1
|
Plakys G, Urbelienė N, Urbelis G, Vaitekūnas J, Labanauskas L, Mažonienė E, Meškys R. Conversion of β-1,6-Glucans to Gentiobiose using an endo-β-1,6-Glucanase PsGly30A from Paenibacillus sp. GKG. Chembiochem 2024; 25:e202400010. [PMID: 38439711 DOI: 10.1002/cbic.202400010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/20/2024] [Accepted: 03/04/2024] [Indexed: 03/06/2024]
Abstract
A plethora of di- and oligosaccharides isolated from the natural sources are used in food and pharmaceutical industry. An enzymatic hydrolysis of fungal cell wall β-glucans is a good alternative to produce the desired oligosaccharides with different functionalities, such as the flavour enhancer gentiobiose. We have previously identified PsGly30A as a potential yeast cell wall degrading β-1,6-glycosidase. The aim of this study is to characterise the PsGly30A enzyme, a member of the GH30 family, and to evaluate its suitability for the production of gentiobiose from β-1,6-glucans. An endo-β-1,6-glucanase PsGly30A encoding gene from Paenibacillus sp. GKG has been cloned and overexpressed in Escherichia coli. The recombinant enzyme has been active towards pustulan and yeast β-glucan, but not on laminarin from the Laminaria digitata, confirming the endo-β-1,6-glucanase mode of action. The PsGly30A shows the highest activity at pH 5.5 and 50 °C. The specific activity of PsGly30A on pustulan (1262±82 U/mg) is among the highest reported for GH30 β-1,6-glycosidases. Moreover, gentiobiose is the major reaction product when pustulan, yeast β-glucan or yeast cell walls have been used as a substrate. Therefore, PsGly30A is a promising catalyst for valorisation of the yeast-related by-products.
Collapse
Affiliation(s)
- Gediminas Plakys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio 7, LT-10257, Vilnius, Lithuania
- Department of Research and Development Roquette Amilina, AB, J. Janonio 12, LT, 35101 Panevezys, Lithuania
| | - Nina Urbelienė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio 7, LT-10257, Vilnius, Lithuania
| | - Gintaras Urbelis
- Department of Organic Chemistry, Center for Physical Sciences and Technology, Akademijos 7, LT-08412, Vilnius, Lithuania
| | - Justas Vaitekūnas
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio 7, LT-10257, Vilnius, Lithuania
| | - Linas Labanauskas
- Department of Organic Chemistry, Center for Physical Sciences and Technology, Akademijos 7, LT-08412, Vilnius, Lithuania
| | - Edita Mažonienė
- Department of Research and Development Roquette Amilina, AB, J. Janonio 12, LT, 35101 Panevezys, Lithuania
| | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio 7, LT-10257, Vilnius, Lithuania
| |
Collapse
|
2
|
Biochemical characterization of the β-glucosidase Glu1B from Coptotermes formosanus produced in Pichia pastoris. Enzyme Microb Technol 2022; 163:110155. [DOI: 10.1016/j.enzmictec.2022.110155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/22/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
|
3
|
Lima RAT, De Oliveira G, Souza AA, Lopes FAC, Santana RH, Istvan P, Quirino BF, Barbosa J, De Freitas S, Garay AV, Krüger RH. Functional and structural characterization of a novel GH3 β-glucosidase from the gut metagenome of the Brazilian Cerrado termite Syntermes wheeleri. Int J Biol Macromol 2020; 165:822-834. [PMID: 33011259 DOI: 10.1016/j.ijbiomac.2020.09.236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 12/26/2022]
Abstract
In this study, a GH3 family β-glucosidase (Bgl7226) from metagenomic sequences of the Syntermes wheeleri gut, a Brazilian Cerrado termite, was expressed, purified and characterized. The enzyme showed two optimum pHs (pH 7 and pH 10), and a maximum optimum temperature of about 40 °C using 4-Nitrophenyl β-D-glucopyranoside (pNPG) as substrate. Bgl7226 showed higher enzymatic activity at basic pH, but higher affinity (Km) at neutral pH. However, at neutral pH the Bgl7226 enzyme showed higher catalytic efficiency (kcat/Km) for pNPG substrate. Predictive analysis about the enzyme structure-function relationship by sequence alignment suggested the presence of multi-domains and conserved catalytic sites. Circular dichroism results showed that the secondary structure composition of the enzyme is pH-dependent. Small conformational changes occurred close to the optimum temperature of 40 o C, and seem important for the highest activity of Bgl7226 observed at pH 7 and 10. In addition, the small transition in the unfolding curves close to 40 o C is typical of intermediates associated with proteins structured in several domains. Bgl7226 has significant β-glucosidase activity which could be attractive for biotechnological applications, such as plant roots detoxification; specifically, our group is interested in cassava roots (Manihot esculenta) detoxification.
Collapse
Affiliation(s)
| | - Gideane De Oliveira
- Department of Cell Biology, Darcy Ribeiro Campus, Universidade de Brasília, Brasília, DF 70910-900, Brazil
| | - Amanda Araújo Souza
- Department of Cell Biology, Darcy Ribeiro Campus, Universidade de Brasília, Brasília, DF 70910-900, Brazil
| | | | - Renata Henrique Santana
- Instituto Federal de Brasília, Planaltina Campus, Brasília, DF 70910-900, Brazil; Genomic Sciences and Biotechnology, Universidade Católica de Brasília, Brasília, DF 70790-160, Brazil
| | - Paula Istvan
- Department of Cell Biology, Darcy Ribeiro Campus, Universidade de Brasília, Brasília, DF 70910-900, Brazil; Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben- Gurion University of the Negev, Department of Environmental Hydrology & Microbiology, Israel
| | - Betania Ferraz Quirino
- Embrapa Agroenergy, Parque Estação Biológica (PqEB), PqEB s/n°, Brasília, DF 70770-901, Brazil
| | - João Barbosa
- Department of Cell Biology, Darcy Ribeiro Campus, Universidade de Brasília, Brasília, DF 70910-900, Brazil
| | - Sonia De Freitas
- Department of Cell Biology, Darcy Ribeiro Campus, Universidade de Brasília, Brasília, DF 70910-900, Brazil
| | - Aisel Valle Garay
- Department of Cell Biology, Darcy Ribeiro Campus, Universidade de Brasília, Brasília, DF 70910-900, Brazil
| | - Ricardo Henrique Krüger
- Department of Cell Biology, Darcy Ribeiro Campus, Universidade de Brasília, Brasília, DF 70910-900, Brazil.
| |
Collapse
|
4
|
Niu K, Liu Z, Feng Y, Gao T, Wang Z, Zhang P, Du Z, Gao D, Fang X. A novel strategy for efficient disaccharides synthesis from glucose by β-glucosidase. BIORESOUR BIOPROCESS 2020. [DOI: 10.1186/s40643-020-00334-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AbstractOligosaccharides have important therapeutic applications. A useful route for oligosaccharides synthesis is reverse hydrolysis by β-glucosidase. However, the low conversion efficiency of disaccharides from monosaccharides limits its large-scale production because the equilibrium is biased in the direction of hydrolysis. Based on the analysis of the docking results, we hypothesized that the hydropathy index of key amino acid residues in the catalytic site is closely related with disaccharide synthesis and more hydrophilic residues located in the catalytic site would enhance reverse hydrolysis activity. In this study, positive variants TrCel1bI177S, TrCel1bI177S/I174S, and TrCel1bI177S/I174S/W173H, and one negative variant TrCel1bN240I were designed according to the Hydropathy Index For Enzyme Activity (HIFEA) strategy. The reverse hydrolysis with TrCel1bI177S/I174S/W173H was accelerated and then the maximum total production (195.8 mg/mL/mg enzyme) of the synthesized disaccharides was increased by 3.5-fold compared to that of wild type. On the contrary, TrCel1bN240I lost reverse hydrolysis activity. The results demonstrate that the average hydropathy index of the key amino acid residues in the catalytic site of TrCel1b is an important factor for the synthesis of laminaribiose, sophorose, and cellobiose. The HIFEA strategy provides a new perspective for the rational design of β-glucosidases used for the synthesis of oligosaccharides.
Collapse
|
5
|
Yin B, Gu H, Mo X, Xu Y, Yan B, Li Q, Ou Q, Wu B, Guo C, Jiang C. Identification and molecular characterization of a psychrophilic GH1 β-glucosidase from the subtropical soil microorganism Exiguobacterium sp. GXG2. AMB Express 2019; 9:159. [PMID: 31576505 PMCID: PMC6773797 DOI: 10.1186/s13568-019-0873-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 09/05/2019] [Indexed: 02/06/2023] Open
Abstract
The products of bacterial β-glucosidases with favorable cold-adapted properties have industrial applications. A psychrophilic β-glucosidase gene named bglG from subtropical soil microorganism Exiguobacterium sp. GXG2 was isolated and characterized by function-based screening strategy. Results of multiple alignments showed that the derived protein BglG shared 45.7% identities with reviewed β-glucosidases in the UniProtKB/Swiss-Prot database. Functional characterization of the β-glucosidase BglG indicated that BglG was a 468 aa protein with a molecular weight of 53.2 kDa. The BglG showed the highest activity in pH 7.0 at 35 °C and exhibited consistently high levels of activity within low temperatures ranging from 5 to 35 °C. The BglG appeared to be a psychrophilic enzyme. The values of Km, Vmax, kcat, and kcat/Km of recombinant BglG toward ρNPG were 1.1 mM, 1.4 µg/mL/min, 12.7 s−1, and 11.5 mM/s, respectively. The specific enzyme activity of BglG was 12.14 U/mg. The metal ion of Ca2+ and Fe3+ could stimulate the activity of BglG, whereas Mn2+ inhibited the activity. The cold-adapted β-glucosidase BglG displayed remarkable biochemical properties, making it a potential candidate for future industrial applications.
Collapse
|
6
|
Zhou Y, Li X, Yan D, Addai Peprah F, Ji X, Fletcher EE, Wang Y, Wang Y, Gu J, Lin F, Shi H. Multifunctional elastin-like polypeptide renders β-glucosidase enzyme phase transition and high stability. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:157. [PMID: 31249620 PMCID: PMC6589881 DOI: 10.1186/s13068-019-1497-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 06/11/2019] [Indexed: 05/10/2023]
Abstract
BACKGROUND In the enzymatic conversion of biomass, it becomes an important issue to efficiently and cost-effectively degrade cellulose into fermentable glucose. β-Glucosidase (Bgluc), an essential member of cellulases, plays a critical role in cellulosic biomass degradation. The difficulty in improving the stability of Bgluc has been a bottleneck in the enzyme-dependent cellulose degradation. The traditional method of protein purification, however, leads to higher production cost and a decrease in activity. To simplify and efficiently purify Bgluc with modified special properties, Bgluc-tagged ELP and His with defined phase transitions was designed to facilitate the process. RESULTS Here, a novel binary ELP and His tag was fused with Bgluc from termite Coptotermes formosanus to construct a Bgluc-linker-ELP-His recombinant fusion protein (BglucLEH). The recombinant plasmid Bgluc expressing a His tag (BglucH) was also constructed. The BglucLEH and BglucH were expressed in E. coli BL21 and purified using inverse transition cycling (ITC) or Ni-NTA resin. The optimum salt concentration for the ITC purification of BglucLEH was 0.5 M (NH4)2SO4 and the specific activity of BglucLEH purified by ITC was 75.5 U/mg for substrate p-NPG, which was slightly higher than that of BglucLEH purified by Ni-NTA (68.2 U/mg). The recovery rate and purification fold of BglucLEH purified by ITC and Ni-NTA were 77.8%, 79.1% and 12.60, 11.60, respectively. The results indicated that purification with ITC was superior to the traditional Ni-NTA. The K m of BglucLEH and BglucH for p-NPG was 5.27 and 5.73 mM, respectively. The K ca t/K m (14.79 S-1 mM-1) of BglucLEH was higher than that of BglucH (12.10 S-1 mM-1). The effects of ELP tag on the enzyme activity, secondary structure and protein stability were also studied. The results showed that ELP tag did not affect the secondary structure or enzyme activity of Bgluc. More importantly, ELP improved the protein stability in harsh conditions such as heating and exposure to denaturant. CONCLUSION The Bgluc-linker-ELP-His system shows wide application prospect in maintaining the activity, efficient purification and improving the stability of Bgluc. These properties of BglucLEH make it an interesting tool to reduce cost, to improve the efficiency of biocatalyst and potentially to enhance the degradation of lignocellulosic biomass.
Collapse
Affiliation(s)
- Yang Zhou
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013 People’s Republic of China
| | - Xiaofeng Li
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013 People’s Republic of China
| | - Dandan Yan
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013 People’s Republic of China
| | - Frank Addai Peprah
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013 People’s Republic of China
| | - Xingqi Ji
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013 People’s Republic of China
| | - Emmanuella Esi Fletcher
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013 People’s Republic of China
| | - Yanwei Wang
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013 People’s Republic of China
| | - Yingying Wang
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013 People’s Republic of China
| | - Jie Gu
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013 People’s Republic of China
| | - Feng Lin
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001 People’s Republic of China
| | - Haifeng Shi
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013 People’s Republic of China
| |
Collapse
|