1
|
Zhai X, Liu Y, Hao X, Luo M, Gao Z, Wu J, Yang Z, Gan Y, Zhao S, Song Z, Guan J. Photothermal-Driven α-Amylase-Modified Polydopamine Pot-Like Nanomotors for Enhancing Penetration and Elimination of Drug-Resistant Biofilms. Adv Healthc Mater 2025:e2403033. [PMID: 39901377 DOI: 10.1002/adhm.202403033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/17/2025] [Indexed: 02/05/2025]
Abstract
Biological enzyme-functionalized antibacterial nanoparticles, which can degrade biofilm and kill bacteria under mild reaction conditions, have attracted much attention for the elimination of deep-seated bacterial infections. However, the poor diffusion and penetration capabilities of recently developed biological enzyme-functionalized antibacterial nanoparticles in biofilm severely impair the eradication efficacy of deep-seated bacteria. Herein, a photothermal-driven nanomotor (denoted as APPNM) is developed for enhancing the elimination of drug-resistant biofilms and the eradication of deep-seated bacteria. The nanomotor contained a pot-like polydopamine (PDA) nanostructure and its outer surface is chemically immobilized with a layer of α-amylases. Under exposure to 808 nm near-infrared (NIR) laser irradiation, the self-propelled nanomotors, integrating the α-amylases to destroy the compact structure of biofilms, can penetrate deeply into biofilms and effectively eliminate them. Subsequently, they can accumulate on the surface of bacteria using the inherent bio-adhesion property of PDA, thereby completely eradicating deep-seated bacteria by photothermal effect. These synergistic effects enable them to exhibit superior antibiofilm effects and produce remarkable therapeutic efficacy with accelerated wound healing in vivo. With excellent biocompatibility, the as-developed nanomotors have great potential to be applied for treating biofilm-related infections.
Collapse
Affiliation(s)
- Xiangxiang Zhai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yi Liu
- National Key Laboratory of Agricultural Microbiology, College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaomeng Hao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Ming Luo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Zhixue Gao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Jinmei Wu
- National Key Laboratory of Agricultural Microbiology, College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zili Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Ying Gan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Suling Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Zhiyong Song
- National Key Laboratory of Agricultural Microbiology, College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianguo Guan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| |
Collapse
|
2
|
Al-Madboly LA, Aboulmagd A, El-Salam MA, Kushkevych I, El-Morsi RM. Microbial enzymes as powerful natural anti-biofilm candidates. Microb Cell Fact 2024; 23:343. [PMID: 39710670 DOI: 10.1186/s12934-024-02610-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 12/01/2024] [Indexed: 12/24/2024] Open
Abstract
Bacterial biofilms pose significant challenges, from healthcare-associated infections to biofouling in industrial systems, resulting in significant health impacts and financial losses globally. Classic antimicrobial methods often fail to eradicate sessile microbial communities within biofilms, requiring innovative approaches. This review explores the structure, formation, and role of biofilms, highlighting the critical importance of exopolysaccharides in biofilm stability and resistance mechanisms. We emphasize the potential of microbial enzymatic approaches, particularly focusing on glycosidases, proteases, and deoxyribonucleases, which can disrupt biofilm matrices effectively. We also delve into the importance of enzymes such as cellobiose dehydrogenase, which disrupts biofilms by degrading polysaccharides. This enzyme is mainly sourced from Aspergillus niger and Sclerotium rolfsii, with optimized production strategies enhancing its efficacy. Additionally, we explore levan hydrolase, alginate lyase, α-amylase, protease, and lysostaphin as potent antibiofilm agents, discussing their microbial origins and production optimization strategies. These enzymes offer promising avenues for combating biofilm-related challenges in healthcare, environmental, and industrial settings. Ultimately, enzymatic strategies present environmentally friendly solutions with high potential for biofilm management and infection control.
Collapse
Affiliation(s)
- Lamiaa A Al-Madboly
- Department of Microbiology and Immunology, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| | - Asmaa Aboulmagd
- Department of Microbiology and Immunology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Mohamed Abd El-Salam
- Department of Pharmacognosy, Faculty of Pharmacy, Delta University for Science and Technology, International Coastal Road, Gamasa, 11152, Egypt
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, D02 VN51, Ireland
| | - Ivan Kushkevych
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| | - Rasha M El-Morsi
- Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, International Coastal Road, Gamasa, 11152, Egypt
| |
Collapse
|
3
|
Alves VF, Tadielo LE, Pires ACMDS, Pereira MG, Bersot LDS, De Martinis ECP. Hidden Places for Foodborne Bacterial Pathogens and Novel Approaches to Control Biofilms in the Meat Industry. Foods 2024; 13:3994. [PMID: 39766937 PMCID: PMC11675819 DOI: 10.3390/foods13243994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Biofilms are of great concern for the meat industry because, despite the implementation of control plans, they remain important hotspots of contamination by foodborne pathogens, highlighting the need to better understand the ecology of these microecosystems. The objective of this paper was to critically survey the recent scientific literature on microbial biofilms of importance for meat safety and quality, also pointing out the most promising methods to combat them. For this, the databases PubMed, Scopus, Science Direct, Web of Science, and Google Scholar were surveyed in a 10-year time frame (but preferably papers less than 5 years old) using selected keywords relevant for the microbiology of meats, especially considering bacteria that are tolerant to cleaning and sanitization processes. The literature findings showed that massive DNA sequencing has deeply impacted the knowledge on the species that co-habit biofilms with important foodborne pathogens (Listeria monocytogenes, Salmonella, pathogenic Escherichia coli, and Staphylococcus aureus). It is likely that recalcitrant commensal and/or spoilage microbiota somehow protect the more fastidious organisms from harsh conditions, in addition to harboring antimicrobial resistance genes. Among the members of background microbiota, Pseudomonas, Acinetobacter, and Enterobacteriales have been commonly found on food contact and non-food contact surfaces in meat processing plants, in addition to less common genera, such as Psychrobacter, Enhydrobacter, Brevundimonas, and Rothia, among others. It has been hypothesized that these rare taxa may represent a primary layer in microbial biofilms, offering better conditions for the adhesion of otherwise poor biofilm formers, especially considering their tolerance to cold conditions and sanitizers. Taking into consideration these findings, it is not only important to target the foodborne pathogens per se in cleaning and disinfection plans but the use of multiple hurdles is also recommended to dismantle the recalcitrant structures of biofilms. In this sense, the last part of this manuscript presents an updated overview of the antibiofilm methods available, with an emphasis on eco-friendly approaches.
Collapse
Affiliation(s)
| | - Leonardo Ereno Tadielo
- Department of Animal Production and Food, State University of Santa Catarina, Lages 88040-900, Brazil;
| | | | - Marita Gimenez Pereira
- Ribeirão Preto School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-220, Brazil; (A.C.M.d.S.P.); (M.G.P.)
| | | | | |
Collapse
|
4
|
Zanditenas E, Ankri S. Unraveling the interplay between unicellular parasites and bacterial biofilms: Implications for disease persistence and antibiotic resistance. Virulence 2024; 15:2289775. [PMID: 38058008 PMCID: PMC10761080 DOI: 10.1080/21505594.2023.2289775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023] Open
Abstract
Bacterial biofilms have attracted significant attention due to their involvement in persistent infections, food and water contamination, and infrastructure corrosion. This review delves into the intricate interactions between bacterial biofilms and unicellular parasites, shedding light on their impact on biofilm formation, structure, and function. Unicellular parasites, including protozoa, influence bacterial biofilms through grazing activities, leading to adaptive changes in bacterial communities. Moreover, parasites like Leishmania and Giardia can shape biofilm composition in a grazing independent manner, potentially influencing disease outcomes. Biofilms, acting as reservoirs, enable the survival of protozoan parasites against environmental stressors and antimicrobial agents. Furthermore, these biofilms may influence parasite virulence and stress responses, posing challenges in disease treatment. Interactions between unicellular parasites and fungal-containing biofilms is also discussed, hinting at complex microbial relationships in various ecosystems. Understanding these interactions offers insights into disease mechanisms and antibiotic resistance dissemination, paving the way for innovative therapeutic strategies and ecosystem-level implications.
Collapse
Affiliation(s)
- Eva Zanditenas
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Serge Ankri
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
5
|
Guo Q, Su W, Wen F, Cai J, Huo L, Zhong H, Li P. α-Amylase and polydopamine@polypyrrole-based hydrogel microneedles promote wound healing by eliminating bacterial infection. Int J Biol Macromol 2024; 281:136604. [PMID: 39419145 DOI: 10.1016/j.ijbiomac.2024.136604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/08/2024] [Accepted: 10/13/2024] [Indexed: 10/19/2024]
Abstract
In this paper, we designed a novel "Freeze-thaw" type hydrogel microneedle (PP-CDLut-AMY MN). The "Freeze-thaw" cycle endows the MN excellent water absorption, with a dissolution rate of up to 486 %. The addition of polydopamine@polypyrrole (PP) enabled the MN to have a stable temperature increase to approximately 50 °C under near-infrared light irradiation, which exhibited killing rates of 99 % and 98 % against free S. aureus and E. coli, respectively. Natural macromolecule α-Amylase (AMY) was used as a bacterial biofilm disintegrator, and the destruction rate of S. aureus biofilm reached 83.2 %. Meanwhile, the incorporation of Hydroxypropyl-β-cyclodextrin @Luteolin (CDLut) provided the MN with good antioxidant properties, which could scavenge 73.35 % of DPPH free radicals. In vivo experiments have shown that the MN can effectively promote the healing of wounds infected by S. aureus biofilm and that the stable and gentle photothermal effect did not cause unnecessary damage to the surrounding tissues. We believe that this novel hydrogel MN has great potential to combat bacterial biofilms associated with wound infections.
Collapse
Affiliation(s)
- Qing Guo
- Guangxi University of Chinese Medicine, Nanning, China
| | - Wei Su
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, China.
| | - Fangzhou Wen
- Guangxi University of Chinese Medicine, Nanning, China
| | - Jinyun Cai
- Guangxi University of Chinese Medicine, Nanning, China
| | - Lini Huo
- Guangxi University of Chinese Medicine, Nanning, China
| | - Haiyi Zhong
- Guangxi University of Chinese Medicine, Nanning, China
| | - Peiyuan Li
- Guangxi University of Chinese Medicine, Nanning, China.
| |
Collapse
|
6
|
Kumari U, Gupta P. Evaluation and Optimization of the Different Process Parameters of Mild Acid Pretreatment of Waste Lignocellulosic Biomass for Enhanced Energy Procreation. Appl Biochem Biotechnol 2024; 196:3765-3785. [PMID: 37776442 DOI: 10.1007/s12010-023-04737-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 10/02/2023]
Abstract
The screening and evaluation of different waste lignocellulosic biomasses to meet the ever-increasing energy demand, from the widely available waste lignocellulosic biomasses evaluated. For the current study, peanut shell biomass is considered for energy procreation. However, the energy content of biomass is still lesser as compared to conventional fossil fuels like coal and petroleum. The dilute acid pretreatment has been proven to improve the energy content of the lignocellulosic biomasses to a significant extent. Various pretreatment process parameters have been reported to have different degrees of impact on the betterment of energy procreation. Among various types of pretreatments, dilute acid pretreatment holds notable cognizance. Accordingly, the current manuscript is to evaluate the impact of various pretreatment process parameters (time, temperature, acid concentration, mass:liquor ratio, and particle size which were defined through an exhaustive literature search) for improving the energy recovery potential. The obtained results indicated notable changes in the devolatilization characteristics of the biomass as a result of pretreatment, thereby resulting in the upgradation of the fuel properties. A sustainability investigation has been carried out to point out the efficacy of the optimized pretreatment of biomass in terms of environmental sustainability and was also compared with the raw variant (untreated form of biomass). The proposed scheme of study will definitely be beneficial toward the mitigation of the energy crisis in the state of Jharkhand.
Collapse
Affiliation(s)
- Uma Kumari
- Department of Microbiology, Radha Govind University, Lalki Ghati, Ramgarh, 829122, Jharkhand, India
| | - Pratibha Gupta
- Department of Microbiology, Radha Govind University, Lalki Ghati, Ramgarh, 829122, Jharkhand, India.
| |
Collapse
|
7
|
Satheesh S, Al Solami L. Antifouling activities of proteinase K and α-amylase enzymes: Laboratory bioassays and in silico analysis. Heliyon 2024; 10:e31683. [PMID: 38828329 PMCID: PMC11140711 DOI: 10.1016/j.heliyon.2024.e31683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/02/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024] Open
Abstract
The application of enzymes as antifoulants is one of the environment-friendly strategies in biofouling management. In this study, antifouling activities of commercially available proteinase K and α-amylase enzymes were evaluated using barnacle larva and biofilm-forming bacteria as test organisms. The enzymes were also tested against barnacle cement protein through in silico analysis. The results showed that both enzymes inhibited the attachment of bacteria and settlement of barnacle larvae on the test surface. The lowest minimum inhibitory concentration of 0.312 mg ml-1 was exhibited by proteinase K against biofilm-forming bacteria. The calculated LC50 values for proteinase K and α-amylase against the barnacle nauplii were 91.8 and 230.96 mg ml-1 respectively. While α-amylase showed higher antibiofilm activity, proteinase K exhibited higher anti-larval settlement activity. Similarly, in silico analysis of the enzymes revealed promising anti-settlement activity, as the enzymes showed good binding scores with barnacle cement protein. Overall, the results suggested that the enzymes proteinase K and α-amylase could be used in antifouling coatings to reduce the settlement of biofouling on artificial materials in the marine environment.
Collapse
Affiliation(s)
- Sathianeson Satheesh
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Lafi Al Solami
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
8
|
Kim SH, Roy PK, Park SY. Synergistic Effects of Combined Flavourzyme and Floating Electrode-Dielectric Barrier Discharge Plasma on Reduction of Escherichia coli Biofilms in Squid ( Todarodes pacificus). Microorganisms 2024; 12:1188. [PMID: 38930569 PMCID: PMC11205502 DOI: 10.3390/microorganisms12061188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
This study investigated the synergistic effect of combining flavourzyme, a natural enzyme, and floating electrode-dielectric barrier discharge (FE-DBD) plasma (1.1 kV, 43 kHz, N2 1.5 m/s) treatment, a non-thermal decontamination technology, against Escherichia coli biofilms in squid. E. coli (ATCC 35150 and ATCC 14301) biofilms were formed on the surface of squid and treated with different minimum inhibitory concentrations (MICs) of flavourzyme (1/8; 31.25 μL/mL, 1/4; 62.5 μL/mL, 2/4; 125 μL/mL, and 3/4 MIC; 250 μL/mL) and FE-DBD plasma (5, 10, 30, and 60 min). Independently, flavourzyme and FE-DBD plasma treatment decreased by 0.26-1.71 and 0.19-1.03 log CFU/cm2, respectively. The most effective synergistic combination against E. coli biofilms was observed at 3/4 MIC flavourzyme + 60 min FE-DBD plasma exposure, resulting in a reduction of 1.55 log CFU/cm2. Furthermore, the combined treatment exhibited higher efficacy in E. coli biofilm inactivation in squid compared to individual treatments. The pH values of the synergistic combinations were not significantly different from those of the untreated samples. The outcomes indicate that the combined treatment with flavourzyme and FE-DBD plasma can effectively provide effective control of E. coli biofilms without causing pH changes in squid. Therefore, our study suggests a new microbial control method for microbial safety in the seafood industry.
Collapse
Affiliation(s)
| | - Pantu Kumar Roy
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064, Republic of Korea;
| | - Shin Young Park
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064, Republic of Korea;
| |
Collapse
|
9
|
Khan ZA, Wani MY, Ahmad A, Basha MT, Aly NA, Yakout AA. Multifunctional chitosan-cross linked- curcumin-tannic acid biocomposites disrupt quorum sensing and biofilm formation in pathogenic bacteria. Int J Biol Macromol 2024; 271:132719. [PMID: 38821810 DOI: 10.1016/j.ijbiomac.2024.132719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Natural products have a long history of success in treating bacterial infections, making them a promising source for novel antibacterial medications. Curcumin, an essential component of turmeric, has shown potential in treating bacterial infections and in this study, we covalently immobilized curcumin (Cur) onto chitosan (CS) using glutaraldehyde and tannic acid (TA), resulting in the fabrication of novel biocomposites with varying CS/Cur/TA ratios. Comprehensive characterization of these ternary biocomposites was conducted using FTIR, SEM, XPS, and XRD to assess their morphology, functional groups, and chemical structures. The inhibitory efficacy of these novel biocomposites (n = 4) against the growth and viability of Pseudomonas aeruginosa (ATCC27853) and Chromobacterium violaceum (ATCC12472) was evaluated and the most promising composite (C3) was investigated for its impact on quorum sensing (QS) and biofilm formation in these bacteria. Remarkably, this biocomposite significantly disrupted QS circuits and effectively curtailed biofilm formation in the tested pathogens without inducing appreciable toxicity. These findings underscore its potential for future in vivo studies, positioning it as a promising candidate for the development of biofilm disrupting antibacterial agents.
Collapse
Affiliation(s)
- Ziya Ahmad Khan
- Department of Chemistry, College of Science, University of Jeddah, 21589 Jeddah, Saudi Arabia.
| | - Mohmmad Younus Wani
- Department of Chemistry, College of Science, University of Jeddah, 21589 Jeddah, Saudi Arabia.
| | - Aijaz Ahmad
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Maram T Basha
- Department of Chemistry, College of Science, University of Jeddah, 21589 Jeddah, Saudi Arabia
| | - Nada A Aly
- Department of Pharmacy Technology, Faculty of Technological Health Sciences, Borg El Arab Technological University, Egypt; Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Amr A Yakout
- Department of Chemistry, College of Science, University of Jeddah, 21589 Jeddah, Saudi Arabia; Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
10
|
Rahman NIA, Ramzi MM, Rawi NN, Siong JYF, Bakar K, Bhubalan K, Ariffin F, Saidin J, Azemi AK, Ismail N. Characterization of antibiofilm compound from marine sponge Stylissa carteri. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:37552-37563. [PMID: 38780848 DOI: 10.1007/s11356-024-33704-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
The fouling phenomenon grabbed global attention and caused huge economic losses specifically in marine-related industries. Sessile behavior exposed the sponge to the risk of fouling. However, their bodies remained free from foulers, which were attributed to the chemical defense system. The objectives of this study were to determine the antibiofilm activity of the marine sponge, Stylissa carteri, and to characterize the isolated compound involved. The antibiofilm activity of S. carteri methanolic crude extract (MCE) and fractions was tested against biofilm-producing bacteria, Pseudomonas aeruginosa, using two different modes of crystal violet biofilm assays: preventive and detachment. Besides that, the disc-diffusion test was conducted to screen the antibacterial activity against gram-positive and gram-negative bacteria while a cytotoxicity assay was conducted on the HepG2 cell line. Bioassay-guided fractionation was carried out using vacuum liquid chromatography (VLC) and solid phase extraction using a C18 Sep-Pak Cartridge. The crystal compound was isolated and characterized through thin-layer chromatography (TLC), Fourier transform infrared (FTIR) spectroscopy, liquid chromatography-mass spectrometry (LCMS), and nuclear magnetic resonance (NMR) spectroscopy. The S. carteri MCE showed a promising result with a half-maximal inhibitory concentration (IC50) of 20.22 μg/mL in the preventive assay, while no IC50 was determined in the detachment assay since all inhibitions < 50%. The S. carteri MCE exhibited broad-spectrum antibacterial activity and displayed a non-cytotoxic effect. Fraction 4 from MCE of S. carteri (IC50 = 2.40 μg/mL) reduced the biofilm in the preventive assay at all concentrations and exhibited no antibacterial activity indicating the independence of antibiofilm from antibacterial properties. Based on the data obtained, an alkaloid named debromohymenialdisine (DBH) was identified from Fraction 4 of S. carteri MCE. In conclusion, S. carteri was able to reduce the establishment of the biofilm formed by P. aeruginosa and could serve as a prominent source of natural antifouling agents.
Collapse
Affiliation(s)
- Nor Izzati Abd Rahman
- Institute of Climate Adaptation and Marine Biotechnology, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia
| | - Mujahidah Mohd Ramzi
- Institute of Climate Adaptation and Marine Biotechnology, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia
| | - Nurul Najihah Rawi
- Institute of Climate Adaptation and Marine Biotechnology, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia
| | - Julius Yong Fu Siong
- Institute of Climate Adaptation and Marine Biotechnology, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia
| | - Kamariah Bakar
- Institute of Climate Adaptation and Marine Biotechnology, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia
| | - Kesaven Bhubalan
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia
| | - Fazilah Ariffin
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia
| | - Jasnizat Saidin
- Institute of Climate Adaptation and Marine Biotechnology, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia
| | - Ahmad Khusairi Azemi
- Institute of Climate Adaptation and Marine Biotechnology, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia
| | - Noraznawati Ismail
- Institute of Climate Adaptation and Marine Biotechnology, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia.
| |
Collapse
|
11
|
Heena, Kaushal S, Kaur V, Panwar H, Sharma P, Jangra R. Isolation of quinic acid from dropped Citrus reticulata Blanco fruits: its derivatization, antibacterial potential, docking studies, and ADMET profiling. Front Chem 2024; 12:1372560. [PMID: 38698937 PMCID: PMC11064019 DOI: 10.3389/fchem.2024.1372560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/20/2024] [Indexed: 05/05/2024] Open
Abstract
Citrus reticulata dropped fruits are generally discarded as waste, causing environmental pollution and losses to farmers. In the present study, column chromatography has been used to isolate quinic acid (1,3,4,5-tetrahydroxycyclohexane-1-carboxylic acid) from the ethyl acetate fraction of a methanol extract of citrus fruits dropped in April. Quinic acid is a ubiquitous plant metabolite found in various plants and microorganisms. It is an important precursor in the biosynthesis of aromatic natural compounds. It was further derivatized into 3,4-o-isopropylidenequinic acid 1,5-lactone (QA1), 1,3,4,5-tetraacetoxycyclohexylaceticanhydride (QA2), and cyclohexane-1,2,3,5-tetraone (QA3). These compounds were further tested for their antibacterial potential against the foodborne pathogens Staphylococcus aureus, Bacillus spp., Yersinia enterocolitica, and Escherichia coli. QA1 exhibited maximum antibacterial potential (minimum inhibitory concentration; 80-120 μg/mL). QA1 revealed synergistic behavior with streptomycin against all the tested bacterial strains having a fractional inhibitory concentration index ranging from 0.29 to 0.37. It also caused a significant increase in cell constituent release in all the tested bacteria compared to the control, along with prominent biofilm reduction. The results obtained were further checked with computational studies that revealed the best docking score of QA1 (-6.30 kcal/mol, -5.8 kcal/mol, and -4.70 kcal/mol) against β-lactamase, DNA gyrase, and transpeptidase, respectively. The absorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis revealed that the drug-like properties of QA1 had an ideal toxicity profile, making it a suitable candidate for the development of antimicrobial drugs.
Collapse
Affiliation(s)
- Heena
- Department of Chemistry, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Sonia Kaushal
- Department of Chemistry, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Vishaldeep Kaur
- Department of Chemistry, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Harsh Panwar
- Department of Dairy Microbiology, Guru Angad Dev Veterinary University, Ludhiana, Punjab, India
| | - Purshotam Sharma
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, India
| | - Raman Jangra
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, India
| |
Collapse
|
12
|
Moradi Alvand Z, Parseghian L, Aliahmadi A, Rahimi M, Rafati H. Nanoencapsulated Thymus daenensis and Mentha piperita essential oil for bacterial and biofilm eradication using microfluidic technology. Int J Pharm 2024; 651:123751. [PMID: 38159586 DOI: 10.1016/j.ijpharm.2023.123751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 12/06/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
The use of essential oil (EO) nanoemulsions is expanding to meet customer demand for all-natural antibacterial agents. Thymus daenensis (T) and Mentha piperita (M) EOs were employed to make nanoemulsions (TEO and MEO NE), using Tween 80/Span 80 as surfactant/cosurfactant and a high-speed homogenizer. The TEO and MEO NEs were then characterized in terms of particle size (121, 113 nm), surface charge (-11.2 and -12.6 mV), morphology, and stability over time. Then, the antibacterial activity of EOs and their nanoformulations against Escherichia coli (E. coli) were evaluated based on various residence times, and concentrations on a microfluidic chip. The release of cytoplasmic constituents was used to compare the antibacterial activity of bulk EOs and nanoformulations. After completing MIC, MBC, and time-killing assays, the inhibitory effect of nanoformulations on E. coli biofilm formation was examined. Remarkable intensification was observed by employing a microfluidic chip owing to high-contact surface area provision between nanoemulsions and bacteria. Once compared to the conventional method for 3 h operation, the bacterial activity was nearly completely inhibited in a 24-min residence time using nanoemulsions. After 6 min of treatment, the cell membrane began to rupture, indicating that nanoemulsions could improve the antibacterial activity of bulk essential oils.
Collapse
Affiliation(s)
- Zinab Moradi Alvand
- Department of Pharmaceutical Engineering, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran; Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Liana Parseghian
- Department of Pharmaceutical Engineering, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran; Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Atousa Aliahmadi
- Department of Biology, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Masoud Rahimi
- Department of Pharmaceutical Engineering, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Hasan Rafati
- Department of Pharmaceutical Engineering, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
13
|
Karyani TZ, Ghattavi S, Homaei A. Application of enzymes for targeted removal of biofilm and fouling from fouling-release surfaces in marine environments: A review. Int J Biol Macromol 2023; 253:127269. [PMID: 37804893 DOI: 10.1016/j.ijbiomac.2023.127269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/07/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Biofouling causes adverse issues in underwater structures including ship hulls, aquaculture cages, fishnets, petroleum pipelines, sensors, and other equipment. Marine constructions and vessels frequently are using coatings with antifouling properties. During the previous ten years, several alternative strategies have been used to combat the biofilm and biofouling that have developed on different abiotic or biotic surfaces. Enzymes have frequently been suggested as a cost-effective, substitute, eco-friendly, for conventional antifouling and antibiofilm substances. The destruction of sticky biopolymers, biofilm matrix disorder, bacterial signal interference, and the creation of biocide or inhibitors are among the catalytic reactions of enzymes that really can successfully prevent the formation of biofilms. In this review we presented enzymes that have antifouling and antibiofilm properties in the marine environment like α-amylase, protease, lysozymes, glycoside hydrolase, aminopeptidases, oxidase, haloperoxidase and lipases. We also overviewed the function, benefits and challenges of enzymes in removing biofouling. The reports suggest enzymes are good candidates for marine environment. According to the findings of a review of studies in this field, none of the enzymes were able to inhibit the development of biofilm by a site marine microbial community when used alone and we suggest using other enzymes or a mixture of enzymes for antifouling and antibiofilm purposes in the sea environment.
Collapse
Affiliation(s)
- Tayebeh Zarei Karyani
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Saba Ghattavi
- Fisheries Department, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran.
| |
Collapse
|
14
|
Ghosh S, Lahiri D, Nag M, Dey A, Sarkar T, Biswas R, Dutta B, Mukherjee D, Pati S, Pattanaik S, Ray RR. Analysis of Antibiofilm Activities of Bioactive Compounds from Honeyweed (Leonurus sibiricus) Against P. aeruginosa: an In Vitro and In Silico Approach. Appl Biochem Biotechnol 2023; 195:5312-5328. [PMID: 34989967 DOI: 10.1007/s12010-021-03797-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 12/21/2022]
Abstract
Leonurus sibiricus (Red verticilla, honeyweed) is a type of herbaceous plant predominantly found in Asian subcontinents as weed in crop fields and is widely used for treating diabetes, bronchitis, and menstrual irregularities. However, there is a dearth of study in the application of the plant phytocompounds for treating biofilm-associated chronic infections. The bioactive compounds mainly comprise of tri-terpenes, di-terpenes, phenolic acid, and flavonoids which may have potential role as antimicrobial and antibiofilm agents. Acute and chronic infection causing microbes usually form biofilm and develop virulence factors and antibiotic resistance through quorum sensing (QS). In this study, the bioactive compounds leosibirin, sibiricinone A, leosibirone A, leonotin, quercetin, lavandulifolioside, and myricetin were identified using GC-MS analysis. These were used for analyzing the antibiofilm and anti-quorum sensing activities (rhamnolipid, AHL assay, swarming motility assay) against the biofilm formed by Pseudomonas aeruginosa, the most significant nosocomial disease-causing bacteria. The compounds were able to bring about maximum inhibition in biofilm formation and QS. Although the antibiofilm activity of the phytoextract was found to be higher than that of individual phytocompounds at a concentration of 250 µg/mL, quercetin and myricetin showed highest antibiofilm activity against Pseudomonas aeruginosa, respectively, at MIC values of 135 µg/mL and 150 µg/mL against P aeruginosa. FT-IR study also revealed that the active ingredients were able to bring about the destruction of exopolysaccharides (EPS). These observations were further validated by molecular docking interactions that showed the active ingredients inhibit the functioning of QS sensing proteins by binding with them. It was observed that myricetin showed better interactions with the QS proteins of P. aeruginosa. Myricetin and quercetin show considerable inhibition of biofilm in comparison to the phytocompounds. Thus, the present study suggests that the active compounds from L. sibiricus can be used as an alternate strategy in inhibiting the biofilm formed by pathogenic organisms.
Collapse
Affiliation(s)
- Sreejita Ghosh
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, West Bengal, India
| | - Dibyajit Lahiri
- Department of Biotechnology, University of Engineering & Management, Kolkata, West Bengal, India
| | - Moupriya Nag
- Department of Biotechnology, University of Engineering & Management, Kolkata, West Bengal, India
| | - Ankita Dey
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, West Bengal, India
| | - Tanmay Sarkar
- Department of Food Technology and Bio-Chemical Engineering, Jadavpur University, Kolkata, 700032, India
- Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, 732102, India
| | - Riya Biswas
- Department of Biotechnology, University of Engineering & Management, Kolkata, West Bengal, India
| | - Bandita Dutta
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, West Bengal, India
| | - Dipro Mukherjee
- Department of Biotechnology, University of Engineering & Management, Kolkata, West Bengal, India
| | - Siddhartha Pati
- SIAN Institute, Association for Biodiversity Conservation and Research (ABC), 756001, Odisha, India
- Department of Biotechnology, Academy of Management and Information Technology, Khordha, 752057, Odisha, India
| | - Smaranika Pattanaik
- Department of Biotechnology & Bioinformatics, Sambalpur University, Odisha, India
| | - Rina Rani Ray
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, West Bengal, India.
| |
Collapse
|
15
|
Abo-Kamer AM, Abd-El-Salam IS, Mostafa FA, Mustafa AERA, Al-Madboly LA. A promising microbial α-amylase production, and purification from Bacillus cereus and its assessment as antibiofilm agent against Pseudomonas aeruginosa pathogen. Microb Cell Fact 2023; 22:141. [PMID: 37528448 PMCID: PMC10391895 DOI: 10.1186/s12934-023-02139-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/01/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND AND AIM The purpose of the current study is to isolate a heavily amylase-producing bacteria of the genus Bacillus from soil samples, optimize the production of the enzyme, purify it, and evaluate its activity against biofilm-producing bacteria. A total of 12 soil samples were collected and screened for promising Bacillus species with good amylolytic activity. Isolation was done by serial dilution and plating technique and amylolytic activity was determined by starch agar plate method. Among the 12 Bacillus isolates recovered from soil samples, 7 showed positive α-amylase production. The best isolate that recorded the greatest amylolytic activity was selected for further studies. This isolate was identified by 16S rRNA sequencing as Bacillus cereus and registered under gene bank accession number OP811897. Furthermore, the α-amylase enzyme was produced by a submerged fermentation technique using best production media and partially purified by ammonium sulfate and chilled ethanol and molecular weight had been determined by SDS-PAGE gel electrophoresis. The production of α-amylase was optimized experimentally by one-factor at a time protocol and statistically by Plackett-Burman design as well as RSM CCD design. Data obtained from OFAT and CCD revealed that α-amylase activities were 1.5- and twofold respectively higher as compared to un-optimized conditions. The most significant factors had been identified and optimized by CCD design. RESULTS Among the eleven independent variables tested by PBD, glucose, peptone, (NH4)2SO4, and Mg SO4 were the most significant parameters for α-amylase production with an actual yield of 250U/ml. The best physical parameters affecting the enzyme production were incubation time at 35 °C, and pH 5.5 for 48 h. The partially purified enzyme with 60% ammonium sulphate saturation with 1.38- fold purification showed good stability characteristics at a storage temperature of 4 °C and pH up to 8.5 for 21 days. Antibiofilm activity of purified α-amylase was determined against Pseudomonas aeruginosa (ATCC 35659) by spectrophotometric analysis and CLSM microscopic analysis. Results demonstrated biofilm inhibition by 84% of the formed Pseudomonas biofilm using a microtiter plate assay and thickness inhibition activity by 83% with live/Dead cells percentage of 17%/83% using CLSM protocol. CONCLUSIONS A highly stable purified α-amylase from B. cereus showed promising antibiofilm activity against one of the clinically important biofilm-forming MDR organisms that could be used as a cost-effective tool in pharmaceutical industries.
Collapse
Affiliation(s)
- Amal M Abo-Kamer
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Ibrahim S Abd-El-Salam
- Departemet of Chemistry of Natural and Microbial Products, National Research Centre, Dokki, Cairo, Egypt
| | - Faten A Mostafa
- Departemet of Chemistry of Natural and Microbial Products, National Research Centre, Dokki, Cairo, Egypt
| | - Abd-El-Rahman A Mustafa
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Lamiaa A Al-Madboly
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| |
Collapse
|
16
|
Chung J, Eisha S, Park S, Morris AJ, Martin I. How Three Self-Secreted Biofilm Exopolysaccharides of Pseudomonas aeruginosa, Psl, Pel, and Alginate, Can Each Be Exploited for Antibiotic Adjuvant Effects in Cystic Fibrosis Lung Infection. Int J Mol Sci 2023; 24:ijms24108709. [PMID: 37240055 DOI: 10.3390/ijms24108709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/29/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
In cystic fibrosis (CF), pulmonary infection with Pseudomonas aeruginosa is a cause of increased morbidity and mortality, especially in patients for whom infection becomes chronic and there is reliance on long-term suppressive therapies. Current antimicrobials, though varied mechanistically and by mode of delivery, are inadequate not only due to their failure to eradicate infection but also because they do not halt the progression of lung function decline over time. One of the reasons for this failure is thought to be the biofilm mode of growth of P. aeruginosa, wherein self-secreted exopolysaccharides (EPSs) provide physical protection against antibiotics and an array of niches with resulting metabolic and phenotypic heterogeneity. The three biofilm-associated EPSs secreted by P. aeruginosa (alginate, Psl, and Pel) are each under investigation and are being exploited in ways that potentiate antibiotics. In this review, we describe the development and structure of P. aeruginosa biofilms before examining each EPS as a potential therapeutic target for combating pulmonary infection with P. aeruginosa in CF, with a particular focus on the current evidence for these emerging therapies and barriers to bringing these therapies into clinic.
Collapse
Affiliation(s)
- Jonathan Chung
- Department of Translational Medicine, Research Institute, The Hospital for Sick Children, University of Toronto, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Shafinaz Eisha
- Department of Translational Medicine, Research Institute, The Hospital for Sick Children, University of Toronto, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Subin Park
- Department of Translational Medicine, Research Institute, The Hospital for Sick Children, University of Toronto, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Amanda J Morris
- Department of Translational Medicine, Research Institute, The Hospital for Sick Children, University of Toronto, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Isaac Martin
- Department of Translational Medicine, Research Institute, The Hospital for Sick Children, University of Toronto, 686 Bay Street, Toronto, ON M5G 0A4, Canada
- Division of Respiratory Medicine, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| |
Collapse
|
17
|
Li M, Yu J, Guo G, Shen H. Interactions between Macrophages and Biofilm during Staphylococcus aureus-Associated Implant Infection: Difficulties and Solutions. J Innate Immun 2023; 15:499-515. [PMID: 37011602 PMCID: PMC10315156 DOI: 10.1159/000530385] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 03/16/2023] [Indexed: 04/05/2023] Open
Abstract
Staphylococcus aureus (S. aureus) biofilm is the major cause of failure of implant infection treatment that results in heavy social and economic burden on individuals, families, and communities. Planktonic S. aureus attaches to medical implant surfaces where it proliferates and is wrapped by extracellular polymeric substances, forming a solid and complex biofilm. This provides a stable environment for bacterial growth, infection maintenance, and diffusion and protects the bacteria from antimicrobial agents and the immune system of the host. Macrophages are an important component of the innate immune system and resist pathogen invasion and infection through phagocytosis, antigen presentation, and cytokine secretion. The persistence, spread, or clearance of infection is determined by interplay between macrophages and S. aureus in the implant infection microenvironment. In this review, we discuss the interactions between S. aureus biofilm and macrophages, including the effects of biofilm-related bacteria on the macrophage immune response, roles of myeloid-derived suppressor cells during biofilm infection, regulation of immune cell metabolic patterns by the biofilm environment, and immune evasion strategies adopted by the biofilm against macrophages. Finally, we summarize the current methods that support macrophage-mediated removal of biofilms and emphasize the importance of considering multi-dimensions and factors related to implant-associated infection such as immunity, metabolism, the host, and the pathogen when developing new treatments.
Collapse
Affiliation(s)
- Mingzhang Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinlong Yu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Geyong Guo
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Shen
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Gowen R, Gamal A, Di Martino L, McCormick TS, Ghannoum MA. Modulating the Microbiome for Crohn's Disease Treatment. Gastroenterology 2023; 164:828-840. [PMID: 36702360 PMCID: PMC10152883 DOI: 10.1053/j.gastro.2023.01.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/12/2022] [Accepted: 01/06/2023] [Indexed: 01/28/2023]
Abstract
The central role of the gut microbiota in the regulation of health and disease has been convincingly demonstrated. Polymicrobial interkingdom interactions between bacterial (the bacteriome) and fungal (the mycobiome) communities of the gut have become a prominent focus for development of potential therapeutic approaches. In addition to polymicrobial interactions, the complex gut ecosystem also mediates interactions between the host and the microbiota. These interactions are complex and bidirectional; microbiota composition can be influenced by host immune response, disease-specific therapeutics, antimicrobial drugs, and overall ecosystems. However, the gut microbiota also influences host immune response to a drug or therapy by potentially transforming the drug's structure and altering bioavailability, activity, or toxicity. This is especially true in cases where the gut microbiota has produced a biofilm. The negative ramifications of biofilm formation include alteration of gut permeability, enhanced antimicrobial resistance, and alteration of host immune response effectiveness. Natural modulation of the gut microbiota, using probiotic and prebiotic approaches, may also be used to affect the host microbiome, a type of "natural" modulation of the host microbiota composition. In this review, we discuss potential bidirectional interactions between microbes and host, and we describe the changes in gut microbiota induced by probiotic and prebiotic approaches as well as their potential clinical consequences, including biofilm formation. We outline a systematic approach to designing probiotics capable of altering the host microbiota in disease states, using Crohn's disease as a model chronic disease. Understanding how the effective changes in the microbiome may enhance treatment efficacy may unlock the possibility of modulating the gut microbiome to improve treatment using a natural approach.
Collapse
Affiliation(s)
- Rachael Gowen
- Department of Dermatology, Case Western Reserve University, Cleveland, Ohio; University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Ahmed Gamal
- Department of Dermatology, Case Western Reserve University, Cleveland, Ohio; University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Luca Di Martino
- University Hospitals Cleveland Medical Center, Cleveland, Ohio; Department of Medicine, Case Western Reserve University, Cleveland, Ohio; Case Digestive Health Research Institute, Case Western Reserve University, Cleveland Ohio
| | - Thomas S McCormick
- Department of Dermatology, Case Western Reserve University, Cleveland, Ohio; University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Mahmoud A Ghannoum
- Department of Dermatology, Case Western Reserve University, Cleveland, Ohio; University Hospitals Cleveland Medical Center, Cleveland, Ohio.
| |
Collapse
|
19
|
Efremenko E, Stepanov N, Aslanli A, Lyagin I, Senko O, Maslova O. Combination of Enzymes with Materials to Give Them Antimicrobial Features: Modern Trends and Perspectives. J Funct Biomater 2023; 14:jfb14020064. [PMID: 36826863 PMCID: PMC9960987 DOI: 10.3390/jfb14020064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/17/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
Multidrug-resistant bacteria form serious problems in many areas, including medicine and the food industry. At the same time, great interest is shown in the transfer or enhancement of antimicrobial properties to various materials by modifying them with enzymes. The use of enzymes in biomaterials with antimicrobial properties is important because enzymes can be used as the main active components providing antimicrobial properties of functionalized composite biomaterials, or can serve as enhancers of the antimicrobial action of certain substances (antibiotics, antimicrobial peptides, metal nanoparticles, etc.) against cells of various microorganisms. Enzymes can simultaneously widen the spectrum of antimicrobial activity of biomaterials. This review presents the most promising enzymes recently used for the production of antibacterial materials, namely hydrolases and oxidoreductases. Computer modeling plays an important role in finding the most effective combinations between enzymes and antimicrobial compounds, revealing their possible interactions. The range of materials that can be functionalized using enzymes looks diverse. The physicochemical characteristics and functionalization methods of the materials have a significant impact on the activity of enzymes. In this context, fibrous materials are of particular interest. The purpose of this review is to analyze the current state of the art in this area.
Collapse
Affiliation(s)
- Elena Efremenko
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
- N.M. Emanuel Institute of Biochemical Physics RAS, Kosygin str. 4, 119334 Moscow, Russia
- Correspondence: ; Tel.: +7-(495)-939-3170; Fax: +7-(495)-939-5417
| | - Nikolay Stepanov
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
- N.M. Emanuel Institute of Biochemical Physics RAS, Kosygin str. 4, 119334 Moscow, Russia
| | - Aysel Aslanli
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| | - Ilya Lyagin
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
- N.M. Emanuel Institute of Biochemical Physics RAS, Kosygin str. 4, 119334 Moscow, Russia
| | - Olga Senko
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
- N.M. Emanuel Institute of Biochemical Physics RAS, Kosygin str. 4, 119334 Moscow, Russia
| | - Olga Maslova
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| |
Collapse
|
20
|
Lahiri D, Nag M, Dey A, Sarkar T, Pati S, Nirmal NP, Ray RR, Upadhye VJ, Pandit S, Moovendhan M, Kavisri M. Marine bioactive compounds as antibiofilm agent: a metabolomic approach. Arch Microbiol 2023; 205:54. [PMID: 36602609 DOI: 10.1007/s00203-022-03391-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/17/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023]
Abstract
The ocean is a treasure trove of both living and nonliving creatures, harboring incredibly diverse group of organisms. A plethora of marine sourced bioactive compounds are discovered over the past few decades, many of which are found to show antibiofilm activity. These are of immense clinical significance since the formation of microbial biofilm is associated with the development of high antibiotic resistance. Biofilms are also responsible to bring about problems associated with industries. In fact, the toilets and wash-basins also show degradation due to development of biofilm on their surfaces. Antimicrobial resistance exhibited by the biofilm can be a potent threat not only for the health care unit along with industries and daily utilities. Various recent studies have shown that the marine members of various kingdom are capable of producing antibiofilm compounds. Many such compounds are with unique structural features and metabolomics approaches are essential to study such large sets of metabolites. Associating holobiome metabolomics with analysis of their chemical attribute may bring new insights on their antibiofilm effect and their applicability as a substitute for conventional antibiotics. The application of computer-aided drug design/discovery (CADD) techniques including neural network approaches and structured-based virtual screening, ligand-based virtual screening in combination with experimental validation techniques may help in the identification of these molecules and evaluation of their drug like properties.
Collapse
Affiliation(s)
- Dibyajit Lahiri
- Department of Biotechnology, University of Engineering & Management, Kolkata, 700160, West Bengal, India
| | - Moupriya Nag
- Department of Biotechnology, University of Engineering & Management, Kolkata, 700160, West Bengal, India
| | - Ankita Dey
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, West Bengal, India
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, 732102, West Bengal, India
| | - Siddhartha Pati
- Nat Nov Bioscience Private Limited, Balasore, 756001, Odisha, India
| | - Nilesh P Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, 73170, Nakhon Pathom, Thailand.
| | - Rina Rani Ray
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, West Bengal, India.
| | - Vijay Jagdish Upadhye
- Center of Research for Development (CR4D), Parul Institute of Applied Sciences (PIAS), Parul University, Vadodara, Gujarat, India
| | - Soumya Pandit
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, 201306, India
| | - M Moovendhan
- Centre for Ocean Research (DST-FIST Sponsored Centre) MoES-Earth Science & Technology Cell, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - M Kavisri
- Department of Civil Engineering, School of Building and Environment, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| |
Collapse
|
21
|
Albenayyan N, Murtaza M, Alarifi SA, Kamal MS, Humam A, AlAhmari MM, Khalil A, Mahmoud M. Optimization of calcium carbonate precipitation during alpha-amylase enzyme-induced calcite precipitation (EICP). Front Bioeng Biotechnol 2023; 11:1118993. [PMID: 37139046 PMCID: PMC10149920 DOI: 10.3389/fbioe.2023.1118993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/05/2023] [Indexed: 05/05/2023] Open
Abstract
The sand production during oil and gas extraction poses a severe challenge to the oil and gas companies as it causes erosion of pipelines and valves, damages the pumps, and ultimately decreases production. There are several solutions implemented to contain sand production including chemical and mechanical means. In recent times, extensive work has been done in geotechnical engineering on the application of enzyme-induced calcite precipitation (EICP) techniques for consolidating and increasing the shear strength of sandy soil. In this technique, calcite is precipitated in the loose sand through enzymatic activity to provide stiffness and strength to the loose sand. In this research, we investigated the process of EICP using a new enzyme named alpha-amylase. Different parameters were investigated to get the maximum calcite precipitation. The investigated parameters include enzyme concentration, enzyme volume, calcium chloride (CaCl2) concentration, temperature, the synergistic impact of magnesium chloride (MgCl2) and CaCl2, Xanthan Gum, and solution pH. The generated precipitate characteristics were evaluated using a variety of methods, including Thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). It was observed that the pH, temperature, and concentrations of salts significantly impact the precipitation. The precipitation was observed to be enzyme concentration-dependent and increase with an increase in enzyme concentration as long as a high salt concentration was available. Adding more volume of enzyme brought a slight change in precipitation% due to excessive enzymes with little or no substrate available. The optimum precipitation (87%) was yielded at 12 pH and with 2.5 g/L of Xanthan Gum as a stabilizer at a temperature of 75°C. The synergistic effect of both CaCl2 and MgCl2 yielded the highest CaCO3 precipitation (32.2%) at (0.6:0.4) molar ratio. The findings of this research exhibited the significant advantages and insights of alpha-amylase enzyme in EICP, enabling further investigation of two precipitation mechanisms (calcite precipitation and dolomite precipitation).
Collapse
Affiliation(s)
- Norah Albenayyan
- Department of Bioengineering, College of Chemicals and Materials, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Mobeen Murtaza
- Center for Integrative Petroleum Research, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Sulaiman A. Alarifi
- Petroleum Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
- *Correspondence: Sulaiman A. Alarifi, ; Amjad Khalil, ; Mohamed Mahmoud,
| | - Muhammad Shahzad Kamal
- Center for Integrative Petroleum Research, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | | | | | - Amjad Khalil
- Department of Bioengineering, College of Chemicals and Materials, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
- *Correspondence: Sulaiman A. Alarifi, ; Amjad Khalil, ; Mohamed Mahmoud,
| | - Mohamed Mahmoud
- Petroleum Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
- *Correspondence: Sulaiman A. Alarifi, ; Amjad Khalil, ; Mohamed Mahmoud,
| |
Collapse
|
22
|
Ghosh S, Mondol S, Lahiri D, Nag M, Sarkar T, Pati S, Pandit S, Alarfaj AA, Mohd Amin MF, Edinur HA, Ahmad Mohd Zain MR, Ray RR. Biogenic silver nanoparticles (AgNPs) from Tinosporacordifolia leaves: An effective antibiofilm agent against Staphylococcus aureus ATCC 23235. Front Chem 2023; 11:1118454. [PMID: 36959877 PMCID: PMC10028272 DOI: 10.3389/fchem.2023.1118454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/30/2023] [Indexed: 03/09/2023] Open
Abstract
Medicinal plants are long known for their therapeutic applications. Tinospora cordifolia (commonly called gulancha or heart-leaved moonseed plant), a herbaceous creeper widely has been found to have antimicrobial, anti-inflammatory, anti-diabetic, and anti-cancer properties. However, there remains a dearth of reports regarding its antibiofilm activities. In the present study, the anti-biofilm activities of phytoextractof T. cordifolia and the silver nanoparticles made from this phytoextract were tested against the biofilm of S.taphylococcus aureus, one of the major nosocomial infection-producing bacteria taking tetracycline antibiotic as control. Both phytoextract from the leaves of T. cordifolia, and the biogenic AgNPs from the leaf extract of T. cordifolia, were found successful in reducing the biofilm of Staphylococcus aureus. The biogenic AgNPs formed were characterized by UV- Vis spectroscopy, Field emission Scanning Electron Microscopy (FE- SEM), and Dynamic light scattering (DLS) technique. FE- SEM images showed that the AgNPs were of size ranging between 30 and 50 nm and were stable in nature, as depicted by the zeta potential analyzer. MIC values for phytoextract and AgNPs were found to be 180 mg/mL and 150 μg/mL against S. aureusrespectively. The antibiofilm properties of the AgNPs and phytoextract were analyzed using the CV assay and MTT assay for determining the reduction of biofilms. Reduction in viability count and revival of the S. aureus ATCC 23235 biofilm cells were analyzed followed by the enfeeblement of the EPS matrix to quantify the reduction in the contents of carbohydrates, proteins and eDNA. The SEM analyses clearly indicated that although the phytoextracts could destroy the biofilm network of S. aureuscells yet the biogenicallysynthesizedAgNPs were more effective in biofilm disruption. Fourier Transformed Infrared Radiations (FT- IR) analyses revealed that the AgNPs could bring about more exopolysaccharide (EPS) destruction in comparison to the phytoextract. The antibiofilm activities of AgNPs made from the phytoextract were found to be much more effective than the non-conjugated phytoextract, indicating the future prospect of using such particles for combatting biofilm-mediated infections caused by S aureus.
Collapse
Affiliation(s)
- Sreejita Ghosh
- Department of Biotechnology, MaulanaAbulKalam Azad University of Technology, Kolkata, West Bengal, India
| | - Somdutta Mondol
- Department of Biotechnology, MaulanaAbulKalam Azad University of Technology, Kolkata, West Bengal, India
| | - Dibyajit Lahiri
- Department of Biotechnology, University of Engineering and Management, Kolkata, West Bengal, India
| | - Moupriya Nag
- Department of Biotechnology, University of Engineering and Management, Kolkata, West Bengal, India
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Govt. of West Bengal, Malda, India
| | - Siddhartha Pati
- Skills innovation and Academic network (SIAN) Institute-ABC, Balasore, Odisha, India
- NatNov Private Limited, Greater Noida, Odisha, India
| | - Soumya Pandit
- Department of Life Science, Sharda University, Noida, India
| | - Abdullah A. Alarfaj
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamad Faiz Mohd Amin
- Environmental Technology Division, School of Industrial Technology, UniversitiSains Malaysia, Penang, Malaysia
| | - Hisham Atan Edinur
- Renewable Biomass Transformation Cluster, School of Industrial Technology, UniversitiSains Malaysia, Penang, Malaysia
| | - Muhammad Rajaei Ahmad Mohd Zain
- School of Health Sciences, UniversitiSains Malaysia, Health Campus, Kelantan, Malaysia
- *Correspondence: Muhammad Rajaei Ahmad Mohd Zain, ; Rina Rani Ray,
| | - Rina Rani Ray
- Department of Biotechnology, MaulanaAbulKalam Azad University of Technology, Kolkata, West Bengal, India
- *Correspondence: Muhammad Rajaei Ahmad Mohd Zain, ; Rina Rani Ray,
| |
Collapse
|
23
|
Salimi F, Imanparast S. Characterization of Probiotic Pichia sp. DU2-Derived Exopolysaccharide with Oil-in-Water Emulsifying and Anti-biofilm Activities. Appl Biochem Biotechnol 2022; 195:3345-3365. [PMID: 36585548 DOI: 10.1007/s12010-022-04283-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 01/01/2023]
Abstract
Probiotic-derived exopolysaccharides are considered as promising sources of carbohydrate with extensive applications in many industries. In the current study, yeast strains were isolated from chicken ingluvies and gizzard samples. According to molecular identification, EPS-producing yeast (Pichia sp. DU2) showed the most similarity to Pichia cactophila (99.67%). Pichia sp. DU2 showed probiotic properties. EPS of Pichia sp. DU2 showed emulsifying activity. The formed emulsions showed 53% (colza oil) and 100% (p-xylene) stability after 24 h. These emulsions were oil-in-water and have stability in the presence of NaCl, KCl, and also acidic and basic conditions. Also, the EPS showed anti-biofilm (29.7-47.6% and 19.06-55.26% against B. cereus and Y. enterocolitica, respectively) and flocculating activities (31.4%). FT-IR showed the presence of various functional groups in EPS structure. Also, its heteropolysaccharide nature was revealed in 1H-NMR and HPLC analysis. This emulsifying EPS showed significant thermal stability and negative zeta potential, which make it a promising carbohydrate for various industries. Finally, according to the predicted model, the maximal EPS production was achieved at reaction time 36 h, pH 6, yeast extract concentration 1.0%, and sucrose concentration 5%. Pichia sp. DU2 with probiotic properties and producing EPS with emulsifying, anti-biofilm, and flocculating activities can be considered as promising yeast strain in various industries like food and pharmaceutical industries.
Collapse
Affiliation(s)
- Fatemeh Salimi
- Department of Cellular and Molecular Biology, School of Biology, Damghan University, Damghan, Iran.
| | - Somaye Imanparast
- Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, Iran
| |
Collapse
|
24
|
Hamdy SM, Danial AW, Gad El-Rab SMF, Shoreit AAM, Hesham AEL. Production and optimization of bioplastic (Polyhydroxybutyrate) from Bacillus cereus strain SH-02 using response surface methodology. BMC Microbiol 2022; 22:183. [PMID: 35869433 PMCID: PMC9306189 DOI: 10.1186/s12866-022-02593-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/07/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Polyhydroxybutyrate (PHB) is a biopolymer formed by some microbes in response to excess carbon sources or essential nutrient depletion. PHBs are entirely biodegradable into CO2 and H2O under aerobic and anaerobic conditions. It has several applications in various fields such as medicine, pharmacy, agriculture, and food packaging due to its biocompatibility and nontoxicity nature.
Result
In the present study, PHB-producing bacterium was isolated from the Dirout channel at Assiut Governorate. This isolate was characterized phenotypically and genetically as Bacillus cereus SH-02 (OM992297). According to one-way ANOVA test, the maximum PHB content was observed after 72 h of incubation at 35 °C using glucose and peptone as carbon and nitrogen source. Response surface methodology (RSM) was used to study the interactive effects of glucose concentration, peptone concentration, and pH on PHB production. This result proved that all variables have a significant effect on PHB production either independently or in the interaction with each other. The optimized medium conditions with the constraint to maximize PHB content and concentration were 22.315 g/L glucose, and 15.625 g/L peptone at pH 7.048. The maximum PHB content and concentration were 3100.799 mg/L and 28.799% which was close to the actual value (3051 mg/l and 28.7%). The polymer was identified as PHB using FTIR, NMR, and mass spectrometry. FT-IR analysis showed a strong band at 1724 cm− 1 which attributed to the ester group’s carbonyl while NMR analysis has different peaks at 169.15, 67.6, 40.77, and 19.75 ppm that were corresponding to carbonyl, methine, methylene, and methyl resonance. Mass spectroscopy exhibited molecular weight for methyl 3- hydroxybutyric acid.
Conclusion
PHB–producing strain was identified as Bacillus cereus SH-02 (OM992297). Under optimum conditions from RSM analysis, the maximum PHB content and concentration of this strain can reach (3100.799 mg/L and 28.799%); respectively. FTIR, NMR, and Mass spectrometry were used to confirm the polymer as PHB. Our results demonstrated that optimization using RSM is one of the strategies used for reducing the production cost. RSM can determine the optimal factors to produce the polymer in a better way and in a larger quantity without consuming time.
Collapse
|
25
|
Harirchi S, Sar T, Ramezani M, Aliyu H, Etemadifar Z, Nojoumi SA, Yazdian F, Awasthi MK, Taherzadeh MJ. Bacillales: From Taxonomy to Biotechnological and Industrial Perspectives. Microorganisms 2022; 10:2355. [PMID: 36557608 PMCID: PMC9781867 DOI: 10.3390/microorganisms10122355] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022] Open
Abstract
For a long time, the genus Bacillus has been known and considered among the most applicable genera in several fields. Recent taxonomical developments resulted in the identification of more species in Bacillus-related genera, particularly in the order Bacillales (earlier heterotypic synonym: Caryophanales), with potential application for biotechnological and industrial purposes such as biofuels, bioactive agents, biopolymers, and enzymes. Therefore, a thorough understanding of the taxonomy, growth requirements and physiology, genomics, and metabolic pathways in the highly diverse bacterial order, Bacillales, will facilitate a more robust designing and sustainable production of strain lines relevant to a circular economy. This paper is focused principally on less-known genera and their potential in the order Bacillales for promising applications in the industry and addresses the taxonomical complexities of this order. Moreover, it emphasizes the biotechnological usage of some engineered strains of the order Bacillales. The elucidation of novel taxa, their metabolic pathways, and growth conditions would make it possible to drive industrial processes toward an upgraded functionality based on the microbial nature.
Collapse
Affiliation(s)
- Sharareh Harirchi
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden
| | - Taner Sar
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden
| | - Mohaddaseh Ramezani
- Microorganisms Bank, Iranian Biological Resource Centre (IBRC), Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Habibu Aliyu
- Institute of Process Engineering in Life Science II: Technical Biology, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Zahra Etemadifar
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 8174673441, Iran
| | - Seyed Ali Nojoumi
- Microbiology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 1439957131, Iran
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3#, Yangling, Xianyang 712100, China
| | | |
Collapse
|
26
|
Mittal A, Joshi M, Rath SK, Singh D, Dwibedi V. Isolation of Alpha Amylase-Producing Bacteria from Local Region of Ambala and Production of Amylase Under Optimized Factors Using Solid-State Fermentation. Curr Microbiol 2022; 79:375. [DOI: 10.1007/s00284-022-03081-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
|
27
|
Lahiri D, Ray RR, Sarkar T, Upadhye VJ, Ghosh S, Pandit S, Pati S, Edinur HA, Abdul Kari Z, Nag M, Ahmad Mohd Zain MR. Anti-biofilm efficacy of green-synthesized ZnO nanoparticles on oral biofilm: In vitro and in silico study. Front Microbiol 2022; 13:939390. [PMID: 36262331 PMCID: PMC9574224 DOI: 10.3389/fmicb.2022.939390] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
The development of biofilm on the biotic and abiotic surfaces is the greatest challenge for health care sectors. At present times, oral infection is a common concern among people with an unhealthy lifestyle and most of these biofilms-associated infections are resistant to antibiotics. This has increased a search for the development of alternate therapeutics for eradicating biofilm-associated infection. Nanobiotechnology being an effective way to combat such oral infections may encourage the use of herbal compounds, such as bio-reducing and capping agents. Green-synthesis of ZnO nanoparticles (ZnO NP) by the use of the floral extract of Clitoria ternatea, a traditionally used medicinal plant, showed stability for a longer period of time. The NPs as depicted by the TEM image with a size of 10 nm showed excitation spectra at 360 nm and were found to remain stable for a considerable period of time. It was observed that the NPs were effective in the eradication of the oral biofilm formed by the major tooth attacking bacterial strains namely Porphyromonsas gingivalis and Alcaligenes faecalis, by bringing a considerable reduction in the extracellular polymeric substances (EPS). It was observed that the viability of the Porphyromonsas gingivalis and Alcaligenes faecalis was reduced by NP treatment to 87.89 ± 0.25% in comparison to that of amoxicillin. The results went in agreement with the findings of modeling performed by the use of response surface methodology (RSM) and artificial neural network (ANN). The microscopic studies and FT-IR analysis revealed that there was a considerable reduction in the biofilm after NP treatment. The in silico studies further confirmed that the ZnO NPs showed considerable interactions with the biofilm-forming proteins. Hence, this study showed that ZnO NPs derived from Clitoria ternatea can be used as an effective alternative therapeutic for the treatment of biofilm associated oral infection.
Collapse
Affiliation(s)
- Dibyajit Lahiri
- Department of Biotechnology, University of Engineering & Management Kolkata, Kolkata, India
| | - Rina Rani Ray
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, West Bengal, India
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, India
| | | | | | - Soumya Pandit
- Department of Biotechnology, Sharda University, Noida, India
| | - Siddhartha Pati
- Natnov Bioscience Private Limited, Balasore, India
- Skills Innovation & Academic Network (SIAN) Institute, Association for Biodiversity Conservation & Research (ABC), Balasore, India
| | - Hisham Atan Edinur
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Zulhisyam Abdul Kari
- Department of Agricultural Science, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Kota Bharu, Kelantan, Malaysia
| | - Moupriya Nag
- Department of Biotechnology, University of Engineering & Management Kolkata, Kolkata, India
- *Correspondence: Moupriya Nag
| | - Muhammad Rajaei Ahmad Mohd Zain
- Department of Orthopaedics, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- Muhammad Rajaei Ahmad Mohd Zain
| |
Collapse
|
28
|
Ray RR. Dental biofilm: Risks, diagnostics and management. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
29
|
López-García E, Benítez-Cabello A, Martín-Arranz V, Garrido-Fernández A, Jiménez-Díaz R, Arroyo-López FN. Optimisation of working parameters for lactic acid bacteria and yeast recovery from table olive biofilms, preserving fruit integrity and reducing chloroplast recovery. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
30
|
Dhandapani R, Thangavelu S, Ragunathan L, Paramasivam R, Velmurugan P, Muthupandian S. Potential Bioactive Compounds from Marine Streptomyces sp. and Their In Vitro Antibiofilm and Antibacterial Activities Against Antimicrobial-Resistant Clinical Pathogens. Appl Biochem Biotechnol 2022; 194:4702-4723. [PMID: 35829903 DOI: 10.1007/s12010-022-04072-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/05/2022] [Indexed: 11/30/2022]
Abstract
Antimicrobial resistance issues have risen dramatically in recent years, posing a severe concern to humans worldwide. The urgent need to find novel compounds for pharmaceutical applications prompts the research of under-explored environments such as marine ecosystems. The present study was designed to discover novel secondary metabolites, and we have isolated about 30 actinomycetes from the marine soil samples collected in Thondi (Ramanathapuram, Tamil Nadu, India), where most isolates are associated with the genus Streptomyces. Out of 30, one potentially active strain (Streptomyces sp. SRMA3) was identified using primary and secondary screening methods against the drug-resistant clinical pathogens. The active metabolites extracted from the selected active isolate were subjected to partial purification and characterization using Fourier transform infrared spectrophotometer (FTIR) and gas chromatography-mass spectroscopy (GC-MS) analysis. The minimum inhibitory concentration (MIC) value was determined for the active metabolite. Further, the partially purified active fraction was revealed for its antibacterial and antibiofilm activity against drug-resistant clinical pathogens. Light and fluorescence microscopy detected the viability and adhesion of the biofilm-forming drug-resistant pathogens. Growth curve analysis showed that the active metabolite has the potential to inhibit drug-resistant pathogens. The synergistic effect of active metabolite with commercial antibiotics also revealed that it could enhance the activity of antibiotics in antimicrobial resistance pathogens. This study shows that the isolated Streptomyces sp. SRMA3 is a potentially active strain, and the metabolite derived from this strain has a good antibacterial and antibiofilm activity against antimicrobially resistant clinical pathogens and could be used for various biotechnological applications.
Collapse
Affiliation(s)
- Ranjithkumar Dhandapani
- Medical Microbiology Laboratory, Department of Microbiology, Alagappa University, Karaikudi, Tamil Nadu, 630008, India.,Research and Development Division, Chimertech Private Limited, Chennai, India
| | - Sathiamoorthi Thangavelu
- Medical Microbiology Laboratory, Department of Microbiology, Alagappa University, Karaikudi, Tamil Nadu, 630008, India.
| | - Latha Ragunathan
- Department of Microbiology, Aarupadai Veedu Medical College and Hospital, Pondicherry, 607402, India
| | - Ragul Paramasivam
- Research and Development Division, Chimertech Private Limited, Chennai, India
| | - Palanivel Velmurugan
- Centre for Materials Engineering and Regenerative medicine, Bharath Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Saravanan Muthupandian
- AMR and Nanotherapeutic Laboratory, Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, 600077, India.
| |
Collapse
|
31
|
Mondal P, Sadhukhan AK, Ganguly A, Gupta P. Production of Blending Quality Bioethanol from Broken Rice: Optimization of Process Parameters and Kinetic Modeling. Appl Biochem Biotechnol 2022; 194:5474-5505. [DOI: 10.1007/s12010-022-03858-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/24/2022] [Indexed: 11/02/2022]
|
32
|
Gomes RJ, Ida EI, Spinosa WA. Nutritional Supplementation with Amino Acids on Bacterial Cellulose Production by Komagataeibacter intermedius: Effect Analysis and Application of Response Surface Methodology. Appl Biochem Biotechnol 2022; 194:5017-5036. [PMID: 35687307 DOI: 10.1007/s12010-022-04013-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 11/02/2022]
Abstract
Bacterial cellulose (BC) is a biopolymer mainly produced by acetic acid bacteria (AAB) that has several applications in the medical, pharmaceutical, and food industries. As other living organisms, AAB require sources of chemical elements and nutrients, which are essential for their multiplication and metabolite production. So, the knowledge of the nutritional needs of microorganisms that have important industrial applications is necessary for the nutrients to be supplied in the appropriate form and amount. Considering that the choice of different nutrients as nitrogen source can result in different metabolic effects, this work aimed to verify the effects of amino acid supplementation in the culture media for BC production by an AAB strain (Komagataeibacter intermedius V-05). For this, nineteen amino acids were tested, selected, and optimized through a Plackett and Burman factorial design and central composite design to determine the optimal concentrations of each required amino acid. Membranes produced under optimal conditions were characterized in relation to chemical structure and properties by X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), infrared spectroscopy (FT-IR), and hydrophilic properties. Three amino acids had a significant positive effect and were required: aspartic acid (1.5 g L-1), phenylalanine (1.5 g L-1), and serine (3.0 g L-1). Conversely, all sulfur and positively charged amino acids had a negative effect and reduced the production yield. After optimization and validation steps, a production level of 3.02 g L-1 was achieved. Membranes produced from optimized media by this strain presented lower crystallinity index but greater thermal and hydrophilic properties than those produced from standard HS medium.
Collapse
Affiliation(s)
- Rodrigo José Gomes
- Department of Food Science and Technology, State University of Londrina, Londrina, PR, CEP 86057-970, Brazil
| | - Elza Iouko Ida
- Department of Food Science and Technology, State University of Londrina, Londrina, PR, CEP 86057-970, Brazil
| | - Wilma Aparecida Spinosa
- Department of Food Science and Technology, State University of Londrina, Londrina, PR, CEP 86057-970, Brazil.
| |
Collapse
|
33
|
Optimization of Ultrasonic-Assisted Extraction of Active Components and Antioxidant Activity from Polygala tenuifolia: A Comparative Study of the Response Surface Methodology and Least Squares Support Vector Machine. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103069. [PMID: 35630542 PMCID: PMC9144772 DOI: 10.3390/molecules27103069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 11/16/2022]
Abstract
Dried roots of Polygala tenuifolia (YuanZhi in Chinese) are widely used in Chinese herbal medicine. These components in YuanZhi have significant anti-oxidation properties owing to high levels of 3,6'-disinapoylsucrose (DISS) and Polygalaxanthone III (PolyIII). In order to efficiently extract natural medicines, response surface methodology (RSM) and least squares support vector machine (LSSVM) were used for the modeling and optimization of ultrasound-assisted extraction of DISS and PolyIII together to determine the antioxidant activity of the extracts obtained from YuanZhi. For the optimal combination of the comprehensive yield of DISS and PolyIII (Y), the Box-Behnken design (BBD) was used to improve extraction time (X1), extraction temperature (X2), liquid-solid ratio (X3), and ethanol concentration (X4). The optimal process parameters were determined to be as follows: extraction time, 93 min; liquid-solid ratio, 40 mL/g; extraction temperature, 48 °C; and ethanol concentration, 67%. With these conditions, the predictive optimal combination comprehensive evaluation value is 13.0217. It was clear that the LS-SVM model had higher accuracy in predictive and optimization capabilities, with higher antioxidant activity and lower relative deviations values, than did RSM. Hence, the LS-SVM model proved to be more effective for the analysis and improvement of the extraction process.
Collapse
|
34
|
Ghosh S, Nag M, Lahiri D, Sarkar T, Pati S, Kari ZA, Nirmal NP, Edinur HA, Ray RR. Engineered Biofilm: Innovative Nextgen Strategy for Quality Enhancement of Fermented Foods. Front Nutr 2022; 9:808630. [PMID: 35479755 PMCID: PMC9036442 DOI: 10.3389/fnut.2022.808630] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/11/2022] [Indexed: 11/22/2022] Open
Abstract
Microbial communities within fermented food (beers, wines, distillates, meats, fishes, cheeses, breads) products remain within biofilm and are embedded in a complex extracellular polymeric matrix that provides favorable growth conditions to the indwelling species. Biofilm acts as the best ecological niche for the residing microbes by providing food ingredients that interact with the fermenting microorganisms' metabolites to boost their growth. This leads to the alterations in the biochemical and nutritional quality of the fermented food ingredients compared to the initial ingredients in terms of antioxidants, peptides, organoleptic and probiotic properties, and antimicrobial activity. Microbes within the biofilm have altered genetic expression that may lead to novel biochemical pathways influencing their chemical and organoleptic properties related to consumer acceptability. Although microbial biofilms have always been linked to pathogenicity owing to its enhanced antimicrobial resistance, biofilm could be favorable for the production of amino acids like l-proline and L-threonine by engineered bacteria. The unique characteristics of many traditional fermented foods are attributed by the biofilm formed by lactic acid bacteria and yeast and often, multispecies biofilm can be successfully used for repeated-batch fermentation. The present review will shed light on current research related to the role of biofilm in the fermentation process with special reference to the recent applications of NGS/WGS/omics for the improved biofilm forming ability of the genetically engineered and biotechnologically modified microorganisms to bring about the amelioration of the quality of fermented food.
Collapse
Affiliation(s)
- Sreejita Ghosh
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, India
| | - Moupriya Nag
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Dibyajit Lahiri
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, India
| | - Siddhartha Pati
- NatNov Bioscience Private Limited, Balasore, India
- Skills Innovation & Academic Network (SIAN) Institute, Association for Biodiversity Conservation and Research (ABC), Balasore, India
| | - Zulhisyam Abdul Kari
- Faculty of Agro Based Industry, Universiti Malaysia Kelantan, Kota Bharu, Malaysia
| | | | - Hisham Atan Edinur
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Rina Rani Ray
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, India
| |
Collapse
|
35
|
Ghosh S, Nag M, Lahiri D, Sarkar T, Pati S, Joshi S, Ray RR. New holistic approach for the management of biofilm‐associated infections by myco‐metabolites. J Basic Microbiol 2022; 62:1291-1306. [PMID: 35373364 DOI: 10.1002/jobm.202200047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/23/2022] [Accepted: 03/05/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Sreejita Ghosh
- Department of Biotechnology Maulana Abul Kalam Azad University of Technology Haringhata West Bengal India
| | - Moupriya Nag
- Department of Biotechnology University of Engineering & Management Kolkata West Bengal India
| | - Dibyajit Lahiri
- Department of Biotechnology University of Engineering & Management Kolkata West Bengal India
| | - Tanmay Sarkar
- Department of Food Processing Technology Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal Malda India
| | - Siddhartha Pati
- Skills innovation & Academic network (SIAN) Institute‐ABC Balasore Odisha India
- NatNov Bioscience Private Limited Balasore Odisha India
| | - Sanket Joshi
- Oil & Gas Research Center, Central Analytical and Applied Research Unit Sultan Qaboos University Maskat Oman
| | - Rina R. Ray
- Department of Biotechnology Maulana Abul Kalam Azad University of Technology Haringhata West Bengal India
| |
Collapse
|
36
|
Biofilm production: A strategic mechanism for survival of microbes under stress conditions. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
37
|
Sarkar T, Salauddin M, Mukherjee A, Shariati MA, Rebezov M, Tretyak L, Pateiro M, Lorenzo JM. Application of bio-inspired optimization algorithms in food processing. Curr Res Food Sci 2022; 5:432-450. [PMID: 35243356 PMCID: PMC8866069 DOI: 10.1016/j.crfs.2022.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 12/23/2022] Open
Abstract
Bio-inspired optimization techniques (BOT) are part of intelligent computing techniques. There are several BOTs available and many new BOTs are evolving in this era of industrial revolution 4.0. Genetic algorithm, particle swarm optimization, artificial bee colony, and grey wolf optimization are the techniques explored by researchers in the field of food processing technology. Although, there are other potential methods that may efficiently solve the optimum related problem in food industries. In this review, the mathematical background of the techniques, their application and the potential microbial-based optimization methods with higher precision has been surveyed for a complete and comprehensive understanding of BOTs along with their mechanism of functioning. These techniques can simulate the process efficiently and able to find the near-to-optimal value expeditiously.
Collapse
Affiliation(s)
- Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Malda, 732102, West Bengal, India
| | - Molla Salauddin
- Department of Food Processing Technology, Mir Madan Mohanlal Govt. Polytechnic, West Bengal State Council of Technical Education, Nadia 741156, West Bengal, India
| | - Alok Mukherjee
- Government College of Engineering and Ceramic Technology, Kolkata, India
| | - Mohammad Ali Shariati
- Department of Scientific Research, K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), 109004, Moscow, Russian Federation
| | - Maksim Rebezov
- Department of Scientific Research, K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), 109004, Moscow, Russian Federation
- Biophotonics Center, Prokhorov General Physics Institute of the Russian Academy of Science, 119991, Moscow, Russian Federation
- Department of Scientific Research, V. M. Gorbatov Federal Research Center for Food Systems, 109316, Moscow, Russian Federation
| | - Lyudmila Tretyak
- Department of Metrology, Standardization and Certification, Orenburg State University, 460018, Orenburg, Russian Federation
| | - Mirian Pateiro
- Centro Tecnológico de La Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900, Ourense, Spain
| | - José M. Lorenzo
- Centro Tecnológico de La Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900, Ourense, Spain
- Universidade de Vigo, Área de Tecnoloxía dos Alimentos, Facultade de Ciencias, 32004 Ourense, Spain
| |
Collapse
|
38
|
Identification, characterization and hydrolase producing performance of thermophilic bacteria: geothermal hot springs in the Eastern and Southeastern Anatolia Regions of Turkey. Antonie van Leeuwenhoek 2022; 115:253-270. [PMID: 35031914 PMCID: PMC8760091 DOI: 10.1007/s10482-021-01678-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 10/18/2021] [Indexed: 10/28/2022]
Abstract
In the last two decades, researchers have increasingly focused on the rich microorganism-based diversity of natural hot spring sources to explore the benefits of thermophiles in industrial and biotechnological fields. Within the scope of this study, a total of 83 thermophilic Bacilli strains were isolated from 7 different geothermal hot springs (at temperatures ranging between 40 and 85 °C) located in the Eastern and Southeastern Anatolia Regions of Turkey. The physiological, morphological, biochemical and molecular properties of the isolates were determined. As a result of the 16S rRNA gene sequence analysis, 5 different species (Bacillus licheniformis, Bacillus sp., Bacillus subtilis, Geobacillus kaustophilus, and Weizmannia coagulans,) were identified. B. licheniformis and B. subtilis were the most frequently encountered species among those obtained from the researched hot spring sources. Phylogenetic analysis was conducted to evaluate the phylogenetic relationships of the isolated species. The results showed that there was no significant difference between the groups and the bacteria in terms of the locations or optimum temperatures of the isolates. The bacterial isolates were screened for amylase, cellulase, lipase and protease hydrolytic enzyme activities. The hydrolytic enzyme production potentials among the isolates were identified in 68 (82%) isolates for amylase, 34 (41%) for cellulase, 69 (83%) for lipase and 73 (88%) for protease. All isolates were found to have at least one or more extracellular enzyme activities. Additionally, it was determined that 27 of the existing isolates (32.8%) were able to produce all of the aforementioned hydrolytic enzymes.
Collapse
|
39
|
Gharaei S, Ohadi M, Hassanshahian M, Porsheikhali S, Forootanfar H. Isolation, Optimization, and Structural Characterization of Glycolipid Biosurfactant Produced by Marine Isolate Shewanella algae B12 and Evaluation of Its Antimicrobial and Anti-biofilm Activity. Appl Biochem Biotechnol 2022; 194:1755-1774. [DOI: 10.1007/s12010-021-03782-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 12/14/2022]
|
40
|
Nag M, Lahiri D, Dey A, Sarkar T, Joshi S, Ray RR. Evaluation of algal active compounds as potent antibiofilm agent. J Basic Microbiol 2021; 62:1098-1109. [PMID: 34939676 DOI: 10.1002/jobm.202100470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/06/2021] [Accepted: 12/12/2021] [Indexed: 11/08/2022]
Abstract
Biofilm is the syntrophic association of microbial colonies that remain adhered to the biotic and abiotic surfaces with the help of self-secreted polymeric substances also termed extracellular polymeric substances. Chronic pathogenicity caused by biofilm-associated pathogenic microorganisms becomes a significant threat in biomedical research. An extensive search is being made for the antibiofilm agents made from natural sources or their biogenic derivatives due to their effectivity and nontoxicity. Algae being the producer of various biogenic substances are found capable of disintegrating biofilm matrix and eradication of biofilm without exerting any deterrent effect on other biotas in the ecosystem. The current trend in phycological studies includes the exploration of antifouling efficacy among various algal groups. The extracts prepared from about 225 microalgae and cyanobacteria species are found to have antibiofilm activity. Polyunsaturated fatty acids are the most important component in the algal extract with antibacterial and antibiofilm properties. The antibiofilm activity of the sulfated polysaccharides extracted from a marine alga could be effectively used to remove dental biofilm. Algal extracts are also being used for the preparation of different biogenically synthesized nanoparticles, which are being used as potent antibiofilm agents. Genome editing of algal species by CRISPR/Cas9 may make precise modifications in the algal DNA for improving the algal strains and production of a more effective antibiofouling agent.
Collapse
Affiliation(s)
- Moupriya Nag
- Department of Biotechnology, University of Engineering & Management, Kolkata, West Bengal, India
| | - Dibyajit Lahiri
- Department of Biotechnology, University of Engineering & Management, Kolkata, West Bengal, India
| | - Ankita Dey
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, West Bengal, India
| | - Tanmay Sarkar
- Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, India
| | - Sanket Joshi
- Oil & Gas Research Center, Central Analytical and Applied Research Unit, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Rina R Ray
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, West Bengal, India
| |
Collapse
|
41
|
Formation and development of biofilm- an alarming concern in food safety perspectives. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
42
|
Artificial Neural Network and Response Surface Methodology-Mediated Optimization of Bacteriocin Production by Rhizobium leguminosarum. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY, TRANSACTIONS A: SCIENCE 2021. [DOI: 10.1007/s40995-021-01157-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Kirtonia K, Salauddin M, Bharadwaj KK, Pati S, Dey A, Shariati MA, Tilak VK, Kuznetsova E, Sarkar T. Bacteriocin: A new strategic antibiofilm agent in food industries. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102141] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
44
|
Inactivation of Staphylococcus aureus and Escherichia coli Biofilms by Air-Based Atmospheric-Pressure DBD Plasma. Appl Biochem Biotechnol 2021; 193:3641-3650. [PMID: 34347251 DOI: 10.1007/s12010-021-03636-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022]
Abstract
Air-based atmospheric-pressure plasma is an effective non-thermal method in deactivating various kinds of microbial biofilms with several advantages, including high bactericidal efficiency and low treatment costs. Bacterial biofilm formation is a major determinant in establishment of bacterial infection and also resistance to antibacterial chemotherapy. This study aims to assess the anti-biofilm potential of air-based atmospheric-pressure DBD plasma against Staphylococcus aureus and Escherichia coli biofilms. The biofilms of Staphylococcus aureus and Escherichia coli were exposed to air-based atmospheric-pressure DBD plasma for up to 4 min (control, 30 s, 90 s, 3 min, and 4 min) and their biofilm formation level, viability, and membrane integrity were determined. Based on the results, plasma exposure caused disruption up to 70% and 85% for S. aureus and E. coli biofilms, respectively. The biofilm disruption potential of air-based atmospheric-pressure DBD plasma was confirmed using the scanning electron microscopy (SEM). Besides, based on confocal laser scanning microscopy (CLSM), plasma exposure caused a significant bacterial inactivation and E. coli was found as more susceptible strain than S. aureus. In conclusion, atmospheric-pressure DBD plasma could be considered an efficient non-thermal approach against bacterial pathogenicity by biofilm disruption and thus prevention of infection establishment.
Collapse
|
45
|
Functionalized Chitosan Nanomaterials: A Jammer for Quorum Sensing. Polymers (Basel) 2021; 13:polym13152533. [PMID: 34372136 PMCID: PMC8348235 DOI: 10.3390/polym13152533] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 12/02/2022] Open
Abstract
The biggest challenge in the present-day healthcare scenario is the rapid emergence and spread of antimicrobial resistance due to the rampant use of antibiotics in daily therapeutics. Such drug resistance is associated with the enhancement of microbial virulence and the acquisition of the ability to evade the host’s immune response under the shelter of a biofilm. Quorum sensing (QS) is the mechanism by which the microbial colonies in a biofilm modulate and intercept communication without direct interaction. Hence, the eradication of biofilms through hindering this communication will lead to the successful management of drug resistance and may be a novel target for antimicrobial chemotherapy. Chitosan shows microbicidal activities by acting electrostatically with its positively charged amino groups, which interact with anionic moieties on microbial species, causing enhanced membrane permeability and eventual cell death. Therefore, nanoparticles (NPs) prepared with chitosan possess a positive surface charge and mucoadhesive properties that can adhere to microbial mucus membranes and release their drug load in a constant release manner. As the success in therapeutics depends on the targeted delivery of drugs, chitosan nanomaterial, which displays low toxicity, can be safely used for eradicating a biofilm through attenuating the quorum sensing (QS). Since the anti-biofilm potential of chitosan and its nano-derivatives are reported for various microorganisms, these can be used as attractive tools for combating chronic infections and for the preparation of functionalized nanomaterials for different medical devices, such as orthodontic appliances. This mini-review focuses on the mechanism of the downregulation of quorum sensing using functionalized chitosan nanomaterials and the future prospects of its applications.
Collapse
|
46
|
Nag M, Lahiri D, Sarkar T, Ghosh S, Dey A, Edinur HA, Pati S, Ray RR. Microbial Fabrication of Nanomaterial and Its Role in Disintegration of Exopolymeric Matrices of Biofilm. Front Chem 2021. [PMID: 34109159 DOI: 10.3389/fchem.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Bacterial biofilms are responsible for the development of various chronic wound-related and implant-mediated infections and confer protection to the pathogenic bacteria against antimicrobial drugs and host immune responses. Hence, biofilm-mediated chronic infections have created a tremendous burden upon healthcare systems worldwide. The development of biofilms upon the surface of medical implants has resulted in the failure of various implant-based surgeries and therapies. Although different conventional chemical and physical agents are used as antimicrobials, they fail to kill the sessile forms of bacterial pathogens due to the resistance exerted by the exopolysaccharide (EPS) matrices of the biofilm. One of the major techniques used in addressing such a problem is to directly check the biofilm formation by the use of novel antibiofilm materials, local drug delivery, and device-associated surface modifications, but the success of these techniques is still limited. The immense expansion in the field of nanoscience and nanotechnology has resulted in the development of novel nanomaterials as biocidal agents that can be either easily integrated within biomaterials to prevent the colonization of microbial cells or directly approach the pathogen overcoming the biofilm matrix. The antibiofilm efficacies of these nanomaterials are accomplished by the generation of oxidative stresses and through alterations of the genetic expressions. Microorganism-assisted synthesis of nanomaterials paved the path to success in such therapeutic approaches and is found to be more acceptable for its "greener" approach. Metallic nanoparticles functionalized with microbial enzymes, silver-platinum nanohybrids (AgPtNHs), bacterial nanowires, superparamagnetic iron oxide (Fe3O4), and nanoparticles synthesized by both magnetotactic and non-magnetotactic bacteria showed are some of the examples of such agents used to attack the EPS.
Collapse
Affiliation(s)
- Moupriya Nag
- Department of Biotechnology, University of Engineering and Management, Kolkata, India
| | - Dibyajit Lahiri
- Department of Biotechnology, University of Engineering and Management, Kolkata, India
| | - Tanmay Sarkar
- Department of Food Technology and Bio-Chemical Engineering, Jadavpur University, Kolkata, India.,Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, India
| | | | - Ankita Dey
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, India
| | - Hisham Atan Edinur
- School of Health Sciences, University Sains Malaysia, Kelantan, Malaysia
| | - Siddhartha Pati
- Centre of Excellence, Khallikote University, Berhampur, India.,Research Division, Association for Biodiversity Conservation and Research (ABC), Balasore, India
| | - Rina Rani Ray
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, India
| |
Collapse
|
47
|
Nag M, Lahiri D, Sarkar T, Ghosh S, Dey A, Edinur HA, Pati S, Ray RR. Microbial Fabrication of Nanomaterial and Its Role in Disintegration of Exopolymeric Matrices of Biofilm. Front Chem 2021; 9:690590. [PMID: 34109159 PMCID: PMC8181132 DOI: 10.3389/fchem.2021.690590] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 05/06/2021] [Indexed: 12/11/2022] Open
Abstract
Bacterial biofilms are responsible for the development of various chronic wound-related and implant-mediated infections and confer protection to the pathogenic bacteria against antimicrobial drugs and host immune responses. Hence, biofilm-mediated chronic infections have created a tremendous burden upon healthcare systems worldwide. The development of biofilms upon the surface of medical implants has resulted in the failure of various implant-based surgeries and therapies. Although different conventional chemical and physical agents are used as antimicrobials, they fail to kill the sessile forms of bacterial pathogens due to the resistance exerted by the exopolysaccharide (EPS) matrices of the biofilm. One of the major techniques used in addressing such a problem is to directly check the biofilm formation by the use of novel antibiofilm materials, local drug delivery, and device-associated surface modifications, but the success of these techniques is still limited. The immense expansion in the field of nanoscience and nanotechnology has resulted in the development of novel nanomaterials as biocidal agents that can be either easily integrated within biomaterials to prevent the colonization of microbial cells or directly approach the pathogen overcoming the biofilm matrix. The antibiofilm efficacies of these nanomaterials are accomplished by the generation of oxidative stresses and through alterations of the genetic expressions. Microorganism-assisted synthesis of nanomaterials paved the path to success in such therapeutic approaches and is found to be more acceptable for its "greener" approach. Metallic nanoparticles functionalized with microbial enzymes, silver-platinum nanohybrids (AgPtNHs), bacterial nanowires, superparamagnetic iron oxide (Fe3O4), and nanoparticles synthesized by both magnetotactic and non-magnetotactic bacteria showed are some of the examples of such agents used to attack the EPS.
Collapse
Affiliation(s)
- Moupriya Nag
- Department of Biotechnology, University of Engineering and Management, Kolkata, India
| | - Dibyajit Lahiri
- Department of Biotechnology, University of Engineering and Management, Kolkata, India
| | - Tanmay Sarkar
- Department of Food Technology and Bio-Chemical Engineering, Jadavpur University, Kolkata, India
- Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, India
| | | | - Ankita Dey
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, India
| | - Hisham Atan Edinur
- School of Health Sciences, University Sains Malaysia, Kelantan, Malaysia
| | - Siddhartha Pati
- Centre of Excellence, Khallikote University, Berhampur, India
- Research Division, Association for Biodiversity Conservation and Research (ABC), Balasore, India
| | - Rina Rani Ray
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, India
| |
Collapse
|
48
|
Lahiri D, Nag M, Banerjee R, Mukherjee D, Garai S, Sarkar T, Dey A, Sheikh HI, Pathak SK, Edinur HA, Pati S, Ray RR. Amylases: Biofilm Inducer or Biofilm Inhibitor? Front Cell Infect Microbiol 2021; 11:660048. [PMID: 33987107 PMCID: PMC8112260 DOI: 10.3389/fcimb.2021.660048] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/12/2021] [Indexed: 12/30/2022] Open
Abstract
Biofilm is a syntrophic association of sessile groups of microbial cells that adhere to biotic and abiotic surfaces with the help of pili and extracellular polymeric substances (EPS). EPSs also prevent penetration of antimicrobials/antibiotics into the sessile groups of cells. Hence, methods and agents to avoid or remove biofilms are urgently needed. Enzymes play important roles in the removal of biofilm in natural environments and may be promising agents for this purpose. As the major component of the EPS is polysaccharide, amylase has inhibited EPS by preventing the adherence of the microbial cells, thus making amylase a suitable antimicrobial agent. On the other hand, salivary amylase binds to amylase-binding protein of plaque-forming Streptococci and initiates the formation of biofilm. This review investigates the contradictory actions and microbe-associated genes of amylases, with emphasis on their structural and functional characteristics.
Collapse
Affiliation(s)
- Dibyajit Lahiri
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Moupriya Nag
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Ritwik Banerjee
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Dipro Mukherjee
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Sayantani Garai
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Tanmay Sarkar
- Department of Food Technology and Bio-Chemical Engineering, Jadavpur University, Kolkata, India.,Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, India
| | - Ankita Dey
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, India
| | - Hassan I Sheikh
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Sushil Kumar Pathak
- Department of Bioscience and Bioinformatics, Khallikote University, Berhampur, India
| | | | - Siddhartha Pati
- Centre of Excellence, Khallikote University, Berhampur, India.,Research Division, Association for Biodiversity Conservation and Research (ABC), Balasore, India
| | - Rina Rani Ray
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, India
| |
Collapse
|
49
|
Bacterial Biopolymer: Its Role in Pathogenesis to Effective Biomaterials. Polymers (Basel) 2021; 13:polym13081242. [PMID: 33921239 PMCID: PMC8069653 DOI: 10.3390/polym13081242] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 12/17/2022] Open
Abstract
Bacteria are considered as the major cell factories, which can effectively convert nitrogen and carbon sources to a wide variety of extracellular and intracellular biopolymers like polyamides, polysaccharides, polyphosphates, polyesters, proteinaceous compounds, and extracellular DNA. Bacterial biopolymers find applications in pathogenicity, and their diverse materialistic and chemical properties make them suitable to be used in medicinal industries. When these biopolymer compounds are obtained from pathogenic bacteria, they serve as important virulence factors, but when they are produced by non-pathogenic bacteria, they act as food components or biomaterials. There have been interdisciplinary studies going on to focus on the molecular mechanism of synthesis of bacterial biopolymers and identification of new targets for antimicrobial drugs, utilizing synthetic biology for designing and production of innovative biomaterials. This review sheds light on the mechanism of synthesis of bacterial biopolymers and its necessary modifications to be used as cell based micro-factories for the production of tailor-made biomaterials for high-end applications and their role in pathogenesis.
Collapse
|
50
|
Soy S, Nigam VK, Sharma SR. Enhanced production and biochemical characterization of a thermostable amylase from thermophilic bacterium Geobacillus icigianus BITSNS038. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2021. [DOI: 10.1080/16583655.2021.2002549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Snehi Soy
- Department of Bio-Engineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Vinod Kumar Nigam
- Department of Bio-Engineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Shubha Rani Sharma
- Department of Bio-Engineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| |
Collapse
|