1
|
Eriten B, Caglayan C, Gür C, Küçükler S, Diril H. Hepatoprotective effects of zingerone on sodium arsenite-induced hepatotoxicity in rats: Modulating the levels of caspase-3/Bax/Bcl-2, NLRP3/NF-κB/TNF-α and ATF6/IRE1/PERK/GRP78 signaling pathways. Biochem Biophys Res Commun 2024; 725:150258. [PMID: 38897041 DOI: 10.1016/j.bbrc.2024.150258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/29/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
OBJECTIVE Long-term exposure to arsenic has been linked to several illnesses, including hypertension, diabetes, hepatic and renal diseases and cardiovascular malfunction. The aim of the current investigation was to determine whether zingerone (ZN) could shield rats against the hepatotoxicity that sodium arsenite (SA) causes. METHODS The following five groups of thirty-five male Sprague Dawley rats were created: I) Control; received normal saline, II) ZN; received ZN, III) SA; received SA, IV) SA + ZN 25; received 10 mg/kg body weight SA + 25 mg/kg body weight ZN, and V) SA + ZN 50; received 10 mg/kg body weight SA + 50 mg/kg body weight ZN. The experiment lasted 14 days, and the rats were sacrificed on the 15th day. While oxidative stress parameters were studied by spectrophotometric method, apoptosis, inflammation and endoplasmic reticulum stress parameters were measured by RT-PCR method. RESULTS The SA disrupted the histological architecture and integrity of the liver and enhanced oxidative damage by lowering antioxidant enzyme activity, such as those of glutathione peroxidase (GPx), catalase (CAT), superoxide dismutase (SOD), glutathione (GSH) level and increasing malondialdehyde (MDA) level in the liver tissue. Additionally, SA increased the mRNA transcript levels of Bcl2 associated x (Bax), caspases (-3, -6, -9), apoptotic protease-activating factor 1 (Apaf-1), p53, tumor necrosis factor-α (TNF-α), nuclear factor kappa B (NF-κB), interleukin-1β (IL-1β), interleukin-6 (IL-6), c-Jun NH2-terminal kinase (JNK), mitogen-activated protein kinase 14 (MAPK14), MAPK15, receptor for advanced glycation endproducts (RAGE) and nod-like receptor family pyrin domain-containing 3 (NLRP3) in the liver tissue. Also produced endoplasmic reticulum stress by raising the mRNA transcript levels of activating transcription factor 6 (ATF-6), protein kinase RNA-like ER kinase (PERK), inositol-requiring enzyme 1 (IRE1), and glucose-regulated protein 78 (GRP-78). These factors together led to inflammation, apoptosis, and endoplasmic reticulum stress. On the other hand, liver tissue treated with ZN at doses of 25 and 50 mg/kg showed significant improvement in oxidative stress, inflammation, apoptosis and endoplasmic reticulum stress. CONCLUSIONS Overall, the study's data suggest that administering ZN may be able to lessen the liver damage caused by SA toxicity.
Collapse
Affiliation(s)
- Berna Eriten
- Department of Pathology, Sancaktepe Sehit Prof. Dr. Ilhan Varank Training and Research Hospital, Istanbul, Turkey.
| | - Cuneyt Caglayan
- Department of Medical Biochemistry, Faculty of Medicine, Bilecik Seyh Edebali University, Bilecik, Turkey.
| | - Cihan Gür
- Department of Medical Laboratory Techniques, Vocational School of Health Services, Atatürk University, Erzurum, Turkey
| | - Sefa Küçükler
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Halit Diril
- Medical Biochemistry Laboratory, Dursun Odabaş Medical Center, Van Yüzüncü Yıl University, Van, Turkey
| |
Collapse
|
2
|
Namoju R, Chilaka KN. Protective effect of alpha‑lipoic acid against in utero cytarabine exposure-induced hepatotoxicity in rat female neonates. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6577-6589. [PMID: 38459988 DOI: 10.1007/s00210-024-03036-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 03/01/2024] [Indexed: 03/11/2024]
Abstract
Cytarabine, an anti-metabolite drug, remains the mainstay of treatment for hematological malignancies. It causes various toxic effects including teratogenicity. Alpha lipoic acid (ALA) is a natural antioxidant reported to offer protection against hepatotoxicity induced by various pathological conditions, drugs, or chemicals. We investigated the protective effect of ALA against prenatal cytarabine exposure-induced hepatotoxicity in rat female neonates. A total of 30 dams were randomly assigned to five groups and received normal saline, ALA 200 mg/kg, cytarabine 12.5 mg/kg, cytarabine 25 mg/kg, and cytarabine 25 mg/kg + ALA 200 mg/kg, respectively, from gestational day (GD)8 to GD21. Cytarabine and ALA were administered via intraperitoneal and oral (gavage) routes, respectively. On postnatal day (PND)1, all the live female neonates (pups) were collected and weighed. The blood and liver from pups were carefully collected and used for histopathological, and biochemical evaluations. A significant and dose-dependent decrease in maternal food intake and weight gain was observed in the pregnant rats (dams) of the cytarabine groups as compared to the dams of the control group. The pups exposed to cytarabine showed a significant and dose-dependent (a) decrease in body weight, liver weight, hepatosomatic index, catalase, superoxide dismutase, glutathione, glutathione peroxidase, serum albumin levels and (b) increase in malondialdehyde, alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase, AST/ALT ratio, and histopathological anomalies. Maternal co-administration of ALA ameliorated these biochemical changes and histopathological abnormalities by combating oxidative stress. Future studies are warranted to explore the molecular mechanisms involved in the ALA's protective effects against prenatal cytarabine-induced hepatotoxicity.
Collapse
Affiliation(s)
- Ramanachary Namoju
- Department of Pharmacology, GITAM School of Pharmacy, GITAM Deemed to be University, Visakhapatnam, Andhra Pradesh, 530045, India.
- Department of Pharmacology, Bhaskar Pharmacy College, Jawaharlal Nehru Technical University, Hyderabad, Telangana, 500075, India.
| | - Kavitha N Chilaka
- Department of Pharmacology, GITAM School of Pharmacy, GITAM Deemed to be University, Visakhapatnam, Andhra Pradesh, 530045, India
| |
Collapse
|
3
|
Najafi N, Barangi S, Moosavi Z, Aghaee-Bakhtiari SH, Mehri S, Karimi G. Melatonin Attenuates Arsenic-Induced Neurotoxicity in Rats Through the Regulation of miR-34a/miR-144 in Sirt1/Nrf2 Pathway. Biol Trace Elem Res 2024; 202:3163-3179. [PMID: 37853305 DOI: 10.1007/s12011-023-03897-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/29/2023] [Indexed: 10/20/2023]
Abstract
Arsenic (As) exposure is known to cause several neurological disorders through various molecular mechanisms such as oxidative stress, apoptosis, and autophagy. In the current study, we assessed the effect of melatonin (Mel) on As-induced neurotoxicity. Thirty male Wistar rat were treated daily for 28 consecutive days. As (15 mg/kg, gavage) and Mel (10 and 20 mg/kg, i.p.) were administered to rats. Morris water maze test was done to evaluate learning and memory impairment in training days and probe trial. Oxidative stress markers including MDA and GSH levels, SOD activity, and HO-1 levels were measured. Besides, the levels of apoptosis (caspase 3, Bax/Bcl2 ratio) and autophagy markers (Sirt1, Beclin-1, and LC3 II/I ratio) as well as the expression of miR-144 and miR-34a in cortex tissue were determined. As exposure disturbed learning and memory in animals and Mel alleviated these effects. Also, Mel recovered cortex pathological damages and oxidative stress induced by As. Furthermore, As increased the levels of apoptosis and autophagy proteins in cortex, while Mel (20 mg/kg) decreased apoptosis and autophagy. Also, Mel increased the expression of miR-144 and miR-34a which inhibited by As. In conclusion, Mel administration attenuated As-induced neurotoxicity through anti-oxidative, anti-apoptotic, and anti-autophagy mechanisms, which may be recommended as a therapeutic target for neurological disorders.
Collapse
Affiliation(s)
- Nahid Najafi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samira Barangi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Moosavi
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Seyed Hamid Aghaee-Bakhtiari
- Bioinformatics Research Group, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Mehri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Xu Y, Zeng Q, Zhang A. Assessing the mechanisms and adjunctive therapy for arsenic-induced liver injury in rats. ENVIRONMENTAL TOXICOLOGY 2024; 39:1197-1209. [PMID: 37902164 DOI: 10.1002/tox.24008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 07/03/2023] [Accepted: 10/09/2023] [Indexed: 10/31/2023]
Abstract
Environmental arsenic exposure is a significant global public health concern. Previous studies have demonstrated the association between arsenic-induced liver injury and oxidative stress as well as ferroptosis. However, the knowledge of the interactions among these mechanisms remains limited. Moreover, there is a lack of research on potential therapeutic interventions for liver injury resulting from arsenic exposure. To address these limitations, we established a rat model with liver injury caused by arsenic exposure and investigated the impact of the nuclear factor E2-related factor 2 (Nrf2)/glutathione peroxidase 4 (GPx4) signaling pathway and ferroptosis on arsenic-induced liver injury. Our findings revealed that arsenic increased Nrf2 expression and decreased GPx4 expression in the rat liver. This was accompanied by a substantial generation of reactive oxygen species and disruption of the antioxidant defense system, ultimately promoting liver injury through ferroptosis. Subsequently, we conducted intervention experiments using Rosa roxburghii Tratt (RRT) in rats exposed to arsenic. The results showed that the detrimental effects mentioned earlier were partially alleviated following RRT intervention. This study offers preliminary evidence that persistent activation of Nrf2 by arsenic triggers an adaptive antioxidant response, leading to liver injury through the promotion of ferroptosis. Additionally, we discovered that RRT inhibits Nrf2-mediated adaptive antioxidant responses by reducing hepatic ferroptosis, thereby mitigating liver injury caused by arsenic exposure in rats. Our study contributes to a deeper understanding of the molecular mechanisms underlying liver injury resulting from arsenic exposure. Furthermore, our findings may facilitate the identification of a potential edible and medicinal plant extracts that could be utilized to develop a more effective adjunctive treatment approach.
Collapse
Affiliation(s)
- Yuyan Xu
- The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Health, Guizhou Medical University, Guiyang, China
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, China
| | - Qibing Zeng
- The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Health, Guizhou Medical University, Guiyang, China
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, China
| | - Aihua Zhang
- The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Health, Guizhou Medical University, Guiyang, China
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, China
| |
Collapse
|
5
|
Yin F, Zhang Y, Zhang X, Zhang M, Zhang Z, Yin Y, Xu H, Yang Y, Gao Y. The ROS/NF-κB/HK2 axis is involved in the arsenic-induced Warburg effect in human L-02 hepatocytes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:150-165. [PMID: 36264688 DOI: 10.1080/09603123.2022.2134559] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Arsenic has been identified as a carcinogen, although the molecular mechanism underlying itscarcinogenesis has not been fully elucidated. To date, only a few studies have attempted to confirm a direct link between oxidative stress and the Warburg effect . This study demonstrated that 0.2 μmol/L As3+ induced the Warburg effect to contribute to abnormal proliferation of L-02 cells, that was mediated by upregulation of hexokinase 2 (HK2), a key enzyme in glycolysis. Further study indicated that arsenic-induced accumulation of reactive oxygen species (ROS) activated the nuclear factor kappa B (NF-κB) signaling pathway by phosphorylation of p65 at the Ser536 and Ser276 sites, leading to upregulated expression of HK2. We therefore concluded that the ROS/NF-κB/HK2 axis contributes to the Warburg effect and cell proliferation induced by low doses of arsenic.AbbreviationsROS, Reactive oxygen species; NAC, N-acetyl-L-cysteine; 2-DG, 2-deoxy-D-glucose; 2-NBDG, 2-Deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]-D-glucose.
Collapse
Affiliation(s)
- Fanshuo Yin
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin, Heilongjiang, China
| | - Ying Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin, Heilongjiang, China
| | - Xin Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin, Heilongjiang, China
| | - Meichen Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin, Heilongjiang, China
| | - Zaihong Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yunyi Yin
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin, Heilongjiang, China
| | - Haili Xu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yanmei Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
6
|
Zhang Z, Zhang S, Zhang F, Zhang Q, Wei H, Xiu R, Zhao Y, Sui M. Clinical Indicators of Hepatotoxicity in Newly Diagnosed Acute Promyelocytic Leukemia Patients Undergoing Arsenic Trioxide Treatment. Biol Trace Elem Res 2024; 202:122-132. [PMID: 37097388 PMCID: PMC10764564 DOI: 10.1007/s12011-023-03676-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 04/18/2023] [Indexed: 04/26/2023]
Abstract
Arsenic trioxide (ATO)-induced hepatotoxicity is often observed in acute promyelocytic leukemia (APL) patients and decreases therapeutic effect of ATO. Thus, concerns over hepatotoxicity have been raised. The aim of this study was to explore some noninvasive clinical indicators that can be used to guide the individualized application of ATO in the future. APL patients treated with ATO were identified retrospectively via electronic health records at our hospital from August 2014 through August 2019. APL patients without hepatotoxicity were selected as controls. The association between putative risk factors and ATO-induced hepatotoxicity was estimated with ORs and 95% CIs, which were calculated using the chi-square test. The subsequent multivariate analysis was performed using logistic regression analysis. In total, 58.04% of patients experienced ATO-induced hepatotoxicity during the first week. Elevated hemoglobin (OR 8.653, 95% CI, 1.339-55.921), administration of nonprophylactic hepatoprotective agents (OR 36.455, 95% CI, 7.409-179.364), non-single-agent ATO to combat leukocytosis (OR 20.108, 95% CI, 1.357-297.893) and decreased fibrinogen (OR 3.496, 95% CI, 1.127-10.846) were found to be statistically significant risk factors for ATO-induced hepatotoxicity. The area under the ROC curve values were 0.846 for "overall ATO-induced hepatotoxicity" and 0.819 for "early ATO-induced hepatotoxicity." The results revealed that hemoglobin ≥ 80 g/L, nonprophylactic hepatoprotective agents, and non-single-agent ATO and fibrinogen < 1 g/L are risk factors for ATO-induced hepatotoxicity in newly diagnosed APL patients. These findings can enhance the clinical diagnosis of hepatotoxicity. Prospective studies should be performed in the future to validate these findings.
Collapse
Affiliation(s)
- Zhuo Zhang
- Central Laboratory, the First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Harbin, 150001, Heilongjiang, China
- Department of Hematology, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Shunji Zhang
- Department of Hematology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fan Zhang
- Central Laboratory, the First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Harbin, 150001, Heilongjiang, China
| | - Qian Zhang
- Department of Hematology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hong Wei
- Department of Hematology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ruolin Xiu
- Department of Hematology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanhong Zhao
- Department of Hematology, the First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Meijuan Sui
- Central Laboratory, the First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Harbin, 150001, Heilongjiang, China.
- Department of Hematology, the First Affiliated Hospital of Harbin Medical University, Harbin, China.
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
7
|
Huang Y, Luo W, Chen S, Su H, Zhu W, Wei Y, Qiu Y, Long Y, Shi Y, Wei J. Isovitexin alleviates hepatic fibrosis by regulating miR-21-mediated PI3K/Akt signaling and glutathione metabolic pathway: based on transcriptomics and metabolomics. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 121:155117. [PMID: 37820467 DOI: 10.1016/j.phymed.2023.155117] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/06/2023] [Accepted: 09/21/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Effective drugs for the treatment of hepatic fibrosis have not yet been identified. Isovitexin (IVT) is a promising hepatoprotective agent owing to its efficacy against acute liver injury. However, the role of IVT in liver fibrosis has not been reported. PURPOSE To explore the effect of IVT on liver fibrosis both in vitro and in vivo. STUDY DESIGN AND METHODS A mouse model of liver fibrosis induced by carbon tetrachloride (CCl4) and two types of hepatic stellate cell models induced by platelet-derived growth factor-BB (PDGF-BB) were established to evaluate the effect of IVT on hepatic fibrosis. Transcriptomics and metabolomics were used to predict the underlying targets of IVT and were validated by a combination of in vitro and in vivo experiments. Exploration of miRNA and N6-methyladenosine (m6A) modifications was also carried out to detect the key upstream targets of the above targets. RESULTS IVT reduced collagen deposition and hepatic stellate cell activation to alleviate liver fibrosis. The transcriptomics and metabolomics analyses showed that phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling and the glutathione (GSH) metabolic pathway may be the main regulatory processes of IVT in hepatic fibrosis. Both the in vitro and in vivo experiments confirmed the inhibitory effect of IVT on the PTEN-PI3K-Akt-mTOR axis and activation of the GSH metabolic pathway. A miR-21 mimic inhibited the effects of IVT on these two pathways, suggesting that miR-21 is the hub for IVT regulation of PI3K-Akt signaling and the GSH metabolic pathway. IVT also increased pri-miR-21 level and reduced the m6A enrichment of pri-miR-21, demonstrating that IVT may regulate pri-miR-21 through m6A modification, thereby affecting the maturation of miR-21. CONCLUSION This study is the first to propose a protective effect of IVT against liver fibrosis. The mechanism of IVT against hepatic fibrosis is based on the regulation of miR-21, targeting PTEN-Akt signaling and the GSH metabolic pathway, which is also a novel discovery.
Collapse
Affiliation(s)
- Yushen Huang
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, China
| | - Wen Luo
- Department of Gastrointestinal Surgery, Liuzhou Workers Hospital, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Siyun Chen
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, China
| | - Hongmei Su
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, China
| | - Wuchang Zhu
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, China
| | - Yuanyuan Wei
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, China
| | - Yue Qiu
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, China
| | - Yan Long
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, China
| | - Yanxia Shi
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, China
| | - Jinbin Wei
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, China; National Center for International Research of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
8
|
Korotkov SM. Mitochondrial Oxidative Stress Is the General Reason for Apoptosis Induced by Different-Valence Heavy Metals in Cells and Mitochondria. Int J Mol Sci 2023; 24:14459. [PMID: 37833908 PMCID: PMC10572412 DOI: 10.3390/ijms241914459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
This review analyzes the causes and consequences of apoptosis resulting from oxidative stress that occurs in mitochondria and cells exposed to the toxic effects of different-valence heavy metals (Ag+, Tl+, Hg2+, Cd2+, Pb2+, Al3+, Ga3+, In3+, As3+, Sb3+, Cr6+, and U6+). The problems of the relationship between the integration of these toxic metals into molecular mechanisms with the subsequent development of pathophysiological processes and the appearance of diseases caused by the accumulation of these metals in the body are also addressed in this review. Such apoptosis is characterized by a reduction in cell viability, the activation of caspase-3 and caspase-9, the expression of pro-apoptotic genes (Bax and Bcl-2), and the activation of protein kinases (ERK, JNK, p53, and p38) by mitogens. Moreover, the oxidative stress manifests as the mitochondrial permeability transition pore (MPTP) opening, mitochondrial swelling, an increase in the production of reactive oxygen species (ROS) and H2O2, lipid peroxidation, cytochrome c release, a decline in the inner mitochondrial membrane potential (ΔΨmito), a decrease in ATP synthesis, and reduced glutathione and oxygen consumption as well as cytoplasm and matrix calcium overload due to Ca2+ release from the endoplasmic reticulum (ER). The apoptosis and respiratory dysfunction induced by these metals are discussed regarding their interaction with cellular and mitochondrial thiol groups and Fe2+ metabolism disturbance. Similarities and differences in the toxic effects of Tl+ from those of other heavy metals under review are discussed. Similarities may be due to the increase in the cytoplasmic calcium concentration induced by Tl+ and these metals. One difference discussed is the failure to decrease Tl+ toxicity through metallothionein-dependent mechanisms. Another difference could be the decrease in reduced glutathione in the matrix due to the reversible oxidation of Tl+ to Tl3+ near the centers of ROS generation in the respiratory chain. The latter may explain why thallium toxicity to humans turned out to be higher than the toxicity of mercury, lead, cadmium, copper, and zinc.
Collapse
Affiliation(s)
- Sergey M Korotkov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez pr. 44, 194223 St. Petersburg, Russia
| |
Collapse
|
9
|
Calabrese EJ, Agathokleous E, Dhawan G, Kapoor R, Calabrese V. Protective effects of alpha lipoic acid (ALA) are mediated by hormetic mechanisms. Food Chem Toxicol 2023; 177:113805. [PMID: 37169059 DOI: 10.1016/j.fct.2023.113805] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/13/2023]
Abstract
The endogenous and dietary agent, alpha lipoic acid (ALA) is evaluated for its capacity to induce a broad spectrum of adaptive responses via hormetic dose responses and their underlying mechanisms. ALA was shown to induce hormetic effects in a wide range of experimental models within in vitro and in vivo experimental settings which included direct exposure and pre- and post-conditioning experimental protocols. The hormetic effects occur in a broad range of organ systems, including the brain, heart, kidney and other tissues, with possible public health and clinical/therapeutic applications linked to reducing the onset and progression of neurogenerative diseases and also in the preservation of sperm health and functionality during cryopreservation. This paper provides the first integrated assessment of ALA-induced hormetic dose responses. Underlying mechanisms that mediated the occurrence of ALA-induced hormetic effects involved the induction of low levels of ROS that activate key cell signaling antioxidant (e.g. Nrf2) pathways.
Collapse
Affiliation(s)
- Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, USA.
| | - Evgenios Agathokleous
- Department of Ecology, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | | | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA.
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Via Santa Sofia 97, Catania, 95123, Italy.
| |
Collapse
|
10
|
Zhang T, Zhang D, Zhang Z, Tian J, An J, Zhang W, Ben Y. Alpha-lipoic acid activates AMPK to protect against oxidative stress and apoptosis in rats with diabetic peripheral neuropathy. Hormones (Athens) 2023; 22:95-105. [PMID: 36289188 DOI: 10.1007/s42000-022-00413-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/18/2022] [Indexed: 11/04/2022]
Abstract
PURPOSE To investigate the AMPK pathway-mediated effect of alpha-lipoic acid (ALA) on the dorsal root ganglia (DRGs) of rats with diabetic peripheral neuropathy (DPN) and to attempt to elucidate the underlying mechanism. METHODS Sprague-Dawley rats (n = 15) were randomly divided into three groups. The control group was fed a standard diet, and the other groups were fed a high-carbohydrate/high-fat diet. Diabetes was established by a single streptozotocin (STZ) (30 mg/kg) injection, and control rats were injected with an equal volume of citrate buffer. ALA (60 mg/kg/day) was administered for 12 weeks. The nerve conduction velocity (NCV) of the sciatic nerve was measured. Glutathione (GSH) and malondialdehyde (MDA) concentrations in serum were measured with the thiobarbituric acid method and biochemistry. Pathological changes in the rat DRGs were observed. AMPK, phospho-AMPK (p-AMPK), nuclear factor erythroid-2-related factor 2 (Nrf2), phospho-nuclear factor erythroid-2-related factor 2 (p-Nrf2), heme oxygenase 1 (HO-1), quinone oxidoreductase 1 (NQO1), Forkhead box O3 (FoxO3a), phospho-Forkhead box O3 (p-FoxO3a), and Bcl-2 interacting mediator of cell death (Bim) expression levels were assessed by immunohistochemistry and western blotting. RESULTS ALA improved the motor NCV (MNCV) and sensory NCV (SNCV) of rats with DPN and reduced their mechanical pain threshold. ALA increased serum GSH concentrations and decreased serum MDA concentrations. Additionally, AMPK was activated by ALA. Nrf2, p-Nrf2, HO-1, and NQO1 expression was upregulated, while FoxO3a, p-FoxO3a, and Bim expression was downregulated. ALA reduced oxidative stress and apoptosis in DRG. CONCLUSION ALA alleviates DPN and improves peripheral nerve function. ALA reduces oxidative stress by activating Nrf2 through AMPK and inhibits FoxO3a and Bim thereby reducing neuronal apoptosis.
Collapse
Affiliation(s)
- Tianya Zhang
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China
| | - Dong Zhang
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China
| | - Zhihong Zhang
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China
| | - Jiaxin Tian
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China
| | - Jingwen An
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China
| | - Wang Zhang
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China
| | - Ying Ben
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China.
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China.
| |
Collapse
|
11
|
Shiek SS, Sajai ST, Dsouza HS. Arsenic-induced toxicity and the ameliorative role of antioxidants and natural compounds. J Biochem Mol Toxicol 2023; 37:e23281. [PMID: 36550698 DOI: 10.1002/jbt.23281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 11/04/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
Arsenic (As) poisoning has proven to be a major threat worldwide because of its toxic effects on the human body. As toxicity through drinking water is a global health concern. The toxicity of As is known to affect the liver, kidney, lungs, muscles, cardiovascular system, and nervous system and can even induce diabetes. Further As can cause skin lesions leading to notable diseases in the skin like Bowen's disease. Chronic exposure to As has caused many tragedies in Eastern, and several Southeast Asian and Latin American countries. Long-term exposure to As makes it an immediate threat that should be dealt with as a priority, and one of the ways to handle it may be with the use of antioxidants. In this review, we have discussed the natural and anthropogenic sources of As, its metabolism, pathophysiology, and mechanism of toxicity. Besides, we have also discussed some of the synthetic chelators and the ameliorative role of antioxidants and natural compounds in reducing As toxicity.
Collapse
Affiliation(s)
- Sadiya S Shiek
- Department of Biology, College of Science, United Arab Emirates University, United Arab Emirates
| | - Sanai T Sajai
- Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Herman S Dsouza
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| |
Collapse
|
12
|
Di Ciaula A, Calamita G, Shanmugam H, Khalil M, Bonfrate L, Wang DQH, Baffy G, Portincasa P. Mitochondria Matter: Systemic Aspects of Nonalcoholic Fatty Liver Disease (NAFLD) and Diagnostic Assessment of Liver Function by Stable Isotope Dynamic Breath Tests. Int J Mol Sci 2021; 22:7702. [PMID: 34299321 PMCID: PMC8305940 DOI: 10.3390/ijms22147702] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/08/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023] Open
Abstract
The liver plays a key role in systemic metabolic processes, which include detoxification, synthesis, storage, and export of carbohydrates, lipids, and proteins. The raising trends of obesity and metabolic disorders worldwide is often associated with the nonalcoholic fatty liver disease (NAFLD), which has become the most frequent type of chronic liver disorder with risk of progression to cirrhosis and hepatocellular carcinoma. Liver mitochondria play a key role in degrading the pathways of carbohydrates, proteins, lipids, and xenobiotics, and to provide energy for the body cells. The morphological and functional integrity of mitochondria guarantee the proper functioning of β-oxidation of free fatty acids and of the tricarboxylic acid cycle. Evaluation of the liver in clinical medicine needs to be accurate in NAFLD patients and includes history, physical exam, imaging, and laboratory assays. Evaluation of mitochondrial function in chronic liver disease and NAFLD is now possible by novel diagnostic tools. "Dynamic" liver function tests include the breath test (BT) based on the use of substrates marked with the non-radioactive, naturally occurring stable isotope 13C. Hepatocellular metabolization of the substrate will generate 13CO2, which is excreted in breath and measured by mass spectrometry or infrared spectroscopy. Breath levels of 13CO2 are biomarkers of specific metabolic processes occurring in the hepatocyte cytosol, microsomes, and mitochondria. 13C-BTs explore distinct chronic liver diseases including simple liver steatosis, non-alcoholic steatohepatitis, liver fibrosis, cirrhosis, hepatocellular carcinoma, drug, and alcohol effects. In NAFLD, 13C-BT use substrates such as α-ketoisocaproic acid, methionine, and octanoic acid to assess mitochondrial oxidation capacity which can be impaired at an early stage of disease. 13C-BTs represent an indirect, cost-effective, and easy method to evaluate dynamic liver function. Further applications are expected in clinical medicine. In this review, we discuss the involvement of liver mitochondria in the progression of NAFLD, together with the role of 13C-BT in assessing mitochondrial function and its potential use in the prevention and management of NAFLD.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.K.); (L.B.)
| | - Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “Aldo Moro”, 70100 Bari, Italy;
| | - Harshitha Shanmugam
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.K.); (L.B.)
| | - Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.K.); (L.B.)
| | - Leonilde Bonfrate
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.K.); (L.B.)
| | - David Q.-H. Wang
- Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Gyorgy Baffy
- Department of Medicine, VA Boston Healthcare System and Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02130, USA;
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.K.); (L.B.)
| |
Collapse
|