1
|
Wu H, Xu T, Yang N, Zhang J, Xu S. Low-Se Diet Increased Mitochondrial ROS to Suppress Myoblasts Proliferation and Promote Apoptosis in Broilers via miR-365-3p/SelT Signaling Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:284-299. [PMID: 38109331 DOI: 10.1021/acs.jafc.3c04406] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
microRNA (miRNA) controls the post-transcriptional translation of mRNA to affect the expression of many genes participating in functional interaction pathways. Selenoproteins are characterized by their antioxidant activity, wherein selenoprotein T (SelT) is an essential membrane-bound selenoprotein serving as a guardian of intracellular homeostasis. During muscle development and regeneration, myoblasts enter the cell cycle and rapidly proliferate. However, the role of SelT in muscle development and selenium (Se) deficiency-induced muscle damage remains poorly investigated. This study established Se deficient broiler models, chicken embryos models, and cultured chicken primary myoblasts in vitro. We showed that Se deficiency induced skeletal muscle damage in broilers, promoted miR-365-3p expression, and downregulated the level of SelT, significantly. The absence of SelT led to the accumulation of mitochondrial superoxide and downregulated mitochondrial dynamics gene expression, which, in turn, induced the disruption of mitochondria potential and blocked the oxidative phosphorylation (OXPHOS) process. Limited ATP production rate caused by mitochondrial ROS overproduction went along with cell cycle arrest, cell proliferation slowness, and myocyte apoptosis increase. Using Mito-TEMPO for mitochondrial ROS elimination could effectively mitigate the above adverse reactions and significantly restore the proliferation potential of myoblasts. Moreover, we identified miR-365-3p, a miRNA that targeted SelT mRNA to inhibit myoblast proliferation by disrupting intracellular redox balance. The omics analysis results showed that Se deficiency led to the significant enrichment of "cell cycle", "oxidative stress response", and "oxidative phosphorylation" pathway genes. Finally, we proved that the effect of the miR-365-3p/SelT signaling axis on muscle development did exist in the chicken embryo stage. In summary, our findings revealed that miR-365-3p was involved in broiler skeletal muscle damage in Se deficiency by targeting SelT, and SelT, serving as an intracellular homeostasis guardian, resisted mitochondrial oxidative stress, and protected ATP generation, promoting myoblast proliferation and inhibiting apoptosis. This study provides an attractive target for the cultivated meat industry and regenerative medicine.
Collapse
Affiliation(s)
- Hao Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Tong Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Naixi Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Jiuli Zhang
- Heilongjiang Polytechnic, Harbin 150080, P. R. China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China
| |
Collapse
|
2
|
Wang Y, Li X, Yao Y, Zhao X, Shi X, Cai Y. Selenium Deficiency Induces Apoptosis and Necroptosis Through ROS/MAPK Signal in Human Uterine Smooth Muscle Cells. Biol Trace Elem Res 2022; 200:3147-3158. [PMID: 34480665 DOI: 10.1007/s12011-021-02910-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/29/2021] [Indexed: 11/28/2022]
Abstract
Selenium (Se) is one of the essential trace elements; its deficiency induces ROS production and cell death in cardiomyocytes, skeletal muscle cells, and vascular smooth muscle cells, but it is still not clear the impact of Se deficiency on human uterine smooth muscle cells (HUSMCs). To investigate the effect of low Se on the mRNA expression of selenoproteins, the mRNA and protein expression of apoptosis and necroptosis of HUSMCs and their mechanism, Se deficient HUSMCs mode was established through culturing with 1% FBS containing 0 ng/mL, 0.7 ng/mL, and 7 ng/mL Se, and 10% FBS was as the control group. Then, the apoptosis and necroptosis rates, intracellular ROS content and the expression levels of selenoproteins, apoptosis, necroptosis, MAPK pathway-related genes were examined under different Se concentrations. The results showed that Se deficiency led to the augment of cell apoptosis and necroptosis in HUSMCs (p < 0.05), downregulated (p < 0.05) 19 selenoproteins (GPX1, GPX2, GPX3, GPX4, GPX6, Dio3, Txnrd2, Txnrd3, SEPHS2, SEL15, SELH, SELI, SELM, SELN, SELO, SELS, SELT, SELV, and SELW), while Dio2, SELK, Txnrd1, and MSRB1 were not affected by Se deficiency (p ≥ 0.05). In addition, Se deficiency led to increased intracellular ROS content, p-P38 and p-JNK gene expression levels (p < 0.05), the mitochondrial apoptosis pathway Bax, Casp9 and Cle-Casp3 protein expression levels (p < 0.05), and decreased Bcl2 protein expression level (p < 0.05), simultaneously, increased necroptosis marker genes RIP1, RIP3, and MLKL protein expression levels (p < 0.05) with a dose-dependent pattern. The above results indicate that Se deficiency induces HUSMCs apoptosis and necroptosis through the ROS/MAPK pathway and is closely related to selenoproteins.
Collapse
Affiliation(s)
- Yueyang Wang
- Department of Obstetrics, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Xiaojing Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yujie Yao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xia Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yan Cai
- Department of Obstetrics, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, People's Republic of China.
| |
Collapse
|
3
|
Chen Y, Zhao YF, Yang J, Jing HY, Liang W, Chen MY, Yang M, Wang Y, Guo MY. Selenium alleviates lipopolysaccharide-induced endometritisviaregulating the recruitment of TLR4 into lipid rafts in mice. Food Funct 2020; 11:200-210. [DOI: 10.1039/c9fo02415h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Selenium (Se) is an essential trace element for living organisms and plays diverse biological roles.
Collapse
Affiliation(s)
- Yu Chen
- Department of Clinical Veterinary Medicine
- College of Veterinary Medicine
- Huazhong Agricultural University
- Wuhan 430070
- People's Republic of China
| | - Yi-fan Zhao
- Department of Clinical Veterinary Medicine
- College of Veterinary Medicine
- Huazhong Agricultural University
- Wuhan 430070
- People's Republic of China
| | - Jing Yang
- Department of Clinical Veterinary Medicine
- College of Veterinary Medicine
- Huazhong Agricultural University
- Wuhan 430070
- People's Republic of China
| | - Hong-yuan Jing
- Department of Clinical Veterinary Medicine
- College of Veterinary Medicine
- Huazhong Agricultural University
- Wuhan 430070
- People's Republic of China
| | - Wan Liang
- Department of Clinical Veterinary Medicine
- College of Veterinary Medicine
- Huazhong Agricultural University
- Wuhan 430070
- People's Republic of China
| | - Miao-yu Chen
- Department of Clinical Veterinary Medicine
- College of Veterinary Medicine
- Huazhong Agricultural University
- Wuhan 430070
- People's Republic of China
| | - Mei Yang
- Department of Clinical Veterinary Medicine
- College of Veterinary Medicine
- Huazhong Agricultural University
- Wuhan 430070
- People's Republic of China
| | - Ying Wang
- Department of Clinical Veterinary Medicine
- College of Veterinary Medicine
- Huazhong Agricultural University
- Wuhan 430070
- People's Republic of China
| | - Meng-yao Guo
- Department of Clinical Veterinary Medicine
- College of Veterinary Medicine
- Huazhong Agricultural University
- Wuhan 430070
- People's Republic of China
| |
Collapse
|
4
|
Anouar Y, Lihrmann I, Falluel-Morel A, Boukhzar L. Selenoprotein T is a key player in ER proteostasis, endocrine homeostasis and neuroprotection. Free Radic Biol Med 2018; 127:145-152. [PMID: 29800653 DOI: 10.1016/j.freeradbiomed.2018.05.076] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/18/2018] [Accepted: 05/20/2018] [Indexed: 12/11/2022]
Abstract
Selenoprotein T (SELENOT, SELT) is a thioredoxin-like enzyme anchored at the endoplasmic reticulum (ER) membrane, whose primary structure is highly conserved during evolution. SELENOT is abundant in embryonic tissues and its activity is essential during development since its gene knockout in mice is lethal early during embryogenesis. Although its expression is repressed in most adult tissues, SELENOT remains particularly abundant in endocrine organs such as the pituitary, pancreas, thyroid and testis, suggesting an important role of this selenoprotein in hormone production. Our recent studies showed indeed that SELENOT plays a key function in insulin and corticotropin biosynthesis and release by regulating ER proteostasis. Although SELENOT expression is low or undetectable in most cerebral structures, its gene conditional knockout in brain provokes anatomical alterations that impact mice behavior. This suggests that SELENOT also plays an important role in brain development and function. In addition, SELENOT is induced after injury in brain or liver and exerts a cytoprotective effect. Thus, the data gathered during the last ten years of intense investigation of this newly discovered thioredoxin-like enzyme point to an essential function during development and in adult endocrine organs or lesioned brain, most likely by regulating ER redox circuits that control homeostasis and survival of cells with intense metabolic activity.
Collapse
Affiliation(s)
- Youssef Anouar
- Rouen-Normandie University, UNIROUEN, INSERM, U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, 76821 Mont-Saint-Aignan, France; Institute for Research and Innovation in Biomedicine of Normandy, 76000 Rouen, France.
| | - Isabelle Lihrmann
- Rouen-Normandie University, UNIROUEN, INSERM, U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, 76821 Mont-Saint-Aignan, France; Institute for Research and Innovation in Biomedicine of Normandy, 76000 Rouen, France
| | - Anthony Falluel-Morel
- Rouen-Normandie University, UNIROUEN, INSERM, U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, 76821 Mont-Saint-Aignan, France; Institute for Research and Innovation in Biomedicine of Normandy, 76000 Rouen, France
| | - Loubna Boukhzar
- Rouen-Normandie University, UNIROUEN, INSERM, U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, 76821 Mont-Saint-Aignan, France; Institute for Research and Innovation in Biomedicine of Normandy, 76000 Rouen, France
| |
Collapse
|
5
|
Pan T, Liu T, Tan S, Wan N, Zhang Y, Li S. Lower Selenoprotein T Expression and Immune Response in the Immune Organs of Broilers with Exudative Diathesis Due to Selenium Deficiency. Biol Trace Elem Res 2018; 182:364-372. [PMID: 28780654 DOI: 10.1007/s12011-017-1110-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 07/26/2017] [Indexed: 12/13/2022]
Abstract
The objective of the present study was to investigate whether dietary selenium (Se) deficiency would affect the expression of selenoprotein T (SelT) and immune response in the immune organs of broilers. Changes in expression of inflammatory cytokines and oxidative stress response caused by Se deficiency can lead to organism damage, which in turn leads to immune response. Sixty (1-day-old) broilers were divided into the control group and Se-deficiency group. Animal models with exudative diathesis were duplicated in the broilers by feeding them Se-deficient diet for 20 days. After the Se-deficient group exhibited symptoms of exudative diathesis, all the broilers were euthanized, and their immune organs were taken for analysis. The tissues including spleen, bursa of Fabricius, and thymus were treated to determine the pathological changes (including microscopic and ultramicroscopic), the messenger RNA (mRNA) expression levels of SelT and its synthetase (SecS and SPS1), cytokine mRNA expression levels, and antioxidant status. The microscopic and ultramicroscopic analyses showed that immune tissues were obviously injured in the Se-deficient group. The mRNA expression of SelT was decreased compared with that in the control group. Meanwhile, the mRNA expression levels of SecS and SPS1 were downregulated. In the Se-deficient group, the mRNA expression levels of IL-1R and IL-1β were higher than those of three control organs. Additionally, the IL-2 and INF-γ mRNA expression levels were lower than those of the control group. The activity of CAT was decreased, and the contents of H2O2 and •OH were increased due to Se deficiency. Pearson method analysis showed that the expression of SelT had a positive correlation with IL-2, INF-γ, SecS, and SPS1 and a negative correlation with IL-1R and IL-1β. In summary, these data indicated that Se-deficient diet decreased the SelT expression and its regulation of oxidative stress, and it inhibited a pleiotropic mechanism of the immune response.
Collapse
Affiliation(s)
- Tingru Pan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Tianqi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Siran Tan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Na Wan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yiming Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
6
|
Liu Y, Qiu C, Li W, Mu W, Li C, Guo M. Selenium Plays a Protective Role in Staphylococcus aureus-Induced Endometritis in the Uterine Tissue of Rats. Biol Trace Elem Res 2016; 173:345-53. [PMID: 26920733 DOI: 10.1007/s12011-016-0659-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/17/2016] [Indexed: 02/06/2023]
Abstract
The essential trace element selenium (Se) modulates the functions of many regulatory proteins in signal transduction, conferring benefits in inflammatory diseases. Endometritis is a reproductive obstacle disease both in humans and animals. Staphylococcus aureus is the major pathogen that causes endometritis. The present study analyzes the protection and mechanism of Se-methylselenocysteine (MSC) and methylseleninic acid (MSA) on S. aureus-induced endometritis. An atomic fluorescence spectrophotometry study showed that the uterine Se content increased with the addition of MSC and MSA. Histopathology observation and TUNEL detection showed that Se supplementation displayed a greater defense against uterine inflammatory damage. The quantitative PCR (qPCR) and ELISA analyses showed that the expressions of tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) increased with S. aureus infection and decreased with the addition of MSC and MSA. The Toll-like receptor 2 (TLR2) expression showed the same status as the inflammatory cytokines. The Western blot results showed that the increased phosphorylation of IκBα and NF-κB p65 was also reduced by the addition of MSC and MSA. The qPCR and Western blot results also showed that the transcription expressions and the protein dissociation of caspase-9, caspase-3, caspase-7, caspase-6, and poly(ADP-ribose) polymerase (PARP), which were increased by S. aureus infection, were inhibited by Se supplementation. All of the results displayed that the protection conferred by MSC was stronger than MSA. The present study indicated the Se supplementation might be a potential prevention and control measure for S. aureus-induced endometritis.
Collapse
Affiliation(s)
- Yuzhu Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Changwei Qiu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Wenyu Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Weiwei Mu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Chengye Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Mengyao Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
7
|
Li JP, Zhou JX, Wang Q, Gu GQ, Yang SJ, Li CY, Qiu CW, Deng GZ, Guo MY. Se Enhances MLCK Activation by Regulating Selenoprotein T (SelT) in the Gastric Smooth Muscle of Rats. Biol Trace Elem Res 2016; 173:116-25. [PMID: 26779623 DOI: 10.1007/s12011-016-0620-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/05/2016] [Indexed: 01/15/2023]
Abstract
Selenium (Se), a nutritionally essential trace element, is associated with health and disease. Selenoprotein T (SelT) was identified as a redoxin protein with a selenocystein, localizing in the endoplasmic reticulum. The myosin light chain kinase (MLCK) and myosin light chain (MLC) play key roles in the contraction process of smooth muscle. The present study was to detect the effect and mechanism of SelT on the contraction process of gastric smooth muscle. The WT rats were fed with different Se concentration diets, and Se and Ca(2+) concentrations were detected in the gastric smooth muscle. Western blot and qPCR were performed to determine SelT, CaM, MLCK, and MLC expressions. MLCK activity was measured by identifying the rates of [γ-32P]ATP incorporated into the MLC. The results showed Se and Ca(2+) concentrations were enhanced with Se intake in gastric smooth muscle tissues. With increasing Se, SelT, CaM, MLCK and MLC expressions increased, and MLCK and MLC activation improved in gastric smooth muscle tissue. The SelT RNA interference experiments showed that Ca(2+) release, MLCK activation, and MLC phosphorylation were regulated by SelT. Se affected the gastric smooth muscle constriction by regulating Ca(2+) release, MLCK activation, and MLC phosphorylation through SelT. Se plays a major role in regulating the contraction processes of gastric smooth muscle with the SelT.
Collapse
Affiliation(s)
- Jia-Ping Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jing-Xuan Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Qi Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Gao-Qin Gu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Shi-Jin Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Cheng-Ye Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Chang-Wei Qiu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Gan-Zhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Meng-Yao Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|