1
|
Wen J, Li Z, Lv Y, Ding S, Zhu Y, Yang J, Tang J, Zhu M, Zhao Y, Zhao W. A subunit vaccine based on Brucella rBP26 induces Th1 immune responses and M1 macrophage activation. Acta Biochim Biophys Sin (Shanghai) 2024; 56:879-891. [PMID: 38419498 PMCID: PMC11292127 DOI: 10.3724/abbs.2024023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/12/2024] [Indexed: 03/02/2024] Open
Abstract
Brucellosis is a global zoonotic infection caused by Brucella bacteria, which poses a significant burden on society. While transmission prevention is currently the most effective method, the absence of a licenced vaccine for humans necessitates the urgent development of a safe and effective vaccine. Recombinant protein-based subunit vaccines are considered promising options, and in this study, the Brucella BP26 protein is expressed using prokaryotic expression systems. The immune responses are evaluated using the well-established adjuvant CpG-ODN. The results demonstrate that rBP26 supplemented with a CpG adjuvant induces M1 macrophage polarization and stimulates cellular immune responses mediated by Th1 cells and CD8 + T cells. Additionally, it generates high levels of rBP26-specific antibodies in immunized mice. Furthermore, rBP26 immunization activates, proliferates, and produces cytokines in T lymphocytes while also maintaining immune memory for an extended period of time. These findings shed light on the potential biological function of rBP26, which is crucial for understanding brucellosis pathogenesis. Moreover, rBP26 holds promise as an effective subunit vaccine candidate for use in endemic areas.
Collapse
Affiliation(s)
- Jia Wen
- School of Basic MedicineNingxia Medical UniversityYinchuan750004China
- General Medicine DepartmentGeneral Hospital of Ningxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Prevention and Control of Common Infectious DiseasesNingxia Hui Autonomous RegionYinchuan750004China
| | - Zihua Li
- School of Basic MedicineNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Prevention and Control of Common Infectious DiseasesNingxia Hui Autonomous RegionYinchuan750004China
| | - Yongxue Lv
- School of Basic MedicineNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Prevention and Control of Common Infectious DiseasesNingxia Hui Autonomous RegionYinchuan750004China
| | - Shuqin Ding
- School of Basic MedicineNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Prevention and Control of Common Infectious DiseasesNingxia Hui Autonomous RegionYinchuan750004China
| | - Yazhou Zhu
- School of Basic MedicineNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Prevention and Control of Common Infectious DiseasesNingxia Hui Autonomous RegionYinchuan750004China
| | - Jihui Yang
- School of Basic MedicineNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Prevention and Control of Common Infectious DiseasesNingxia Hui Autonomous RegionYinchuan750004China
| | - Jing Tang
- School of Basic MedicineNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Prevention and Control of Common Infectious DiseasesNingxia Hui Autonomous RegionYinchuan750004China
| | - Mingxing Zhu
- School of Basic MedicineNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Prevention and Control of Common Infectious DiseasesNingxia Hui Autonomous RegionYinchuan750004China
| | - Yinqi Zhao
- School of Basic MedicineNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Prevention and Control of Common Infectious DiseasesNingxia Hui Autonomous RegionYinchuan750004China
| | - Wei Zhao
- School of Basic MedicineNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Prevention and Control of Common Infectious DiseasesNingxia Hui Autonomous RegionYinchuan750004China
| |
Collapse
|
2
|
Heidary M, Dashtbin S, Ghanavati R, Mahdizade Ari M, Bostanghadiri N, Darbandi A, Navidifar T, Talebi M. Evaluation of Brucellosis Vaccines: A Comprehensive Review. Front Vet Sci 2022; 9:925773. [PMID: 35923818 PMCID: PMC9339783 DOI: 10.3389/fvets.2022.925773] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/03/2022] [Indexed: 01/18/2023] Open
Abstract
Brucellosis is a bacterial zoonosis caused by Brucella spp. which can lead to heavy economic losses and severe human diseases. Thus, controlling brucellosis is very important. Due to humans easily gaining brucellosis from animals, animal brucellosis control programs can help the eradication of human brucellosis. There are two popular vaccines against animal brucellosis. Live attenuated Brucella abortus strain 19 (S19 vaccine) is the first effective and most extensively used vaccine for the prevention of brucellosis in cattle. Live attenuated Brucella melitensis strain Rev.1 (Rev.1 vaccine) is the most effective vaccine against caprine and ovine brucellosis. Although these two vaccines provide good immunity for animals against brucellosis, the expense of persistent serological responses is one of the main problems of both vaccines. The advantages and limitations of Brucella vaccines, especially new vaccine candidates, have been less studied. In addition, there is an urgent need for new strategies to control and eradicate this disease. Therefore, this narrative review aims to present an updated overview of the available different types of brucellosis vaccines.
Collapse
Affiliation(s)
- Mohsen Heidary
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Shirin Dashtbin
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Roya Ghanavati
- School of Paramedical Sciences, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Marzie Mahdizade Ari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Narjess Bostanghadiri
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Atieh Darbandi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Malihe Talebi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- *Correspondence: Malihe Talebi
| |
Collapse
|
3
|
Li Z, Wang S, Wei S, Yang G, Zhang C, Xi L, Zhang J, Cui Y, Hao J, Zhang H, Zhang H. Immunization with a combination of recombinant Brucella abortus proteins induces T helper immune response and confers protection against wild-type challenge in BALB/c mice. Microb Biotechnol 2022; 15:1811-1823. [PMID: 35166028 PMCID: PMC9151338 DOI: 10.1111/1751-7915.14015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 11/30/2022] Open
Abstract
Protective efficiency of a combination of four recombinant Brucella abortus (B. abortus) proteins, namely, ribosomal protein L7/L12, outer membrane protein (OMP) 22, OMP25 and OMP31, was evaluated as a combined subunit vaccine (CSV) against B. abortus infection in RAW 264.7 cell line and murine model. Four proteins were cloned, expressed and purified, and their immunocompetence was analysed. BALB/c mice were immunized subcutaneously with single subunit vaccines (SSVs) or CSV. Cellular and humoral immune responses were determined by ELISA. Results of immunoreactivity showed that these four recombinant proteins reacted with Brucella‐positive serum individually but not with Brucella‐negative serum. A massive production of IFN‐γ and IL‐2 but low degree of IL‐10 was observed in mice immunized with SSVs or CSV. In addition, the titres of IgG2a were heightened compared with IgG1 in SSV‐ or CSV‐immunized mice, which indicated that SSVs and CSV induced a typical T‐helper‐1‐dominated immune response in vivo. Further investigation of the CSV showed a superior protective effect in mice against brucellosis. The protection level induced by CSV was significantly higher than that induced by SSVs, which was not significantly different compared with a group immunized with RB51. Collectively, these antigens of Brucella could be potential candidates to develop subunit vaccines, and the CSV used in this study could be a potential candidate therapy for the prevention of brucellosis.
Collapse
Affiliation(s)
- Zhiqiang Li
- College of Biology and Food, Shangqiu Normal University, Shangqiu, Henan Provence, 476000, China
| | - Shuli Wang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, Henan Provence, 476000, China
| | - Shujuan Wei
- College of Life Sciences, Henan Normal University, Xinxiang, Henan Province, 453007, China
| | - Guangli Yang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, Henan Provence, 476000, China
| | - Chunmei Zhang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, Henan Provence, 476000, China
| | - Li Xi
- College of Biology and Food, Shangqiu Normal University, Shangqiu, Henan Provence, 476000, China
| | - Jinliang Zhang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, Henan Provence, 476000, China
| | - Yanyan Cui
- College of Biology and Food, Shangqiu Normal University, Shangqiu, Henan Provence, 476000, China
| | - Junfang Hao
- College of Biology and Food, Shangqiu Normal University, Shangqiu, Henan Provence, 476000, China
| | - Huan Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang Provence, 832003, China
| | - Hui Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang Provence, 832003, China
| |
Collapse
|
4
|
Design of a new multi-epitope vaccine against Brucella based on T and B cell epitopes using bioinformatics methods. Epidemiol Infect 2021; 149:e136. [PMID: 34032200 PMCID: PMC8220514 DOI: 10.1017/s0950268821001229] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Brucellosis is one of the most serious and widespread zoonotic diseases, which seriously threatens human health and the national economy. This study was based on the T/B dominant epitopes of Brucella outer membrane protein 22 (Omp22), outer membrane protein 19 (Omp19) and outer membrane protein 28 (Omp28), with bioinformatics methods to design a safe and effective multi-epitope vaccine. The amino acid sequences of the proteins were found in the National Center for Biotechnology Information (NCBI) database, and the signal peptides were predicted by the SignaIP-5.0 server. The surface accessibility and hydrophilic regions of proteins were analysed with the ProtScale software and the tertiary structure model of the proteins predicted by I-TASSER software and labelled with the UCSF Chimera software. The software COBEpro, SVMTriP and BepiPred were used to predict B cell epitopes of the proteins. SYFPEITHI, RANKpep and IEDB were employed to predict T cell epitopes of the proteins. The T/B dominant epitopes of three proteins were combined with HEYGAALEREAG and GGGS linkers, and carriers sequences linked to the N- and C-terminus of the vaccine construct with the help of EAAAK linkers. Finally, the tertiary structure and physical and chemical properties of the multi-epitope vaccine construct were analysed. The allergenicity, antigenicity and solubility of the multi-epitope vaccine construct were 7.37–11.30, 0.788 and 0.866, respectively. The Ramachandran diagram of the mock vaccine construct showed 96.0% residues within the favoured and allowed range. Collectively, our results showed that this multi-epitope vaccine construct has a high-quality structure and suitable characteristics, which may provide a theoretical basis for future laboratory experiments.
Collapse
|
5
|
Huy TXN, Nguyen TT, Reyes AWB, Vu SH, Min W, Lee HJ, Lee JH, Kim S. Immunization With a Combination of Four Recombinant Brucella abortus Proteins Omp16, Omp19, Omp28, and L7/L12 Induces T Helper 1 Immune Response Against Virulent B. abortus 544 Infection in BALB/c Mice. Front Vet Sci 2021; 7:577026. [PMID: 33553273 PMCID: PMC7854899 DOI: 10.3389/fvets.2020.577026] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 12/21/2020] [Indexed: 01/11/2023] Open
Abstract
Protective efficiency of a combination of four recombinant Brucella abortus (B. abortus) proteins, namely outer membrane protein (Omp) 16, Omp19, Omp28, and 50S ribosomal protein L7/L12 was evaluated as a combined subunit vaccine (CSV) against B. abortus infection in RAW 264.7 cell line and murine model. The immunoreactivity of these four recombinant proteins as well as pCold-TF vector reacted with Brucella-positive serum individually, but not with Brucella-negative serum by immunoblotting assay. CSV-treated RAW 264.7 cells significantly induced production of IFN-γ and IL-12 while decreased IL-10 production at the late stage of infection compared to PBS-treated control cells. In addition, the enhancement of nitric oxide production together with cytokines secretion profile in CSV-treated cells proved that CSV notably activated bactericidal mechanisms in macrophages. Consistently, mice immunized with CSV strongly elicited production of pro-inflammatory cytokines TNF-α, IL-6 and MCP-1 compared to PBS control group. Moreover, the concentration of IFN-γ was >IL-10 and titers of IgG2a were also heightened compared to IgG1 in CSV-immunized mice which suggest that CSV induced predominantly T helper 1 T cell. These results suggest that the CSV used in the present study is a potential candidate as a preventive therapy against brucellosis.
Collapse
Affiliation(s)
- Tran Xuan Ngoc Huy
- Institute of Applied Sciences, Ho Chi Minh City University of Technology - HUTECH, Ho Chi Minh City, Vietnam.,Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - Trang Thi Nguyen
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | | | - Son Hai Vu
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - WonGi Min
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - Hu Jang Lee
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Chonbuk National University, Iksan, South Korea
| | - Suk Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
6
|
Zhou Z, Gu G, Luo Y, Li W, Li B, Zhao Y, Liu J, Shuai X, Wu L, Chen J, Fan C, Huang Q, Han B, Wen J, Jiao H. Immunological pathways of macrophage response to Brucella ovis infection. Innate Immun 2020; 26:635-648. [PMID: 32970502 PMCID: PMC7556187 DOI: 10.1177/1753425920958179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
As the molecular mechanisms of Brucella ovis pathogenicity are not completely clear, we have applied a transcriptome approach to identify the differentially expressed genes (DEGs) in RAW264.7 macrophage infected with B. ovis. The DEGs related to immune pathway were identified by Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) functional enrichment analysis. Quantitative real-time PCR (qRT-PCR) was performed to validate the transcriptome sequencing data. In total, we identified 337 up-regulated and 264 down-regulated DEGs in B. ovis-infected group versus mock group. Top 20 pathways were enriched by KEGG analysis and 20 GO by functional enrichment analysis in DEGs involved in the molecular function, cellular component, and biological process and so on, which revealed multiple immunological pathways in RAW264.7 macrophage cells in response to B. ovis infection, including inflammatory response, immune system process, immune response, cytokine activity, chemotaxis, chemokine-mediated signaling pathway, chemokine activity, and CCR chemokine receptor binding. qRT-PCR results showed Ccl2 (ENSMUST00000000193), Ccl2 (ENSMUST00000124479), Ccl3 (ENSMUST00000001008), Hmox1 (ENSMUST00000005548), Hmox1 (ENSMUST00000159631), Cxcl2 (ENSMUST00000075433), Cxcl2 (ENSMUST00000200681), Cxcl2 (ENSMUST00000200919), and Cxcl2 (ENSMUST00000202317). Our findings firstly elucidate the pathways involved in B. ovis-induced host immune response, which may lay the foundation for revealing the bacteria–host interaction and demonstrating the pathogenic mechanism of B. ovis.
Collapse
Affiliation(s)
- Zhixiong Zhou
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Guojing Gu
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Yichen Luo
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China.,College of Veterinary Medicine, Southwest University, Chongqing, China.,Veterinary Scientific Engineering Research Center, Chongqing, China
| | - Wenjie Li
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Bowen Li
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Yu Zhao
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Juan Liu
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China.,College of Veterinary Medicine, Southwest University, Chongqing, China.,Veterinary Scientific Engineering Research Center, Chongqing, China
| | - Xuehong Shuai
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China.,College of Veterinary Medicine, Southwest University, Chongqing, China.,Veterinary Scientific Engineering Research Center, Chongqing, China
| | - Li Wu
- College of Veterinary Medicine, Southwest University, Chongqing, China.,Veterinary Scientific Engineering Research Center, Chongqing, China
| | - Jixuan Chen
- College of Veterinary Medicine, Southwest University, Chongqing, China.,Veterinary Scientific Engineering Research Center, Chongqing, China
| | - Cailiang Fan
- College of Veterinary Medicine, Southwest University, Chongqing, China.,Animal Disease Prevention and Control Center of Rongchang, Chongqing, China
| | - Qingzhou Huang
- College of Veterinary Medicine, Southwest University, Chongqing, China.,Veterinary Scientific Engineering Research Center, Chongqing, China
| | - Baoru Han
- College of Medical Informatics, Chongqing Medical University, Chongqing, China
| | - Jianjun Wen
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, USA
| | - Hanwei Jiao
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China.,College of Veterinary Medicine, Southwest University, Chongqing, China.,Veterinary Scientific Engineering Research Center, Chongqing, China
| |
Collapse
|
7
|
Ladenstein R, Morgunova E. Second career of a biosynthetic enzyme: Lumazine synthase as a virus-like nanoparticle in vaccine development. ACTA ACUST UNITED AC 2020; 27:e00494. [PMID: 32714852 PMCID: PMC7369331 DOI: 10.1016/j.btre.2020.e00494] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/20/2020] [Accepted: 06/20/2020] [Indexed: 01/09/2023]
Abstract
Virus-like nano-particles can be successfully applied in vaccine development. Scaffolds can be cage-forming highly symmetric biological macromolecules, like lumazine synthase, ferritin or self-assembling nanoparticles created computationally ab initio. Symmetrical nano-particle scaffolds can display structurally ordered immunogen arrays which lead to favorable reaction with B cell receptors. Animal-, preclinical- and clinical studies are at present pointing to the usefulness of nanoparticle antigens in creating immune responses against HIV, Borrelia, Influenza.
Naturally occurring and computationally ab initio designed protein cages can now be considered as extremely suitable materials for new developments in nanotechnology. Via self-assembly from single identical or non-identical protomers large oligomeric particles can be formed. Virus-like particles have today found a number of quite successful applications in the development of new vaccines. Complex chimeric nanoparticles can serve as suitable platforms for the presentation of natural or designed antigens to the immune system of the host. The scaffolds can be cage forming highly symmetric biological macromolecules like lumazine synthase or symmetric self-assembling virus-like particles generated by computational ab initio design. Symmetric nanoparticle carriers display a structurally ordered array of immunogens. This feature can lead to a more favorable interaction with B-cell receptors, in comparison to the administration of single recombinant immunogens. Several pre-clinical animal studies and clinical studies have recently pointed out the efficiency of nanoparticle antigens produced recombinantly in creating strong immune responses against infectious diseases like HIV, Malaria, Borrelia, Influenza.
Collapse
Affiliation(s)
- Rudolf Ladenstein
- Karolinska Institutet NEO, Department of Biosciences & Nutrition, Blickågången 16, 14 183 Huddinge, Sweden
| | - Ekaterina Morgunova
- Karolinska Institutet Biomedicum, Department of Medical Biochemistry & Biophysics, Solnavägen 9, 17177 Stockholm, Sweden
| |
Collapse
|
8
|
Pan-Proteomic Analysis and Elucidation of Protein Abundance among the Closely Related Brucella Species, Brucella abortus and Brucella melitensis. Biomolecules 2020; 10:biom10060836. [PMID: 32486122 PMCID: PMC7355635 DOI: 10.3390/biom10060836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/30/2020] [Accepted: 05/19/2020] [Indexed: 12/24/2022] Open
Abstract
Brucellosis is a zoonotic infection caused by bacteria of the genus Brucella. The species, B. abortus and B. melitensis, major causative agents of human brucellosis, share remarkably similar genomes, but they differ in their natural hosts, phenotype, antigenic, immunogenic, proteomic and metabolomic properties. In the present study, label-free quantitative proteomic analysis was applied to investigate protein expression level differences. Type strains and field strains were each cultured six times, cells were harvested at a midlogarithmic growth phase and proteins were extracted. Following trypsin digestion, the peptides were desalted, separated by reverse-phase nanoLC, ionized using electrospray ionization and transferred into an linear trap quadrapole (LTQ) Orbitrap Velos mass spectrometer to record full scan MS spectra (m/z 300–1700) and tandem mass spectrometry (MS/MS) spectra of the 20 most intense ions. Database matching with the reference proteomes resulted in the identification of 826 proteins. The Cluster of Gene Ontologies of the identified proteins revealed differences in bimolecular transport and protein synthesis mechanisms between these two strains. Among several other proteins, antifreeze proteins, Omp10, superoxide dismutase and 30S ribosomal protein S14 were predicted as potential virulence factors among the proteins differentially expressed. All mass spectrometry data are available via ProteomeXchange with identifier PXD006348.
Collapse
|
9
|
Do Toxoplasma gondii apicoplast proteins have antigenic potential? An in silico study. Comput Biol Chem 2020; 84:107158. [DOI: 10.1016/j.compbiolchem.2019.107158] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/10/2019] [Accepted: 11/02/2019] [Indexed: 12/19/2022]
|
10
|
Tooli LF, Shirzad M, Modarressi MH, Mirtavoos-Mahyari H, Amoozegar MA, Hantoushzadeh S, Motevaseli E. Identification of common vaginal Lactobacilli immunoreactive proteins by immunoproteomic techniques. World J Microbiol Biotechnol 2019; 35:161. [PMID: 31608422 DOI: 10.1007/s11274-019-2736-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/30/2019] [Indexed: 10/25/2022]
Abstract
Lactobacilli are considered as the most important microorganisms in regulating immune system and maintaining vaginal health. The uses and benefits of Lactobacilli as probiotics, particularly the regulation of immune system, are dependent on the strain used and a comprehensive understanding of their effects on the host. Several factors have been identified in Lactobacilli that influence the immune response, such as exopolysaccharides and proteins. The current study was designed to investigate the serum immunoreactivity of healthy women against common vaginal Lactobacilli immunoreactive proteins. Three common vaginal Lactobacillus strains (L. crispatus L1, L. gasseri L9, and L. fermentum L2) were compared for immune response. The ELISA results showed that the levels of total immunoglobulin (Ig-total) antibody for L. crispatus L1, L. fermentum L2, and L. gasseri L9 were 47%, 45% and 29%, respectively. Regarding the lower prevalence of L. fermentum L2 in comparison with the other two strains, the approximately equal levels of Ig-total compared to L. crispatus L1 and more than L. gasseri L9 indicate that L. fermentum L2 has the greater antigenicity ability. Accordingly, the immunoreactive proteins of L. fermentum L2 were identified using MALDI-TOF-MS detected by SDS-PAGE and Western blotting. These proteins included 30s ribosomal protein S4 and 50s ribosomal protein L5. Antigenic epitopes on the 3D structure of these proteins was also predicted using bioinformatics analysis. The presence of antibody in serum of healthy pre-menopausal women indicates that Lactobacilli (normal flora) proteins can stimulate host immune response. Purification and further studies of the proteins may allow their potential use as an adjuvant to improve the efficacy of vaccines.
Collapse
Affiliation(s)
- Leila Farhady Tooli
- Department of Microbiology, School of Biology, College of Science, Tehran University, Tehran, Iran
| | - Mahdieh Shirzad
- Department of Microbiology, School of Biology, College of Science, Tehran University, Tehran, Iran
| | | | - Hanifeh Mirtavoos-Mahyari
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Amoozegar
- Department of Microbiology, School of Biology, College of Science, Tehran University, Tehran, Iran.
| | - Sedigheh Hantoushzadeh
- Vali-e-Asr Reproductive Health Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Wei Y, Kumar P, Wahome N, Mantis NJ, Middaugh CR. Biomedical Applications of Lumazine Synthase. J Pharm Sci 2018; 107:2283-2296. [DOI: 10.1016/j.xphs.2018.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/02/2018] [Accepted: 05/02/2018] [Indexed: 10/16/2022]
|
12
|
Immunogenicity of adenovirus and DNA vaccines co-expressing P39 and lumazine synthase proteins of Brucella abortus in BALB/c mice. Trop Anim Health Prod 2018; 50:957-963. [PMID: 29492808 DOI: 10.1007/s11250-018-1517-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/17/2018] [Indexed: 10/17/2022]
Abstract
Brucella poses a great threat to animal and human health. Vaccination is the most promising strategy in the effort to control Brucella abortus (B. abortus) infection, but the currently used live vaccines interfere with diagnostic tests and could potentially result in disease outbreak. Therefore, new subunit vaccines and combined immunization strategies are currently under investigation. In this study, immunogenicity and protection ability of a recombinant adenovirus and plasmid DNA vaccine co-expressing P39 and lumazine synthase proteins of B. abortus were evaluated based on the construction of the two molecular vaccines. Four immunization strategies (single adenovirus, single DNA, adenovirus/DNA, DNA/adenovirus) were investigated. The results showed that the immunization strategy of DNA priming followed by adenovirus boosting induced robust humoral and cellular immune responses, and it significantly reduced the numbers of B. abortus in a mouse model. These results suggest that it could be a potential antigen candidate for development of a new subunit vaccine against B. abortus infection.
Collapse
|