1
|
Yan H, Liu W, Xiang R, Li X, Hou S, Xu L, Wang L, Zhao D, Liu X, Wang G, Chi Y, Yang J. Ribosomal modification protein rimK-like family member A activates betaine-homocysteine S-methyltransferase 1 to ameliorate hepatic steatosis. Signal Transduct Target Ther 2024; 9:214. [PMID: 39117631 PMCID: PMC11310345 DOI: 10.1038/s41392-024-01914-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/14/2024] [Accepted: 07/04/2024] [Indexed: 08/10/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a serious threat to public health, but its underlying mechanism remains poorly understood. In screening important genes using Gene Importance Calculator (GIC) we developed previously, ribosomal modification protein rimK-like family member A (RIMKLA) was predicted as one essential gene but its functions remained largely unknown. The current study determined the roles of RIMKLA in regulating glucose and lipid metabolism. RIMKLA expression was reduced in livers of human and mouse with NAFLD. Hepatic RIMKLA overexpression ameliorated steatosis and hyperglycemia in obese mice. Hepatocyte-specific RIMKLA knockout aggravated high-fat diet (HFD)-induced dysregulated glucose/lipid metabolism in mice. Mechanistically, RIMKLA is a new protein kinase that phosphorylates betaine-homocysteine S-methyltransferase 1 (BHMT1) at threonine 45 (Thr45) site. Upon phosphorylation at Thr45 and activation, BHMT1 eliminated homocysteine (Hcy) to inhibit the activity of transcription factor activator protein 1 (AP1) and its induction on fatty acid synthase (FASn) and cluster of differentiation 36 (CD36) gene transcriptions, concurrently repressing lipid synthesis and uptake in hepatocytes. Thr45 to alanine (T45A) mutation inactivated BHMT1 to abolish RIMKLA's repression on Hcy level, AP1 activity, FASn/CD36 expressions, and lipid deposition. BHMT1 overexpression rescued the dysregulated lipid metabolism in RIMKLA-deficient hepatocytes. In summary, RIMKLA is a novel protein kinase that phosphorylates BHMT1 at Thr45 to repress lipid synthesis and uptake. Under obese condition, inhibition of RIMKLA impairs BHMT1 activity to promote hepatic lipid deposition.
Collapse
Affiliation(s)
- Han Yan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
- Department of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Wenjun Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Rui Xiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Xin Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Song Hou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Luzheng Xu
- Medical and Health Analysis Center, Peking University, Beijing, 100191, China
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Dong Zhao
- Department of Endocrinology, Beijing Luhe Hospital, Capital Medical University, Beijing, 101100, China
| | - Xingkai Liu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Centre, First Hospital of Jilin University, Changchun, 130061, China.
| | - Guoqing Wang
- Key Laboratory of Pathobiology Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130012, China.
| | - Yujing Chi
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Department of Gastroenterology, Peking University People's Hospital, Beijing, 100044, China.
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China.
- Department of Cardiology, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
2
|
Sun C, Ding D, Wen Z, Zhang C, Kong J. Association between Micronutrients and Hyperhomocysteinemia: A Case-Control Study in Northeast China. Nutrients 2023; 15:1895. [PMID: 37111114 PMCID: PMC10145750 DOI: 10.3390/nu15081895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Hyperhomocysteinemia (HHcy) is an independent risk factor for cardiovascular and cerebrovascular diseases where the plasma homocysteine (Hcy) concentration exceeds 15 µmol/L. HHcy is affected by vitamins B12, B6, and folic acid (fol); however, its relationship with other nutrients is not fully understood. We investigated the nutritional and genetic factors associated with HHcy and the possible dose-response relationships or threshold effects in patients in Northeast China. Genetic polymorphisms and micronutrients were tested with polymerase chain reaction and mass spectrometry, respectively. This trial was registered under trial number ChiCTR1900025136. The HHcy group had significantly more males and higher body mass index (BMI), methylenetetrahydrofolate reductase (MTHFR 677TT) polymorphism proportion, and uric acid, Zn, Fe, P, and vitamin A levels than the control group. After adjusting for age, sex, BMI, vitamin B12, fol, and MTHFR C677T, the lowest Zn quartile reduced the odds ratio of HHcy compared with the highest Zn quartile. The dose-response curves for the association between plasma Zn and HHcy were S-shaped. High plasma Zn concentrations were significantly correlated with high HHcy odds ratios, and the curve leveled off or slightly decreased. Most importantly, HHcy risk decreased with decreasing plasma Zn concentration; the threshold was 83.89 µmol/L. Conclusively, individuals residing in Northeast China, especially those with the MTHFR 677TT polymorphism, must pay attention to their plasma Zn and Hcy levels.
Collapse
Affiliation(s)
| | | | | | | | - Juan Kong
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
3
|
Bouazza A, Fontaine E, Leverve X, Koceir EA. Interference of altered plasma trace elements profile with hyperhomocysteinemia and oxidative stress damage to insulin secretion dysfunction in Psammomys obesus: focus on the selenium. Arch Physiol Biochem 2023; 129:505-518. [PMID: 33171059 DOI: 10.1080/13813455.2020.1839501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
The objective of this study is to investigate the relationship between altered plasma trace elements, particularly selenium (Se), with Hyper-homocysteinemia (HhCys) as a predictive factor of insulin secretion dysfunction. The study is carried out on adult Psammomys obesus, divided in 4 experimental groups: (I) Normoglycemic/Normoinsulinemic; (II) Normoglycemic/Hyperinsulinemic; (III) Hyperglycaemic/Hyperinsulinemic and (IV) Hyperglycaemic/Insulin deficiency with ketoacidosis. The data showed that a drastic depletion of Se plasma levels is positively correlated with HhCys (>15 µmol/L; p < .001), concomitantly with decreased GPx activity, GSH levels, and GSH/GSSG ratio in group IV both in plasma and liver. In contrast, SOD activity is increased (p ≤ .001) in group IV both in plasma and liver. However, plasma Cu and Mn levels increased, while plasma Zn levels decreased in group IV (p < .001). Our study confirms the increase of plasma hCys levels seemed to be a major contributing factor to antioxidant capacities and alters the availability of selenium metabolism by interference with homocysteine synthesis in the insulin secretion deficiency stage.
Collapse
Affiliation(s)
- Asma Bouazza
- Bioenergetics and Intermediary Metabolism team, Laboratory of Biology and Organism Physiology, Biological Sciences faculty, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria
| | - Eric Fontaine
- Laboratoire de Bioénergétique Fondamentale et Appliquée (LBFA), INSERM, Grenoble, France
| | - Xavier Leverve
- Laboratoire de Bioénergétique Fondamentale et Appliquée (LBFA), INSERM, Grenoble, France
| | - Elhadj-Ahmed Koceir
- Bioenergetics and Intermediary Metabolism team, Laboratory of Biology and Organism Physiology, Biological Sciences faculty, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria
| |
Collapse
|
4
|
Maternal One-Carbon Supplement Reduced the Risk of Non-Alcoholic Fatty Liver Disease in Male Offspring. Nutrients 2022; 14:nu14122545. [PMID: 35745277 PMCID: PMC9228996 DOI: 10.3390/nu14122545] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 12/03/2022] Open
Abstract
Recent studies have suggested that prevention of obesity and non-alcoholic fatty liver disease (NAFLD) should start with maternal dietary management. We previously reported disrupted methionine cycle, associated with NAFLD, in male offspring liver due to maternal high-fat (HF) diet, thus we hypothesize that maternal one-carbon supplement may reduce the risk of NAFLD in offspring via the normalizing methionine cycle. To test it, female mice (F0) were exposed to either a maternal normal-fat diet (NF group) a maternal HF diet (HF group), or a maternal methyl donor supplement (H1S or H2S group) during gestation and lactation. The offspring male mice (F1) were exposed to a postweaning HF diet to promote NAFLD. While the HF offspring displayed obesity, glucose intolerance and hepatic steatosis, the H1S and H2S offspring avoided hepatic steatosis. This phenotype was associated with the normalization of the methionine cycle and the restoration of L-carnitine and AMPK activity. Furthermore, maternal HF diet induced epigenetic regulation of important genes involved in fatty acid oxidation and oxidative phosphorylation via DNA methylation modifications, which were recovered by maternal one-carbon supplementation. Our study provides evidence that maternal one-carbon supplement can reverse/block the adverse effects of maternal HF diet on promoting offspring NAFLD, suggesting a potential nutritional strategy that is administered to mothers to prevent NAFLD in the offspring.
Collapse
|
5
|
Jiao Y, Kong N, Wang H, Sun D, Dong S, Chen X, Zheng H, Tong W, Yu H, Yu L, Huang Y, Wang H, Sui B, Zhao L, Liao Y, Zhang W, Tong G, Shan T. PABPC4 Broadly Inhibits Coronavirus Replication by Degrading Nucleocapsid Protein through Selective Autophagy. Microbiol Spectr 2021; 9:e0090821. [PMID: 34612687 PMCID: PMC8510267 DOI: 10.1128/spectrum.00908-21] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/30/2021] [Indexed: 12/13/2022] Open
Abstract
Emerging coronaviruses (CoVs) can cause severe diseases in humans and animals, and, as of yet, none of the currently available broad-spectrum drugs or vaccines can effectively control these diseases. Host antiviral proteins play an important role in inhibiting viral proliferation. One of the isoforms of cytoplasmic poly(A)-binding protein (PABP), PABPC4, is an RNA-processing protein, which plays an important role in promoting gene expression by enhancing translation and mRNA stability. However, its function in viruses remains poorly understood. Here, we report that the host protein, PABPC4, could be regulated by transcription factor SP1 and broadly inhibits the replication of CoVs, covering four genera (Alphacoronavirus, Betacoronavirus, Gammacoronavirus, and Deltacoronavirus) of the Coronaviridae family by targeting the nucleocapsid (N) protein through the autophagosomes for degradation. PABPC4 recruited the E3 ubiquitin ligase MARCH8/MARCHF8 to the N protein for ubiquitination. Ubiquitinated N protein was recognized by the cargo receptor NDP52/CALCOCO2, which delivered it to the autolysosomes for degradation, resulting in impaired viral proliferation. In addition to regulating gene expression, these data demonstrate a novel antiviral function of PABPC4, which broadly suppresses CoVs by degrading the N protein via the selective autophagy pathway. This study will shed light on the development of broad anticoronaviral therapies. IMPORTANCE Emerging coronaviruses (CoVs) can cause severe diseases in humans and animals, but none of the currently available drugs or vaccines can effectively control these diseases. During viral infection, the host will activate the interferon (IFN) signaling pathways and host restriction factors in maintaining the innate antiviral responses and suppressing viral replication. This study demonstrated that the host protein, PABPC4, interacts with the nucleocapsid (N) proteins from eight CoVs covering four genera (Alphacoronavirus, Betacoronavirus, Gammacoronavirus, and Deltacoronavirus) of the Coronaviridae family. PABPC4 could be regulated by SP1 and broadly inhibits the replication of CoVs by targeting the nucleocapsid (N) protein through the autophagosomes for degradation. This study significantly increases our understanding of the novel host restriction factor PABPC4 against CoV replication and will help develop novel antiviral strategies.
Collapse
Affiliation(s)
- Yajuan Jiao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People’s Republic of China
| | - Ning Kong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People’s Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Hua Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People’s Republic of China
| | - Dage Sun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People’s Republic of China
| | - Sujie Dong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People’s Republic of China
| | - Xiaoyong Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People’s Republic of China
| | - Hao Zheng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People’s Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Wu Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People’s Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Hai Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People’s Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Lingxue Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People’s Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Yaowei Huang
- College of Animal Sciences, Zhejiang University, Hangzhou, People’s Republic of China
| | - Huan Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People’s Republic of China
| | - Baokun Sui
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Ling Zhao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Ying Liao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People’s Republic of China
| | - Wen Zhang
- School of Medicine, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Guangzhi Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People’s Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Tongling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People’s Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| |
Collapse
|
6
|
Brütting C, Hildebrand P, Brandsch C, Stangl GI. Ability of dietary factors to affect homocysteine levels in mice: a review. Nutr Metab (Lond) 2021; 18:68. [PMID: 34193183 PMCID: PMC8243555 DOI: 10.1186/s12986-021-00594-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/14/2021] [Indexed: 01/10/2023] Open
Abstract
Homocysteine is associated with several diseases, and a series of dietary factors are known to modulate homocysteine levels. As mice are often used as model organisms to study the effects of dietary hyperhomocysteinemia, we collected data about concentrations of vitamin B12, vitamin B6, folate, methionine, cystine, and choline in mouse diets and the associated plasma/serum homocysteine levels. In addition, we more closely examined the composition of the control diet, the impact of the mouse strain, sex and age, and the duration of the dietary intervention on homocysteine levels. In total, 113 out of 1103 reviewed articles met the inclusion criteria. In the experimental and control diets, homocysteine levels varied from 0.1 to 280 µmol/l. We found negative correlations between dietary vitamin B12 (rho = − 0.125; p < 0.05), vitamin B6 (rho = − 0.191; p < 0.01) and folate (rho = − 0.395; p < 0.001) and circulating levels of homocysteine. In contrast, a positive correlation was observed between dietary methionine and homocysteine (methionine: rho = 0.146; p < 0.05). No significant correlations were found for cystine or choline and homocysteine levels. In addition, there was no correlation between the duration of the experimental diets and homocysteine levels. More importantly, the data showed that homocysteine levels varied widely in mice fed control diets as well. When comparing control diets with similar nutrient concentrations (AIN-based), there were significant differences in homocysteine levels caused by the strain (ANOVA, p < 0.05) and age of the mice at baseline (r = 0.47; p < 0.05). When comparing homocysteine levels and sex, female mice tended to have higher homocysteine levels than male mice (9.3 ± 5.9 µmol/l vs. 5.8 ± 4.5 µmol/l; p = 0.069). To conclude, diets low in vitamin B12, vitamin B6, or folate and rich in methionine are similarly effective in increasing homocysteine levels. AIN recommendations for control diets are adequate with respect to the amounts of homocysteine-modulating dietary parameters. In addition, the mouse strain and the age of mice can affect the homocysteine level.
Collapse
Affiliation(s)
- Christine Brütting
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 2, 06120, Halle (Saale), Germany.
| | - Pia Hildebrand
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 2, 06120, Halle (Saale), Germany
| | - Corinna Brandsch
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 2, 06120, Halle (Saale), Germany
| | - Gabriele I Stangl
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 2, 06120, Halle (Saale), Germany
| |
Collapse
|
7
|
Yusuf AP, Abubakar MB, Malami I, Ibrahim KG, Abubakar B, Bello MB, Qusty N, Elazab ST, Imam MU, Alexiou A, Batiha GES. Zinc Metalloproteins in Epigenetics and Their Crosstalk. Life (Basel) 2021; 11:186. [PMID: 33652690 PMCID: PMC7996840 DOI: 10.3390/life11030186] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/13/2022] Open
Abstract
More than half a century ago, zinc was established as an essential micronutrient for normal human physiology. In silico data suggest that about 10% of the human proteome potentially binds zinc. Many proteins with zinc-binding domains (ZBDs) are involved in epigenetic modifications such as DNA methylation and histone modifications, which regulate transcription in physiological and pathological conditions. Zinc metalloproteins in epigenetics are mainly zinc metalloenzymes and zinc finger proteins (ZFPs), which are classified into writers, erasers, readers, editors, and feeders. Altogether, these classes of proteins engage in crosstalk that fundamentally maintains the epigenome's modus operandi. Changes in the expression or function of these proteins induced by zinc deficiency or loss of function mutations in their ZBDs may lead to aberrant epigenetic reprogramming, which may worsen the risk of non-communicable chronic diseases. This review attempts to address zinc's role and its proteins in natural epigenetic programming and artificial reprogramming and briefly discusses how the ZBDs in these proteins interact with the chromatin.
Collapse
Affiliation(s)
- Abdurrahman Pharmacy Yusuf
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, P.M.B. 2346 Sokoto, Nigeria; (A.P.Y.); (I.M.); (K.G.I.); (B.A.); (M.U.I.)
| | - Murtala Bello Abubakar
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, P.M.B. 2346 Sokoto, Nigeria; (A.P.Y.); (I.M.); (K.G.I.); (B.A.); (M.U.I.)
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, P.M.B. 2254 Sokoto, Nigeria
| | - Ibrahim Malami
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, P.M.B. 2346 Sokoto, Nigeria; (A.P.Y.); (I.M.); (K.G.I.); (B.A.); (M.U.I.)
- Department of Pharmacognosy and Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, P.M.B. 2346 Sokoto, Nigeria
| | - Kasimu Ghandi Ibrahim
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, P.M.B. 2346 Sokoto, Nigeria; (A.P.Y.); (I.M.); (K.G.I.); (B.A.); (M.U.I.)
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, P.M.B. 2254 Sokoto, Nigeria
| | - Bilyaminu Abubakar
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, P.M.B. 2346 Sokoto, Nigeria; (A.P.Y.); (I.M.); (K.G.I.); (B.A.); (M.U.I.)
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, P.M.B. 2346 Sokoto, Nigeria
| | - Muhammad Bashir Bello
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, P.M.B. 2346 Sokoto, Nigeria; (A.P.Y.); (I.M.); (K.G.I.); (B.A.); (M.U.I.)
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Usmanu Danfodiyo University, P.M.B. 2346 Sokoto, Nigeria
| | - Naeem Qusty
- Medical Laboratories Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Mecca 21955, Saudi Arabia;
| | - Sara T. Elazab
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Dakahlia 35516, Egypt;
| | - Mustapha Umar Imam
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, P.M.B. 2346 Sokoto, Nigeria; (A.P.Y.); (I.M.); (K.G.I.); (B.A.); (M.U.I.)
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, P.M.B. 2254 Sokoto, Nigeria
| | - Athanasios Alexiou
- Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
- AFNP Med, Haidingergasse 29, 1030 Vienna, Austria
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira 22511, Egypt
| |
Collapse
|
8
|
Qi Y, Zhang Z, Liu S, Aluo Z, Zhang L, Yu L, Li Y, Song Z, Zhou L. Zinc Supplementation Alleviates Lipid and Glucose Metabolic Disorders Induced by a High-Fat Diet. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5189-5200. [PMID: 32290656 DOI: 10.1021/acs.jafc.0c01103] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Zinc deficiency is a risk factor for the development of obesity and diabetes. Studies have shown lower serum zinc levels in obese individuals and those with diabetes. We speculate that zinc supplementation can alleviate obesity and diabetes and, to some extent, their complications. To test our hypothesis, we investigated the effects of zinc supplementation on mice with high-fat diet (HFD)-induced hepatic steatosis in vivo and in vitro by adding zinc to the diet of mice and the medium of HepG2 cells. Both results showed that high levels of zinc could alleviate the glucose and lipid metabolic disorders induced by a HFD. High zinc can reduce glucose production, promote glucose absorption, reduce lipid deposition, improve HFD-induced liver injury, and regulate energy metabolism. This study provides novel insight into the treatment of non-alcoholic fatty liver disease and glucose metabolic disorder.
Collapse
Affiliation(s)
- Yilin Qi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Zhiwang Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Siqi Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Zhier Aluo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Lifang Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Lin Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Yixing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Ziyi Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Lei Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| |
Collapse
|