1
|
Rana S, Chatterjee A, Kumar Padhi S. A Single Enzyme in Enantiocomplementary Synthesis of β-Nitroalcohols: Bidirectional Catalysis by Hydroxynitrile Lyase. Chembiochem 2024; 25:e202400618. [PMID: 39073741 DOI: 10.1002/cbic.202400618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 07/30/2024]
Abstract
A single enzyme, Baliospermum montanum hydroxynitrile lyase (BmHNL), without alteration, enabled bidirectional catalysis in enantiocomplementary synthesis of chiral β-nitroalcohols. BmHNL catalyzed promiscuous Henry (24 examples) and retro-Henry reaction (22 examples) provided up to >99 % and 50 % conversion to (S)- and (R)-β-nitroalcohols respectively, while both cases displayed up to >99 % ee. The broad substrate scope and high stereoselectivity of BmHNL represents its synthetic applications in sustainable production of diverse chiral β-nitroalcohols. Kinetic parameters of BmHNL was determined for Henry and retro-Henry reaction, which reveals poor catalytic efficiency for both the promiscuous transformations, however, the former has better efficiency than the latter. Practical applicability of the biocatalyst and transformation was illustrated by preparative scale synthesis of chiral intermediates of (S)-Tembamide, and (S)-Micanozole.
Collapse
Affiliation(s)
- Sukadev Rana
- Biocatalysis and Enzyme Engineering Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500 046, India
| | - Ayon Chatterjee
- Biocatalysis and Enzyme Engineering Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500 046, India
| | - Santosh Kumar Padhi
- Biocatalysis and Enzyme Engineering Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500 046, India
| |
Collapse
|
2
|
Priya BV, Rao DHS, Chatterjee A, Padhi SK. Hydroxynitrile lyase engineering for promiscuous asymmetric Henry reaction with enhanced conversion, enantioselectivity and catalytic efficiency. Chem Commun (Camb) 2023; 59:12274-12277. [PMID: 37750925 DOI: 10.1039/d3cc02837b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Arabidopsis thaliana hydroxynitrile lyase (AtHNL) engineering has uncovered variants that showed up to 12-fold improved catalytic efficiency than the wild-type towards asymmetric Henry reaction. The AtHNL variants have displayed excellent enantioselectivity, up to >99%, and higher conversion in the synthesis of 13 different (R)-β-nitroalcohols from their corresponding aldehydes. Using cell lysates of Y14M/F179W, we demonstrated a preparative scale synthesis of (R)-1-(4-methoxyphenyl)-2-nitroethanol, a tembamide chiral intermediate, in >99% ee and 52% yield.
Collapse
Affiliation(s)
- Badipatla Vishnu Priya
- Biocatalysis and Enzyme Engineering Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, 500046, Hyderabad, India.
| | - D H Sreenivasa Rao
- Biocatalysis and Enzyme Engineering Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, 500046, Hyderabad, India.
| | - Ayon Chatterjee
- Biocatalysis and Enzyme Engineering Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, 500046, Hyderabad, India.
| | - Santosh Kumar Padhi
- Biocatalysis and Enzyme Engineering Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, 500046, Hyderabad, India.
| |
Collapse
|
3
|
Solís A, Cano A, Martínez-Casares RM, Solís-Oba M, Castro-Rivera R, Velázquez Flores O. Preparation of optically active cyanohydrins from 2-substituted benzaldehydes using a hydroxynitrile lyase from Pouteria sapota seeds immobilized on celite. BIOCATAL BIOTRANSFOR 2022. [DOI: 10.1080/10242422.2022.2070430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Aida Solís
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Unidad Xochimilco, Ciudad de México, México
| | - Abraham Cano
- Universidad Autónoma Metropolitana, Unidad Xochimilco, Maestría en Ciencias Farmacéuticas, Ciudad de México, México
| | - R. Marlen Martínez-Casares
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Unidad Xochimilco, Ciudad de México, México
| | - Myrna Solís-Oba
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Tlaxcala, México
| | - Rigoberto Castro-Rivera
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Tlaxcala, México
| | - Oscar Velázquez Flores
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Unidad Xochimilco, Ciudad de México, México
| |
Collapse
|
4
|
Batch and Flow Nitroaldol Synthesis Catalysed by Granulicella tundricola Hydroxynitrile Lyase Immobilised on Celite R-633. Catalysts 2022. [DOI: 10.3390/catal12020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Granulicella tundricola hydroxynitrile lyase (GtHNL) catalyses the synthesis of chiral (R)-cyanohydrins and (R)-β-nitro alcohols. The triple variant GtHNL-A40H/V42T/Q110H (GtHNL-3V) was immobilised on Celite R-633 and used in monophasic MTBE saturated with 100 mM KPi buffer pH 7 for the synthesis of (R)-2-nitro-1-phenylethanol (NPE) in batch and continuous flow systems. Nitromethane was used as a nucleophile. A total of 82% of (R)-NPE and excellent enantioselectivity (>99%) were achieved in the batch system after 24 hours of reaction time. GtHNL-3V on Celite R-633 was successfully recycled five times. During more recycling steps a significant decrease in yield was observed while the enantioselectivity remained excellent over eight cycles. The use of a flow system enabled the continuous synthesis of (R)-NPE. A total of 15% formation of (R)-NPE was reached using a flow rate of 0.1 mL min−1; unfortunately, the enzyme was not stable, and the yield decreased to 4% after 4 hours on stream. A similar yield was observed during 15 hours at a rate of 0.01 mL min−1. Surprisingly the use of a continuous flow system did not facilitate the process intensification. In fact, the batch system displayed a space-time-yield (STY/mgenzyme) of 0.10 g L−1 h−1 mgenzyme−1 whereas the flow system displayed 0.02 and 0.003 g L−1 h−1 mgenzyme−1 at 0.1 and 0.01 mL min−1, respectively. In general, the addition of 1 M nitromethane potentially changed the polarity of the reaction mixture affecting the stability of Celite-GtHNL-3V. The nature of the batch system maintained the reaction conditions better than the flow system. The higher yield and productivity observed for the batch system show that it is a superior system for the synthesis of (R)-NPE compared with the flow approach.
Collapse
|
5
|
Vishnu Priya B, Sreenivasa Rao DH, Gilani R, Lata S, Rai N, Akif M, Kumar Padhi S. Enzyme engineering improves catalytic efficiency and enantioselectivity of hydroxynitrile lyase for promiscuous retro-nitroaldolase activity. Bioorg Chem 2022; 120:105594. [PMID: 35007952 DOI: 10.1016/j.bioorg.2021.105594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/08/2021] [Accepted: 12/30/2021] [Indexed: 11/02/2022]
Abstract
Protein engineering to improve promiscuous catalytic activity is important for biocatalytic application of enzymes in green synthesis. We uncovered the significance of binding site residues in Arabidopsis thaliana hydroxynitrile lyase (AtHNL) for promiscuous retro-nitroaldolase activity. Engineering of AtHNL has improved enantioselective retro-nitroaldolase activity, a synthetically important biotransformation, for the production of enantiopure β-nitroalcohols having absolute configuration opposite to that of the stereopreference of the HNL. The variant F179A has shown ∼ 12 fold increased selectivity towards the retro-nitroaldol reaction over cyanogenesis, the natural activity of the parent enzyme. Screening of the two saturation libraries of Phe179 and Tyr14 revealed several variants with higher kcat, while F179N showed ∼ 2.4-fold kcat/Km than the native enzyme towards retro-nitroaldol reaction. Variants F179N, F179M, F179W, F179V, F179I, Y14L, and Y14M have shown > 99% ee in the preparation of (S)-2-nitro-1-phenylethanol (NPE) from the racemic substrate, while F179N has shown the E value of 138 vs. 81 by the wild type. Our molecular docking and dynamics simulations (MDS) studies results provided insights into the molecular basis of higher enantioselectivity by the F179N toward the retro-nitroaldolase activity than the other mutants. Binding energy calculations also showed the higher negative binding free energy in the case of F179N-(R)-NPE compared to other complexes that support our experimental low Km by the F179N for NPE. A plausible retro-nitroaldol reaction mechanism was proposed based on the MDS study of enzyme-substrate interaction.
Collapse
Affiliation(s)
- Badipatla Vishnu Priya
- Biocatalysis and Enzyme Engineering Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India
| | - D H Sreenivasa Rao
- Biocatalysis and Enzyme Engineering Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India
| | - Rubina Gilani
- Biocatalysis and Enzyme Engineering Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India
| | - Surabhi Lata
- Laboratory of Structural Biology, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India
| | - Nivedita Rai
- Biocatalysis and Enzyme Engineering Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India
| | - Mohd Akif
- Laboratory of Structural Biology, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India
| | - Santosh Kumar Padhi
- Biocatalysis and Enzyme Engineering Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India.
| |
Collapse
|
6
|
Asymmetric Henry Reaction of Nitromethane with Substituted Aldehydes Catalyzed by Novel In Situ Generated Chiral Bis(β-Amino Alcohol-Cu(OAc)2·H2O Complex. Catalysts 2021. [DOI: 10.3390/catal11101208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Novel chiral thiophene-2,5-bis(β-amino alcohol) ligands (L1–L5) were designed and synthesized from thiophene-2,5-dicarbaldehyde (3) with chiral β-amino alcohols (4a–e) in 4 steps with overall 23% yields. An in situ generated L-Cu(OAc)2·H2O catalyst system was found to be highly capable catalyst for the asymmetric Henry reaction of nitromethane (7) with various substituted aromatic aldehydes (6a–m) producing chiral nitroaldols product (8a–m) with excellent enantiomeric purity (up to 94.6% ee) and up to >99% chemical yields. 20 mol% of L4-Cu(OAc)2 catalyst complex in EtOH was effective for the asymmetric Henry transformation in 24 h, at ambient temperature. Ease of ligand synthesis, use of green solvent, base free reaction, mild reaction conditions, high yields and excellent enantioselectivity are all key factors that make this catalytic system robust and highly desirable for the access of versatile building block β-nitro alcohol in practical catalytic usage via asymmetric Henry reaction.
Collapse
|
7
|
Chatterjee A, Rao DHS, Kumar Padhi S. One‐Pot Enzyme Cascade Catalyzed Asymmetrization of Primary Alcohols: Synthesis of Enantiocomplementary Chiral β‐Nitroalcohols. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ayon Chatterjee
- Biocatalysis and Enzyme Engineering Laboratory Department of Biochemistry School of Life Sciences University of Hyderabad 500 046 Hyderabad India
| | - D. H. Sreenivasa Rao
- Biocatalysis and Enzyme Engineering Laboratory Department of Biochemistry School of Life Sciences University of Hyderabad 500 046 Hyderabad India
| | - Santosh Kumar Padhi
- Biocatalysis and Enzyme Engineering Laboratory Department of Biochemistry School of Life Sciences University of Hyderabad 500 046 Hyderabad India
| |
Collapse
|
8
|
Rao DHS, Chatterjee A, Padhi SK. Biocatalytic approaches for enantio and diastereoselective synthesis of chiral β-nitroalcohols. Org Biomol Chem 2021; 19:322-337. [PMID: 33325956 DOI: 10.1039/d0ob02019b] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chiral β-nitroalcohols find significant application in organic synthesis due to the versatile reactivity of hydroxyl and nitro functionalities attached to one or two vicinal asymmetric centers. They are key building blocks of several important pharmaceuticals, bioactive molecules, and fine chemicals. With the growing demand to develop clean and green methods for their synthesis, biocatalytic methods have gained tremendous importance among the existing asymmetric synthesis routes. Over the years, different biocatalytic strategies for the asymmetric synthesis of β-nitroalcohol stereoisomers have been developed. They can be majorly classified as (a) kinetic resolution, (b) dynamic kinetic resolution, (c) Henry reaction, (d) retro-Henry reaction, (e) asymmetric reduction, and (f) enantioselective epoxide ring-opening. This review aims to provide an overview of the above biocatalytic strategies, and their comparison along with future prospects. Essentially, it presents an enzyme-toolbox for the asymmetric synthesis of β-nitroalcohol enantiomers and diastereomers.
Collapse
Affiliation(s)
- D H Sreenivasa Rao
- Biocatalysis and Enzyme Engineering Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad - 500 046, India.
| | - Ayon Chatterjee
- Biocatalysis and Enzyme Engineering Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad - 500 046, India.
| | - Santosh Kumar Padhi
- Biocatalysis and Enzyme Engineering Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad - 500 046, India.
| |
Collapse
|