1
|
Wu J, Ding X, Pang Y, Liu Q, Lei J, Zhang H, Zhang T. Research advance of occupational exposure risks and toxic effects of semiconductor nanomaterials. J Appl Toxicol 2025; 45:61-76. [PMID: 38837250 DOI: 10.1002/jat.4647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/11/2024] [Accepted: 05/12/2024] [Indexed: 06/07/2024]
Abstract
In recent years, semiconductor nanomaterials, as one of the most promising and applied classes of engineered nanomaterials, have been widely used in industries such as photovoltaics, electronic devices, and biomedicine. However, occupational exposure is unavoidable during the production, use, and disposal stages of products containing these materials, thus posing potential health risks to workers. The intricacies of the work environment present challenges in obtaining comprehensive data on such exposure. Consequently, there remains a significant gap in understanding the exposure risks and toxic effects associated with semiconductor nanomaterials. This paper provides an overview of the current classification and applications of typical semiconductor nanomaterials. It also delves into the existing state of occupational exposure, methodologies for exposure assessment, and prevailing occupational exposure limits. Furthermore, relevant epidemiological studies are examined. Subsequently, the review scrutinizes the toxicity of semiconductor nanomaterials concerning target organ toxicity, toxicity mechanisms, and influencing factors. The aim of this review is to lay the groundwork for enhancing the assessment of occupational exposure to semiconductor nanomaterials, optimizing occupational exposure limits, and promoting environmentally sustainable development practices in this domain.
Collapse
Affiliation(s)
- Jiawei Wu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Xiaomeng Ding
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Yanting Pang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Qing Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Jialin Lei
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Haopeng Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices Southeast University, Nanjing, China
| |
Collapse
|
2
|
Bi J, Mo C, Li S, Huang M, Lin Y, Yuan P, Liu Z, Jia B, Xu S. Immunotoxicity of metal and metal oxide nanoparticles: from toxic mechanisms to metabolism and outcomes. Biomater Sci 2023. [PMID: 37161951 DOI: 10.1039/d3bm00271c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The influence of metal and metal oxide nanomaterials on various fields since their discovery has been remarkable. They have unique properties, and therefore, have been employed in specific applications, including biomedicine. However, their potential health risks cannot be ignored. Several studies have shown that exposure to metal and metal oxide nanoparticles can lead to immunotoxicity. Different types of metals and metal oxide nanoparticles may have a negative impact on the immune system through various mechanisms, such as inflammation, oxidative stress, autophagy, and apoptosis. As an essential factor in determining the function and fate of immune cells, immunometabolism may also be an essential target for these nanoparticles to exert immunotoxic effects in vivo. In addition, the biodegradation and metabolic outcomes of metal and metal oxide nanoparticles are also important considerations in assessing their immunotoxic effects. Herein, we focus on the cellular mechanism of the immunotoxic effects and toxic effects of different types of metal and metal oxide nanoparticles, as well as the metabolism and outcomes of these nanoparticles in vivo. Also, we discuss the relationship between the possible regulatory effect of nanoparticles on immunometabolism and their immunotoxic effects. Finally, we present perspectives on the future research and development direction of metal and metal oxide nanomaterials to promote scientific research on the health risks of nanomaterials and reduce their adverse effects on human health.
Collapse
Affiliation(s)
- Jiaming Bi
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Chuzi Mo
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Siwei Li
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Mingshu Huang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Yunhe Lin
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Peiyan Yuan
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Zhongjun Liu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Bo Jia
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Shuaimei Xu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Wang S, Wu H, Zhang X, Luo S, Zhou S, Fan H, Lv C. Preparation of nano-selenium from chestnut polysaccharide and characterization of its antioxidant activity. Front Nutr 2023; 9:1054601. [PMID: 36741999 PMCID: PMC9889657 DOI: 10.3389/fnut.2022.1054601] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/31/2022] [Indexed: 01/20/2023] Open
Abstract
Chestnut is widely cultivated and has high nutritional value due to its richness in polysaccharides. In order to improve the antioxidant activity of chestnut polysaccharide, chestnut polysaccharide (CP) was extracted by ultrasonic-assisted water extraction and alcohol precipitation and purified by cellulose DEAE-52 exchange and Sephadex G-100 chromatography in this study. CP isolates were characterized by I2-KI reaction, three-strand helical structure analysis, infrared spectrum analysis, and nuclear magnetic resonance detection. The results showed that CP is a pyrylan sugar with triple helical structure and connected by α-glycosidic bonds, with sugar residues 1,4-α-D-Glcp, 1,6-α-D-Galp, 1,5-α-L-Araf, 1,4-α-L-Rhap, and 1,4-β-D-Glcp in the CP backbone. After purification, the branching structure, rod, and spherical structure were significantly increased, with reduced lamellar structure. The in vitro scavenging rates of CP at 10 mg·mL-1 against DPPH, hydroxyl radicals, and ABTS were 88.95, 41.38, and 48.16%, respectively. The DPPH free radical scavenging rate of purified polysaccharide fraction CP-1a was slightly enhanced, and the other rates showed a small decrease. Selenized chestnut polysaccharide (CP-Se) was prepared using nano-selenium method. The selenization method was optimized and stable Se-CP was obtained. When the concentration was 5 mg·mL-1, Se-CP had significantly higher scavenging abilities 89.81 ± 2.33, 58.50 ± 1.60, and 40.66 ± 1.91% for DPPH, hydroxyl radical, and ABTS radicals, respectively, than those of CP. The results of this study provide insight into the effects purification and selenization of chestnut polysaccharide on antioxidant activity, and also provide a theoretical basis for the development of chestnut polysaccharide for use in functional foods or health products.
Collapse
Affiliation(s)
- Shanshan Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Hao Wu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Xiaoshuang Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Shihong Luo
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Shuang Zhou
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Haiyan Fan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China,*Correspondence: Haiyan Fan ✉
| | - Chunmao Lv
- Food Science College, Shenyang Agricultural University, Shenyang, China,Chunmao Lv ✉
| |
Collapse
|
4
|
Xiong P, Huang X, Ye N, Lu Q, Zhang G, Peng S, Wang H, Liu Y. Cytotoxicity of Metal-Based Nanoparticles: From Mechanisms and Methods of Evaluation to Pathological Manifestations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2106049. [PMID: 35343105 PMCID: PMC9165481 DOI: 10.1002/advs.202106049] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/09/2022] [Indexed: 05/05/2023]
Abstract
Metal-based nanoparticles (NPs) are particularly important tools in tissue engineering-, drug carrier-, interventional therapy-, and biobased technologies. However, their complex and varied migration and transformation pathways, as well as their continuous accumulation in closed biological systems, cause various unpredictable toxic effects that threaten human and ecosystem health. Considerable experimental and theoretical efforts have been made toward understanding these cytotoxic effects, though more research on metal-based NPs integrated with clinical medicine is required. This review summarizes the mechanisms and evaluation methods of cytotoxicity and provides an in-depth analysis of the typical effects generated in the nervous, immune, reproductive, and genetic systems. In addition, the challenges and opportunities are discussed to enhance future investigations on safer metal-based NPs for practical commercial adoption.
Collapse
Affiliation(s)
- Peizheng Xiong
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, P. R. China
| | - Xiangming Huang
- The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi Province, 530023, P. R. China
| | - Naijing Ye
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, P. R. China
| | - Qunwen Lu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, P. R. China
| | - Gang Zhang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, P. R. China
| | - Shunlin Peng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, P. R. China
| | - Hongbo Wang
- Institute of Smart City and Intelligent Transportation, Southwest Jiaotong University, Chengdu, 611700, P. R. China
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Yiyao Liu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, P. R. China
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| |
Collapse
|
5
|
Jin SE, Kim EJ, Kim H, Kim H, Hwang W, Hong SW. In vitro and in vivo toxicological evaluation of transition metal-doped titanium dioxide nanoparticles: Nickel and platinum. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 115:110843. [PMID: 32600674 DOI: 10.1016/j.msec.2020.110843] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/09/2019] [Accepted: 03/11/2020] [Indexed: 12/19/2022]
Abstract
Transition metal-doped titanium dioxide nanoparticles (M-TiO2 NPs) have been studied to enhance the activity of TiO2 NPs in biomedical applications. In this study, in vitro and in vivo toxicological aspects of M-TiO2 NPs were reported to assess the safety of these materials. M-TiO2 NPs were synthesized via a photo-deposition technique. Nickel (Ni) and platinum (Pt) were used as dopants. Physicochemical properties, cytotoxicity, phototoxicity, gene ontology (GO) and dermal toxicity of M-TiO2 NPs were investigated. Ni-TiO2 (Ni, 1.02%) and Pt-TiO2 (Pt, 0.26%) NPs were sphere shape crystals with nanoscale size. ARPE-19 cells were more susceptible to Pt-TiO2 NPs (EC50, 0.796 mg/mL) than Ni-TiO2 NPs (EC50, 2.945 mg/mL). M-TiO2 NPs were rated as probably phototoxic to phototoxic. GO suggested binding function and metabolic processes as a risk mechanism of M-TiO2 NPs. In vivo toxicological effects of Ni-TiO2 NPs were not observed on body weight, serum aspartate transaminase/alanine transaminase levels, and skin histology at 61.5-6150 mg/kg. Specifically, skin thickness was not significantly modified (max. 33.2 ± 8.7 μm) and inflammation grade was less than level 2 (max. 1.2 ± 0.4). From these results, Ni-TiO2 and Pt-TiO2 NPs show promise as enhanced photocatalysts for safe and sustainable usage.
Collapse
Affiliation(s)
- Su-Eon Jin
- Research Institute for Medical Sciences, College of Medicine, Inha University, Incheon 22212, Republic of Korea.
| | - Eun-Ju Kim
- Center for Water Resources Cycle Research, Korea Institute of Science and Technology (KIST) School, KIST, Seoul 02792, Republic of Korea
| | - Hyunmin Kim
- Department of Anesthesiology and Pain Medicine, College of Medicine, Inha University, Incheon 22332, Republic of Korea
| | - Hyunzu Kim
- Department of Anesthesiology and Pain Medicine, College of Medicine, Inha University, Incheon 22332, Republic of Korea
| | | | - Seok Won Hong
- Center for Water Resources Cycle Research, Korea Institute of Science and Technology (KIST) School, KIST, Seoul 02792, Republic of Korea
| |
Collapse
|
6
|
Gato WE, Hunter DA, Byrd IC, Mays CA, Yau W, Wu J. Assessment of the short-term toxicity of TiO 2 nanofiber in Sprague Dawley rats. ENVIRONMENTAL TOXICOLOGY 2017; 32:1775-1783. [PMID: 28181387 DOI: 10.1002/tox.22400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 01/06/2017] [Accepted: 01/15/2017] [Indexed: 05/28/2023]
Abstract
Synthetic nanomaterials have many unique chemical and physical properties, mainly due to their high specific surface area and quantum confinement effect. Specifically, titanium dioxide (TiO2 ) nanomaterial has high stability, anticorrosive, and photocatalytic properties. However, there are concerns over adverse biological effects resulting from bioeffects. This study was to investigate adverse effects associated with acute ingestion of TiO2 nanofiber (TDNF). TDNF was fabricated via electrospinning method, followed by dissolution in water. Six- to seven-week-old male Sprague Dawley rats were exposed to a total of 0, 40, and 60 ppm of TDNF for 2 weeks via oral gavage. Serum total protein and weight gain during the course of this study displayed marginal concentration-dependent alterations. These findings were followed by a global gene expression analysis to identify which transcripts might be responsive to TNDF toxicity. Differentially expressed mRNA levels were dose-dependently higher in animals exposed to TNDF. The majority of the affected genes were biochemically involved in immune response and inflammation. We believe this is due to the fact that TNDF is unable to penetrate the cell and forms phagocytosis sites that trigger inflammatory and immune response. All results taken together, short-term ingestion of TNDF produced marginal effects indicative of inflammation. Finally, the broad gene expression data were validated through quantification of immunoglobulin heavy chain alpha (Igha). Igha gene was upregulated in treated groups, showing similar expression patterns to the global gene expression data.
Collapse
Affiliation(s)
- Worlanyo E Gato
- Department of Chemistry, Georgia Southern University, Statesboro, GA, 30458
| | - Daniel A Hunter
- Department of Chemistry, Georgia Southern University, Statesboro, GA, 30458
| | - Ian C Byrd
- Department of Chemistry, Georgia Southern University, Statesboro, GA, 30458
| | - Christopher A Mays
- Department of Chemistry, Georgia Southern University, Statesboro, GA, 30458
| | - Wilson Yau
- Department of Pathology, College of Veterinary Medicine, The University of Georgia, Athens, GA, 30602
| | - Ji Wu
- Department of Chemistry, Georgia Southern University, Statesboro, GA, 30458
| |
Collapse
|
7
|
Shakeel M, Jabeen F, Shabbir S, Asghar MS, Khan MS, Chaudhry AS. Toxicity of Nano-Titanium Dioxide (TiO2-NP) Through Various Routes of Exposure: a Review. Biol Trace Elem Res 2016; 172:1-36. [PMID: 26554951 DOI: 10.1007/s12011-015-0550-x] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 10/19/2015] [Indexed: 01/18/2023]
Abstract
Nano-titanium dioxide (TiO2) is one of the most commonly used materials being synthesized for use as one of the top five nanoparticles. Due to the extensive application of TiO2 nanoparticles and their inclusion in many commercial products, the increased exposure of human beings to nanoparticles is possible. This exposure could be routed via dermal penetration, inhalation and oral ingestion or intravenous injection. Therefore, regular evaluation of their potential toxicity and distribution in the bodies of exposed individuals is essential. Keeping in view the potential health hazards of TiO2 nanoparticles for humans, we reviewed the research articles about studies performed on rats or other mammals as animal models. Most of these studies utilized the dermal or skin and the pulmonary exposures as the primary routes of toxicity. It was interesting that only very few studies revealed that the TiO2 nanoparticles could penetrate through the skin and translocate to other tissues, while many other studies demonstrated that no penetration or translocation could happen through the skin. Conversely, the TiO2 nanoparticles that entered through the pulmonary route were translocated to the brain or the systemic circulation from where these reached other organs like the kidney, liver, etc. In most studies, TiO2 nanoparticles appeared to have caused oxidative stress, histopathological alterations, carcinogenesis, genotoxicity and immune disruption. Therefore, the use of such materials in humans must be either avoided or strictly managed to minimise risks for human health in various situations.
Collapse
Affiliation(s)
- Muhammad Shakeel
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Farhat Jabeen
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan.
| | - Samina Shabbir
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| | | | - Muhammad Saleem Khan
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Abdul Shakoor Chaudhry
- School of Agriculture, Food and Rural Development, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
8
|
Shandilya N, Le Bihan O, Bressot C, Morgeneyer M. Emission of titanium dioxide nanoparticles from building materials to the environment by wear and weather. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:2163-2170. [PMID: 25590625 DOI: 10.1021/es504710p] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In the present work, we investigate the effect of weathering duration on a commercial photocatalytic nanocoating on the basis of its nanoparticle emission tendency into two media, air and water. It is found that increased weathering duration results in stepwise structural deterioration of the nanocoating, which in turn decreases the nanocoating life, changes the nanocoating removal mechanism, and increases the particle emission concentration. Emission of free TiO2 nanoparticles is found to be weathering duration dependent. Three quantities are introduced: emission transition pace (ETP), stable emission level (SEL), and stable emission duration (SED). By linear extrapolation of these quantities from short weathering durations, complete failure of the nanocoatings can be predicted and, moreover, the potential increase of nanoparticles release into the air.
Collapse
Affiliation(s)
- Neeraj Shandilya
- Institut National de l'Environnement Industriel et des Risques , Parc Technologique Alata BP 2, 60550 Verneuil-en-Halatte, France
| | | | | | | |
Collapse
|
9
|
Li M, Yin JJ, Wamer WG, Lo YM. Mechanistic characterization of titanium dioxide nanoparticle-induced toxicity using electron spin resonance. J Food Drug Anal 2014; 22:76-85. [PMID: 24673905 PMCID: PMC9359148 DOI: 10.1016/j.jfda.2014.01.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/02/2013] [Accepted: 12/21/2013] [Indexed: 12/29/2022] Open
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are one of the most widely used nanomaterials that have been manufactured worldwide and applied in different commercial realms. The well-recognized ability of TiO2 to promote the formation of reactive oxygen species (ROS) has been extensively studied as one of the important mechanisms underlying TiO2 NPs toxicity. As the “gold standard” method to quantify and identify ROS, electron spin resonance (ESR) spectroscopy has been employed in many studies aimed at evaluating TiO2 NPs safety. This review aims to provide a thorough discussion of current studies using ESR as the primary method to unravel the mechanism of TiO2 NPs toxicity. ESR spin label oximetry and immune-spin trapping techniques are also briefly introduced, because the combination of spin trapping/labeling techniques offers a promising tool for studying the oxidative damage caused by TiO2 NPs.
Collapse
Affiliation(s)
- Meng Li
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, MD 20740, USA; Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
| | - Jun-Jie Yin
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, MD 20740, USA
| | - Wayne G Wamer
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, MD 20740, USA
| | - Y Martin Lo
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
10
|
Shi H, Magaye R, Castranova V, Zhao J. Titanium dioxide nanoparticles: a review of current toxicological data. Part Fibre Toxicol 2013. [PMID: 23587290 DOI: 10.1186/17438977-10-15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
Titanium dioxide (TiO2) nanoparticles (NPs) are manufactured worldwide in large quantities for use in a wide range of applications. TiO2 NPs possess different physicochemical properties compared to their fine particle (FP) analogs, which might alter their bioactivity. Most of the literature cited here has focused on the respiratory system, showing the importance of inhalation as the primary route for TiO2 NP exposure in the workplace. TiO2 NPs may translocate to systemic organs from the lung and gastrointestinal tract (GIT) although the rate of translocation appears low. There have also been studies focusing on other potential routes of human exposure. Oral exposure mainly occurs through food products containing TiO2 NP-additives. Most dermal exposure studies, whether in vivo or in vitro, report that TiO2 NPs do not penetrate the stratum corneum (SC). In the field of nanomedicine, intravenous injection can deliver TiO2 nanoparticulate carriers directly into the human body. Upon intravenous exposure, TiO2 NPs can induce pathological lesions of the liver, spleen, kidneys, and brain. We have also shown here that most of these effects may be due to the use of very high doses of TiO2 NPs. There is also an enormous lack of epidemiological data regarding TiO2 NPs in spite of its increased production and use. However, long-term inhalation studies in rats have reported lung tumors. This review summarizes the current knowledge on the toxicology of TiO2 NPs and points out areas where further information is needed.
Collapse
Affiliation(s)
- Hongbo Shi
- Public Health Department of Medical School, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Ningbo University, Ningbo, Zhejiang Province, 315211, PR China
| | | | | | | |
Collapse
|
11
|
Shi H, Magaye R, Castranova V, Zhao J. Titanium dioxide nanoparticles: a review of current toxicological data. Part Fibre Toxicol 2013; 10:15. [PMID: 23587290 PMCID: PMC3637140 DOI: 10.1186/1743-8977-10-15] [Citation(s) in RCA: 813] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 04/02/2013] [Indexed: 01/19/2023] Open
Abstract
Titanium dioxide (TiO2) nanoparticles (NPs) are manufactured worldwide in large quantities for use in a wide range of applications. TiO2 NPs possess different physicochemical properties compared to their fine particle (FP) analogs, which might alter their bioactivity. Most of the literature cited here has focused on the respiratory system, showing the importance of inhalation as the primary route for TiO2 NP exposure in the workplace. TiO2 NPs may translocate to systemic organs from the lung and gastrointestinal tract (GIT) although the rate of translocation appears low. There have also been studies focusing on other potential routes of human exposure. Oral exposure mainly occurs through food products containing TiO2 NP-additives. Most dermal exposure studies, whether in vivo or in vitro, report that TiO2 NPs do not penetrate the stratum corneum (SC). In the field of nanomedicine, intravenous injection can deliver TiO2 nanoparticulate carriers directly into the human body. Upon intravenous exposure, TiO2 NPs can induce pathological lesions of the liver, spleen, kidneys, and brain. We have also shown here that most of these effects may be due to the use of very high doses of TiO2 NPs. There is also an enormous lack of epidemiological data regarding TiO2 NPs in spite of its increased production and use. However, long-term inhalation studies in rats have reported lung tumors. This review summarizes the current knowledge on the toxicology of TiO2 NPs and points out areas where further information is needed.
Collapse
Affiliation(s)
- Hongbo Shi
- Public Health Department of Medical School, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Ningbo University, Ningbo, Zhejiang Province, 315211, P. R. China
| | - Ruth Magaye
- Public Health Department of Medical School, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Ningbo University, Ningbo, Zhejiang Province, 315211, P. R. China
| | - Vincent Castranova
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA
| | - Jinshun Zhao
- Public Health Department of Medical School, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Ningbo University, Ningbo, Zhejiang Province, 315211, P. R. China
| |
Collapse
|