1
|
Xiaofei L, Yan H, Yu F, Jing F, Na Z. The Role of PTEN/PI3K/AKT Signaling Pathway in Apoptosis of Liver Cells in Cocks with Manganese Toxicity. Biol Trace Elem Res 2022; 200:4444-4452. [PMID: 34802095 DOI: 10.1007/s12011-021-03039-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/16/2021] [Indexed: 10/19/2022]
Abstract
PTEN/PI3K/AKT signaling pathway is an important pathway for cell proliferation and apoptosis. Exposure to excess manganese (Mn) can cause damage in organisms. However, whether Mn toxicity can cause apoptosis is still not clear. In order to explore the mechanism of PTEN/PI3K/AKT signaling pathway responsible for Mn-induced apoptotic injury, 160 Hyline cocks were divided into four groups; there were the control group (Con group), the low-dose Mn group (L group), the medium-dose Mn group (M group), and the high-dose Mn group (H group). The cocks in Con group, L group, M group, and H group were fed with MnCl2 diet containing 100, 600, 900, and 1800 mg/kg, respectively. The growth status of cocks in each group was observed on days 30, 60, and 90. Thirty cocks were randomly selected from each group and sacrificed on day 90 for optical microscope observation and fluorescence microscopic observation, as well as for transcription-level expression of apoptosis-related genes and heat shock proteins (HSPs) in the liver. The results showed that the growth status of cocks was gradually depressed with the extension of feeding time and with the increase of Mn dose. On day 90, the results of optical microscope observation and fluorescence microscope observation showed that damage and apoptosis appeared in the cock liver cells under Mn exposure groups. The results of transcription-level detection of apoptosis-related genes and HSPs indicated that Mn exposure upregulated eleven pro-apoptotic genes (including RIP1, RIP3, MLKL, Bax, Caspase-3, FADD, Cyt-C, ERK, JNK, Caspase-8, and P38) and downregulated one anti-apoptotic gene Bcl-2, further meaning that exposure to Mn-induced apoptosis in cock liver cells and PTEN/PI3K/AKT signaling pathway took part in molecular mechanism of apoptosis caused by excess Mn. Moreover, in our experiment, the increase of four HSPs (including HSP27, HSP40, HSP60, and HSP70) was found after Mn treatment for 90 days, which indicated that Mn stress triggered HSPs and HSPs were involved in molecular mechanism of Mn poisoning in cock livers. In addition, we also found there was upregulated dose-dependent manner in fifteen detected genes and there was downregulated dose-dependent manner in Bcl-2, indicating that the apoptosis caused by Mn poisoning in cock liver cells was dose-dependent.
Collapse
Affiliation(s)
- Liu Xiaofei
- College of Food Engineering, Key Laboratory of Food Science and Engineering of Heilongjiang Ordinary Higher Colleges/Key Laboratory of Grain Food and Comprehensive Processing of Heilongjiang Province, Harbin University of Commerce, Harbin, 150028, People's Republic of China
| | - Hou Yan
- College of Food Engineering, Key Laboratory of Food Science and Engineering of Heilongjiang Ordinary Higher Colleges/Key Laboratory of Grain Food and Comprehensive Processing of Heilongjiang Province, Harbin University of Commerce, Harbin, 150028, People's Republic of China
| | - Fu Yu
- College of Food Science, Southwest University, Chongqing, 400715, People's Republic of China
| | - Fan Jing
- College of Food Engineering, Key Laboratory of Food Science and Engineering of Heilongjiang Ordinary Higher Colleges/Key Laboratory of Grain Food and Comprehensive Processing of Heilongjiang Province, Harbin University of Commerce, Harbin, 150028, People's Republic of China
| | - Zhang Na
- College of Food Engineering, Key Laboratory of Food Science and Engineering of Heilongjiang Ordinary Higher Colleges/Key Laboratory of Grain Food and Comprehensive Processing of Heilongjiang Province, Harbin University of Commerce, Harbin, 150028, People's Republic of China.
| |
Collapse
|
2
|
Hernández RB, Carrascal M, Abian J, Michalke B, Farina M, Gonzalez YR, Iyirhiaro GO, Moteshareie H, Burnside D, Golshani A, Suñol C. Manganese-induced neurotoxicity in cerebellar granule neurons due to perturbation of cell network pathways with potential implications for neurodegenerative disorders. Metallomics 2020; 12:1656-1678. [PMID: 33206086 DOI: 10.1039/d0mt00085j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Manganese (Mn) is essential for living organisms, playing an important role in nervous system function. Nevertheless, chronic and/or acute exposure to this metal, especially during early life stages, can lead to neurotoxicity and dementia by unclear mechanisms. Thus, based on previous works of our group with yeast and zebrafish, we hypothesized that the mechanisms mediating manganese-induced neurotoxicity can be associated with the alteration of protein metabolism. These mechanisms may also depend on the chemical speciation of manganese. Therefore, the current study aimed at investigating the mechanisms mediating the toxic effects of manganese in primary cultures of cerebellar granule neurons (CGNs). By exposing cultured CGNs to different chemical species of manganese ([[2-[(dithiocarboxy)amino]ethyl]carbamodithioato]](2-)-kS,kS']manganese, named maneb (MB), and [[1,2-ethanediylbis[carbamodithioato]](2-)]manganese mixture with [[1,2-ethanediylbis[carbamodithioato]](2-)]zinc, named mancozeb (MZ), and manganese chloride (MnCl2)), and using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, we observed that both MB and MZ induced similar cytotoxicity (LC50∼ 7-9 μM), which was higher than that of MnCl2 (LC50∼ 27 μM). Subsequently, we applied systems biology approaches, including metallomics, proteomics, gene expression and bioinformatics, and revealed that independent of chemical speciation, for non-cytotoxic concentrations (0.3-3 μM), Mn-induced neurotoxicity in CGNs is associated with metal dyshomeostasis and impaired protein metabolism. In this way, we verified that MB induced more post-translational alterations than MnCl2, which can be a plausible explanation for cytotoxic differences between both chemical species. The metabolism of proteins is one of the most energy consuming cellular processes and its impairment appears to be a key event of some cellular stress processes reported separately in other studies such as cell cycle arrest, energy impairment, cell signaling, excitotoxicity, immune response, potential protein accumulation and apoptosis. Interestingly, we verified that Mn-induced neurotoxicity shares pathways associated with the development of Alzheimer's disease, Amyotrophic Lateral Sclerosis, Huntington's disease, and Parkinson's disease. This has been observed in baker's yeast and zebrafish suggesting that the mode of action of Mn may be evolutionarily conserved.
Collapse
Affiliation(s)
- Raúl Bonne Hernández
- Laboratory of Bioinorganic and Environmental Toxicology - LABITA, Department of Exact and Earth Sciences, Federal University of São Paulo, Rua Prof. Artur Riedel, 275, CEP 09972-270, Diadema, SP, Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Aendo P, Netvichian R, Viriyarampa S, Songserm T, Tulayakul P. Comparison of zinc, lead, cadmium, cobalt, manganese, iron, chromium and copper in duck eggs from three duck farm systems in Central and Western, Thailand. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 161:691-698. [PMID: 29936379 DOI: 10.1016/j.ecoenv.2018.06.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 06/08/2023]
Abstract
This was a comparative study of the heavy metal levels (Zn, Pb, Cd, Co, Mn, Fe, Cr and Cu) in eggs from free grazing duck, small-scale, and large-scale farms in central and western regions of Thailand. A questionnaire was used to gather demographic data for the analysis of heavy metal contamination in feed, drinking water and wastewater. The correlation between the amounts of heavy metal contamination in eggs was studied against the heavy metals found in feed, drinking water and wastewater. The levels of Pb, Cd, Cr and Cu in eggs from large-scale farms were significantly higher than small farms and free grazing farms at P < 0.001. Zn in eggs from free grazing farms was higher than in the small farms and large-scale farms sampled. The contamination of Pb in eggs from all types of farms exceeded the standard limits of ACFS 6703-2005. The average levels of Pb in the eggs from small-scale farms correlated significantly with the level of Pb found in the feed at P < 0.05, while the average levels of Pb in eggs from free grazing duck farms correlated significantly with the levels of Pb found in the drinking water at P < 0.05. Additionally, the average level of Cu in duck egg from large-scale farms correlated significantly with the level of Cu found in the feeds at P < 0.001. Furthermore, from a calculation of the provisional tolerable daily intake (WHO-FAO) of heavy metals in this study, it was concluded that consumers face health risks from Cd contamination. Thus, heavy metal contamination, especially Pb and Cd in duck egg, must be of concern due to the health risks and the route of crucial heavy metals contamination should be elucidated and long - term monitoring of heavy metals posing health effects in farm systems should be carried out.
Collapse
Affiliation(s)
- P Aendo
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand; Center for Duck Health Science, Faculty of Veterinary Medicine, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - R Netvichian
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - S Viriyarampa
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - T Songserm
- Center for Duck Health Science, Faculty of Veterinary Medicine, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand; Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - P Tulayakul
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand; Center for Duck Health Science, Faculty of Veterinary Medicine, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand.
| |
Collapse
|
4
|
Dai X, Xing C, Cao H, Luo J, Wang T, Liu P, Guo X, Hu G, Zhang C. Alterations of mitochondrial antioxidant indexes and apoptosis in duck livers caused by Molybdenum or/and cadmium. CHEMOSPHERE 2018; 193:574-580. [PMID: 29169133 DOI: 10.1016/j.chemosphere.2017.11.063] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/10/2017] [Accepted: 11/14/2017] [Indexed: 06/07/2023]
Abstract
Cadmium (Cd) and high Molybdenum (Mo) can lead to adverse reactions on animals, but the co-induced toxicity of Mo and Cd to liver in ducks was not well understood. To investigate the co-induced toxic effects of Mo combined with Cd on mitochondrial oxidative stress and apoptosis in duck livers. 240 healthy 11-day-old ducks were randomly divided into 6 groups (control, LMo group, HMo group, Cd group, LMoCd group and HMoCd group). After being treated for 30, 60, 90 and 120 days, liver mitochondrial antioxidant indexes, ceruloplasmin (CP), metallothionein (MT), Bak-1 and Caspase-3 genes mRNA expression levels, and ultrastructural changes were evaluated. The results showed that total antioxidative capacity (T-AOC), catalase (CAT), superoxide dismutase (SOD) and xanthine oxidase (XOD) activities in experimental groups were decreased, whereas malondialdehyde (MDA) content and nitric oxide synthase (NOS) activity were increased compared with control group, and these changes of co-treated groups were more obvious in the later period of the experiment. The mRNA expression levels of CP, Bak-1 and Caspase-3 were up-regulated in experimental groups compared with control group and showed significant difference between co-treated groups and single treated groups. The mRNA expression level of MT in Cd group was higher than that in co-treated groups. Additionally, ultrastructural changes showed karyopyknosis, mitochondrial swelling, vacuolation and disruption of mitochondrial cristae in co-treated groups. Taken together, it was suggested that dietary Mo and Cd might lead to mitochondrial oxidative stress and apoptosis in duck livers, and it showed a possible synergistic relationship between the two elements.
Collapse
Affiliation(s)
- Xueyan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Junrong Luo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Tiancheng Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Ping Liu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China.
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China.
| |
Collapse
|
5
|
Ma Z, Wang C, Liu C, Yan DY, Deng Y, Liu W, Yang TY, Xu ZF, Xu B. The role S-nitrosylation in manganese-induced autophagy dysregulation in SH-SY5Y cells. ENVIRONMENTAL TOXICOLOGY 2017; 32:2428-2439. [PMID: 28856835 DOI: 10.1002/tox.22457] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/24/2017] [Accepted: 07/27/2017] [Indexed: 06/07/2023]
Abstract
Overexposure to manganese (Mn) has been known to induce nitrosative stress. The dysregulation of autophagy has implicated in nitric oxide (NO) bioactivity alterations. However, the mechanism of Mn-induced autophagic dysregulation is unclear. The protein of Bcl-2 was considered as a key role that could participate to the autophagy signaling regulation. To further explore whether S-nitrosylation of Bcl-2 involved in Mn-induced autophagy dysregulation, we treated human neuroblastoma (SH-SY5Y) cells with Mn and pretreated cells with 1400 W, a selective iNOS inhibitor. After cells were treated with 400 μM Mn for 24 h, there were significant increases in production of NO, inducible NO synthase (iNOS) activity, the mRNA and protein expressions of iNOS. Interestingly, autophagy was activated after cells were treated with Mn for 0-12 h; while the degradation process of autophagy-lysosome pathway was blocked after cells were treated with Mn for 24 h. Moreover, S-nitrosylated JNK and Bcl-2 also increased and phospho-JNK and phospho-Bcl-2 reduced in Mn-treated cells. Then, the affinity between Bcl-2 and Beclin-1 increased significantly in Mn-treated cells. We used the 1400 W to neutralize Mn-induced nitrosative stress. The results showed that S-nitrosylated JNK and Bcl-2 reduced while their phosphorylation were recovered to some extent. The findings revealed that NO-mediated S-nitrosylation of Bcl-2 directly affected the interaction between Beclin-1 and Bcl-2 leading to autophagy inhibition.
Collapse
Affiliation(s)
- Zhuo Ma
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China
| | - Can Wang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China
| | - Chang Liu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China
| | - Dong-Ying Yan
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China
| | - Tian-Yao Yang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China
| | - Zhao-Fa Xu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China
| |
Collapse
|
6
|
Chen P, Zhu Y, Wan H, Wang Y, Hao P, Cheng Z, Liu Y, Liu J. Effects of the Oral Administration of K 2Cr 2O 7 and Na 2SeO 3 on Ca, Mg, Mn, Fe, Cu, and Zn Contents in the Heart, Liver, Spleen, and Kidney of Chickens. Biol Trace Elem Res 2017; 180:285-296. [PMID: 28353138 DOI: 10.1007/s12011-017-0999-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 03/14/2017] [Indexed: 12/25/2022]
Abstract
This study aimed to investigate the effects of selenium on the ion profiles in the heart, liver, spleen, and kidney through the oral administration of hexavalent chromium. Approximately 22.14 mg/kg b.w. K2Cr2O7 was added to water to establish a chronic poisoning model. Different selenium levels (0.00, 0.31, 0.63, 1.25, 2.50, and 5.00 mg Na2SeO3/kg b.w.) around the safe dose were administered to the experimental group model. Ca, Mg, Mn, Fe, Cu, and Zn were detected in the organs through flame atomic absorption spectrometry after these organs were exposed to K2Cr2O7 and Na2SeO3 for 14, 28, and 42 days. Results showed that these elements exhibited various changes. Ca contents declined in the heart, liver, and spleen. Ca contents also decreased on the 28th day and increased on the 42nd day in the kidney. Mn contents declined in the heart and spleen but increased in the kidney. Mn contents also decreased on the 28th day and increased on the 42nd day in the liver. Cu contents declined in the heart and spleen. Cu contents increased on the 28th day and decreased on the 42nd day in the liver and kidney. Zn contents declined in the heart and spleen. Zn contents increased on the 28th day and decreased on the 42nd day in the liver and kidney. Fe contents decreased in the heart and liver. Fe contents increased on the 28th day and decreased on the 42nd day in the spleen and kidney. Mg contents did not significantly change in these organs. Appropriate selenium contents enhanced Mn and Zn contents, which were declined by chromium. Conversely, appropriate selenium contents reduced Ca, Fe, and Cu contents, which were increased by chromium. In conclusion, the exposure of chickens to K2Cr2O7 induced changes in different trace elements, and Na2SeO3 supplementation could alleviate this condition.
Collapse
Affiliation(s)
- Peng Chen
- College of Veterinary Medicine, Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China
| | - Yiran Zhu
- College of Veterinary Medicine, Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China
| | - Huiyu Wan
- College of Veterinary Medicine, Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China
| | - Yang Wang
- College of Veterinary Medicine, Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China
| | - Pan Hao
- College of Veterinary Medicine, Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China
| | - Ziqiang Cheng
- College of Veterinary Medicine, Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China
| | - Yongxia Liu
- College of Veterinary Medicine, Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China
| | - Jianzhu Liu
- College of Veterinary Medicine, Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China.
| |
Collapse
|
7
|
Zhang K, Zhu Y, Wang X, Zhao X, Li S, Teng X. Excess Manganese-Induced Apoptosis in Chicken Cerebrums and Embryonic Neurocytes. Biol Trace Elem Res 2017; 180:297-305. [PMID: 28361387 DOI: 10.1007/s12011-017-0992-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 03/08/2017] [Indexed: 11/25/2022]
Abstract
There were many studies about the effect of excess manganese (Mn) on nervous system apoptosis; however, Mn-induced apoptosis in chicken cerebrums and embryonic neurocytes was unclear. The purpose of this study was to investigate the effect of excess Mn on chicken cerebrum and embryonic neurocyte apoptosis. Seven-day-old Hyline male chickens were fed either a commercial diet or three levels of manganese chloride (MnCl2)-added commercial diets containing 600-, 900-, and 1800-mg/kg-Mn diet, respectively. On the 30th, 60th, and 90th days, cerebrums were collected. Fertilized Hyline chicken eggs were hatched for 6-8 days and were selected. Embryonic neurocytes with 0, 0.5, 1, 1.5, 2, 2.5, and 3 mM Mn were collected and were cultured for 12, 24, 36, and 48 h, respectively. The following research contents were performed: superoxide dismutase (SOD) and total antioxidant capacity (T-AOC) activities; tumor protein p53 (p53), B cell lymphoma-2 (Bcl-2), B cell lymphoma extra large (Bcl-x), Bcl-2-associated X protein (Bax), Bcl-2 homologous antagonist/killer (Bak), fas, and caspase-3 messenger RNA (mRNA) expression; and morphologic observation. The results indicated that excess Mn inhibited SOD and T-AOC activities; induced p53, Bax, Bak, fas, and caspase-3 mRNA expression; and inhibited Bcl-2 and Bcl-x mRNA expression in chicken cerebrums and embryonic neurocytes. There were dose-dependent manners on all the above factors at all the time points and time-dependent manners on SOD activity of 1800-mg/kg-Mn group, T-AOC activity, and apoptosis-related gene mRNA expression in all the treatment groups in chicken cerebrums. Excess Mn induced chicken cerebrum and embryonic neurocyte apoptosis.
Collapse
Affiliation(s)
- Kun Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yihao Zhu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xiaoyu Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xin Zhao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
8
|
Yuan ZX, Chen HB, Li SJ, Huang XW, Mo YH, Luo YN, He SN, Deng XF, Lu GD, Jiang YM. The influence of manganese treatment on the distribution of metal elements in rats and the protection by sodium para-amino salicylic acid. J Trace Elem Med Biol 2016; 36:84-9. [PMID: 27259357 DOI: 10.1016/j.jtemb.2016.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 03/11/2016] [Accepted: 04/08/2016] [Indexed: 12/15/2022]
Abstract
Manganese (Mn) overexposure induced neurological damages, which could be potentially protected by sodium para-aminosalicylic acid (PAS-Na). In this study, we systematically detected the changes of divalent metal elements in most of the organs and analyzed the distribution of the metals in Mn-exposed rats and the protection by PAS-Na. Sprague Dawley (SD) rats received intraperitoneal injections of 15mg/kg MnCl2·4H2O (5d/week for 3 weeks), followed by subcutaneous (back) injections of PAS-Na (100 and 200mg/kg, everyday for 5 weeks). The concentrations of Mn and other metal elements [Iron (Fe), Copper (Cu), Zinc (Zn), Magnesium (Mg), Calcium (Ca)] in major organs (liver, spleen, kidney, thighbone and iliac bone, cerebral cortex, hippocampus and testes) and blood by Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES). The results showed that Mn overexposure significantly increased Mn in most organs, Fe and Zn in liver, Fe and Mg in blood; however decreased Fe, Cu, Zn, Mg and Ca in cortex, Cu and Zn in kidney, Cu and Mg in iliac bone, and Zn in blood. In contrast, PAS-Na treatment restored most changes particularly in cortex. In conclusion, excessive Mn exposure disturbed the balance of other metal elements but PAS-Na post-treatments could restore these alterations.
Collapse
Affiliation(s)
- Zong-Xiang Yuan
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, PR China
| | - Hai-Bin Chen
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, PR China; Center for Disease Control and Prevention, Nanning, PR China
| | - Shao-Jun Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, PR China
| | - Xiao-Wei Huang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, PR China
| | - Yu-Huan Mo
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, PR China
| | - Yi-Ni Luo
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, PR China
| | - Sheng-Nan He
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, PR China
| | - Xiang-Fa Deng
- Department of Human Anatomy, School of Basic Medicine, Guangxi Medical University, Nanning, Guangxi, PR China
| | - Guo-Dong Lu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, PR China; The Key Laboratory of High-Incidence Diseases Prevention and Control, Guangxi Medical University, Nanning, PR China.
| | - Yue-Ming Jiang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, PR China.
| |
Collapse
|
9
|
Liu Y, Zhao X, Zhang X, Zhao X, Liu Y, Liu J. Effects of Oral Administration of CrCl3 on the Contents of Ca, Mg, Mn, Fe, Cu, and Zn in the Liver, Kidney, and Heart of Chicken. Biol Trace Elem Res 2016; 171:459-467. [PMID: 26537118 DOI: 10.1007/s12011-015-0559-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/27/2015] [Indexed: 02/08/2023]
Abstract
This study aimed to investigate the effects of oral administration of trivalent chromium on the contents of Ca, Mg, Mn, Fe, Cu, and Zn in the heart, liver, and kidney. Different levels of 1/8, 1/4, and 1/2 LD50 (LD50 = 5000 mg/kg body mass) CrCl3 milligrams per kilogram body mass daily were added into the water to establish the chronic poisoning model. Ca, Mg, Mn, Fe, Cu, and Zn were detected with the flame atomic absorption spectrometry in the organs exposed 14, 28, and 42 days to CrCl3, respectively. Results showed that Cr was accumulated in the heart, liver, and kidney significantly (P < 0.05) with extended time and dose. The contents of Ca and Fe increased, whereas those of Mg, Mn, Cu, and Zn decreased in the heart, liver, and kidney of each treated group, which had a dose- and time-dependent relationship, but the contents of Mg and Zn in the heart took on a fluctuated change. These particular observations were different from those in the control group. In conclusion, the oral administration of CrCl3 could change the contents of Ca, Mg, Mn, Fe, Cu, and Zn in the heart, liver, and kidney, which may cause disorders in the absorption and metabolism of the metal elements of chickens.
Collapse
Affiliation(s)
- Yanhan Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Xiaona Zhao
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Xiao Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Xuejun Zhao
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yongxia Liu
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| | - Jianzhu Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| |
Collapse
|
10
|
Zhuang Y, Liu P, Wang L, Luo J, Zhang C, Guo X, Hu G, Cao H. Mitochondrial oxidative stress-induced hepatocyte apoptosis reflects increased molybdenum intake in caprine. Biol Trace Elem Res 2016. [PMID: 26208811 DOI: 10.1007/s12011-015-0450-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Molybdenum (Mo) is an essential trace element for animals and humans. However, the high dietary intake of Mo leads to disease conditions in heavy metal pollution areas. To the best of our knowledge, the effect of high levels of Mo on the apoptosis of hepatocyte in goats has not been investigated. Therefore, the aim of the present in vivo study was to investigate the impact of Mo on mitochondrial oxidative stress and apoptosis genes in the liver using real-time quantitative polymerase chain reaction (RT-qPCR) and transmission electron microscopy, respectively. Thirty-six healthy goats were randomly divided into three groups: two groups treated with ammonium molybdate [(NH4)6·Mo7O24·H2O] at 15 and 45 mg Mo kg(-1) BW, respectively, and a control group without treatment. Liver samples were collected from individual goats at different time intervals. The levels of oxidative stress in the mitochondrial membrane and expression of liver-related apoptosis genes, including Bcl-2, Cyt c, caspase-3, and Smac, were examined. The results demonstrated that the levels of superoxide dismutase (SOD) and catalase (CAT) expression were significantly down-regulated in liver cells, whereas malondialdehyde (MDA), nitric oxide (NO), and total nitric oxide synthase (T-NOS) expression was up-regulated (P < 0.01). The expression of Smac, Cyt c, and caspase-3 was significantly up-regulated, whereas Bcl-2 expression was down-regulated in liver cells (P < 0.01). In addition, histopathological examination revealed varying degrees of vacuolization, irregularity, nuclear fission, and mitochondrial swelling and high-density electrons in the cytoplasm of hepatocytes in groups treated with 15 and 45 mg Mo kg(-1) BW. Thus, these results suggested that high molybdenum induced hepatocyte apoptosis and might involve a mitochondrial pathway.
Collapse
Affiliation(s)
- Yu Zhuang
- Institute of Animal Population Health, College of Animal Science and Technology, JiangXi Agriculture University, N.O. 1101, Zhimin Avenue, Nanchang Economic and Technological Development District, Nanchang, 330045, People's Republic of China
| | - Ping Liu
- Institute of Animal Population Health, College of Animal Science and Technology, JiangXi Agriculture University, N.O. 1101, Zhimin Avenue, Nanchang Economic and Technological Development District, Nanchang, 330045, People's Republic of China
| | - Liqi Wang
- Institute of Animal Population Health, College of Animal Science and Technology, JiangXi Agriculture University, N.O. 1101, Zhimin Avenue, Nanchang Economic and Technological Development District, Nanchang, 330045, People's Republic of China
| | - Junrong Luo
- Institute of Animal Population Health, College of Animal Science and Technology, JiangXi Agriculture University, N.O. 1101, Zhimin Avenue, Nanchang Economic and Technological Development District, Nanchang, 330045, People's Republic of China
| | - Caiying Zhang
- Institute of Animal Population Health, College of Animal Science and Technology, JiangXi Agriculture University, N.O. 1101, Zhimin Avenue, Nanchang Economic and Technological Development District, Nanchang, 330045, People's Republic of China
| | - Xiaoquan Guo
- Institute of Animal Population Health, College of Animal Science and Technology, JiangXi Agriculture University, N.O. 1101, Zhimin Avenue, Nanchang Economic and Technological Development District, Nanchang, 330045, People's Republic of China
| | - Guoliang Hu
- Institute of Animal Population Health, College of Animal Science and Technology, JiangXi Agriculture University, N.O. 1101, Zhimin Avenue, Nanchang Economic and Technological Development District, Nanchang, 330045, People's Republic of China.
| | - Huabin Cao
- Institute of Animal Population Health, College of Animal Science and Technology, JiangXi Agriculture University, N.O. 1101, Zhimin Avenue, Nanchang Economic and Technological Development District, Nanchang, 330045, People's Republic of China.
| |
Collapse
|
11
|
Xia B, Chen H, Hu G, Wang L, Cao H, Zhang C. The Co-Induced Effects of Molybdenum and Cadmium on the Trace Elements and the mRNA Expression Levels of CP and MT in Duck Testicles. Biol Trace Elem Res 2016; 169:331-40. [PMID: 26105546 DOI: 10.1007/s12011-015-0410-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 06/11/2015] [Indexed: 01/15/2023]
Abstract
To investigate the chronic toxicity of molybdenum (Mo) and cadmium (Cd) on the trace elements and the mRNA expression levels of ceruloplasmin (CP) and metallothionein (MT) in duck testicles, 120 healthy 11-day-old male ducks were randomly divided into six groups with 20 ducks in each group. Ducks were treated with the diet containing different dosages of Mo or Cd. The source of Mo and Cd was hexaammonium molybdate ([(NH4)6Mo7O24·4H2O]) and cadmium sulfate (3CdSO4·8H2O), respectively, in this study. After being treated for 60 and 120 days, ten male birds in each group were randomly selected and euthanized and then testicles were aseptically collected for determining the mRNA expression levels of MT and CP, antioxidant indexes, and contents of trace elements in the testicle. In addition, testicle tissues at 120 days were subjected to histopathological analysis with the optical microscope. The results showed that co-exposure to Mo and Cd resulted in an increase in malondialdehyde (MDA) level while decrease in xanthine oxidase (XOD) and catalase (CAT) activities. The mRNA expression level of MT gene was upregulated while CP was decreased in combination groups. Contents of Mo, copper (Cu), iron (Fe), and zinc (Zn) decreased in combined groups while Cd increased in Cd and combined groups at 120 days. Furthermore, severe congestion, low sperm count, and malformation were observed in low dietary of Mo combined with Cd group and high dietary of Mo combined with Cd group. Our results suggested that Mo and Cd might aggravate testicular degeneration synergistically through altering the mRNA expression levels of MT and CP, increasing lipid peroxidation through inhibiting related enzyme activities and disturbing homeostasis of trace elements in testicles. Interaction of Mo and Cd may have a synergistic effect on the testicular toxicity.
Collapse
Affiliation(s)
- Bing Xia
- Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agriculture University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Hua Chen
- Nanchang Zoo, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Guoliang Hu
- Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agriculture University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Liqi Wang
- Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agriculture University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Huabin Cao
- Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agriculture University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, People's Republic of China.
| | - Caiying Zhang
- Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agriculture University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, People's Republic of China.
| |
Collapse
|
12
|
Du Y, Zhu Y, Teng X, Zhang K, Teng X, Li S. Toxicological Effect of Manganese on NF-κB/iNOS-COX-2 Signaling Pathway in Chicken Testes. Biol Trace Elem Res 2015; 168:227-34. [PMID: 25904117 DOI: 10.1007/s12011-015-0340-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 04/09/2015] [Indexed: 11/29/2022]
Abstract
Manganese (Mn) pollution can cause tissue and organ dysfunction and structural damage. The toxicity of Mn in poultry was reported, but inflammatory damage that Mn induced in the testicular tissue has not been reported. The aim of this study was to investigate the effect of Mn poisoning on NF-κB/iNOS-COX-2 signaling pathway in chicken testes. One hundred eighty Hyline male chickens at 7 days of age were fed either commercial diet or MnCl2-added commercial diet containing 600, 900, and 1800 mg/kg Mn for 30, 60, and 90 days, respectively. The messenger RNA (mRNA) expression of nuclear factor-κB (NF-κB), tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS), nitric oxide (NO) content, iNOS activity, and histopathology were examined in chicken testes. The results showed that excess Mn upregulated mRNA expression of NF-κB, COX-2, TNF-α, and iNOS, NO content, and iNOS activity at 60th and 90th day. Mn had a time-dependent effect on NF-κB and TNF-α mRNA expression. Mn had a dose- and time-dependent effect on NO content and iNOS activity. Mn exposure induced chicken testis histological changes in dose- and time-dependent manner. It indicated that Mn exposure resulted in inflammatory injury of chicken testis tissue through NF-κB/iNOS-COX-2 signaling pathway.
Collapse
Affiliation(s)
- Ye Du
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yihao Zhu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xiaojie Teng
- Heilongjiang Grassland and Forage Central Experimental Station, Harbin, 150069, People's Republic of China.
| | - Kun Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
13
|
Hernández RB, Nishita MI, Espósito BP, Scholz S, Michalke B. The role of chemical speciation, chemical fractionation and calcium disruption in manganese-induced developmental toxicity in zebrafish (Danio rerio) embryos. J Trace Elem Med Biol 2015; 32:209-17. [PMID: 26302931 DOI: 10.1016/j.jtemb.2015.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 05/03/2015] [Accepted: 07/06/2015] [Indexed: 11/30/2022]
Abstract
Manganese (Mn) is an essential nutrient that can be toxic in excess concentrations, especially during early development stages. The mechanisms of Mn toxicity is still unclear, and little information is available regarding the role of Mn speciation and fractionation in toxicology. We aimed to investigate the toxic effects of several chemical forms of Mn in embryos of Danio rerio exposed during different development stages, between 2 and 122h post fertilization. We found a stage-specific increase of lethality associated with hatching and removal of the chorion. Mn(II), ([Mn(H2O)6](2+)) appeared to be the most toxic species to embryos exposed for 48h, and Mn(II) citrate was most toxic to embryos exposed for 72 and/or 120h. Manganese toxicity was associated with calcium disruption, manganese speciation and metal fractionation, including bioaccumulation in tissue, granule fractions, organelles and denaturated proteins.
Collapse
Affiliation(s)
- R B Hernández
- Federal University of São Paulo - Unifesp Campus Diadema, Deparment of Exact and Earth Sciences, Laboratory of Bioinorganic and Environmental Toxicology - LABITA, Rua Prof. Artur Riedel, 275, CEP: 09972-270, Diadema, SP, Brazil.
| | - M I Nishita
- Federal University of São Paulo - Unifesp Campus Diadema, Deparment of Exact and Earth Sciences, Laboratory of Bioinorganic and Environmental Toxicology - LABITA, Rua Prof. Artur Riedel, 275, CEP: 09972-270, Diadema, SP, Brazil
| | - B P Espósito
- University of São Paulo, Institute of Chemistry, Av. Lineu Prestes 748, CEP: 05508-000, São Paulo, SP, Brazil
| | - S Scholz
- Helmholtz Centre for Environmental Research - UFZ, Department of Bioanalytical Ecotoxicology, Permoserstr. 15, 04318 Leipzig, Germany
| | - B Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Center Munich - German Research Center for Environmental Health GmbH, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| |
Collapse
|
14
|
Wang X, Wang H, Li J, Yang Z, Zhang J, Qin Z, Wang L, Kong X. Evaluation of bioaccumulation and toxic effects of copper on hepatocellular structure in mice. Biol Trace Elem Res 2014; 159:312-9. [PMID: 24763709 DOI: 10.1007/s12011-014-9970-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 04/07/2014] [Indexed: 01/15/2023]
Abstract
The present study was to evaluate the hepatotoxicity effects in mice exposed to copper (Cu) used as dietary supplements for 95 days. Cu-treated mice showed increased body weight, and no toxic symptoms were observed at the beginning, but the tendency gradually changed with progress of experiment. In the liver, beneficial metals [Cu, iron (Fe), zinc (Zn), manganese (Mn), and molybdenum (Mo)] were analyzed by flame atomic absorption spectrometry. The content of Cu maintained at the same level during the experiments, but not resulting in the imbalance of Fe, Zn, Mn, and Mo being distributed. The activities of alkaline phosphatase (AKP) and super oxidation dismutase (SOD) showed significantly improvement during the first 30 days in Cu-supplemented group (P<0.01) but declined rapidly from 30th to 60th days, and later, they stabilized and were not statistically significant compared with control (P>0.05). No statistically significant correlation of ceruloplasmin (CPL) activity was appreciated during the experiment. The histopathological and ultrastructural abnormalities changes were observed in the liver of mice including vacuolar degeneration, necrosis, karyorrhexis, and endolysis. Many hepatocytes showed increased collagenic fibers, appearance of triglyceride droplets, and swollen mitochondria due to oral route of copper, which may lead to lipid peroxidation and free radicals. In conclusion, our study showed that exposure to copper influenced behavioral pattern and body weight, affected several enzymatic activities, and led to the physiological and considerable structural changes in the liver of mice. The public should pay more attention to avoid being exposed to copper.
Collapse
Affiliation(s)
- Xuezhi Wang
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Key Laboratory of New Animal Drug Project of Gansu Province, Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutics Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, Gansu, China,
| | | | | | | | | | | | | | | |
Collapse
|