s)
- Ludmila I Alinovskaya
- Institute of Chemical Biology and Fundamental Medicine of SB RAS, 8 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Sergey E Sedykh
- Institute of Chemical Biology and Fundamental Medicine of SB RAS, 8 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Nikita V Ivanisenko
- Institute of Cytology and Genetics, Siberian Division of Russian Academy of Sciences, 10 Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Svetlana E Soboleva
- Institute of Chemical Biology and Fundamental Medicine of SB RAS, 8 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Georgy A Nevinsky
- Institute of Chemical Biology and Fundamental Medicine of SB RAS, 8 Lavrentiev Ave., Novosibirsk 630090, Russia
| |
Collapse
|
10
|
Soboleva SE, Guschina TA, Nevinsky GA. Human serum and milk albumins are metal-dependent DNases. IUBMB Life 2018; 70:501-510. [PMID: 29601140 DOI: 10.1002/iub.1741] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 02/23/2018] [Accepted: 03/02/2018] [Indexed: 12/11/2022]
Abstract
It is known that that human serum albumin (HSA) and alpha-lactalbumin (LA) possess DNA-binding sites. Electrophoretically homogeneous HSA and LA containing no canonical enzymes were isolated from human sera and milk. Here we have analyzed for the first time the possibility of DNA hydrolysis by these proteins. It was shown that HSA possesses metal-dependent DNase activity, while LA cannot hydrolyze DNA. Several rigid criteria have been applied to show that DNase activity is an intrinsic property of HSA from human sera and milk. HSA preparations were inactive after their dialysis against EDTA or in the presence of EDTA, but were activated after addition of several external metal ions: Mn2+ > Mg2+ > Ca2+ . The best activation of HSA preparations was observed in the presence of two metal ions: Mg2+ +Ca2+ > Mn2+ + Ca2+ ≥ Mn2+ + Mg2+ . In contrast to DNases having only one pH optimum, HSA preparations demonstrated two well-pronounced optima at pH 5.7-5.9 and 6.9-7.1 as well as a weak optimum at pH 8.4-8.6. These results demonstrate the diversity of HSA in the DNA hydrolysis at various pHs and in activation by various metal cofactors. Possible reasons for the diversity of HSA preparations are discussed. © 2018 IUBMB Life, 70(6):501-510, 2018.
Collapse
Affiliation(s)
- Svetlana E Soboleva
- Institute of Chemical Biology and Fundamental Medicine of SB RAS, 8 Lavrentiev Ave, Novosibirsk, 630090, Russia
| | - Tat'yana A Guschina
- Institute of Chemical Biology and Fundamental Medicine of SB RAS, 8 Lavrentiev Ave, Novosibirsk, 630090, Russia
| | - Georgy A Nevinsky
- Institute of Chemical Biology and Fundamental Medicine of SB RAS, 8 Lavrentiev Ave, Novosibirsk, 630090, Russia
| |
Collapse
|
11
|
Kar B, Verma P, Patel GK, Sharma AK. Molecular cloning, characterization and in silico analysis of a thermostable β-glucosidase enzyme from Putranjiva roxburghii with a significant activity for cellobiose. PHYTOCHEMISTRY 2017; 140:151-165. [PMID: 28500928 DOI: 10.1016/j.phytochem.2017.04.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/10/2017] [Accepted: 04/26/2017] [Indexed: 06/07/2023]
Abstract
The native Putranjiva roxburghii family 1 glycoside hydrolase enzyme showed β-D-fucosidase activity in addition to β-D-glucosidase and β-D-galactosidase activities reported in our previous study. A single step concanvalin A affinity chromatography for native PRGH1 improved the yield and reduced the purification time. The PRGH1 gene was cloned and overexpressed in E. coli. The full length gene contained an ORF of 1617 bp encoding a polypeptide of 538 amino acids. The amino acid sequence of PRGH1 showed maximum similarities to β-glucosidases and myrosinases. Both native and recombinant protein showed maximum hydrolytic activity for pNP-Fuc followed by pNP-Glc and pNP-Gal. Significant enzyme activity was also observed for cellobiose, however it decreased with increase in chain-length for glycan substrates. The enzyme showed significant resistant to D-glucose concentration up to 500 mM. Mutational studies confirmed the predicted catalytic acid/base Glu173 and nucleophile Glu389 as key residues for its activity. Moreover, Glu446 and Asn172 played essential role in substrate binding by interacting with the -1 subsite of substrates. Bioinformatic analysis suggested the possible reasons for the broad substrate specificity and other properties of the enzyme. PRGH1 had high sequence similarity towards S-glucosidase and may be involved in defence. The broad specificity, catalytic efficiency and thermostability make PRGH1 potentially an important industrial enzyme.
Collapse
Affiliation(s)
- Bibekananda Kar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247 667, India
| | - Preeti Verma
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247 667, India
| | - Girijesh Kumar Patel
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247 667, India
| | - Ashwani Kumar Sharma
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247 667, India.
| |
Collapse
|
12
|
Neto JXS, Pereira ML, Oliveira JTA, Rocha-Bezerra LCB, Lopes TDP, Costa HPS, Sousa DOB, Rocha BAM, Grangeiro TB, Freire JEC, Monteiro-Moreira ACO, Lobo MDP, Brilhante RSN, Vasconcelos IM. A Chitin-binding Protein Purified from Moringa oleifera Seeds Presents Anticandidal Activity by Increasing Cell Membrane Permeability and Reactive Oxygen Species Production. Front Microbiol 2017. [PMID: 28634471 PMCID: PMC5459921 DOI: 10.3389/fmicb.2017.00980] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Candida species are opportunistic pathogens that infect immunocompromised and/or immunosuppressed patients, particularly in hospital facilities, that besides representing a significant threat to health increase the risk of mortality. Apart from echinocandins and triazoles, which are well tolerated, most of the antifungal drugs used for candidiasis treatment can cause side effects and lead to the development of resistant strains. A promising alternative to the conventional treatments is the use of plant proteins. M. oleifera Lam. is a plant with valuable medicinal properties, including antimicrobial activity. This work aimed to purify a chitin-binding protein from M. oleifera seeds and to evaluate its antifungal properties against Candida species. The purified protein, named Mo-CBP2, represented about 0.2% of the total seed protein and appeared as a single band on native PAGE. By mass spectrometry, Mo-CBP2 presented 13,309 Da. However, by SDS-PAGE, Mo-CBP2 migrated as a single band with an apparent molecular mass of 23,400 Da. Tricine-SDS-PAGE of Mo-CBP2 under reduced conditions revealed two protein bands with apparent molecular masses of 7,900 and 4,600 Da. Altogether, these results suggest that Mo-CBP2 exists in different oligomeric forms. Moreover, Mo-CBP2 is a basic glycoprotein (pI 10.9) with 4.1% (m/m) sugar and it did not display hemagglutinating and hemolytic activities upon rabbit and human erythrocytes. A comparative analysis of the sequence of triptic peptides from Mo-CBP2 in solution, after LC-ESI-MS/MS, revealed similarity with other M. oleifera proteins, as the 2S albumin Mo-CBP3 and flocculating proteins, and 2S albumins from different species. Mo-CBP2 possesses in vitro antifungal activity against Candida albicans, C. parapsilosis, C. krusei, and C. tropicalis, with MIC50 and MIC90 values ranging between 9.45–37.90 and 155.84–260.29 μM, respectively. In addition, Mo-CBP2 (18.90 μM) increased the cell membrane permeabilization and reactive oxygen species production in C. albicans and promoted degradation of circular plasmid DNA (pUC18) from Escherichia coli. The data presented in this study highlight the potential use of Mo-CBP2 as an anticandidal agent, based on its ability to inhibit Candida spp. growth with apparently low toxicity on mammalian cells.
Collapse
Affiliation(s)
- João X S Neto
- Department of Biochemistry and Molecular Biology, Federal University of CearaFortaleza, Brazil
| | - Mirella L Pereira
- Department of Biochemistry and Molecular Biology, Federal University of CearaFortaleza, Brazil
| | - Jose T A Oliveira
- Department of Biochemistry and Molecular Biology, Federal University of CearaFortaleza, Brazil
| | - Lady C B Rocha-Bezerra
- Department of Biochemistry and Molecular Biology, Federal University of CearaFortaleza, Brazil
| | - Tiago D P Lopes
- Department of Biochemistry and Molecular Biology, Federal University of CearaFortaleza, Brazil
| | - Helen P S Costa
- Department of Biochemistry and Molecular Biology, Federal University of CearaFortaleza, Brazil
| | - Daniele O B Sousa
- Department of Biochemistry and Molecular Biology, Federal University of CearaFortaleza, Brazil
| | - Bruno A M Rocha
- Department of Biochemistry and Molecular Biology, Federal University of CearaFortaleza, Brazil
| | | | - José E C Freire
- Department of Biochemistry and Molecular Biology, Federal University of CearaFortaleza, Brazil
| | | | - Marina D P Lobo
- Department of Biochemistry and Molecular Biology, Federal University of CearaFortaleza, Brazil.,School of Pharmacy, University of FortalezaFortaleza, Brazil
| | - Raimunda S N Brilhante
- Department of Pathology and Legal Medicine, Federal University of CearaFortaleza, Brazil
| | - Ilka M Vasconcelos
- Department of Biochemistry and Molecular Biology, Federal University of CearaFortaleza, Brazil
| |
Collapse
|
13
|
Wansi JD, Wandji J, Sewald N, Nahar L, Martin C, Sarker SD. Phytochemistry and pharmacology of the genus Drypetes: A review. JOURNAL OF ETHNOPHARMACOLOGY 2016; 190:328-353. [PMID: 27353868 DOI: 10.1016/j.jep.2016.06.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 06/23/2016] [Accepted: 06/24/2016] [Indexed: 06/06/2023]
Abstract
AIMS Traditional medicinal use of species of the genus Drypetes is widespread in the tropical regions. The aim of this review is to systematically appraise the literature available to date on phytochemistry, ethnopharmacology, toxicology and bioactivity (in vitro and in vivo) of crude extracts and purified compounds. ETHNOPHARMACOLOGICAL RELEVANCE Plants of the genus Drypetes (Putranjivaceae) are used in the Subsaharan African and Asian traditional medicines to treat a multitude of disorders, like dysentery, gonorrhoea, malaria, rheumatism, sinusitis, tumours, as well as for the treatment of wounds, headache, urethral problems, fever in young children, typhoid and several other ailments. Some Drypetes species are used to protect food against pests, as an aphrodisiac, a stimulant/depressant, a rodenticide and a fish poison, against insect bites, to induce conception and for general healing. This review deals with updated information on the ethnobotany, phytochemistry, and biological activities of ethnomedicinally important Drypetes species, in order to provide an input for the future research opportunities. METHODS An extensive review of the literature available in various recognized databases e.g., Google Scholar, PubMed, Science Direct, SciFinder, Web of Science, www.theplantlist.org and www.gbif.org, as well as the Herbier National du Cameroun (Yaoundé) and Botanic Gardens of Limbe databases on the uses and bioactivity of various species of the Drypetes was undertaken. RESULTS The literature provided information on ethnopharmacological uses of the Subsaharan African and Asian species of the genus Drypetes, e.g., Drypetes aubrévillii, D. capillipes, D. chevalieri, D. gerrardii, D. gossweileri, D. ivorensis, D. klainei, D. natalensis, D. pellegrini (all endemic to Africa) and D. roxburghii (Asian species), for the treatment of multiple disorders. From a total of 19 species, more than 140 compounds including diterpenes, sesquiterpenes, triterpenes (friedelane, oleanane, lupane and hopane-type), flavonoids, lignans, phenylpropanoids and steroids, as well as some thiocyanates, were isolated. Several crude extracts of these plants, and isolated compounds displayed significant analgesic, anthelmintic, antidiabetic, anti-emetic anti-inflammatory, antioxidant, antiparasitic, central nervous system depressant, cytotoxic, and insecticidal activities both in vitro and in vivo. Some toxicities associated with the stem, bark, seed and leaf extracts of D. roxburghii, and the flavonoid, amentoflavone, isolated from the stem extract of D. littoralis as well as D. gerrardii, were confirmed in the animal models and in the rat skeletal myoblast cells assays. As a consequence, traditional medicine from this genus should in future be applied with care. CONCLUSIONS Plants of this genus have offered bioactive samples, both from crude extracts and pure compounds, partly validating their effectivity in traditional medicine. However, most of the available scientific literatures lacks information on relevant doses, duration of the treatment, storage conditions and positive controls for examining bioefficacy of extract and its active compounds. Additional toxicological studies on the species used in local pharmacopeia are urgently needed to guarantee safe application due to high toxicity of some crude extracts. Interestingly, this review also reports 10 pimarane dinorditerpenoids structures with the aromatic ring C, isolated from the species collected in Asia Drypetes littoralis (Taiwan), D. perreticulata (China), and in Africa D. gerrardii (Kenya), D. gossweileri (Cameroon). These compounds might turn out to be good candidates for chemotaxonomic markers of the genus.
Collapse
Affiliation(s)
- Jean Duplex Wansi
- Department of Chemistry, University of Douala, Faculty of Science, 24157 Douala, Cameroon; School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK.
| | - Jean Wandji
- Department of Organic Chemistry, University of Yaounde I, Faculty of Science, 812 Yaounde, Cameroon
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, 33501 Bielefeld, Germany
| | - Lutfun Nahar
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK
| | - Claire Martin
- School of Pharmacy, Faculty of Science and Engineering, University of Wolverhampton, Wulfuna Street, Wolverhampton WV1 1LY, UK
| | - Satyajit Dey Sarker
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK
| |
Collapse
|
14
|
Freire JEC, Vasconcelos IM, Moreno FBMB, Batista AB, Lobo MDP, Pereira ML, Lima JPMS, Almeida RVM, Sousa AJS, Monteiro-Moreira ACO, Oliveira JTA, Grangeiro TB. Mo-CBP3, an antifungal chitin-binding protein from Moringa oleifera seeds, is a member of the 2S albumin family. PLoS One 2015; 10:e0119871. [PMID: 25789746 PMCID: PMC4366206 DOI: 10.1371/journal.pone.0119871] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 02/03/2015] [Indexed: 11/19/2022] Open
Abstract
Mo-CBP3 is a chitin-binding protein from M. oleifera seeds that inhibits the germination and mycelial growth of phytopathogenic fungi. This protein is highly thermostable and resistant to pH changes, and therefore may be useful in the development of new antifungal drugs. However, the relationship of MoCBP3 with the known families of carbohydrate-binding domains has not been established. In the present study, full-length cDNAs encoding 4 isoforms of Mo-CBP3 (Mo-CBP3-1, Mo-CBP3-2, Mo-CBP3-3 and Mo-CBP3-4) were cloned from developing seeds. The polypeptides encoded by the Mo-CBP3 cDNAs were predicted to contain 160 (Mo-CBP3-3) and 163 amino acid residues (Mo-CBP3-1, Mo-CBP3-2 and Mo-CBP3-4) with a signal peptide of 20-residues at the N-terminal region. A comparative analysis of the deduced amino acid sequences revealed that Mo-CBP3 is a typical member of the 2S albumin family, as shown by the presence of an eight-cysteine motif, which is a characteristic feature of the prolamin superfamily. Furthermore, mass spectrometry analysis demonstrated that Mo-CBP3 is a mixture of isoforms that correspond to different mRNA products. The identification of Mo-CBP3 as a genuine member of the 2S albumin family reinforces the hypothesis that these seed storage proteins are involved in plant defense. Moreover, the chitin-binding ability of Mo-CBP3 reveals a novel functionality for a typical 2S albumin.
Collapse
Affiliation(s)
- José E. C. Freire
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Ilka M. Vasconcelos
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | | | - Adelina B. Batista
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Marina D. P. Lobo
- Núcleo de Biologia Experimental, Universidade de Fortaleza, Fortaleza, Ceará, Brazil
| | - Mirella L. Pereira
- Departamento de Biologia, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - João P. M. S. Lima
- Instituto de Medicina Tropical (IMT-RN), Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Ricardo V. M. Almeida
- Instituto de Medicina Tropical (IMT-RN), Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Antônio J. S. Sousa
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | | | - José T. A. Oliveira
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Thalles B. Grangeiro
- Departamento de Biologia, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|