1
|
Hu Y, Huang Y, Zong L, Lin J, Liu X, Ning S. Emerging roles of ferroptosis in pulmonary fibrosis: current perspectives, opportunities and challenges. Cell Death Discov 2024; 10:301. [PMID: 38914560 PMCID: PMC11196712 DOI: 10.1038/s41420-024-02078-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/26/2024] Open
Abstract
Pulmonary fibrosis (PF) is a chronic interstitial lung disorder characterized by abnormal myofibroblast activation, accumulation of extracellular matrix (ECM), and thickening of fibrotic alveolar walls, resulting in deteriorated lung function. PF is initiated by dysregulated wound healing processes triggered by factors such as excessive inflammation, oxidative stress, and coronavirus disease (COVID-19). Despite advancements in understanding the disease's pathogenesis, effective preventive and therapeutic interventions are currently lacking. Ferroptosis, an iron-dependent regulated cell death (RCD) mechanism involving lipid peroxidation and glutathione (GSH) depletion, exhibits unique features distinct from other RCD forms (e.g., apoptosis, necrosis, and pyroptosis). Imbalance between reactive oxygen species (ROS) production and detoxification leads to ferroptosis, causing cellular dysfunction through lipid peroxidation, protein modifications, and DNA damage. Emerging evidence points to the crucial role of ferroptosis in PF progression, driving macrophage polarization, fibroblast proliferation, and ECM deposition, ultimately contributing to alveolar cell death and lung tissue scarring. This review provides a comprehensive overview of the latest findings on the involvement and signaling mechanisms of ferroptosis in PF pathogenesis, emphasizing potential novel anti-fibrotic therapeutic approaches targeting ferroptosis for PF management.
Collapse
Affiliation(s)
- Yixiang Hu
- Department of Clinical Pharmacy, The Affiliated Xiangtan Center Hospital of Hunan University, Xiangtan, 411100, China
| | - Ying Huang
- Zhongshan Hospital of Traditional Chinese Medicine Afflilated to Guangzhou University of Chinese Medicine, Zhongshan, 528400, China
| | - Lijuan Zong
- Department of Rehabilitation Medicine, Zhongda Hospital of Southeast University, Nanjing, 210096, China
| | - Jiaxin Lin
- Department of Breast Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530000, China
| | - Xiang Liu
- Department of Clinical Pharmacy, The Affiliated Xiangtan Center Hospital of Hunan University, Xiangtan, 411100, China.
| | - Shipeng Ning
- Department of Breast Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530000, China.
| |
Collapse
|
2
|
Wang Y, Chen S, Chen S, Jiang J. Unveiling the role of copper metabolism and STEAP2 in idiopathic pulmonary fibrosis molecular landscape. J Cell Mol Med 2024; 28:e18414. [PMID: 38872435 PMCID: PMC11176596 DOI: 10.1111/jcmm.18414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/01/2024] [Accepted: 05/07/2024] [Indexed: 06/15/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a debilitating interstitial lung disease characterized by progressive fibrosis and poor prognosis. Despite advancements in treatment, the pathophysiological mechanisms of IPF remain elusive. Herein, we conducted an integrated bioinformatics analysis combining clinical data and carried out experimental validations to unveil the intricate molecular mechanism of IPF. Leveraging three IPF datasets, we identified 817 upregulated and 560 downregulated differentially expressed genes (DEGs). Of these, 14 DEGs associated with copper metabolism were identified, shedding light on the potential involvement of disrupted copper metabolism in IPF progression. Immune infiltration analysis revealed dysregulated immune cell infiltration in IPF, with a notable correlation between copper metabolism-related genes and immune cells. Weighted gene co-expression network analysis (WGCNA) identified a central module correlated with IPF-associated genes, among which STEAP2 emerged as a key hub gene. Subsequent in vivo and in vitro studies confirmed the upregulation of STEAP2 in IPF model. Knockdown of STEAP2 using siRNA alleviated fibrosis in vitro, suggesting potential pathway related to copper metabolism in the pathophysiological progression of IPF. Our study established a novel link between immune cell infiltration and dysregulated copper metabolism. The revelation of intracellular copper overload and upregulated STEAP2 unravelled a potential therapeutic option. These findings offer valuable insights for future research and therapeutic interventions targeting STEAP2 and associated pathways in IPF.
Collapse
Affiliation(s)
- Yajun Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Shuyang Chen
- Department of Pulmonary and Critical Care Medicine, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Shujing Chen
- Department of Pulmonary and Critical Care Medicine, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Jinjun Jiang
- Department of Pulmonary and Critical Care Medicine, Zhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Respiratory Research InstituteShanghaiChina
| |
Collapse
|
3
|
Zhang J, Xu X, Cheng F, Ramakrishna S. Study Progress on Inorganic Fibers from Industry Solid Wastes and the Key Factors Determining Their Characteristics. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7256. [PMID: 36295321 PMCID: PMC9609343 DOI: 10.3390/ma15207256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/11/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Compared to basalt and glass fibers, the production of inorganic fiber from industry solid wastes is an effective method to not only save natural resources but also recycle waste resources. Because the preparation of the fibers requires high temperature treatment, the production process is associated with high energy consumption and high carbon emissions. How to resolve these problems is a current research challenge in this field. Herein, we reviewed the study progress on these fibers and further discussed the key factors determining their characteristics, including chemical composition, melt structure, and viscosity of melt. In production, the matching of solid waste blends containing enough total content of SiO2 and Al2O3, and a suitable amount of MgO and CaO, is beneficial to the structure control of the melt. The study found that the melt consisted of Q2 and Q3; and that Q3 content more than Q2 was more suitable for fiber production and its performance improvement. Such a melt structure can be achieved by controlling the degree of depolymerization and the temperature. New ultrasonic technology can shorten the homogenization time; its application is hoped to save energy and reduce carbon emissions. These conclusions will offer important guidance for the development of inorganic fibers from industry solid wastes in the future.
Collapse
Affiliation(s)
- Jincai Zhang
- Institute of Resource and Environment Engineering, Shanxi University, No. 92 Wucheng Road, Taiyuan 030006, China
| | - Xing Xu
- Institute of Resource and Environment Engineering, Shanxi University, No. 92 Wucheng Road, Taiyuan 030006, China
| | - Fangqin Cheng
- Institute of Resource and Environment Engineering, Shanxi University, No. 92 Wucheng Road, Taiyuan 030006, China
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, Singapore 117574, Singapore
| |
Collapse
|
4
|
d’Alessandro M, Bergantini L, Bargagli E, Vidal S. Extracellular Vesicles in Pulmonary Fibrosis Models and Biological Fluids of Interstitial Lung Disease Patients: A Scoping Review. Life (Basel) 2021; 11:life11121401. [PMID: 34947932 PMCID: PMC8707559 DOI: 10.3390/life11121401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Interstitial lung diseases (ILDs) are a heterogeneous group of diffuse parenchymal lung disorders characterized by the pathogenetic involvement of interstitium. Therefore, an elucidation of the etiology and pathogenesis as well as the identification of diagnostic and prognostic biomarkers of such diseases is more compelling than ever. It is of note that there is increasing evidence of the involvement of extracellular vesicles (EVs) in the pathogenesis of lung diseases including lung cancer, chronic obstructive pulmonary disease and pulmonary fibrosis. It has been speculated that EVs play a pivotal role as mediators of intercellular communication, as well as the highlighting of the role of EVs as co-operators in the development of lung diseases such as IPF. METHODS The present study aimed to carry out a systematic exploratory search of the literature (through the scoping review approach) to identify and systematize the main results of the pathogenetic role of EVs in pulmonary fibrosis models and biological fluids from ILD patients, including plasma, bronchoalveolar lavage (BAL) and sputum. CONCLUSION Fibroblast-to-mesenchymal differentiation, collagen and extracellular matrix deposition are key mechanisms in the development and progression of IPF. EV-coupled miRNA are important modulators of biological processes in terms of intercellular communication as shown in pulmonary fibrosis models as well as biofluids. The helpfulness of EVs as diagnostic and theranostic markers is worth further investigation. The evolving potential of EVs to translate effective EV-based therapies into clinical practice is of growing interest, due to the urgent need for novel therapeutic strategies for IPF patients.
Collapse
Affiliation(s)
- Miriana d’Alessandro
- Respiratory Diseases and Lung Transplant Unit, Department of Medical and Surgical Sciences & Neurosciences, University of Siena, 53100 Siena, Italy; (L.B.); (E.B.)
- Inflammatory Diseases, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain;
- Correspondence: ; Tel.: +39-057-758-6713; Fax: +39-057-728-0744
| | - Laura Bergantini
- Respiratory Diseases and Lung Transplant Unit, Department of Medical and Surgical Sciences & Neurosciences, University of Siena, 53100 Siena, Italy; (L.B.); (E.B.)
| | - Elena Bargagli
- Respiratory Diseases and Lung Transplant Unit, Department of Medical and Surgical Sciences & Neurosciences, University of Siena, 53100 Siena, Italy; (L.B.); (E.B.)
| | - Silvia Vidal
- Inflammatory Diseases, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain;
| |
Collapse
|
5
|
Hazardous Elements in Asbestos Tremolite from the Basilicata Region, Southern Italy: A First Step. FIBERS 2021. [DOI: 10.3390/fib9080047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this paper, we report the quantification of potentially toxic elements (PTEs) hosted into two tremolite asbestos from Episcopia and San Severino Lucano villages (Basilicata region, Southern Italy). Micro X-ray fluorescence and Inductively Coupled Plasma spectroscopy with Optical Emission Spectrometry techniques were used to quantify the concentration of major, minor (Si, Mg, Ca, Al, Fe, Mn) and trace elements (As, Ba, Cd, Co, Cr, Cu, Li, Mo, Ni, Pb, Sb, Sn Sr, Ti, Te, V, W, Zn, Zr), with the aim of providing available data useful for the determination of the asbestos fibers toxicity. Results show that in the two studied samples there exist high concentrations of Fe, Mn, Cr and Ni which could lead to the high toxicity of the mineral fibers. By considering the pseudo-total PTEs amounts in each tremolite asbestos, it is possible to affirm that one of the samples is more enriched in toxic elements than the other one (3572 ppm versus 1384 ppm). These PTEs can represent a source of risk to human health since they may be transported away from the geological outcrops, through asbestos in the air, water and soils and thus encountering the human body.
Collapse
|
6
|
Forte G, Bocca B, Pisano A, Collu C, Farace C, Sabalic A, Senofonte M, Fois AG, Mazzarello VL, Pirina P, Madeddu R. The levels of trace elements in sputum as biomarkers for idiopathic pulmonary fibrosis. CHEMOSPHERE 2021; 271:129514. [PMID: 33434828 DOI: 10.1016/j.chemosphere.2020.129514] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 12/18/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a rare lung disease that quickly leads to death. This paper addressed the issue of whether the levels of trace elements in sputum samples are suitable biomarkers for IPF disease. The sputum Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn concentrations were measured by sector field inductively coupled plasma mass spectrometry in populations sampled in Sardinia Island (Italy) including 31 patients with IPF, 31 patients with other lung-related diseases and 30 age- and gender-matched healthy controls. Risk factors in the disease as gender, age, severity and duration of the disease were assessed. Results showed that IPF patients had significantly increased sputum levels of Cd, Cr, Cu and Pb respect to controls. In males, but not in females, sputum levels of Cd, Cr and Cu were significantly higher in IPF cases respect to controls. In addition, Cr and Pb were increased in male patients with IPF compared to male patients with other lung diseases. Regarding Zn, it was found higher with the more serious stage of disease. Moreover, the ratios Cu/Zn, Fe/Mn and Cu/Mn were significantly increased in IPF patients and in non-IPF patients than in control subjects. These data showed clear increases in the concentration of some trace elements in sputum from patients with IPF and patients with other lung-related diseases that may contribute to the injury. The non-invasiveness of the sputum analysis is beneficial for its use as biomarker of trace element status in diseased patients for both the researcher and the clinic.
Collapse
Affiliation(s)
- Giovanni Forte
- Department of Environment and Health, Italian National Institute for Health, Rome, Italy
| | - Beatrice Bocca
- Department of Environment and Health, Italian National Institute for Health, Rome, Italy.
| | - Andrea Pisano
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Claudia Collu
- Department of Clinical, Surgical & Experimental Sciences, University of Sassari, Sassari, Italy
| | - Cristiano Farace
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Angela Sabalic
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Marta Senofonte
- Department of Environment and Health, Italian National Institute for Health, Rome, Italy
| | | | | | - Pietro Pirina
- Department of Clinical, Surgical & Experimental Sciences, University of Sassari, Sassari, Italy
| | - Roberto Madeddu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
7
|
Nutritional immunity: the impact of metals on lung immune cells and the airway microbiome during chronic respiratory disease. Respir Res 2021; 22:133. [PMID: 33926483 PMCID: PMC8082489 DOI: 10.1186/s12931-021-01722-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/15/2021] [Indexed: 12/15/2022] Open
Abstract
Nutritional immunity is the sequestration of bioavailable trace metals such as iron, zinc and copper by the host to limit pathogenicity by invading microorganisms. As one of the most conserved activities of the innate immune system, limiting the availability of free trace metals by cells of the immune system serves not only to conceal these vital nutrients from invading bacteria but also operates to tightly regulate host immune cell responses and function. In the setting of chronic lung disease, the regulation of trace metals by the host is often disrupted, leading to the altered availability of these nutrients to commensal and invading opportunistic pathogenic microbes. Similarly, alterations in the uptake, secretion, turnover and redox activity of these vitally important metals has significant repercussions for immune cell function including the response to and resolution of infection. This review will discuss the intricate role of nutritional immunity in host immune cells of the lung and how changes in this fundamental process as a result of chronic lung disease may alter the airway microbiome, disease progression and the response to infection.
Collapse
|
8
|
d'Alessandro M, Bergantini L, Cameli P, Fanetti M, Alderighi L, Armati M, Refini RM, Alonzi V, Sestini P, Bargagli E. Immunologic responses to antifibrotic treatment in IPF patients. Int Immunopharmacol 2021; 95:107525. [PMID: 33714885 DOI: 10.1016/j.intimp.2021.107525] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a chronic progressive interstitial lung disease limited to the lungs. Immunological dysregulation may significantly participate in the pathophysiology of IPF. The immunological responses to nintedanib therapy in IPF patients were investigated for the first time in this study. MATERIALS AND METHODS Fifty IPF patients (median age (IQR) 69 (65-75) years; 38 males), were selected retrospectively. Flowcytometry analysis were performed to phenotype immunological biomarkers in peripheral blood from IPF patients after 1 year of antifibrotic therapy and a group of healthy volunteers. RESULTS Before starting antifibrotic treatment, IPF patients showed increased CD1d+CD5+ (p = 0.0460), Treg (p = 0.0354), T effector (CD25highCD127high) (p = 0.0336), central cells (CD4+CD45RA-) (p = 0.0354), effector cells (CD4+CD45RA+) (p = 0.0249) and follicular cell percentages (p = 0.0006), notably Tfh1 (p = 0.0412) and Tfh17 (p = 0.0051) cell percentages, in respect with healthy controls (HC). After nintedanib therapy, Breg (p = 0.0302), T effector (p = 0.0468), Th17.1 (p = 0.0146) and follicular cells (p = 0.0006), notably Tfh1 (p = 0.0006) and Tfh17 (p = 0.0182) cell percentages, were significantly decreased. In the logistic regression, Tfh panel showed a significant area under the receiver operating characteristics curve (AUROC) to distinguish IPF than HC (90.5%), as well as t0 and t1 (99.3%). CONCLUSION In conclusion, the immunological results obtained in this study demonstrate that nintedanib significantly helps to restore immunological responses in IPF patients. These findings will be useful in the search for biomarkers predictive of response to antifibrotic treatment.
Collapse
Affiliation(s)
- Miriana d'Alessandro
- Respiratory Diseases and Lung Transplantation, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Siena 53100, Italy.
| | - Laura Bergantini
- Respiratory Diseases and Lung Transplantation, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Siena 53100, Italy
| | - Paolo Cameli
- Respiratory Diseases and Lung Transplantation, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Siena 53100, Italy
| | - Matteo Fanetti
- Respiratory Diseases and Lung Transplantation, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Siena 53100, Italy
| | - Lorenzo Alderighi
- Respiratory Diseases and Lung Transplantation, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Siena 53100, Italy
| | - Martina Armati
- Respiratory Diseases and Lung Transplantation, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Siena 53100, Italy
| | - Rosa Metella Refini
- Respiratory Diseases and Lung Transplantation, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Siena 53100, Italy
| | - Valerio Alonzi
- Respiratory Diseases and Lung Transplantation, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Siena 53100, Italy
| | - Piersante Sestini
- Respiratory Diseases and Lung Transplantation, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Siena 53100, Italy
| | - Elena Bargagli
- Respiratory Diseases and Lung Transplantation, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Siena 53100, Italy
| |
Collapse
|
9
|
Denisova O, Chernogoryuk G, Baranovskaya N, Rikhvanov L, Shefer N, Chernjavskaya G, Palchikova I, Kalacheva T. Trace Elements in the Lung Tissue Affected by Sarcoidosis. Biol Trace Elem Res 2020; 196:66-73. [PMID: 31686394 DOI: 10.1007/s12011-019-01915-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 09/20/2019] [Indexed: 10/25/2022]
Abstract
In the lungs of 76 patients with verified sarcoidosis, 28 chemical elements were identified with neutron activation analysis. High levels of Ca, Fe, Cr, Co, Cs, Eu, Lu, Th, Hf, Au, and U and low level of Na compared to the control samples were determined in sarcoidosis. There were no significant differences in the content of Zn, Rb, La, Sm, Sr, Nd, As, Br, Ag, Tb, Sc, Ta, Sb, Ba, and Yb. Spearman correlation analysis shows multiple positive associations, with the maximum being in pairs as follows: Fe-Cr, Eu-La, Ce-Lu, Hf-Cr, Sc-Zn, Fe-Hf, Ce-Co, and Sb-Cr. These studies support the hypothesis that sarcoidosis is a response of the organism in the form of granulomatous inflammation when exposed to heavy metals and rare earth elements in the environment. We assume that the role of calcium and iron is to separate granulomas from the tissues of the body.
Collapse
Affiliation(s)
- Olga Denisova
- Hospital Therapy Department, Siberian State Medical University, Moskovsky Trakt 2, Tomsk, 634050, Russia.
| | - George Chernogoryuk
- Hospital Therapy Department, Siberian State Medical University, Moskovsky Trakt 2, Tomsk, 634050, Russia
| | - Natalya Baranovskaya
- Division for Geology of the School of Earth Sciences and Engineering, Tomsk Polytechnic University, Tomsk, Russia
| | - Leonid Rikhvanov
- Division for Geology of the School of Earth Sciences and Engineering, Tomsk Polytechnic University, Tomsk, Russia
| | - Nikolaj Shefer
- Surgery department, Tomsk Regional Oncologic Dispensary, Tomsk, Russia
| | - Galina Chernjavskaya
- Hospital Therapy Department, Siberian State Medical University, Moskovsky Trakt 2, Tomsk, 634050, Russia
| | - Inna Palchikova
- Department of Internal Medicine, Tomsk Regional Clinical Hospital, Tomsk, Russia
| | - Tatyana Kalacheva
- Department of General Practice and Polyclinic Therapy, Siberian State Medical University, Tomsk, Russia
| |
Collapse
|
10
|
d'Alessandro M, Bergantini L, Cameli P, Lanzarone N, Perillo F, Perrone A, Bargagli E. BAL and serum multiplex lipid profiling in idiopathic pulmonary fibrosis and fibrotic hypersensitivity pneumonitis. Life Sci 2020; 256:117995. [PMID: 32574666 DOI: 10.1016/j.lfs.2020.117995] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Differential diagnosis between IPF and fibrotic HP (fHP) can be challenging: these two ILDs share many common features but call for different therapeutic approaches. In the present study, differential lipid mediator profiles were analysed by a new method in BAL and serum from HP and IPF patients. MATERIALS AND METHODS 76 patients were enrolled retrospectively in the study. Median age (IQR) was 67 years (51-74); 63% were males, 30 had fHP and 46 had IPF. Serum and BAL samples were collected at initial diagnosis. For quantification of serum and BAL lipid mediators was used bead-based multiplex LEGENDPlex™ analysis (Biolegend). RESULTS Serum Apo A1 levels were significantly higher in IPF than fHP patients (p = 0.314); indeed, serum levels of CCL2 and Apo C3 were lower in HP than in IPF patients (p = 0.013 and p = 0.041, respectively). BAL concentrations of Apo A1, adipsin, Apo C3 and APN were significantly lower in IPF than in fHP patients (p < 0.0001, p < 0.0001, p = 0.007 and p = 0.023, respectively). In the logistic regression, IPF was tested as dependent variable. Serum levels of Apo A1, CCL2 and Apo C3 were tested as independent variables and ROC curve analysis of model performance showed AUC 93% (p < 0.0001); on the other hand, BAL concentrations of Apo A1, adipsin, Apo C3 and APN showed AUC 81% (p < 0.0001). DISCUSSION Lipid biomarkers evaluated in BAL in our study confirm the hypothesis that fHP and IPF have different lung fibrosis phenotypes. The former is a post-inflammatory cell-regulated ILD and the second is more related to tissue remodeling and repair.
Collapse
Affiliation(s)
- Miriana d'Alessandro
- Respiratory Diseases and Lung Transplantation, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Siena, Italy.
| | - Laura Bergantini
- Respiratory Diseases and Lung Transplantation, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Siena, Italy
| | - Paolo Cameli
- Respiratory Diseases and Lung Transplantation, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Siena, Italy
| | - Nicola Lanzarone
- Respiratory Diseases and Lung Transplantation, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Siena, Italy
| | - Felice Perillo
- Respiratory Diseases and Lung Transplantation, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Siena, Italy
| | - Anna Perrone
- Respiratory Diseases and Lung Transplantation, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Siena, Italy
| | - Elena Bargagli
- Respiratory Diseases and Lung Transplantation, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Siena, Italy
| |
Collapse
|
11
|
Callejón-Leblic B, Arias-Borrego A, Rodríguez-Moro G, Navarro Roldán F, Pereira-Vega A, Gómez-Ariza JL, García-Barrera T. Advances in lung cancer biomarkers: The role of (metal-) metabolites and selenoproteins. Adv Clin Chem 2020; 100:91-137. [PMID: 33453868 DOI: 10.1016/bs.acc.2020.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Lung cancer (LC) is the second most common cause of death in men after prostate cancer, and the third most recurrent type of tumor in women after breast and colon cancers. Unfortunately, when LC symptoms begin to appear, the disease is already in an advanced stage and the survival rate only reaches 2%. Thus, there is an urgent need for early diagnosis of LC using specific biomarkers, as well as effective therapies and strategies against LC. On the other hand, the influence of metals on more than 50% of proteins is responsible for their catalytic properties or structure, and their presence in molecules is determined in many cases by the genome. Research has shown that redox metal dysregulation could be the basis for the onset and progression of LC disease. Moreover, metals can interact between them through antagonistic, synergistic and competitive mechanisms, and for this reason metals ratios and correlations in LC should be explored. One of the most studied antagonists against the toxic action of metals is selenium, which plays key roles in medicine, especially related to selenoproteins. The study of potential biomarkers able to diagnose the disease in early stage is conditioned by the development of new analytical methodologies. In this sense, omic methodologies like metallomics, proteomics and metabolomics can greatly assist in the discovery of biomarkers for LC early diagnosis.
Collapse
Affiliation(s)
- Belén Callejón-Leblic
- Research Center for Natural Resources, Health and the Environment (RENSMA), University of Huelva, Huelva, Spain; Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Huelva, Spain
| | - Ana Arias-Borrego
- Research Center for Natural Resources, Health and the Environment (RENSMA), University of Huelva, Huelva, Spain; Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Huelva, Spain
| | - Gema Rodríguez-Moro
- Research Center for Natural Resources, Health and the Environment (RENSMA), University of Huelva, Huelva, Spain; Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Huelva, Spain
| | - Francisco Navarro Roldán
- Research Center for Natural Resources, Health and the Environment (RENSMA), University of Huelva, Huelva, Spain; Department of Integrated Sciences-Cell Biology, Faculty of Experimental Sciences, University of Huelva, Huelva, Spain
| | | | - José Luis Gómez-Ariza
- Research Center for Natural Resources, Health and the Environment (RENSMA), University of Huelva, Huelva, Spain; Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Huelva, Spain
| | - Tamara García-Barrera
- Research Center for Natural Resources, Health and the Environment (RENSMA), University of Huelva, Huelva, Spain; Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Huelva, Spain.
| |
Collapse
|
12
|
Zhang B, Tan X, He X, Yang H, Wang Y, Zhang K. Evaluation of Cadmium Levels in Dental Calculus of Male Oral SCC Patients with Betel-Quid Chewing in Hunan Province of China. Biol Trace Elem Res 2019; 191:348-353. [PMID: 30659512 DOI: 10.1007/s12011-019-1639-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/11/2019] [Indexed: 01/01/2023]
Abstract
Cadmium (Cd) is a widespread trace toxic heavy metal with long biological half-life and may induce higher risk of cancer on multiple organs of human body. Recent studies have confirmed that dental calculus has enormous potential for investigation of exposure to Cd in the human mouth by acting as a time capsule. We aimed to examine relationship between Cd levels in dental calculus due to betel-quid chewing and risk of oral cancer. This study included 85 male oral squamous cell carcinoma (SCC) cases with betel-quid chewing and smoking as observation subjects (group A) and 67 healthy people with smoking but without betel-quid chewing as control subjects (group B) in Hunan province of Mainland China. Cd levels in calcified dental calculus samples from all participants were measured by inductively coupled plasma mass spectrometry (ICP-MS). The results of this study indicated that cadmium levels in dental calculus were significantly higher in male oral SCC patients with betel-quid chewing and smoking than that in healthy individuals without habit of betel-quid chewing and with smoking (p < 0.0001). This study gives some evidence to support that there may be a positive relationship between cadmium in dental calculus due to betel-quid chewing and risk of oral SCC.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Oral and Maxillofacial Surgery, Hunan Provincial People's Hospital and The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, People's Republic of China.
- Hanwoo DNA Solutions Co., Ltd, Changsha, China.
- Hunan Legal Forensic Center, Changsha, China.
| | - Xiaodan Tan
- Hanwoo DNA Solutions Co., Ltd, Changsha, China
- Hunan Legal Forensic Center, Changsha, China
| | - Xifan He
- Department of Oral and Maxillofacial Surgery, Hunan Provincial People's Hospital and The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, People's Republic of China
| | - Hanlin Yang
- Department of Oral and Maxillofacial Surgery, Hunan Provincial People's Hospital and The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, People's Republic of China
| | - Yuehui Wang
- Department of Oral and Maxillofacial Surgery, Hunan Provincial People's Hospital and The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, People's Republic of China
| | - Kunlun Zhang
- Hanwoo DNA Solutions Co., Ltd, Changsha, China
- Hunan Legal Forensic Center, Changsha, China
| |
Collapse
|
13
|
Cameli P, Carleo A, Bergantini L, Landi C, Prasse A, Bargagli E. Oxidant/Antioxidant Disequilibrium in Idiopathic Pulmonary Fibrosis Pathogenesis. Inflammation 2019; 43:1-7. [DOI: 10.1007/s10753-019-01059-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
14
|
Nishi Y, Tsukano K, Otsuka M, Tsuchiya M, Suzuki K. Relationship between bronchoalveolar lavage fluid and plasma endotoxin activity in calves with bronchopneumonia. J Vet Med Sci 2019; 81:1043-1046. [PMID: 31189765 PMCID: PMC6656817 DOI: 10.1292/jvms.18-0643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The aim of this study was to investigate the relationship between the endotoxin activity in plasma and that in bronchoalveolar lavage fluid (BALF) in bronchopneumonia. Thirty-three calves
were included in this study (17 healthy calves and 16 calves with respiratory disease). In the calves with bronchopneumonia, the median endotoxin activity in plasma (0.437
EU/ml, P<0.001) and BALF (29.45 EU/ml, P<0.001) was significantly higher than in the control calves. Plasma
endotoxin activity was significantly and positively correlated with that in BALF (r2=0.900, P<0.001). Based on the receiver operating
characteristics curves, we propose a diagnostic cutoff point for plasma endotoxin activity (0.104 EU/ml, AUC=0.914, P<0.001, Se 81.3% and Sp 82.4%) for
identification of bronchopneumonia in calves which could die within a week.
Collapse
Affiliation(s)
- Yasunobu Nishi
- School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai-Midorimachi, Ebetsu, Hokkaido 069-8501, Japan
| | - Kenji Tsukano
- School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai-Midorimachi, Ebetsu, Hokkaido 069-8501, Japan
| | - Marina Otsuka
- School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai-Midorimachi, Ebetsu, Hokkaido 069-8501, Japan
| | - Masakazu Tsuchiya
- Microbial Solutions, Charles River, 1023 Wappoo Road, Suite 43B, Charleston, SC 29407, U.S.A
| | - Kazuyuki Suzuki
- School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai-Midorimachi, Ebetsu, Hokkaido 069-8501, Japan
| |
Collapse
|
15
|
Callejón-Leblic B, Arias-Borrego A, Pereira-Vega A, Gómez-Ariza JL, García-Barrera T. The Metallome of Lung Cancer and its Potential Use as Biomarker. Int J Mol Sci 2019; 20:ijms20030778. [PMID: 30759767 PMCID: PMC6387380 DOI: 10.3390/ijms20030778] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/28/2019] [Accepted: 02/06/2019] [Indexed: 02/06/2023] Open
Abstract
Carcinogenesis is a very complex process in which metals have been found to be critically involved. In this sense, a disturbed redox status and metal dyshomeostasis take place during the onset and progression of cancer, and it is well-known that trace elements participate in the activation or inhibition of enzymatic reactions and metalloproteins, in which they usually participate as cofactors. Until now, the role of metals in cancer have been studied as an effect, establishing that cancer onset and progression affects the disturbance of the natural chemical form of the essential elements in the metabolism. However, it has also been studied as a cause, giving insights related to the high exposure of metals giving a place to the carcinogenic process. On the other hand, the chemical species of the metal or metallobiomolecule is very important, since it finally affects the biological activity or the toxicological potential of the element and their mobility across different biological compartments. Moreover, the importance of metal homeostasis and metals interactions in biology has also been demonstrated, and the ratios between some elements were found to be different in cancer patients; however, the interplay of elements is rarely reported. This review focuses on the critical role of metals in lung cancer, which is one of the most insidious forms of cancer, with special attention to the analytical approaches and pitfalls to extract metals and their species from tissues and biofluids, determining the ratios of metals, obtaining classification profiles, and finally defining the metallome of lung cancer.
Collapse
Affiliation(s)
- Belén Callejón-Leblic
- Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Campus de El Carmen, Research Center on Health and Environment (RENSMA), 21007 Huelva, Spain.
| | - Ana Arias-Borrego
- Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Campus de El Carmen, Research Center on Health and Environment (RENSMA), 21007 Huelva, Spain.
| | | | - José Luis Gómez-Ariza
- Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Campus de El Carmen, Research Center on Health and Environment (RENSMA), 21007 Huelva, Spain.
| | - Tamara García-Barrera
- Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Campus de El Carmen, Research Center on Health and Environment (RENSMA), 21007 Huelva, Spain.
| |
Collapse
|
16
|
Hayton C, Terrington D, Wilson AM, Chaudhuri N, Leonard C, Fowler SJ. Breath biomarkers in idiopathic pulmonary fibrosis: a systematic review. Respir Res 2019; 20:7. [PMID: 30634961 PMCID: PMC6329167 DOI: 10.1186/s12931-019-0971-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 01/01/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Exhaled biomarkers may be related to disease processes in idiopathic pulmonary fibrosis (IPF) however their clinical role remains unclear. We performed a systematic review to investigate whether breath biomarkers discriminate between patients with IPF and healthy controls. We also assessed correlation with lung function, ability to distinguish diagnostic subgroups and change in response to treatment. METHODS MEDLINE, EMBASE and Web of Science databases were searched. Study selection was limited to adults with a diagnosis of IPF as per international guidelines. RESULTS Of 1014 studies screened, fourteen fulfilled selection criteria and included 257 IPF patients. Twenty individual biomarkers discriminated between IPF and controls and four showed correlation with lung function. Meta-analysis of three studies indicated mean (± SD) alveolar nitric oxide (CalvNO) levels were significantly higher in IPF (8.5 ± 5.5 ppb) than controls (4.4 ± 2.2 ppb). Markers of oxidative stress in exhaled breath condensate, such as hydrogen peroxide and 8-isoprostane, were also discriminatory. Two breathomic studies have isolated discriminative compounds using mass spectrometry. There was a lack of studies assessing relevant treatment and none assessed differences in diagnostic subgroups. CONCLUSIONS Evidence suggests CalvNO is higher in IPF, although studies were limited by small sample size. Further breathomic work may identify biomarkers with diagnostic and prognostic potential.
Collapse
Affiliation(s)
- Conal Hayton
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- North West Lung Centre, Manchester University NHS Foundation Trust, Manchester, UK.
| | | | - Andrew M Wilson
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Nazia Chaudhuri
- North West Lung Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Colm Leonard
- North West Lung Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Stephen J Fowler
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- North West Lung Centre, Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
17
|
Zhang B, Tan X, Zhang K. Cadmium Profiles in Dental Calculus: a Cross-Sectional Population-Based Study in Hunan Province of China. Biol Trace Elem Res 2018; 185:63-70. [PMID: 29368128 DOI: 10.1007/s12011-018-1251-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/16/2018] [Indexed: 12/16/2022]
Abstract
We aimed to investigate whether the cadmium concentrations differ in human dental calculus obtained from the residents with no smoking living in the contaminated area and those with no smoking living in noncontaminated area. In total, there were 260 samples of dental calculus from the adults (n = 50) with no smoking living in contaminated area, the adults (n = 60) with no smoking living in mountainous area, and the adults (n = 150) with no smoking living in low altitude area in Hunan province of China. All samples were analyzed by inductively coupled plasma mass spectrometry (ICP-MS) for cadmium levels. The cadmium levels in dental calculus were significantly higher in the adults with no smoking living in contaminated area than those living in mountainous area and in low altitude area (p < 0.01). The cadmium levels in dental calculus were also higher in the adults with no smoking living in low altitude area than those living in mountainous region (p < 0.01). The results suggested that measuring cadmium levels in dental calculus may be a useful noninvasive method for analysis of environmental exposure to cadmium in the human oral cavity. The low altitude region may have an area contaminated with cadmium in Hunan province of China.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Oral and Maxillofacial Surgery, Hunan Provincial People's Hospital and The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, People's Republic of China.
- Hanwoo DNA Solutions Co., Ltd, Changsha, China.
- Hunan Legal Forensic Center, Changsha, China.
| | - Xiaodan Tan
- Hanwoo DNA Solutions Co., Ltd, Changsha, China
- Hunan Legal Forensic Center, Changsha, China
| | - Kunlun Zhang
- Hanwoo DNA Solutions Co., Ltd, Changsha, China
- Hunan Legal Forensic Center, Changsha, China
| |
Collapse
|
18
|
Ghio AJ, Madden MC, Esther CR. Transition and post-transition metals in exhaled breath condensate. J Breath Res 2018; 12:027112. [PMID: 29244031 DOI: 10.1088/1752-7163/aaa214] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Water vapor in expired air, as well as dispersed non-volatile components, condense onto a cooler surface after exiting the respiratory tract. This exhaled breath condensate (EBC) provides a dilute sampling of the epithelial lining fluid. Accordingly, the collection of EBC imparts a capacity to provide biomarkers of injury preceding clinical disease. Concentrations of transition and post-transition metals in EBC are included among these endpoints. Iron and zinc are the metals with the highest concentration and are measurable in all EBC samples from healthy subjects; other metals are most frequently either at or below the level of detection in this group. Gender, age, and smoking can impact EBC metal concentrations in healthy subjects. EBC metal concentrations among patients diagnosed with particular lung diseases (e.g. asthma, chronic obstructive disease, and interstitial lung disease) have been of research interest but no definite pattern of involvement has been delineated. Studies of occupationally exposed workers confirm significant exposure to specific metals, but such EBC metal measurements frequently provide evidence redundant with environmental sampling. Measurements of metal concentrations in EBC remain a research tool into metal homeostasis in the respiratory tract and participation of metals in disease pathogenesis. The quantification of metal concentrations in EBC is currently not reliable for clinical use in either supporting or determining any diagnosis. Issues that must be addressed prior to the use of EBC metal measurements include the establishment of both standardized collection and measurement techniques.
Collapse
Affiliation(s)
- Andrew J Ghio
- National Health and Environmental Effects Research Laboratory, Environmental Protection Agency, Chapel Hill NC, United States of America
| | | | | |
Collapse
|
19
|
Callejón-Leblic B, Gómez-Ariza JL, Pereira-Vega A, García-Barrera T. Metal dyshomeostasis based biomarkers of lung cancer using human biofluids. Metallomics 2018; 10:1444-1451. [DOI: 10.1039/c8mt00139a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Metals, ratios, interactions and species in serum, urine and bronchoalveolar lavage fluid as biomarkers of lung cancer.
Collapse
Affiliation(s)
- Belén Callejón-Leblic
- Department of Chemistry, Faculty of Experimental Sciences
- University of Huelva
- Campus de El Carmen
- Research Center on Health and Environment (RENSMA)
- Huelva-21007
| | - José Luis Gómez-Ariza
- Department of Chemistry, Faculty of Experimental Sciences
- University of Huelva
- Campus de El Carmen
- Research Center on Health and Environment (RENSMA)
- Huelva-21007
| | | | - Tamara García-Barrera
- Department of Chemistry, Faculty of Experimental Sciences
- University of Huelva
- Campus de El Carmen
- Research Center on Health and Environment (RENSMA)
- Huelva-21007
| |
Collapse
|
20
|
Qamar W, Al-Ghadeer AR, Ali R, Abuelizz HA. Analysis of Trace Elements in Rat Bronchoalveolar Lavage Fluid by Inductively Coupled Plasma Mass Spectrometry. Biol Trace Elem Res 2017; 178:246-252. [PMID: 28058666 DOI: 10.1007/s12011-016-0920-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 12/25/2016] [Indexed: 12/28/2022]
Abstract
The main objective was to determine the elemental profile of the lung lining fluid of rats which are used as model animals in various experiments. Lung lining fluid elemental constitution obtained after bronchoalveolar lavage fluid (BALF) was analyzed by inductively coupled plasma mass spectrometry (ICP-MS) to determine the biological trace elements along with calcium and magnesium. BALF was collected from healthy rats using a tracheal cannula. However, cells in BALF were counted to monitor any underlying inflammatory lung condition. Cell free BALF samples were processed and analyzed for the elements including magnesium (Mg), calcium (Ca), chromium (Cr), manganese (Mn), iron (Fe), nickel (Ni), copper (Cu), zinc (Zn), selenium (Se), bromine (Br), and iodine (I). In view of this, calcium concentration was the highest (6318.08 ± 3094.3 μg/L) and copper concentration was the lowest (0.89 ± 0.21 μg/L). The detected elements, from high to low concentration, include Ca > Mg > Fe > Br > I > Cr > Ni > Zn > Mn > Se > Cu. Pearson's correlation analysis revealed no significant correlation between cell count and concentration of any of the element detected in BALF. Correlation analysis also revealed significant positive correlation among Fe, I, Cr, Ni, and Mn. Ca was found to be correlated negatively with Cu and positively with Se. Br and Mg found to be positively correlated with each other. Zn remained the only element that was not found to be correlated with any of the elements in the rat BALF.
Collapse
Affiliation(s)
- Wajhul Qamar
- Central Laboratory, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia.
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia.
| | - Abdul Rahman Al-Ghadeer
- Central Laboratory, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Raisuddin Ali
- Central Laboratory, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Hatem A Abuelizz
- Central Laboratory, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia.
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
21
|
Bargagli E, Lavorini F, Pistolesi M, Rosi E, Prasse A, Rota E, Voltolini L. Trace metals in fluids lining the respiratory system of patients with idiopathic pulmonary fibrosis and diffuse lung diseases. J Trace Elem Med Biol 2017; 42:39-44. [PMID: 28595790 DOI: 10.1016/j.jtemb.2017.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/10/2017] [Accepted: 04/03/2017] [Indexed: 02/07/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease with a poor prognosis and an undefined etiopathogenesis. Oxidative stress contributes to alveolar injury and fibrosis development and, because transition metals are essential to the functioning of most proteins involved in redox reactions, a better knowledge of metal concentrations and metabolism in the respiratory system of IPF patients may provide a valuable complementary approach to prevent and manage a disease which is often misdiagnosed or diagnosed in later stages. The present review summarizes and discusses literature data on the elemental composition of bronchoalveolar lavage (BAL), induced sputum and exhaled breath condensate (EBC) from patients affected by IPF and healthy subjects. Available data are scanty and the lack of consistent methods for the collection and analysis of lung and airways lining fluids makes it difficult to compare the results of different studies. However, the elemental composition of BAL samples from IPF patients seems to have a specific profile that can be distinguished from that of patients with other interstitial lung diseases (ILD) or control subjects. Suggestions are given towards standard sampling and analytical procedures of BAL samples, in the aim to assess typical element concentration patterns and their potential role as biomarkers of IPF.
Collapse
Affiliation(s)
| | | | | | | | - Antje Prasse
- Hannover Medical School, Clinic for Pneumology, Hannover, Germany
| | - Emilia Rota
- Environmental Sciences Siena University, Siena, Italy
| | - Luca Voltolini
- Thoracic Surgery Unit, University Hospital Careggi, Largo Brambilla, 1, 50134, Florence, Italy
| |
Collapse
|
22
|
Induction of cytotoxic and genotoxic damage following exposure of V79 cells to cadmium chloride. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2017; 816-817:12-17. [DOI: 10.1016/j.mrgentox.2017.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 01/17/2023]
|
23
|
Bloise A, Barca D, Gualtieri AF, Pollastri S, Belluso E. Trace elements in hazardous mineral fibres. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 216:314-323. [PMID: 27289526 DOI: 10.1016/j.envpol.2016.06.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/01/2016] [Accepted: 06/03/2016] [Indexed: 06/06/2023]
Abstract
Both occupational and environmental exposure to asbestos-mineral fibres can be associated with lung diseases. The pathogenic effects are related to the dimension, biopersistence and chemical composition of the fibres. In addition to the major mineral elements, mineral fibres contain trace elements and their content may play a role in fibre toxicity. To shed light on the role of trace elements in asbestos carcinogenesis, knowledge on their concentration in asbestos-mineral fibres is mandatory. It is possible that trace elements play a synergetic factor in the pathogenesis of diseases caused by the inhalation of mineral fibres. In this paper, the concentration levels of trace elements from three chrysotile samples, four amphibole asbestos samples (UICC amosite, UICC anthophyllite, UICC crocidolite and tremolite) and fibrous erionite from Jersey, Nevada (USA) were determined using inductively coupled plasma mass spectrometry (ICP-MS). For all samples, the following trace elements were measured: Li, Be, Sc, V, Cr, Mn, Co, Ni, Cu, Zn, As, Rb, Sr, Y, Sb, Cs, Ba, La, Pb, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Th, U. Their distribution in the various mineral species is thoroughly discussed. The obtained results indicate that the amount of trace metals such as Mn, Cr, Co, Ni, Cu and Zn is higher in anthophyllite and chrysotile samples, whereas the amount of rare earth elements (REE) is higher in erionite and tremolite samples. The results of this work can be useful to the pathologists and biochemists who use asbestos minerals and fibrous erionite in-vitro studies as positive cyto- and geno-toxic standard references.
Collapse
Affiliation(s)
- Andrea Bloise
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036, Arcavacata di Rende, CS, Italy.
| | - Donatella Barca
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036, Arcavacata di Rende, CS, Italy
| | | | - Simone Pollastri
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, I-41125, Modena, Italy
| | - Elena Belluso
- Department of Earth Sciences, University of Torino, Torino, 10125, Italy; Interdepartmental Center for Studies on Asbestos and Other Toxic Particulates "G. Scansetti", Torino, Italy
| |
Collapse
|
24
|
Sundblad BM, Ji J, Levänen B, Midander K, Julander A, Larsson K, Palmberg L, Lindén A. Extracellular cadmium in the bronchoalveolar space of long-term tobacco smokers with and without COPD and its association with inflammation. Int J Chron Obstruct Pulmon Dis 2016; 11:1005-13. [PMID: 27274222 PMCID: PMC4869628 DOI: 10.2147/copd.s105234] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Tobacco contains cadmium, and this metal has been attributed a causative role in pulmonary emphysema among smokers, although extracellular cadmium has not to date been quantified in the bronchoalveolar space of tobacco smokers with or without COPD. We determined whether cadmium is enhanced in the bronchoalveolar space of long-term tobacco smokers with or without COPD in vivo, its association with inflammation, and its effect on chemokine release in macrophage-like cells in vitro. Bronchoalveolar lavage (BAL), sputum, and blood samples were collected from current, long-term smokers with and without COPD and from healthy nonsmokers. Cadmium concentrations were determined in cell-free BAL fluid using inductively coupled plasma mass spectrometry. Blood monocyte-derived macrophages were exposed to cadmium chloride in vitro. Depending upon the type of sample, molecular markers of inflammation were quantified either as protein (enzyme-linked immunosorbent assay) or as mRNA (real-time polymerase chain reaction). Cadmium concentrations were markedly increased in cell-free BAL fluid of smokers compared to that of nonsmokers (n=19–29; P<0.001), irrespective of COPD. In these smokers, the measured cadmium displayed positive correlations with macrophage TNF-α mRNA in BAL, neutrophil and CD8+ cell concentrations in blood, and finally with IL-6, IL-8, and MMP-9 protein in sputum (n=10–20; P<0.05). The cadmium chloride exposure caused a concentration-dependent increase in extracellular IL-8 protein in monocyte-derived macrophages in vitro. In conclusion, extracellular cadmium is enhanced in the bronchoalveolar space of long-term smokers and displays pro-inflammatory features. Its pathogenic role in tobacco-induced disease deserves further evaluation.
Collapse
Affiliation(s)
- Britt-Marie Sundblad
- Unit for Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jie Ji
- Unit for Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Bettina Levänen
- Unit for Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Klara Midander
- Unit for Occupational and Environmental Dermatology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anneli Julander
- Unit for Occupational and Environmental Dermatology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kjell Larsson
- Unit for Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lena Palmberg
- Unit for Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anders Lindén
- Unit for Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
25
|
Muzembo BA, Deguchi Y, Ngatu NR, Eitoku M, Hirota R, Suganuma N. Selenium and exposure to fibrogenic mineral dust: a mini-review. ENVIRONMENT INTERNATIONAL 2015; 77:16-24. [PMID: 25615721 DOI: 10.1016/j.envint.2015.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 12/28/2014] [Accepted: 01/04/2015] [Indexed: 06/04/2023]
Abstract
Individuals exposed to fibrogenic mineral dust may exhibit an impaired antioxidant system and produce high levels of reactive oxygen and nitrogen species through immune cells, contributing to the perturbation of immune cell function, inflammation, fibrosis and lung cancer. The lung diseases which are caused by inhalation of fibrogenic mineral dust, known as pneumoconioses, develop progressively and irreversibly over decades. At the moment there is no known cure. The trace element selenium has potent antioxidant and anti-inflammatory properties mediated mainly through selenoproteins. Research has demonstrated that selenium has the ability to protect against cardiovascular diseases; to kill cancer cells in vitro and reduce cancer incidence; and to immunomodulate various cellular signaling pathways. For these reasons, selenium has been proposed as a promising therapeutic agent in oxidative stress associated pathology that in theory would be beneficial for the prevention or treatment of pneumoconioses such as silicosis, asbestosis, and coal worker's pneumoconiosis. However, studies regarding selenium and occupational lung diseases are rare. The purpose of this study is to conduct a mini-review regarding the relationship between selenium and exposure to fibrogenic mineral dust with emphasis on epidemiological studies. We carried out a systematic literature search of English published studies on selenium and exposure to fibrogenic mineral dust. We found four epidemiological studies. Reviewed studies show that selenium is lower in individuals exposed to fibrogenic mineral dust. However, three out of the four reviewed studies could not confirm cause-and-effect relationships between low selenium status and exposure to fibrogenic mineral dust. This mini-review underscores the need for large follow-up and mechanistic studies for selenium to further elucidate its therapeutic effects.
Collapse
Affiliation(s)
- Basilua Andre Muzembo
- Division of Social Medicine, Department of Environmental Medicine, Kochi Medical School, Kochi University, Kochi, Japan; Research Fellow of the Japan Society for the Promotion of Science (JSPS), Tokyo, Japan.
| | - Yoji Deguchi
- School of Nursing, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Nlandu Roger Ngatu
- Division of Social Medicine, Department of Environmental Medicine, Kochi Medical School, Kochi University, Kochi, Japan; Disaster Graduate School of Health and Nursing Sciences, Disaster Nursing Global Leader program (DNGL), University of Kochi, Kochi, Japan
| | - Masamitsu Eitoku
- Division of Social Medicine, Department of Environmental Medicine, Kochi Medical School, Kochi University, Kochi, Japan
| | - Ryoji Hirota
- Division of Social Medicine, Department of Environmental Medicine, Kochi Medical School, Kochi University, Kochi, Japan
| | - Narufumi Suganuma
- Division of Social Medicine, Department of Environmental Medicine, Kochi Medical School, Kochi University, Kochi, Japan
| |
Collapse
|
26
|
Sysalová J, Száková J, Tremlová J, Kašparovská K, Kotlík B, Tlustoš P, Svoboda P. Methodological aspects of in vitro assessment of bio-accessible risk element pool in urban particulate matter. Biol Trace Elem Res 2014; 161:216-22. [PMID: 25123460 DOI: 10.1007/s12011-014-0101-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 08/05/2014] [Indexed: 10/24/2022]
Abstract
In vitro tests simulating the elements release from inhaled urban particulate matter (PM) with artificial lung fluids (Gamble's and Hatch's solutions) and simulated gastric and pancreatic solutions were applied for an estimation of hazardous element (As, Cd, Cr, Hg, Mn, Ni, Pb and Zn) bio-accessibility in this material. An inductively coupled plasma optical emission spectrometry (ICP-OES) and an inductively coupled plasma mass spectrometry (ICP-MS) were employed for the element determination in extracted solutions. The effect of the extraction agent used, extraction time, sample-to-extractant ratio, sample particle size and/or individual element properties was evaluated. Different patterns of individual elements were observed, comparing Hatch's solution vs. simulated gastric and pancreatic solutions. For Hatch's solution, a decreasing sample-to-extractant ratio in a PM size fraction of <0.063 mm resulted in increasing leached contents of all investigated elements. As already proved for other operationally defined extraction procedures, the extractable element portions are affected not only by their mobility in the particulate matter itself but also by the sample preparation procedure. Results of simulated in vitro tests can be applied for the reasonable estimation of bio-accessible element portions in the particulate matter as an alternative method, which, consequently, initiates further examinations including potential in vivo assessments.
Collapse
Affiliation(s)
- Jiřina Sysalová
- AAS Laboratory, Institute of Chemical Technology, Prague, Czech Republic,
| | | | | | | | | | | | | |
Collapse
|
27
|
Suzuki K, Higuchi H, Iwano H, Lakritz J, Sera K, Koiwa M, Taguchi K. Analysis of trace and major elements in bronchoalveolar lavage fluid of Mycoplasma bronchopneumonia in calves. Biol Trace Elem Res 2012; 145:166-71. [PMID: 21870151 DOI: 10.1007/s12011-011-9180-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 08/12/2011] [Indexed: 01/19/2023]
Abstract
The aim of this study was to evaluate the reliability and effectiveness of direct determination of trace and major element concentrations in bronchoalveolar lavage fluid samples from Holstein calves with Mycoplasma bronchopneumonia (n = 21) and healthy controls (n = 20). The samples were obtained during bronchoscopy using a standard examination method. A total of 18 elements (aluminum, bromine, calcium, chlorine, chromium, copper, iron, potassium, magnesium, manganese, molybdenum, nickel, phosphorous, sulfur, silicon, strontium, titanium, and zinc) were detected by particle-induced X-ray emission. The average bromine, iron, potassium, magnesium, and phosphorous concentrations were higher in calves with bronchopneumonia than in controls (p < 0.05). They were found to have higher amounts of calcium and zinc, and a higher zinc-copper ratio than that in healthy calves (p < 0.001). Based on the receiver operating characteristics curves, we propose a diagnostic cutoff point for zinc-copper ratio for identification of Mycoplasma pneumonia of 8.676. Our results indicate that assessment of the elemental composition of broncholaveolar lavage fluid is a promising diagnostic tool for Mycoplasma bronchopneumonia.
Collapse
Affiliation(s)
- Kazuyuki Suzuki
- School of Veterinary Medicine, Rakuno Gakuen University, 582 Midorimati, Bunnkyoudai, Ebetsu, Hokkaido 069-8501, Japan.
| | | | | | | | | | | | | |
Collapse
|
28
|
Abakay A, Gokalp O, Abakay O, Evliyaoglu O, Sezgi C, Palanci Y, Ekici F, Karakus A, Tanrikulu AC, Ayhan M. Relationships between respiratory function disorders and serum copper levels in copper mineworkers. Biol Trace Elem Res 2012; 145:151-7. [PMID: 21882069 DOI: 10.1007/s12011-011-9184-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 08/16/2011] [Indexed: 10/17/2022]
Abstract
The aim of this study was to investigate the respiratory function disorders that could be related to dust exposure during the production of copper mine in copper mineworkers (CMWs). The study included 75 male CMWs (mean age, 32.0 ± 7.1 years, 58.6% smokers) and 75 male age- and smoking status-matched healthy control subjects. Serum Cu level was significantly higher in the CMW group (0.80 ± 0.62 μg/ml) than the control group (0.60 ± 0.39 μg/ml) (p = 0.017). Significant negative correlations were found between serum Cu level and forced expiratory volume in first second (r = -0.600; p < 0.001) and between serum Cu level and forced vital capacity (r = -0.593; p = <0.001) in CMWs. Serum Cu level was significantly higher in the restrictive type pulmonary function disorders group (1.36 ± 0.62 μg/ml) than obstructive type (0.90 ± 0.55 μg/ml) and normal pulmonary function pattern group (0.53 ± 0.43 μg/ml) (p < 0.001). Patients with radiological parenchymal abnormalities had significantly higher serum copper levels than those without abnormalities (1.53 ± 0.52 vs. 0.71 ± 0.52 μg/ml, respectively; p = 0.002). In conclusion, result of the study has shown a negative association between pulmonary functions disorders and radiological abnormalities and serum Cu levels in CMWs.
Collapse
Affiliation(s)
- Abdurrahman Abakay
- Department of Chest Diseases, Medical Faculty, Dicle University, Diyarbakir, Turkey.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Censi P, Zuddas P, Randazzo LA, Tamburo E, Speziale S, Cuttitta A, Punturo R, Aricò P, Santagata R. Source and nature of inhaled atmospheric dust from trace element analyses of human bronchial fluids. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:6262-6267. [PMID: 21692480 DOI: 10.1021/es200539p] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Rapid volcanic eruptions quickly ejecting large amounts of dust provoke the accumulation of heavy metals in people living in surrounding areas. Analyses of bronchoalveolar lavage samples (BAL) collected from people exposed to the paroxysmal 2001 Etna eruption revealed a strong enrichment of many toxic heavy metals. Comparing the BAL to the dust composition of southeastern Sicily, we found that only V, Cr, Mn, Fe, Co, and U enrichment could be related to the volcanic event, whereas Ni, Cu, Cd, and Pb contents come from the dissolution of particles of anthropogenic origin. Furthermore, the nature of these inhaled anthropogenic particles was revealed by anomalous La and partially Ce concentrations in BAL that were consistent with a mixture of road dust and petroleum refinery emissions. Our results indicate that trace element distribution in BAL is a suitable tracer of human exposure to different sources of inhaled atmospheric particulates, allowing investigations into the origin of source materials inhaled by people subjected to atmospheric fallout.
Collapse
Affiliation(s)
- Paolo Censi
- Dipartimento DiSTeM, Università di Palermo, Palermo, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Dagli CE, Tanrikulu AC, Koksal N, Abakay A, Gelen ME, Demirpolat G, Yuksel M, Atilla N, Tolun FI. Interstitial lung disease in coppersmiths in high serum copper levels. Biol Trace Elem Res 2010; 137:63-8. [PMID: 19921115 DOI: 10.1007/s12011-009-8566-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 10/30/2009] [Indexed: 11/28/2022]
Abstract
Coppersmith is a worker who uses copper most commonly for the production of kitchen appliances in Turkey. This is an ancient occupation practiced for centuries in Turkey. Our objective was to investigate the prevalence of parenchymal lung diseases among coppersmiths in Kahramanmaras city in Turkey. Thirty coppersmiths were included to the study, and they all signed an informed consent. Demographics, spirometric test results and high-resolution computed tomography (HRCT) scans, and blood samples were obtained. Laboratory analysis of the serum samples showed that serum copper levels of the subjects were 0.93 +/- 0.14 mg/L. Serum copper level in control group was found as 0.70 +/- 0.14 mg/L, and it was significantly different between the two groups (p < 0.05). Of 30 coppersmiths, 17 HRCT findings are abnormal and seen with diffuse parenchymal interstitial lung disease pattern-ten (58.8%) respiratory bronchiolitis interstitial lung disease, five (29.4%) nonspecific interstitial pneumonia, and two (11.8%) usual interstitial pneumonia. The most prevalent HRCT pattern was micronodular pattern in workers. This is the first field study reporting the radiologic findings of coppersmiths and effect of the occupation on lung diseases.
Collapse
Affiliation(s)
- Canan Eren Dagli
- Chest Diseases Department, Faculty of Medicine, School of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Corradi M, Acampa O, Goldoni M, Adami E, Apostoli P, de Palma G, Pesci A, Mutti A. Metallic elements in exhaled breath condensate of patients with interstitial lung diseases. J Breath Res 2009; 3:046003. [PMID: 21386196 DOI: 10.1088/1752-7155/3/4/046003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Epidemiological data support the hypothesis that environmental and occupational agents play an important role in the development of interstitial lung diseases such as idiopathic interstitial pneumonia (IIPs) and sarcoidosis. The aim of this study was to assess the elemental composition of exhaled breath condensate (EBC) in patients with interstitial lung diseases (ILDs) of unknown etiology and healthy subjects as an indirect evaluation of tissue burden, which could improve our understanding of the role of metals in the pathogenesis of ILDs. EBC was obtained from 33 healthy subjects, 22 patients with sarcoidosis, 15 patients with non-specific interstitial pneumonia (NSIP) and 19 with IIPs. Trace elements and toxic metals in the samples were measured by means of inductively coupled plasma-mass spectrometry. There are only small overall differences in the EBC levels of a number of metallic elements among patients with idiopathic pulmonary fibrosis (IPF), NSIP or sarcoidosis, and no pattern is capable of distinguishing them with a high degree of sensitivity and specificity. However, a pattern of pneumotoxic (Si, Ni) and essential elements (Zn, Se and Cu) with the addition of Co distinguished the patients with ILDs from healthy non-smokers with relatively high degrees of sensitivity (96.4%) and specificity (90.9%). Assessing the elemental composition of EBC in patients with different ILDs seems to provide useful information. The non-invasiveness of the EBC method makes it suitable for patients with pulmonary diseases, although further studies are required to confirm the usefulness of this approach and to better understand the underlying pathophysiological processes.
Collapse
Affiliation(s)
- Massimo Corradi
- Department of Clinical Medicine, Nephrology and Health Sciences, University of Parma, Parma, Italy
| | | | | | | | | | | | | | | |
Collapse
|