1
|
Zhang J, Liu T, Wei Y, Peng J, Zeng G, Zhong P. Upregulation of CIRP by its agonist prevents the development of heart failure in myocardial infarction rats. BMC Cardiovasc Disord 2024; 24:185. [PMID: 38539067 PMCID: PMC10967100 DOI: 10.1186/s12872-024-03852-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 03/20/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Downregulated expression of cold-inducible RNA binding protein (CIRP), a stress-response protein, has been demonstrated in the hearts of patients with heart failure (HF). However, whether CIRP plays a critical role in the pathogenesis of HF remains unknown. Zr17-2 is a recently identified CIRP agonist, which can enhance the expression of CIRP in hearts. Herein, we evaluated the effects of zr17-2 on the development of HF in a rat model of myocardial infarction (MI). METHODS Male SD rats were pretreated with CIRP agonist zr17-2 or vehicle saline for 6 consecutive days, followed by MI induction. 1-week post-MI, cardiac function, and structural and molecular changes were determined by echocardiography and molecular biology methods. RESULTS Excitingly, we found that pretreatment with zr17-2 significantly attenuated MI-induced cardiac dysfunction and dilation, coupled with reduced infarction size and cardiac remodeling. In addition, increased inflammatory response in the peri-infarcted heart including macrophage infiltration and the expression of inflammatory genes were all significantly decreased by zr17-2 pretreatment, suggesting an anti-inflammatory effect of zr17-2. Moreover, zr17-2 pretreatment also upregulated the antioxidant genes (e.g. NQO-1, Nrf2, and HO-1) level in the hearts. In isolated cultured cardiomyocytes, pretreatment with zr17-2 markedly attenuated cell injury and apoptosis induced by oxidative injury, along with elevation of Nrf2-related antioxidant genes and CIRP. However, silencing CIRP abolished zr17-2's antioxidant effects against oxidative injury, confirming that zr17-2's role is dependent on CIRP. CONCLUSION Collectively, our study suggests CIRP plays a crucial role in the development of HF and a beneficial effect of CIRP agonist in preventing MI-induced HF, possibly via anti-inflammatory and anti-oxidant pathways.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Cardiology Research Institute, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei, 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Tao Liu
- Department of Cardiology Research Institute, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei, 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Yanzhao Wei
- Department of Cardiology Research Institute, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei, 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Jianye Peng
- The Second Affiliated Hospital, Department of Cardiovascular Medicine, Hengyang Medical School, University of South China, Hengyang, China
- The Second Affiliated Hospital, Key laboratory of Heart Failure Prevention & Treatment of Hengyang, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Clinical Medicine Research Center of Arteriosclerotic Disease of Hunan Province, University of South China, Hengyang, 421001, China
| | - Gaofeng Zeng
- The Second Affiliated Hospital, Department of Cardiovascular Medicine, Hengyang Medical School, University of South China, Hengyang, China.
- The Second Affiliated Hospital, Key laboratory of Heart Failure Prevention & Treatment of Hengyang, Hengyang Medical School, University of South China, Hengyang, 421001, China.
- Clinical Medicine Research Center of Arteriosclerotic Disease of Hunan Province, University of South China, Hengyang, 421001, China.
| | - Peng Zhong
- Department of Cardiology Research Institute, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei, 430060, China.
- Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China.
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, China.
| |
Collapse
|
2
|
Mohammadkhani R, Ranjbar K, Salehi I, Komaki A, Zarrinkalam E, Amiri P. Comparison of the preconditioning effect of different exercise training modalities on myocardial ischemia-reperfusion injury. PLoS One 2023; 18:e0295169. [PMID: 38051732 DOI: 10.1371/journal.pone.0295169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 11/16/2023] [Indexed: 12/07/2023] Open
Abstract
The study of exercise preconditioning can develop strategies to prevent cardiovascular diseases and outline the efficient exercise model. However, the exercise type with the most protective effect against ischemia-reperfusion injury is unknown. In this study, we examined the effects of three kinds of exercise preconditioning on myocardial ischemia-reperfusion in adult rats and explored the possible underlying mechanisms. Male Wistar rats subjected to ten weeks of endurance, resistance, and concurrent training underwent ischemia (30 min) and reperfusion (120 min) induction. Then, infarction size, serum levels of the CK-MB, the redox status, and angiogenesis proteins (VEGF, ANGP-1, and ANGP-2) were measured in the cardiac tissue. Results showed that different exercise training modes have the same reduction effects on infarction size, but ischemia-reperfusion-induced CK-MB was lower in response to endurance training and concurrent training. Furthermore, cardiac VEGF levels increased in all three kinds of exercise preconditioning but ischemia-reperfusion-induced ANGP-1 elevated more in endurance training. The cardiac GPX activity was improved significantly through the resistance and concurrent exercise compared to the endurance exercise. In addition, all three exercise preconditioning models decreased MPO levels, and ischemia reperfusion-induced MDA was lower in endurance and resistance training. Overall, these results indicated that cardioprotection of exercise training against ischemia-reperfusion injury depends on the exercise modality. Cardioprotective effects of aerobic, resistance, and concurrent exercises are due to different mechanisms. The preconditioning effects of endurance training are mediated mainly by pervasive angiogenic responses and resistance training through oxidative stress amelioration. The preconditioning effects of concurrent training rely on both angiogenesis and oxidative stress amelioration.
Collapse
Affiliation(s)
| | - Kamal Ranjbar
- Department of Physical Education and Sport Science, Bandar Abbas Branch, Islamic Azad University, Bandar Abbas, Iran
| | - Iraj Salehi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ebrahim Zarrinkalam
- Faculty of Physical Education and Sport Sciences, Department of Physical Education, Islamic Azad University, Hamedan Branch, Hamedan, Iran
| | - Parsa Amiri
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
3
|
Cheng D, Long J, Zhao L, Liu J. Hydrogen: A Rising Star in Gas Medicine as a Mitochondria-Targeting Nutrient via Activating Keap1-Nrf2 Antioxidant System. Antioxidants (Basel) 2023; 12:2062. [PMID: 38136182 PMCID: PMC10740752 DOI: 10.3390/antiox12122062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
The gas molecules O2, NO, H2S, CO, and CH4, have been increasingly used for medical purposes. Other than these gas molecules, H2 is the smallest diatomic molecule in nature and has become a rising star in gas medicine in the past few decades. As a non-toxic and easily accessible gas, H2 has shown preventive and therapeutic effects on various diseases of the respiratory, cardiovascular, central nervous system, and other systems, but the mechanisms are still unclear and even controversial, especially the mechanism of H2 as a selective radical scavenger. Mitochondria are the main organelles regulating energy metabolism in living organisms as well as the main organelle of reactive oxygen species' generation and targeting. We propose that the protective role of H2 may be mainly dependent on its unique ability to penetrate every aspect of cells to regulate mitochondrial homeostasis by activating the Keap1-Nrf2 phase II antioxidant system rather than its direct free radical scavenging activity. In this review, we summarize the protective effects and focus on the mechanism of H2 as a mitochondria-targeting nutrient by activating the Keap1-Nrf2 system in different disease models. In addition, we wish to provide a more rational theoretical support for the medical applications of hydrogen.
Collapse
Affiliation(s)
- Danyu Cheng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (D.C.); (J.L.)
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (D.C.); (J.L.)
| | - Lin Zhao
- Cardiometabolic Innovation Center, Ministry of Education, Department of Cardiology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (D.C.); (J.L.)
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China
| |
Collapse
|
4
|
Dun Y, Hu Z, You B, Du Y, Zeng L, Zhao Y, Liu Y, Wu S, Cui N, Yang F, Liu S. Exercise prevents fatal stress-induced myocardial injury in obese mice. Front Endocrinol (Lausanne) 2023; 14:1223423. [PMID: 37711889 PMCID: PMC10497866 DOI: 10.3389/fendo.2023.1223423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Introduction This study aimed to explore whether aerobic exercise (AE) can prevent fatal stress-induced myocardial injury. Methods Thirty C57BL/6J mice were divided into either a normal diet, high-fat diet, or high-fat diet plus AE (n=10 per group). The AE protocol consisted of eight weeks of swimming. At the end of the diet and AE interventions, the mice were stimulated with fatal stress caused by exhaustive exercise (forced weight-loaded swimming until exhaustion), after which cardiac function was evaluated using echocardiography, myocardial ultrastructure was examined using transmission electron microscopy, and myocardial apoptosis was assessed using western blotting and TUNEL. Mitophagy, mitochondrial biogenesis and dynamics, and activation of the macrophage migration inhibitor factor (MIF)/AMP-activated protein kinase (AMPK) pathway were evaluated using quantitative PCR and western blotting. Obesity phenotypes were assessed once per week. Results AE reversed high-fat diet-induced obesity as evidenced by reductions in body weight and visceral fat compared to obese mice without AE. Obesity exacerbated fatal stress-induced myocardial damage, as demonstrated by impaired left ventricular ejection fraction and myocardial structure. The apoptotic rate was also elevated upon fatal stress, and AE ameliorated this damage. Obesity suppressed mitophagy, mitochondrial fission and fusion, and mitochondrial biogenesis, and these effects were accompanied by suppression of the MIF/AMPK pathway in the myocardium of mice subjected to fatal stress. AE alleviated or reversed these effects. Conclusion This study provides evidence that AE ameliorated fatal stress-induced myocardial injury in obese mice. The cardioprotective effect of AE in obese mice might be attributed to improved mitochondrial quality.
Collapse
Affiliation(s)
- Yaoshan Dun
- Division of Cardiac Rehabilitation, Department of Physical Medicine & Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
- School of Cardiovascular and Metabolic Medicine & Sciences, King’s College London British Heart Foundation Centre of Excellence, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
- Division of Preventive Cardiology, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Zihang Hu
- Division of Cardiac Rehabilitation, Department of Physical Medicine & Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
| | - Baiyang You
- Division of Cardiac Rehabilitation, Department of Physical Medicine & Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
| | - Yang Du
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, China
| | - Lingfang Zeng
- School of Cardiovascular and Metabolic Medicine & Sciences, King’s College London British Heart Foundation Centre of Excellence, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Yue Zhao
- School of Cardiovascular and Metabolic Medicine & Sciences, King’s College London British Heart Foundation Centre of Excellence, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Yuan Liu
- Division of Cardiac Rehabilitation, Department of Physical Medicine & Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
| | - Shaoping Wu
- Division of Cardiac Rehabilitation, Department of Physical Medicine & Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
| | - Ni Cui
- Division of Cardiac Rehabilitation, Department of Physical Medicine & Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
| | - Fan Yang
- School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Suixin Liu
- Division of Cardiac Rehabilitation, Department of Physical Medicine & Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
5
|
Saengsin K, Sittiwangkul R, Chattipakorn SC, Chattipakorn N. Hydrogen therapy as a potential therapeutic intervention in heart disease: from the past evidence to future application. Cell Mol Life Sci 2023; 80:174. [PMID: 37269385 DOI: 10.1007/s00018-023-04818-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 04/24/2023] [Accepted: 05/20/2023] [Indexed: 06/05/2023]
Abstract
Cardiovascular disease is the leading cause of mortality worldwide. Excessive oxidative stress and inflammation play an important role in the development and progression of cardiovascular disease. Molecular hydrogen, a small colorless and odorless molecule, is considered harmless in daily life when its concentration is below 4% at room temperature. Owing to the small size of the hydrogen molecule, it can easily penetrate the cell membrane and can be metabolized without residue. Molecular hydrogen can be administered through inhalation, the drinking of hydrogen-rich water, injection with hydrogen-rich-saline, and bathing of an organ in a preservative solution. The utilization of molecular hydrogen has shown many benefits and can be effective for a wide range of purposes, from prevention to the treatment of diseases. It has been demonstrated that molecular hydrogen exerts antioxidant, anti-inflammatory, and antiapoptotic effects, leading to cardioprotective benefits. Nevertheless, the exact intracellular mechanisms of its action are still unclear. In this review, evidence of the potential benefits of hydrogen molecules obtained from in vitro, in vivo, and clinical investigations are comprehensively summarized and discussed with a focus on the cardiovascular aspects. The potential mechanisms involved in the protective effects of molecular hydrogen are also presented. These findings suggest that molecular hydrogen could be used as a novel treatment in various cardiovascular pathologies, including ischemic-reperfusion injury, cardiac injury from radiation, atherosclerosis, chemotherapy-induced cardiotoxicity, and cardiac hypertrophy.
Collapse
Affiliation(s)
- Kwannapas Saengsin
- Division of Pediatric Cardiology, Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Rekwan Sittiwangkul
- Division of Pediatric Cardiology, Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Department of Oral Biology and Diagnostic Science, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand.
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
6
|
Cui K, Li C, Fang G. Aerobic Exercise Delays Alzheimer's Disease by Regulating Mitochondrial Proteostasis in the Cerebral Cortex and Hippocampus. Life (Basel) 2023; 13:life13051204. [PMID: 37240849 DOI: 10.3390/life13051204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/25/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
In clinical practice, Alzheimer's disease (AD), as one of the main neurodegenerative diseases globally, currently has no cure. Recently, the delaying and improving effects of physical exercise on AD have gradually been confirmed; however, the specific mechanism involved needs further clarification. (1) Objective: Explore the mechanism aerobic exercise plays in delaying AD by regulating mitochondrial proteostasis and provide new theoretical bases for improving and delaying AD through aerobic exercise in the future. (2) Methods: Male APP/PS1 mice were randomly divided into a normal group (NG, n = 20), activation group (AG, n = 20), and inhibition group (SG, n = 20). Then, the mice in each group were randomly divided into control group and exercise group (n = 10 mice each), yielding the normal control group (CNG), normal exercise group (ENG), active control group (CAG), active exercise group (EAG), inhibitive control group (CSG), and inhibitive exercise group (ESG). After adaptive training, the mice in the exercise groups were trained on an aerobic treadmill for 12 weeks; we conducted behavioral tests and sampled the results. Then, quantitative real-time PCR (Q-PCR) and Western blot analysis were performed. (3) Results: In the Morris water maze (MWM) test, the latency was significantly reduced and the number of platform crossings was significantly increased in the CAG and ENG compared with the CNG, while the result of the CSG was contrary to this. Compared with the ENG, latency was significantly reduced and the number of platform crossings was significantly increased in the EAG, while the opposite occurred for ESG. Compared with the CAG, the latency was significantly reduced and the number of platform crossings was significantly increased in the EAG, while the results for CSG were contrary. In the step-down test, compared with the CNG, the latency was significantly increased and the number of errors was significantly reduced in the CAG and ENG, respectively, while the results for CSG were contrary. Compared with the ENG, the latency was significantly increased and the number of errors was significantly reduced in the EAG, while the results for ESG were contrary. Compared with the CAG, the latency was significantly increased and the number of errors was significantly reduced in the EAG, while the results for CSG were contrary. Mitochondrial unfolded protein reactions (UPRmt), mitochondrial autophagy, and mitochondrial protein import levels in each group of mice were detected using Q-PCR and Western blot experiments. Compared with the CNG, the UPRmt and mitochondrial autophagy levels in the CAG and ENG were significantly increased and the mitochondrial protein import levels were significantly reduced, while the results for the CSG were contrary. Compared with the ENG, the UPRmt and mitochondrial autophagy levels in the EAG were significantly increased and the mitochondrial protein import levels were significantly reduced, while the results for ESG were contrary. Compared with the CAG, the UPRmt and mitochondrial autophagy levels in the EAG were significantly increased and the mitochondrial protein import levels were significantly reduced, while the results for CSG were contrary. (4) Conclusions: Aerobic exercise can improve cognitive function levels and delay the symptoms of AD in APP/PS1 mice by regulating mitochondrial proteostasis.
Collapse
Affiliation(s)
- Kaiyin Cui
- China Institute of Sport Science, Beijing 100061, China
| | - Chaoyang Li
- China Institute of Sport Science, Beijing 100061, China
| | - Guoliang Fang
- China Institute of Sport Science, Beijing 100061, China
| |
Collapse
|
7
|
Liu N, Zhu Y, Song W, Ren W, Tian Z. Cardioprotection Attributed to Aerobic Exercise-Mediated Inhibition of ALCAT1 and Oxidative Stress-Induced Apoptosis in MI Rats. Biomedicines 2022; 10:biomedicines10092250. [PMID: 36140351 PMCID: PMC9496522 DOI: 10.3390/biomedicines10092250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/29/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Cardiolipin (CL) plays a pivotal role in mitochondria-mediated apoptosis. Acyl-CoA: lysocardiolipin acyltransferase 1 (ALCAT1) can accelerate CL reactive oxygen production and cause mitochondrial damage. Although we have demonstrated that aerobic exercise significantly reduced ALCAT1 levels in MI mice, what is the temporal characteristic of ALCAT1 after MI? Little is known. Based on this, the effect of exercise on ALCAT1 in MI rats needs to be further verified. Therefore, this paper aimed to characterize ALCAT1 expression, and investigate the possible impact of exercise on ALCAT1 and its role in fibrosis, antioxidant capacity, and apoptosis in MI rats. Our results indicated that the potential utility of MI increased ALCAT1 expression within 1–6 h of MI, and serum CK and CKMB had significant effects in MI at 24 h, while LDH exerted an effect five days after MI. Furthermore, ALCAT1 expression was upregulated, oxidative capacity and excessive apoptosis were enhanced, and cardiac function was decreased after MI, and aerobic exercise can reverse these changes. These findings revealed a previously unknown endogenous cardiac injury factor, ALCAT1, and demonstrated that ALCAT1 damaged the heart of MI rats, and aerobic exercise reduced ALCAT1 expression, oxidative stress, and apoptosis after MI-induced cardiac injury in rats.
Collapse
Affiliation(s)
- Niu Liu
- School of Physical Education, Weinan Normal University, Weinan 714099, China
- College of Physical Education and Sports, Beijing Normal University, Beijing 100875, China
| | - Yingni Zhu
- School of Physical Education, Weinan Normal University, Weinan 714099, China
| | - Wei Song
- Institute of Sports and Exercise Biology, School of Physical Education, Shaanxi Normal University, Xi’an 710119, China
| | - Wujing Ren
- Institute of Sports and Exercise Biology, School of Physical Education, Shaanxi Normal University, Xi’an 710119, China
| | - Zhenjun Tian
- Institute of Sports and Exercise Biology, School of Physical Education, Shaanxi Normal University, Xi’an 710119, China
- Correspondence:
| |
Collapse
|
8
|
Effects of Treadmill Exercise on Mitochondrial DNA Damage and Cardiomyocyte Telomerase Activity in Aging Model Rats Based on Classical Apoptosis Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3529499. [PMID: 35463973 PMCID: PMC9023140 DOI: 10.1155/2022/3529499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 11/18/2022]
Abstract
In order to explore the effect of treadmill exercise on mitochondrial DNA damage and myocardial telomerase activity in aging model rats based on the classical apoptosis signaling pathway, a total of 36 clean-grade male SD rats are selected. After modeling, the rats are randomly divided into groups, namely, control and 3 times/w and 6 times/w exercise rats, with 12 rats in each group. After the rats of each group are modeled, the myocardial tissue and cells are collected, the apoptosis of myocardial cells is detected by TUNEL method, and the protein expressions of Bax and Bcl-2 in myocardial tissue are detected by western blotting. The mtDNA content of the control rats is the highest, which is significantly higher than that of the exercise group (
); the expression of mtDNA content in the heart of the rats exercising 3 times/w is significantly higher than that of the rats exercising 6 times/w (
); cardiomyocyte apoptosis AI value, Bcl-2, and Bax expressions of the control rats is the highest and significantly higher than those in the exercise group (
); Bcl-2/Bax in the control rats is the lowest and is significantly lower than that in the exercise group (
). The AI value, Bcl-2, and Bax expression of myocardial cell apoptosis in 3 times/w exercise rats are significantly higher than those in 6 times/w exercise rats (
); Bcl-2/Bax of 3 times/w exercise rats is significantly lower than that in 6 times/w exercise rats (
); by observing the rats that completed treadmill exercise, Akt2 protein of 3 times/w exercise rats and 6 times/w exercise rats is observed and analyzed. Compared with the control rats, the expressions of the two proteins are increased in 3 times/w exercise rats and 6 times/w exercise rats, and the upregulation in 6 times/w exercise rats is significantly increased and higher than that in 3 times/w exercise rats (
). For aging rats, treadmill exercise can reduce the body Bcl-2 and Bax values, improve the mitochondrial DNA damage and myocardial cell telomerase activity in aging model rats, and slow down the aging process.
Collapse
|
9
|
Zhao F, Zou MH. Role of the Mitochondrial Protein Import Machinery and Protein Processing in Heart Disease. Front Cardiovasc Med 2021; 8:749756. [PMID: 34651031 PMCID: PMC8505727 DOI: 10.3389/fcvm.2021.749756] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are essential organelles for cellular energy production, metabolic homeostasis, calcium homeostasis, cell proliferation, and apoptosis. About 99% of mammalian mitochondrial proteins are encoded by the nuclear genome, synthesized as precursors in the cytosol, and imported into mitochondria by mitochondrial protein import machinery. Mitochondrial protein import systems function not only as independent units for protein translocation, but also are deeply integrated into a functional network of mitochondrial bioenergetics, protein quality control, mitochondrial dynamics and morphology, and interaction with other organelles. Mitochondrial protein import deficiency is linked to various diseases, including cardiovascular disease. In this review, we describe an emerging class of protein or genetic variations of components of the mitochondrial import machinery involved in heart disease. The major protein import pathways, including the presequence pathway (TIM23 pathway), the carrier pathway (TIM22 pathway), and the mitochondrial intermembrane space import and assembly machinery, related translocases, proteinases, and chaperones, are discussed here. This review highlights the importance of mitochondrial import machinery in heart disease, which deserves considerable attention, and further studies are urgently needed. Ultimately, this knowledge may be critical for the development of therapeutic strategies in heart disease.
Collapse
Affiliation(s)
| | - Ming-Hui Zou
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
10
|
Ostojic SM. Hydrogen Gas as an Exotic Performance-Enhancing Agent: Challenges and Opportunities. Curr Pharm Des 2021; 27:723-730. [PMID: 32962610 DOI: 10.2174/1381612826666200922155242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/14/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Hydrogen gas (H2) has entered the world of experimental therapeutics approximately four and a half decades ago. Over the years, this simple molecule appears to drive more scientific attention, perhaps due to a dualism of H2 affirmative features demonstrated in numerous in vitro, animal and human studies on one side, and still puzzling mechanism(s) of its biological activity on the other. Up to this point, H2 was scrutinized for more than 170 different disease models and pathologies, and many research groups across the world have lately started to dynamically investigate its conceivable performance-enhancing potential. METHODS We outlined here the studies indexed in leading research databases (PubMed, Web of Science, SCOPUS, JSTORE) that explored the effects of hydrogen on exercise performance, and also addressed important restraints, open questions, and windows of opportunities for forthcoming research and possible H2 enactment in exercise physiology. About two dozen trials have been identified in this domain, with most of the trials published during the past 5 years, while drinking hydrogen-rich water recognized as the most convenient method to deliver H2 in both animal and human studies. RESULTS Either administered as an inhalational gas, enteral hydrogen-rich water, or intravenous hydrogen-rich saline, H2 seems to favorably affect various exercise performance outcomes and biomarkers of exercise-associated fatigue, inflammation, and oxidative stress. Not all studies have shown corroborative effects, and it appears that the gold-standard protocol for applying H2 in the field of exercise science does not exist at the moment, with studies markedly differ in the dose of H2 administered, the duration of treatment, and the source of hydrogen. CONCLUSION H2 is a newfangled and rather effective performance-enhancing agent, yet its promising ergogenic potency has to be further validated and characterized in more well-controlled, appropriately sampled and longterm mechanistic trials. Also, appropriate regulation of hydrogen utilization in sport as an exotic medical gas may require distinctive legislative actions of relevant regulatory agencies in the future.
Collapse
Affiliation(s)
- Sergej M Ostojic
- Applied Bioenergetics Lab, Faculty of Sport and PE, University of Novi Sad, Lovcenska 16, Novi Sad 21000, Serbia
| |
Collapse
|
11
|
Effects of long-term hydrogen intervention on the physiological function of rats. Sci Rep 2020; 10:18509. [PMID: 33116163 PMCID: PMC7595097 DOI: 10.1038/s41598-020-75492-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 10/12/2020] [Indexed: 11/09/2022] Open
Abstract
The potential therapeutic effects of molecular hydrogen (H2) have now been confirmed in various human and animal-disease models. However, the effects of H2 on the physiological function in a normal state have been largely neglected. Hydrogen-rich water (HRW) intake and hydrogen inhalation (HI) are the most common used methods for hydrogen administration, the difference in the effects between HRW intake and HI remains elusive. In the present study, the body weight and 13 serum biochemical parameters were monitored during the six-month hydrogen intervention, all these parameters were significantly altered by oral intake of HRW or HI. Among the 13 parameters, the most striking alterations induced by hydrogen treatment were observed in serum myocardial enzymes spectrum. The results also showed that the changes in these parameters occurred at different time points, and the alterations in most of the parameters were much more significant in HI than HRW. The results of this study provides the basic data for the mechanism research and application of molecular hydrogen in the future.
Collapse
|
12
|
Rao P, Shipon D. Exercise Recommendations for the Athlete With Coronary Artery Disease. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2019; 21:82. [PMID: 31820188 DOI: 10.1007/s11936-019-0795-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF THE REVIEW We provide a framework for formulating exercise prescriptions for those with CAD in order to achieve the "optimal" dose of exercise for each individual. RECENT FINDINGS Multiple epidemiological studies demonstrate that exercise is inversely associated with atherosclerotic coronary artery disease (CAD), yet the risk of an acute coronary event is transiently elevated during vigorous exercise. In turn, CAD is the most common cause of exercise-related sudden cardiac death (SCD) in older athletes. When prescribing exercise recommendations for athletes with CAD, we should maintain equipoise between the benefits derived from sports participation and the risk of an adverse cardiac event. Athletes are not immune from atherosclerotic CAD, and we should perform risk assessments regardless of physical and athletic prowess. Cardiopulmonary exercise testing may be a useful tool to develop individualized exercise regimens for athletes with CAD.
Collapse
Affiliation(s)
- Prashant Rao
- Beth Israel Deaconess Medical Center, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - David Shipon
- Thomas Jefferson University Hospital, Philadelphia, PA, USA.
| |
Collapse
|
13
|
LeBaron TW, Laher I, Kura B, Slezak J. Hydrogen gas: from clinical medicine to an emerging ergogenic molecule for sports athletes 1. Can J Physiol Pharmacol 2019; 97:797-807. [PMID: 30970215 DOI: 10.1139/cjpp-2019-0067] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
H2 has been clinically demonstrated to provide antioxidant and anti-inflammatory effects, which makes it an attractive agent in exercise medicine. Although exercise provides a multiplicity of benefits including decreased risk of disease, it can also have detrimental effects. For example, chronic high-intensity exercise in elite athletes, or sporadic bouts of exercise (i.e., noxious exercise) in untrained individuals, result in similar pathological factors such as inflammation, oxidation, and cellular damage that arise from and result in disease. Paradoxically, exercise-induced pro-inflammatory cytokines and reactive oxygen species largely mediate the benefits of exercise. Ingestion of conventional antioxidants and anti-inflammatories often impairs exercise-induced training adaptations. Disease and noxious forms of exercise promote redox dysregulation and chronic inflammation, changes that are mitigated by H2 administration. Beneficial exercise and H2 administration promote cytoprotective hormesis, mitochondrial biogenesis, ATP production, increased NAD+/NADH ratio, cytoprotective phase II enzymes, heat-shock proteins, sirtuins, etc. We review the biomedical effects of exercise and those of H2, and we propose that hydrogen may act as an exercise mimetic and redox adaptogen, potentiate the benefits from beneficial exercise, and reduce the harm from noxious exercise. However, more research is warranted to elucidate the potential ergogenic and therapeutic effects of H2 in exercise medicine.
Collapse
Affiliation(s)
- Tyler W LeBaron
- Molecular Hydrogen Institute, Utah, USA.,Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, The University of British Columbia, 217 - 2176 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Branislav Kura
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Jan Slezak
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic
| |
Collapse
|
14
|
Li L, Liu T, Li X, Liu X, Liu L, Li S, Li Z, Zhou Y, Liu F. Protein chip and bioinformatic analyses of differentially expressed proteins involved in the effect of hydrogen-rich water on myocardial ischemia-reperfusion injury. Int J Med Sci 2019; 16:1254-1259. [PMID: 31588191 PMCID: PMC6775260 DOI: 10.7150/ijms.35984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 06/30/2019] [Indexed: 12/17/2022] Open
Abstract
Background: The differentially expressed proteins (DEPs) involved in the effect of hydrogen-rich water on myocardial ischemia reperfusion injury (MIRI) and their biological processes and signaling pathway were analyzed. Methods: 20 Wistar rats were randomly and equally divided into a control and a hydrogen-rich group. Hearts were removed and fixed in a Langendorff device. The control group was perfused with K-R solution, and the hydrogen-rich water group was perfused with K-R solution + hydrogen-rich water. Protein was extracted from the ventricular tissues, and GSR-CAA-67 was used to identify the DEPs between two groups. DEPs were analyzed through bioinformatic methods. Results: Compared with the control group, in the treatment group, the expression of 25 proteins was obviously decreased (P<0.05). For the DEPs, 359 biological processes, including the regulation of signaling pathways, immune reaction and formation of cardiovascular endothelial cells, were selected by GO enrichment analysis. Five signaling pathways were selected by KEGG pathway enrichment analysis. Conclusions: 25 proteins that are involved in hydrogen-water reducing MIRI were selected by high-throughput GSR-CAA-67. The biological processes and metabolic pathways involved in the DEPs were summarized, providing theoretical evidence for the clinical application of hydrogen-rich water.
Collapse
Affiliation(s)
- Liangtong Li
- School of Medicine, Hebei University, Baoding, 071000, China.,Central Laboratory of Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Tongtong Liu
- Affiliated Hospital of Hebei University, Baoding, 071000, China
| | - Xiangzi Li
- School of Medicine, Hebei University, Baoding, 071000, China
| | - Xuanchen Liu
- School of Medicine, Hebei University, Baoding, 071000, China
| | - Li Liu
- School of Medicine, Hebei University, Baoding, 071000, China
| | - Shaochun Li
- School of Medicine, Hebei University, Baoding, 071000, China
| | - Zhilin Li
- School of Chemistry, Hebei University, Baoding 071000, China
| | - Yujuan Zhou
- School of Medicine, Hebei University, Baoding, 071000, China
| | - Fulin Liu
- Affiliated Hospital of Hebei University, Baoding, 071000, China
| |
Collapse
|