1
|
El-Demerdash FM, Ahmed MM, El-Sayed RA, Mohemed TM, Gerges MN. Nephroprotective effects of silymarin and its fabricated nanoparticles against aluminum-induced oxidative stress, hyperlipidemia, and genotoxicity. ENVIRONMENTAL TOXICOLOGY 2024; 39:3746-3759. [PMID: 38546352 DOI: 10.1002/tox.24223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 01/09/2024] [Accepted: 02/18/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Aluminum (Al) is a ubiquitous element with proven nephrotoxicity. Silymarin (SM) is a mixture of polyphenolic components extracted from Silybum marianum and exhibited protective influences. However, SM bioactivity can be enhanced by its incorporation in chitosan (CS) through the use of nanotechnology. This work proposed to assess the protective influence of SM and its loaded chitosan nanoparticles (SM-CS-NPs) on aluminum chloride (AlCl3)-induced nephrotoxicity. METHODS Six groups were created randomly from 42 male Wistar rats and each one contains 7 rats (n = 7). Group I, acted as a control and received water. Group II received SM (15 mg/kg/day) and group III administered with SM-CS-NPs (15 mg/kg/day). Group IV received AlCl3 (34 mg/kg) and groups V and VI were treated with SM and SM-CS-NPs with AlCl3 respectively for 30 days. RESULTS AlCl3 administration significantly elevated TBARS, H2O2, and kidney function levels besides LDH activity. Whereas GSH, CAT, SOD, GPx, GST, and GR values were all substantially reduced along with protein content, and ALP activity. Additionally, significant alterations in lipid profile, hematological parameters, and renal architecture were observed. Moreover, TNF-α, TGF-β, and MMP9 gene expression were upregulated in kidney tissues. The administration of SM or its nanoparticles followed by AlCl3 intoxication attenuated renal dysfunction replenished the antioxidant system, and downregulated TNF-α, TGF-β, and MMP9 gene expression in renal tissues compared to the AlCl3 group. CONCLUSION SM-CS-NPs have more pronounced appreciated protective effects than SM and have the proficiency to balance oxidant/antioxidant systems in addition to their anti-inflammatory effect against AlCl3 toxicity.
Collapse
Affiliation(s)
- Fatma M El-Demerdash
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Manal M Ahmed
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Raghda A El-Sayed
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Tarek M Mohemed
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Marian N Gerges
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
2
|
Wen Y, Vechetti IJ, Leng D, Alimov AP, Valentino TR, Zhang XD, McCarthy JJ, Peterson CA. Early transcriptomic signatures and biomarkers of renal damage due to prolonged exposure to embedded metal. Cell Biol Toxicol 2023; 39:2861-2880. [PMID: 37058270 DOI: 10.1007/s10565-023-09806-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 03/24/2023] [Indexed: 04/15/2023]
Abstract
BACKGROUND Prolonged exposure to toxic heavy metals leads to deleterious health outcomes including kidney injury. Metal exposure occurs through both environmental pathways including contamination of drinking water sources and from occupational hazards, including the military-unique risks from battlefield injuries resulting in retained metal fragments from bullets and blast debris. One of the key challenges to mitigate health effects in these scenarios is to detect early insult to target organs, such as the kidney, before irreversible damage occurs. METHODS High-throughput transcriptomics (HTT) has been recently demonstrated to have high sensitivity and specificity as a rapid and cost-effective assay for detecting tissue toxicity. To better understand the molecular signature of early kidney damage, we performed RNA sequencing (RNA-seq) on renal tissue using a rat model of soft tissue-embedded metal exposure. We then performed small RNA-seq analysis on serum samples from the same animals to identify potential miRNA biomarkers of kidney damage. RESULTS We found that metals, especially lead and depleted uranium, induce oxidative damage that mainly cause dysregulated mitochondrial gene expression. Utilizing publicly available single-cell RNA-seq datasets, we demonstrate that deep learning-based cell type decomposition effectively identified cells within the kidney that were affected by metal exposure. By combining random forest feature selection and statistical methods, we further identify miRNA-423 as a promising early systemic marker of kidney injury. CONCLUSION Our data suggest that combining HTT and deep learning is a promising approach for identifying cell injury in kidney tissue. We propose miRNA-423 as a potential serum biomarker for early detection of kidney injury.
Collapse
Affiliation(s)
- Yuan Wen
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY, USA.
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA.
| | - Ivan J Vechetti
- Department of Nutrition and Health Sciences, College of Education and Human Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Dongliang Leng
- Faculty of Health Sciences, CRDA, University of Macau, Taipa, Macau, China
| | - Alexander P Alimov
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Taylor R Valentino
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Xiaohua D Zhang
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY, USA
| | - John J McCarthy
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Charlotte A Peterson
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY, USA
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
3
|
Afolabi OB, Olasehinde OR, Olaoye OA, Jaiyesimi KF, Ekakitie IL, Oloyede OI. Nephroprotective Effects of Caffeine, Vanillin, and Their Combination against Experimental AlCl 3-Induced Renal Toxicity in Adult Male Wistar Rats. Biochem Res Int 2023; 2023:6615863. [PMID: 37649570 PMCID: PMC10465259 DOI: 10.1155/2023/6615863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/14/2023] [Accepted: 08/14/2023] [Indexed: 09/01/2023] Open
Abstract
Aluminum (Al) is known to be a nephrotoxic metal that can cause renal toxicity in both humans and animals. The use of functional foods has been reported to have significance in managing the toxic effects associated with such metals. This study aimed to assess the potential protective effects of caffeine, vanillin, and their combination in mitigating AlCl3-induced renal toxicity in adult male Wistar rats. A total of thirty (30) adult male Wistar rats weighing between 150 and 200 g were randomly divided into five groups, each consisting of six rats (n = 6). Group 1 served as the control, while the remaining treatment groups received a daily oral dose of 100 mg/kg AlCl3 for a duration of 21 days. In addition, groups 3-5 were coadministered 50 mg/kg body weight (bw) of caffeine, vanillin, and a combination (50/50 mg/kg bw) of both substances, respectively. In the results, AlCl3-treated showed a significant (p < 0.05) increase in serum biomarkers such as ALT, ALP, urea, and creatinine, and a significant (p < 0.05) decrease in serum total proteins (TPs). The renal tissue's antioxidant system, including SOD, CAT, GPx, and GSH, exhibited a significant (p < 0.05) reduction, accompanied by an elevated MDA level. However, the administration of caffeine, vanillin, and their combination resulted in a significant (p < 0.05) decrease in serum ALT, ALP, urea, and creatinine, and a significant (p < 0.05) increase in serum TP. Furthermore, following the treatment, there was a significant (p < 0.05) increase in renal SOD, CAT, GPx, and GSH levels, along with a reduction in the MDA level. In addition, the treatment for 21 days caused a significant (p < 0.05) reversal to the altered histomorphological architecture. These findings suggest that caffeine, vanillin, and their combination could potentially be an effective regimen in managing AlCl3-induced renal toxicity.
Collapse
Affiliation(s)
- Olakunle Bamikole Afolabi
- Department of Chemical Sciences, Biochemistry Programme, College of Science, Afe Babalola University, P.M.B 5454, Ado-Ekiti, Ekiti State, Nigeria
| | - Oluwaseun Ruth Olasehinde
- Department of Medical Biochemistry, College of Medicine and Health Sciences, Afe Babalola University, P.M.B 5454, Ado-Ekiti, Ekiti State, Nigeria
| | - Oyindamola Adeniyi Olaoye
- Department of Chemical Sciences, Biochemistry Programme, College of Science, Afe Babalola University, P.M.B 5454, Ado-Ekiti, Ekiti State, Nigeria
| | - Kikelomo Folake Jaiyesimi
- Department of Chemical Sciences, Biochemistry Programme, College of Science, Afe Babalola University, P.M.B 5454, Ado-Ekiti, Ekiti State, Nigeria
| | - Ilobekemen Lisa Ekakitie
- Department of Chemical Sciences, Biochemistry Programme, College of Science, Afe Babalola University, P.M.B 5454, Ado-Ekiti, Ekiti State, Nigeria
| | - Omotade Ibidun Oloyede
- Department of Biochemistry, Ekiti State University, P.M.B 5363, Ado-Ekiti, Ekiti State, Nigeria
| |
Collapse
|
4
|
Li Q, Feng Y, Wang R, Liu R, Ba Y, Huang H. Recent insights into autophagy and metals/nanoparticles exposure. Toxicol Res 2023; 39:355-372. [PMID: 37398566 PMCID: PMC10313637 DOI: 10.1007/s43188-023-00184-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 03/08/2023] [Accepted: 04/04/2023] [Indexed: 07/04/2023] Open
Abstract
Some anthropogenic pollutants, such as heavy metals and nanoparticles (NPs), are widely distributed and a major threat to environmental safety and public health. In particular, lead (Pb), cadmium (Cd), chromium (Cr), arsenic (As), and mercury (Hg) have systemic toxicity even at extremely low concentrations, so they are listed as priority metals in relation to their significant public health burden. Aluminum (Al) is also toxic to multiple organs and is linked to Alzheimer's disease. As the utilization of many metal nanoparticles (MNPs) gradually gain traction in industrial and medical applications, they are increasingly being investigated to address potential toxicity by impairing certain biological barriers. The dominant toxic mechanism of these metals and MNPs is the induction of oxidative stress, which subsequently triggers lipid peroxidation, protein modification, and DNA damage. Notably, a growing body of research has revealed the linkage between dysregulated autophagy and some diseases, including neurodegenerative diseases and cancers. Among them, some metals or metal mixtures can act as environmental stimuli and disturb basal autophagic activity, which has an underlying adverse health effect. Some studies also revealed that specific autophagy inhibitors or activators could modify the abnormal autophagic flux attributed to continuous exposure to metals. In this review, we have gathered recent data about the contribution of the autophagy/mitophagy mediated toxic effects and focused on the involvement of some key regulatory factors of autophagic signaling during exposure to selected metals, metal mixtures, as well as MNPs in the real world. Besides this, we summarized the potential significance of interactions between autophagy and excessive reactive oxygen species (ROS)-mediated oxidative damage in the regulation of cell survival response to metals/NPs. A critical view is given on the application of autophagy activators/inhibitors to modulate the systematic toxicity of various metals/MNPs.
Collapse
Affiliation(s)
- Qiong Li
- Department of Environmental Health and Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, 450001 Henan People’s Republic of China
| | - Yajing Feng
- Department of Environmental Health and Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, 450001 Henan People’s Republic of China
| | - Ruike Wang
- Department of Environmental Health and Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, 450001 Henan People’s Republic of China
| | - Rundong Liu
- Department of Environmental Health and Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, 450001 Henan People’s Republic of China
| | - Yue Ba
- Department of Environmental Health and Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, 450001 Henan People’s Republic of China
| | - Hui Huang
- Department of Environmental Health and Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, 450001 Henan People’s Republic of China
| |
Collapse
|
5
|
Du J, Zhang X, Zhang J, Huo S, Li B, Wang Q, Song M, Shao B, Li Y. Necroptosis and NLPR3 inflammasome activation mediated by ROS/JNK pathway participate in AlCl 3-induced kidney damage. Food Chem Toxicol 2023; 178:113915. [PMID: 37393014 DOI: 10.1016/j.fct.2023.113915] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 07/03/2023]
Abstract
Aluminum (Al) is a common environmental pollutant that can induce kidney damage. However, the mechanism is not clear. In the present study, to explored the exact mechanism of AlCl3-induced nephrotoxicity, C57BL/6 N male mice and HK-2 cells were used as experimental subjects. Our results showed that Al induced reactive oxygen species (ROS) overproduction, c-Jun N-terminal kinase (JNK) signaling activation, RIPK3-dependent necroptosis, NLRP3 inflammasome activation, and kidney damage. In addition, inhibiting JNK signaling could downregulate the protein expressions of necroptosis and NLRP3 inflammasome, thereby alleviating kidney damage. Meanwhile, clearing ROS effectively inhibited JNK signaling activation, which in turn inhibited necroptosis and NLRP3 inflammasome activation, ultimately alleviating kidney damage. In conclusion, these findings suggest that necroptosis and NLPR3 inflammasome activation mediated by ROS/JNK pathway participate in AlCl3-induced kidney damage.
Collapse
Affiliation(s)
- Jiayu Du
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xuliang Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jian Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Siming Huo
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Bo Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Qi Wang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Miao Song
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Bing Shao
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yanfei Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
6
|
Worsawat P, Noppawan P, Croise C, Supanchaiyamat N, McElroy CR, Hunt AJ. Acid-catalysed reactions of amines with dimethyl carbonate. Org Biomol Chem 2023; 21:1070-1081. [PMID: 36629051 DOI: 10.1039/d2ob02222b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Highly effective acid-catalysed reactions of amines with dimethyl carbonate (DMC) have been conducted with significant yields and selectivity of carboxymethylation or methylation products. Lewis acids (FeCl3, ZnCl2, and AlCl3·6H2O), Brønsted acids (PTSA, acetic, and formic acids), and acids supported on silica (silica sulfuric and silica perchlorate) resulted in carboxymethylation of primary aliphatic amines with high conversions. It was found that the Lewis acid FeCl3 also promoted carboxymethylation of primary aromatic amines and secondary amines. At both 90 °C or an elevated temperature of 150 °C under pressure, AlCl3·6H2O demonstrated highly selective monomethylation of aromatic amines. In addition, both silica sulfuric acid and silica perchlorate at 90 °C exhibited no conversion for secondary amines but enhanced carboxymethylation with high conversions of 80.7-87.5% and selectivity of >99.00% at 150 °C in a pressure reactor. At 1.0 equivalent, both promoted excellent conversion and selectivity of primary aliphatic amines at 90 °C. In addition, they were easily recovered and reused for at least four additional reactions without significant loss of efficiency with consistent conversions and selectivity. Green metrics evaluation for the silica sulfuric acid-catalysed reaction highlighted the sustainability features of the process. Silica-supported catalysts are highly stable, making them ideal alternative catalysts for the methylation and carbonylation of various amines with DMC. Acid-catalysed DMC reactions of amines may expand the substrate scope and offer new opportunities for developing sustainable organic synthetic methodologies.
Collapse
Affiliation(s)
- Pattamabhorn Worsawat
- Materials Chemistry Research Center (MCRC), Centre of Excellence for Innovation in Chemistry, Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | - Pakin Noppawan
- Department of Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham, 44150, Thailand
| | - Charlotte Croise
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, Heslington, YO10 5DD, UK.,Institute of Chemistry, University of Poitiers, 86000 Poitiers, France
| | - Nontipa Supanchaiyamat
- Materials Chemistry Research Center (MCRC), Centre of Excellence for Innovation in Chemistry, Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | - Con R McElroy
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, Heslington, YO10 5DD, UK
| | - Andrew J Hunt
- Materials Chemistry Research Center (MCRC), Centre of Excellence for Innovation in Chemistry, Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
7
|
Abdel Ghfar SS, Ali ME, Momenah MA, Al-Saeed FA, Al-Doaiss AA, Mostafa YS, Ahmed AE, Abdelrahman M. Effect of Allium sativum and Nigella sativa on alleviating aluminum toxicity state in the albino rats. Front Vet Sci 2022; 9:1042640. [PMID: 36524230 PMCID: PMC9745150 DOI: 10.3389/fvets.2022.1042640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/25/2022] [Indexed: 12/02/2022] Open
Abstract
The study objective was to evaluate Allium sativum's potential and Nigella Sativa's combination's potential to reduce aluminum toxicity and return to the normal state. In the present study, a hundred albino rats were randomly divided into five equal groups. The first group was used as a control group; the other four groups were exposed to aluminum 1,600 ppm. The second exposed to aluminum only; the third and fourth groups were treated with Allium sativum 5% and Nigella sativa 5%, respectively, while the fifth group was treated with a mix of Allium sativum 2.5% and Nigella sativa 2.5% for 8th weeks. After 8 weeks, the aluminum administration was stopped, and the second group was divided into three groups. The groups were treated with Allium sativum 5% and Nigella sativa 5%, and a mix of Allium sativum 2.5% and Nigella sativa 2.5%, respectively. The first group was the control group (continued from the first experiment). Garlic and Nigella sativa were crushed and added to feed while receiving aluminum chloride daily at a dose of 1.6 ml/l was added to the drinking water. Histopathological changes in the liver, kidney, and testes were investigated after 8 and 16 weeks, and blood samples were collected after 4, 8, and 16 weeks for biochemical blood parameters. The results showed that the histopathological examination of the liver, kidney, and testes showed signs of congestion in blood vessels after aluminum exposure. Meanwhile, the treatment with Allium sativum or Nigella sativum or the mixture between them had positive effects on evading the harmful effects of aluminum in the liver, Kidney, and testes tissues. In addition, there were protective effects for Allium sativum and Nigella sativa against aluminum on serum creatinine, urea, ALT, and AST concentrations. The present study concluded that supplementation with Allium sativum or Nigella sativa or their combination could reduce aluminum toxicity and return the liver, kidney, and testes to normal.
Collapse
Affiliation(s)
| | - Montaser Elsayed Ali
- Department of Animal Productions, Faculty of Agriculture, Al-Azhar University, Assiut, Egypt
| | - Maha Abdullah Momenah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Fatimah A. Al-Saeed
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Amin A. Al-Doaiss
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Yasser Sabry Mostafa
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Ahmed Ezzat Ahmed
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
- Department of Theriogenology, Obstetrics, and Artificial Insemination, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Mohamed Abdelrahman
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Animal Production Department, Faculty of Agriculture, Assiut University, Asyut, Egypt
| |
Collapse
|
8
|
Lokman M, Ashraf E, Kassab RB, Abdel Moneim AE, El-Yamany NA. Aluminum Chloride-Induced Reproductive Toxicity in Rats: the Protective Role of Zinc Oxide Nanoparticles. Biol Trace Elem Res 2022; 200:4035-4044. [PMID: 34741695 DOI: 10.1007/s12011-021-03010-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 10/31/2021] [Indexed: 12/30/2022]
Abstract
Reproductive toxicity is a major challenge associated with aluminum (Al) exposure. Therefore, this study aimed to investigate the effects of zinc oxide nanoparticle (ZnONP) treatment on Al-induced reproductive toxicity in rats. Thirty-two adult male albino rats were allocated into four equal groups as follows: control, AlCl3 orally administered group (100 mg/kg bwt), ZnONPs injected intraperitoneally (i.p.) group (4 mg/kg bwt), and ZnONPs + AlCl3-treated group. The treatment was daily extended for 42 consecutive days. Oral administration of AlCl3 showed an oxidative damage confirmed by an increase in malondialdehyde and nitric oxide levels and superoxide dismutase activity and accompanied by a decrease in glutathione content and catalase activity. Also, AlCl3 administration increased the pro-inflammatory mediator tumor necrosis factor-alpha. Furthermore, significant declines in the levels of serum male reproductive hormones testosterone, luteinizing hormone, and follicle-stimulating hormone in AlCl3-intoxicated rats were noticed. In parallel, severe histopathological alterations were observed in testis tissues. Additionally, the immunohistochemical analysis showed that AlCl3 administration potentiates cell death in the testicular tissue by elevating the immunostaining intensity signal for the pro-apoptotic protein, cysteinyl aspartate specific protease-3 (caspase-3) and a marked depletion in the cell proliferation expression marker, Ki-67, in germinal cells of AlCl3-treated group. On the other hand, the daily i.p. injection to rats with ZnONPs before AlCl3 was found to ameliorate the reproductive toxicity induced by Al administration through reducing the testicular oxidative stress and improving the inflammatory, apoptotic, and reproductive markers as well as histopathological alterations in the testis. These results suggest that ZnONPs could be used as an alternative agent to minimize the reproductive toxicity associated with Al exposure through its antioxidant, anti-inflammatory, anti-apoptotic, and reproductive modulatory activities.
Collapse
Affiliation(s)
- Maha Lokman
- Biology Department, College of Science and Humanities, Prince Sattam bin Abdul Aziz University, Alkharj, Saudi Arabia
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Eman Ashraf
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Rami B Kassab
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
- Department of Biology, Faculty of Science and Arts, Al-Baha University, Almakhwah, Al-Baha, Saudi Arabia
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt.
| | - Nabil A El-Yamany
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
9
|
Liu P, Guo C, Cui Y, Zhang X, Xiao B, Liu M, Song M, Li Y. Activation of PINK1/Parkin-mediated mitophagy protects against apoptosis in kidney damage caused by aluminum. J Inorg Biochem 2022; 230:111765. [PMID: 35182845 DOI: 10.1016/j.jinorgbio.2022.111765] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 10/19/2022]
Abstract
Aluminum (Al) induces apoptosis via oxidative stress and/or mitochondrial damage. Kidney is the main organ of Al excretion, but whether Al causes apoptosis in kidney of mice remains unclear. Mitophagy maintains cell homeostasis via clearing damaged mitochondria and reducing oxidative stress, but the role in kidney damage caused by Al has also not been investigated. In this study, firstly, forty wild type (WT) male C57 mice were randomly exposed to AlCl3 at 0, 44.825, 89.65 or 179.3 mg/kg body weight in drinking water for 90 days, respectively. Our results confirmed that Al induced apoptosis, and activated PINK1 (phosphatase and tensin homolog (PTEN)-induced putative kinase1)/Parkin (E3 ubiquitin ligase PARK2)-mediated mitophagy with the dose increased. And secondly, to further assess the role of PINK1/Parkin-mediated mitophagy in Al-induced kidney damage, twenty Parkin knockout (Parkin-/-) mice and twenty WT mice were divided into WT group, WT + Al group, Parkin-/- group, and Parkin-/- + Al group, and they were provided with AlCl3 at a dose of 0 or 179.3 mg/kg body weight in drinking water for 90 days, respectively. The results showed that Parkin-/- induced more severe kidney injury caused by Al. Besides, Parkin-/- aggravated oxidative stress and apoptosis caused by Al. Overall, our findings indicate that the activation of PINK1/Parkin-mediated mitophagy protects against apoptosis in kidney damage caused by Al.
Collapse
Affiliation(s)
- Pengli Liu
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Chen Guo
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yilong Cui
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xuliang Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Bonan Xiao
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Menglin Liu
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Miao Song
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yanfei Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
10
|
Bashandy, PhD MM, Saeed HE, Ahmed WMS, Ibrahim MA, Shehata O. OUP accepted manuscript. Toxicol Res (Camb) 2022; 11:339-347. [PMID: 35510236 PMCID: PMC9052319 DOI: 10.1093/toxres/tfac009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/18/2022] [Accepted: 02/19/2022] [Indexed: 11/13/2022] Open
Abstract
Background Cadmium (Cd) is a highly toxic heavy metal that adversely affects both human and animal health. Chronic cadmium exposure causes serious kidney damage. The current study investigated the protective role of cerium oxide nanoparticles (CeO2NPs) against cadmium chloride (CdCl2)-induced renal injury. Method One hundred and twenty male albino rats were divided into 6 equal groups. Group (C): considered as control group which was given distilled water orally. Group (NC.1 and NC.5): rats were injected i.p. with nanoceria at a dose of (0.1 and 0.5 mg/kg b.wt), respectively, twice a week for 2 weeks starting at the 15th day of the study. Group (Cd): rats were received CdCl2 orally (10 mg/kg b.wt) daily for 28 days. Groups (Cd + NC.1 and Cd + NC.5): rats were given CdCl2 orally (10 mg/kg b.wt) for 28 days and CeO2NPs by i.p. injection at a dose of (0.1 and 0.5 mg/kg b.wt), respectively, twice a week for 2 weeks started at the 15th day of the experiment. Results The Cd group exhibited a significant increase in the serum levels of IL-1β, KIM-1, Cys-C, and β2-MG, downregulation of the antioxidant initiator genes such as Nrf-2, and up-regulation of apoptosis markers such as nibrin gene (NBN). Urine examination showed a high level of microalbuminuria, abnormal physical, chemical, and microscopical changes in comparison with control groups. Conculsion Remarkably, posttreatment with CeO2NPs showed significant improvement in kidney histopathological picture and relieved the alterations in kidney biomarkers, inflammatory markers, urine abnormalities, and expressions of different genes as Nrf-2 and NBN.
Collapse
Affiliation(s)
- Mostafa M Bashandy, PhD
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Hanan E Saeed
- Corresponding author: Hanan E. Saeed, Department of Clinical Pathology, Faculty of Veterinary Medicine, BeniSuef University, Beni-Suef 62511, Egypt. and
| | - Walaa M S Ahmed
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Marwa A Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Olfat Shehata
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| |
Collapse
|
11
|
El-Shetry ES, Mohamed AAR, Khater SI, Metwally MMM, Nassan MA, Shalaby S, A M El-Mandrawy S, Bin Emran T, M Abdel-Ghany H. Synergistically enhanced apoptotic and oxidative DNA damaging pathways in the rat brain with lead and/or aluminum metals toxicity: Expression pattern of genes OGG1 and P53. J Trace Elem Med Biol 2021; 68:126860. [PMID: 34583094 DOI: 10.1016/j.jtemb.2021.126860] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Lead (Pb) and aluminum (Al) are ubiquitous environmental pollutants and are known to induce neurodegenerative disorders. They enhance neuronal changes and may involve glial alterations and other consequences. We intend to evaluate the mechanism through which the long-term exposure to Pb acetate alone or in combination with aluminum-chloride induced neurological impacts in rats. METHODS For this aim, a total number of forty male Sprague Dawley rats were assigned into four groups. Control (DW), Pb acetate (12.5 mg/kg BW), Al chloride (64 mg/kg BW), and the combination group were experimentally exposed for 60 days. Biochemical evaluation of oxidative stress biomarkers, transcriptional-mediated changes in the expression pattern of OGG1 and P53 genes by qRT-PCR were applied. Histopathological modifications in the brain tissue with immunohistochemical reactivity of GFAP were also detected. RESULTS Our findings revealed that lipid peroxidation was markedly enhanced but inhibited antioxidant enzyme activity in brain tissue in all exposed groups regarding the control. Pb-acetate elevated the biochemical concentration of dopamine and serotonin while AlCl3 declined their levels in the brain homogenate of rats. Furthermore, the exposure to one or both metals elevated the comet assay indices and serum level of 8-hydroxy-2' -deoxyguanosine, up-regulated the expression of P53, OGG1 and GFAP immunoreactivity in the central nervous system. Histologically, they caused several brain tissue alterations. CONCLUSION The exposure to Pb and/or Al could be key candidates for neurodegenerative changes in the brain of rats via oxidative, apoptotic, and DNA damaging pathways. Besides, according to our findings, exposure to both Pb acetate and Aluminium chloride have synergistic damaging effects on the central nervous system of rats. Also, they have opposing effects on the secretion of monoamine neurotransmitters DA and 5 H T.
Collapse
Affiliation(s)
- Eman S El-Shetry
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Amany Abdel-Rahman Mohamed
- Departments of Forensic Medicine and Toxicology and Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt.
| | - Safaa I Khater
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, 4511, Egypt
| | - Mohamed M M Metwally
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Mohamed A Nassan
- Department of clinical laboratory sciences, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Shimaa Shalaby
- Department of Physiology, Faculty of Vet. Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Shefaa A M El-Mandrawy
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Heba M Abdel-Ghany
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
12
|
Hoffman JF, Vergara VB, Fan AX, Kalinich JF. Effect of embedded metal fragments on urinary metal levels and kidney biomarkers in the Sprague-Dawley rat. Toxicol Rep 2021; 8:463-480. [PMID: 33717999 PMCID: PMC7933717 DOI: 10.1016/j.toxrep.2021.02.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Wounds with embedded metal fragments are an unfortunate consequence of armed conflicts. In many cases the exact identity of the metal(s) and their long-term health effects, especially on the kidney, are not known. AIM OF STUDY The aim of this study was to quantitate the urinary levels of metals solubilized from surgically implanted metal pellets and to assess the effect of these metals on the kidney using a battery of biomarker assays. MATERIALS AND METHODS Using a rodent model system developed in our Institute to simulate embedded fragment injuries, eight metals considered likely components of an embedded fragment wound were individually implanted into the gastrocnemius muscle of male Sprague-Dawley rats. The rats were followed for 12 months post-implantation with urine collected prior to surgery then at 1-, 3-, 6-, 9-, and 12-months post-implantation to provide a within-subjects cohort for examination. Urinary metal levels were determined using inductively coupled plasma-mass spectrometry and urinary biomarkers assessed using commercially available kits to determine metal-induced kidney effects. RESULTS With few exceptions, most of the implanted metals rapidly solubilized and were found in the urine at significantly higher levels than in control animals as early as 1-month post-implantation. Surprisingly, many of the biomarkers measured were decreased compared to control at 1-month post-implantation before returning to normal at the later time points. However, two metals, iron and depleted uranium, showed increased levels of several markers at later time points, yet these levels also returned to normal as time progressed. CONCLUSION This study showed that metal pellets surgically implanted into the leg muscle of Sprague-Dawley rats rapidly solubilized with significant levels of the implanted metal found in the urine. Although kidney biomarker results were inconsistent, the changes observed along with the relatively low amounts of metal implanted, suggest that metal-induced renal effects need to be considered when caring for individuals with embedded metal fragment wounds.
Collapse
Key Words
- AAALAC-I, Association for Assessment and Accreditation of Laboratory Animal Care International
- AFRRI, Armed Forces Radiobiology Research Institute
- ALB, Albumin
- ALP, Alkaline phosphatase
- Al, Aluminum
- B2m, Beta-2-microglobulin
- Biomarker
- Co, Cobalt
- Cu, Copper
- DU, Depleted uranium
- DoD, Department of Defense
- Embedded metals
- Fe, Iron
- IACUC, Institutional Animal Care and Use Committee
- ICP-MS, Inductively coupled plasma-mass spectroscopy
- IL-18, Interleukin-18
- KIM-1, Kidney injury molecule-1
- Kidney
- LoD, Limit of detection
- LoQ, Limit of quantitation
- NAG, N-acetyl-beta-d-glucosaminidase
- NGAL, Neutrophil gelatinase-associated lipocalin
- Ni, Nickel
- OPN, Osteopontin
- Pb, Lead
- RBP, Retinal binding protein
- Rat
- Ta, Tantalum
- Urine
- W, Tungsten
Collapse
Affiliation(s)
- Jessica F. Hoffman
- Internal Contamination and Metal Toxicity Program, Armed Forces Radiobiology Research Institute, Uniformed Services University, Bethesda, MD, USA
| | - Vernieda B. Vergara
- Internal Contamination and Metal Toxicity Program, Armed Forces Radiobiology Research Institute, Uniformed Services University, Bethesda, MD, USA
| | - Anya X. Fan
- Internal Contamination and Metal Toxicity Program, Armed Forces Radiobiology Research Institute, Uniformed Services University, Bethesda, MD, USA
| | - John F. Kalinich
- Internal Contamination and Metal Toxicity Program, Armed Forces Radiobiology Research Institute, Uniformed Services University, Bethesda, MD, USA
| |
Collapse
|
13
|
Cheng L, Liang R, Li Z, Ren J, Yang S, Bai J, Niu Q, Yu H, Zhang H, Xia N, Liu H. Aluminum maltolate triggers ferroptosis in neurons: mechanism of action. Toxicol Mech Methods 2020; 31:33-42. [PMID: 32900247 DOI: 10.1080/15376516.2020.1821268] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aluminum (Al), a neurotoxic element, can induce Alzheimer's disease (AD) via triggering neuronal death. Ferroptosis is a new type of programmed cell death related to neurological diseases. Unfortunately, its role in aluminum-induced neuronal death remains completely unclear. This study aimed to investigate whether ferroptosis is involved in neuronal death in response to aluminum exposure as well as its underlying mechanism. In this study, rat adrenal pheochromocytoma (PC12) cells were treated with 200 μM aluminum maltolate (Al(mal)3) for 24 h, and related biochemical indicators were assessed to determine whether ferroptosis was induced by aluminum in neurons. Then, the potential mechanism was explored by detecting of these genes and proteins associated with ferroptosis after adding ferroptosis-specific agonist Erastin (5 μM) and antagonist Ferrostatin-1 (Fer-1) (5 μM). The experimental results demonstrated that aluminum exposure significantly increased the death of PC12 cells and caused specific mitochondrial pathological changes of ferroptosis in PC12 cells. Further research confirmed that ferroptosis was triggered by aluminum in PC12 cells by means of activating the oxidative damage signaling pathway, which was displayed as inhibition of the cysteine/glutamate antiporter system (system Xc-), causing the depletion of cellular glutathione (GSH) and inactivation of glutathione peroxidase (GSH-PX) eventually lead to accumulation of reactive oxygen species (ROS). Taken together, ferroptosis was a means of neuronal death induced by aluminum and oxidative damage may be its underlying mechanism, which also provided some new clues to potential target for the intervention and therapy of AD.
Collapse
Affiliation(s)
- Liting Cheng
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Ruifeng Liang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Zhuang Li
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Jingjuan Ren
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Shoulin Yang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Jianying Bai
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Qiao Niu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Hongmei Yu
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Huifang Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Na Xia
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Haifang Liu
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, People's Republic of China
| |
Collapse
|
14
|
Jeong CH, Kwon HC, Cheng WN, Kim DH, Choi Y, Han SG. Aluminum exposure promotes the metastatic proclivity of human colorectal cancer cells through matrix metalloproteinases and the TGF-β/Smad signaling pathway. Food Chem Toxicol 2020; 141:111402. [PMID: 32437896 DOI: 10.1016/j.fct.2020.111402] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 11/15/2022]
Abstract
Human exposure to aluminum (Al) mainly occurs through food intake. However, influences of Al on the gastrointestinal tract have been rarely reported. In particular, the effect of Al on the metastasis and angiogenesis of colorectal cancer cells has not been studied. Thus, we investigated the effect of Al on the metastatic proclivity using the human colorectal cancer cell line, HT-29. Cells were exposed to 1-16 mM AlCl3 for 3-72 h. The effects of AlCl3 on HT-29 cells for migration/invasion/adhesion, and metastasis-associated protein and gene expression were evaluated. AlCl3 promoted cell migration and invasion, whereas it suppressed cell adhesion. AlCl3-exposed cells showed decreased E-cadherin and increased vimentin and Snail. AlCl3 increased transforming growth factor-beta (TGF-β) mRNA expression and Smad2/3 nuclear translocation. AlCl3-treated cells had a higher mRNA expression of matrix metalloproteinase (MMP)-7 and -9 than the control. Particularly, AlCl3-treated HT-29 cells promoted the angiogenesis of endothelial cells via increasing the secretion of vascular endothelial growth factor. Taken together, AlCl3 can promote the metastatic proclivity of colorectal cancer cells through MMP-7, -9, and TGF-β/Smad2/3 pathway. Our data suggest that Al exposure of the gastrointestinal tract may be a risk factor for metastasis initiation in colorectal cancer cells.
Collapse
Affiliation(s)
- Chang Hee Jeong
- Toxicology Laboratory, Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hyuk Cheol Kwon
- Toxicology Laboratory, Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029, Republic of Korea
| | - Wei Nee Cheng
- Toxicology Laboratory, Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029, Republic of Korea
| | - Do Hyun Kim
- Toxicology Laboratory, Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029, Republic of Korea
| | - Youngsok Choi
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Sung Gu Han
- Toxicology Laboratory, Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
15
|
Cao C, Luo J, Li X, Zhang M, Zhang H, Zhang J, Wang K. Selenium-Rich Yeast Protects Against Aluminum-Induced Renal Inflammation and Ionic Disturbances. Biol Trace Elem Res 2018; 186:467-473. [PMID: 29603099 DOI: 10.1007/s12011-018-1324-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 03/22/2018] [Indexed: 01/11/2023]
Abstract
The aim of this study was to evaluate the protective effects of SeY (selenium-rich yeast) against Al (aluminum)-induced inflammation and ionic imbalances. Male Kunming mice were treated with Al (10 mg/kg) and/or SeY (0.1 mg/kg) by oral gavage for 28 days. The degree of inflammation was assessed by mRNA expression of inflammatory biomarkers. Ionic disorders were assessed by determining the Na+, K+, and Ca2+ content, as well as the alteration in ATP-modifying enzymes (ATPases), including Na+K+-ATPase, Ca2+-ATPase, Mg2+-ATPase, Ca2+Mg2+-ATPase, and the mRNA levels of ATPase's subunits in kidney. It was observed here that SeY exhibited a significant protective effect on the kidney against the Al-induced upregulation of pro-inflammatory and downregulation of anti-inflammatory cytokines. Furthermore, a significant effect of Al on the Na+, K+, Ca2+, and Mg2+ levels in kidney was observed, and Al was observed to decrease the activities of Na+K+-ATPase, Mg2+-ATPase, and Ca2+Mg2+-ATPase. The mRNA expression of the Na+K+-ATPase subunits and Ca2+-ATPase subunits was regulated significantly by Al. Notably, SeY modulated the Al-induced alterations of ion concentrations, ATPase activity, and mRNA expression of their subunits. These results suggest that SeY prevents renal toxicity caused by Al via regulation of inflammatory responses, ATPase activities, and transcription of their subunits.
Collapse
Affiliation(s)
- Changyu Cao
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, People's Republic of China.
| | - Junchong Luo
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, People's Republic of China
| | - Xiaowen Li
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, People's Republic of China
| | - Mengdan Zhang
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, People's Republic of China
| | - Haoji Zhang
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, People's Republic of China
| | - Jipei Zhang
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, People's Republic of China
| | - Kai Wang
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, People's Republic of China.
| |
Collapse
|