1
|
Ruan WJ, Xu SS, Xu DH, Li ZP. Orthopedic revolution: The emerging role of nanotechnology. World J Orthop 2024; 15:932-938. [DOI: 10.5312/wjo.v15.i10.932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/24/2024] [Accepted: 09/11/2024] [Indexed: 10/11/2024] Open
Abstract
This review summarizes the latest progress in orthopedic nanotechnology, explores innovative applications of nanofibers in tendon repair, and evaluates the potential of selenium and cerium oxide nanoparticles in osteoarthritis and osteoblast differentiation. This review also describes the emerging applications of injectable hydrogels in cartilage engineering, emphasizing the critical role of interdisciplinary research and highlighting the challenges and future prospects of integrating nanotechnology into orthopedic clinical practice. This comprehensive approach provides a holistic perspective on the transformative impact of nanotechnology in orthopedics, offering valuable insights for future research and clinical applications.
Collapse
Affiliation(s)
- Wen-Jie Ruan
- Department of Sports Medicine, Zhejiang Provincial People's Hospital (The Affiliated People's Hospital), Hangzhou 310000, Zhejiang Province, China
| | - Si-Si Xu
- School of Medicine, Taizhou University, Taizhou 318000, Zhejiang Province, China
| | - Dong-Hui Xu
- School of Medicine, Taizhou University, Taizhou 318000, Zhejiang Province, China
| | - Zhi-Peng Li
- The Second Department of Orthopedics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450015, Henan Province, China
| |
Collapse
|
2
|
Kim CD, Koo KM, Kim HJ, Kim TH. Recent Advances in Nanomaterials for Modulation of Stem Cell Differentiation and Its Therapeutic Applications. BIOSENSORS 2024; 14:407. [PMID: 39194636 DOI: 10.3390/bios14080407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024]
Abstract
Challenges in directed differentiation and survival limit the clinical use of stem cells despite their promising therapeutic potential in regenerative medicine. Nanotechnology has emerged as a powerful tool to address these challenges and enable precise control over stem cell fate. In particular, nanomaterials can mimic an extracellular matrix and provide specific cues to guide stem cell differentiation and proliferation in the field of nanotechnology. For instance, recent studies have demonstrated that nanostructured surfaces and scaffolds can enhance stem cell lineage commitment modulated by intracellular regulation and external stimulation, such as reactive oxygen species (ROS) scavenging, autophagy, or electrical stimulation. Furthermore, nanoframework-based and upconversion nanoparticles can be used to deliver bioactive molecules, growth factors, and genetic materials to facilitate stem cell differentiation and tissue regeneration. The increasing use of nanostructures in stem cell research has led to the development of new therapeutic approaches. Therefore, this review provides an overview of recent advances in nanomaterials for modulating stem cell differentiation, including metal-, carbon-, and peptide-based strategies. In addition, we highlight the potential of these nano-enabled technologies for clinical applications of stem cell therapy by focusing on improving the differentiation efficiency and therapeutics. We believe that this review will inspire researchers to intensify their efforts and deepen their understanding, thereby accelerating the development of stem cell differentiation modulation, therapeutic applications in the pharmaceutical industry, and stem cell therapeutics.
Collapse
Affiliation(s)
- Chang-Dae Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Kyeong-Mo Koo
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Hyung-Joo Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| |
Collapse
|
3
|
Aminmansour S, Cardoso LM, Anselmi C, de Carvalho ABG, Rahimnejad M, Bottino MC. Development of Cerium Oxide-Laden GelMA/PCL Scaffolds for Periodontal Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3904. [PMID: 39203082 PMCID: PMC11355598 DOI: 10.3390/ma17163904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 09/03/2024]
Abstract
This study investigated gelatin methacryloyl (GelMA) and polycaprolactone (PCL) blend scaffolds incorporating cerium oxide (CeO) nanoparticles at concentrations of 0%, 5%, and 10% w/w via electrospinning for periodontal tissue engineering. The impact of photocrosslinking on these scaffolds was evaluated by comparing crosslinked (C) and non-crosslinked (NC) versions. Methods included Fourier transform infrared spectroscopy (FTIR) for chemical analysis, scanning electron microscopy (SEM) for fiber morphology/diameters, and assessments of swelling capacity, degradation profile, and biomechanical properties. Biological evaluations with alveolar bone-derived mesenchymal stem cells (aBMSCs) and human gingival fibroblasts (HGFs) encompassed tests for cell viability, mineralized nodule deposition (MND), and collagen production (CP). Statistical analysis was performed using Kruskal-Wallis or ANOVA/post-hoc tests (α = 5%). Results indicate that C scaffolds had larger fiber diameters (~250 nm) compared with NC scaffolds (~150 nm). NC scaffolds exhibited higher swelling capacities than C scaffolds, while both types demonstrated significant mass loss (~50%) after 60 days (p < 0.05). C scaffolds containing CeO showed increased Young's modulus and tensile strength than NC scaffolds. Cells cultured on C scaffolds with 10% CeO exhibited significantly higher metabolic activity (>400%, p < 0.05) after 7 days among all groups. Furthermore, CeO-containing scaffolds promoted enhanced MND by aBMSCs (>120%, p < 0.05) and increased CP in 5% CeO scaffolds for both variants (>180%, p < 0.05). These findings underscore the promising biomechanical properties, biodegradability, cytocompatibility, and enhanced tissue regenerative potential of CeO-loaded GelMA/PCL scaffolds for periodontal applications.
Collapse
Affiliation(s)
- Sahar Aminmansour
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, 1011 N. University Avenue, Ann Arbor, MI 48109, USA; (S.A.); (L.M.C.); (C.A.); (A.B.G.d.C.); (M.R.)
| | - Lais M. Cardoso
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, 1011 N. University Avenue, Ann Arbor, MI 48109, USA; (S.A.); (L.M.C.); (C.A.); (A.B.G.d.C.); (M.R.)
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), 1680 Humaitá Street, Araraquara 14801-903, SP, Brazil
| | - Caroline Anselmi
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, 1011 N. University Avenue, Ann Arbor, MI 48109, USA; (S.A.); (L.M.C.); (C.A.); (A.B.G.d.C.); (M.R.)
- Department of Morphology and Pediatric Dentistry, School of Dentistry, São Paulo State University (UNESP), 1680 Humaitá Street, Araraquara 14801-903, SP, Brazil
| | - Ana Beatriz Gomes de Carvalho
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, 1011 N. University Avenue, Ann Arbor, MI 48109, USA; (S.A.); (L.M.C.); (C.A.); (A.B.G.d.C.); (M.R.)
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), 777 Eng. Francisco Jose Longo Avenue, São José dos Campos 12245-000, SP, Brazil
| | - Maedeh Rahimnejad
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, 1011 N. University Avenue, Ann Arbor, MI 48109, USA; (S.A.); (L.M.C.); (C.A.); (A.B.G.d.C.); (M.R.)
| | - Marco C. Bottino
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, 1011 N. University Avenue, Ann Arbor, MI 48109, USA; (S.A.); (L.M.C.); (C.A.); (A.B.G.d.C.); (M.R.)
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
4
|
Chen Z, Zhou X, Mo M, Hu X, Liu J, Chen L. Systematic review of the osteogenic effect of rare earth nanomaterials and the underlying mechanisms. J Nanobiotechnology 2024; 22:185. [PMID: 38627717 PMCID: PMC11020458 DOI: 10.1186/s12951-024-02442-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/27/2024] [Indexed: 04/19/2024] Open
Abstract
Rare earth nanomaterials (RE NMs), which are based on rare earth elements, have emerged as remarkable biomaterials for use in bone regeneration. The effects of RE NMs on osteogenesis, such as promoting the osteogenic differentiation of mesenchymal stem cells, have been investigated. However, the contributions of the properties of RE NMs to bone regeneration and their interactions with various cell types during osteogenesis have not been reviewed. Here, we review the crucial roles of the physicochemical and biological properties of RE NMs and focus on their osteogenic mechanisms. RE NMs directly promote the proliferation, adhesion, migration, and osteogenic differentiation of mesenchymal stem cells. They also increase collagen secretion and mineralization to accelerate osteogenesis. Furthermore, RE NMs inhibit osteoclast formation and regulate the immune environment by modulating macrophages and promote angiogenesis by inducing hypoxia in endothelial cells. These effects create a microenvironment that is conducive to bone formation. This review will help researchers overcome current limitations to take full advantage of the osteogenic benefits of RE NMs and will suggest a potential approach for further osteogenesis research.
Collapse
Affiliation(s)
- Ziwei Chen
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Xiaohe Zhou
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Minhua Mo
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Xiaowen Hu
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Jia Liu
- Stomatological Hospital, Southern Medical University, Guangzhou, China.
| | - Liangjiao Chen
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
5
|
Liu J, Zhou Z, Hou M, Xia X, Liu Y, Zhao Z, Wu Y, Deng Y, Zhang Y, He F, Xu Y, Zhu X. Capturing cerium ions via hydrogel microspheres promotes vascularization for bone regeneration. Mater Today Bio 2024; 25:100956. [PMID: 38322657 PMCID: PMC10844749 DOI: 10.1016/j.mtbio.2024.100956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/27/2023] [Accepted: 01/15/2024] [Indexed: 02/08/2024] Open
Abstract
The rational design of multifunctional biomaterials with hierarchical porous structure and on-demand biological activity is of great consequence for bone tissue engineering (BTE) in the contemporary world. The advanced combination of trace element cerium ions (Ce3+) with bone repair materials makes the composite material capable of promoting angiogenesis and enhancing osteoblast activity. Herein, a living and phosphorylated injectable porous hydrogel microsphere (P-GelMA-Ce@BMSCs) is constructed by microfluidic technology and coordination reaction with metal ion ligands while loaded with exogenous BMSCs. Exogenous stem cells can adhere to and proliferate on hydrogel microspheres, thus promoting cell-extracellular matrix (ECM) and cell-cell interactions. The active ingredient Ce3+ promotes the proliferation, osteogenic differentiation of rat BMSCs, and angiogenesis of endotheliocytes by promoting mineral deposition, osteogenic gene expression, and VEGF secretion. The enhancement of osteogenesis and improvement of angiogenesis of the P-GelMA-Ce scaffold is mainly associated with the activation of the Wnt/β-catenin pathway. This study could provide novel and meaningful insights for treating bone defects with biofunctional materials on the basis of metal ions.
Collapse
Affiliation(s)
- Junlin Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China
| | - Zhangzhe Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China
| | - Mingzhuang Hou
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China
| | - Xiaowei Xia
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China
| | - Yang Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China
| | - Zhijian Zhao
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China
| | - Yubin Wu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China
| | - Yaoge Deng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China
| | - Yijian Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China
| | - Fan He
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China
| | - Yong Xu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China
| | - Xuesong Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China
| |
Collapse
|
6
|
Yang AJT, Mohammad A, Finch MS, Tsiani E, Spencer G, Necakov A, MacPherson REK. Influence of metabolic stress and metformin on synaptic protein profile in SH-SY5Y-derived neurons. Physiol Rep 2023; 11:10.14814/phy2.15852. [PMID: 38010200 PMCID: PMC10680579 DOI: 10.14814/phy2.15852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 11/29/2023] Open
Abstract
Insulin resistance (IR) is associated with reductions in neuronal proteins often observed with Alzheimer's disease (AD), however, the mechanisms through which IR promotes neurodegeneration/AD pathogenesis are poorly understood. Metformin (MET), a potent activator of the metabolic regulator AMPK is used to treat IR but its effectiveness for AD is unclear. We have previously shown that chronic AMPK activation impairs neurite growth and protein synthesis in SH-SY5Y neurons, however, AMPK activation in IR was not explored. Therefore, we examined the effects of MET-driven AMPK activation with and without IR. Retinoic acid-differentiated SH-SY5Y neurons were treated with: (1) Ctl: 24 h vehicle followed by 24 h Vehicle; (2) HI: 100 nM insulin (24 h HI followed by 24 h HI); or (3) MET: 24 h vehicle followed by 24 h 2 mM metformin; (4) HI/MET: 24 h 100 nM insulin followed by 24 h 100 nM INS+2 mM MET. INS and INS/MET groups saw impairments in markers of insulin signaling (Akt S473, mTOR S2448, p70s6k T389, and IRS-1S636) demonstrating IR was not recovered with MET treatment. All treatment groups showed reductions in neuronal markers (post-synaptic marker HOMER1 mRNA content and synapse marker synaptophysin protein content). INS and MET treatments showed a reduction in the content of the mature neuronal marker NeuN that was prevented by INS/MET. Similarly, increases in cell size/area, neurite length/area observed with INS and MET, were prevented with INS/MET. These findings indicate that IR and MET impair neuronal markers through distinct pathways and suggest that MET is ineffective in treating IR-driven impairments in neurons.
Collapse
Affiliation(s)
- Alex J. T. Yang
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt CatharinesOntarioCanada
| | - Ahmad Mohammad
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt CatharinesOntarioCanada
| | - Michael S. Finch
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt CatharinesOntarioCanada
| | - Evangelia Tsiani
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt CatharinesOntarioCanada
| | - Gaynor Spencer
- Department of Biological SciencesBrock UniversitySt CatharinesOntarioCanada
- Centre for NeuroscienceBrock UniversitySt. CatharinesOntarioCanada
| | - Aleksandar Necakov
- Department of Biological SciencesBrock UniversitySt CatharinesOntarioCanada
- Centre for NeuroscienceBrock UniversitySt. CatharinesOntarioCanada
| | - Rebecca E. K. MacPherson
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt CatharinesOntarioCanada
- Centre for NeuroscienceBrock UniversitySt. CatharinesOntarioCanada
| |
Collapse
|
7
|
Chatzimentor I, Tsamesidis I, Ioannou ME, Pouroutzidou GK, Beketova A, Giourieva V, Papi R, Kontonasaki E. Study of Biological Behavior and Antimicrobial Properties of Cerium Oxide Nanoparticles. Pharmaceutics 2023; 15:2509. [PMID: 37896269 PMCID: PMC10610395 DOI: 10.3390/pharmaceutics15102509] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
(1) Background: An element that has gained much attention in industrial and biomedical fields is Cerium (Ce). CeO2 nanoparticles have been proven to be promising regarding their different biomedical applications for the control of infection and inflammation. The aim of the present study was to investigate the biological properties and antimicrobial behavior of cerium oxide (CeO2) nanoparticles (NPs). (2) Methods: The investigation of the NPs' biocompatibility with human periodontal ligament cells (hPDLCs) was evaluated via the MTT assay. Measurement of alkaline phosphatase (ALP) levels and alizarine red staining (ARS) were used as markers in the investigation of CeO2 NPs' capacity to induce the osteogenic differentiation of hPDLCs. Induced inflammatory stress conditions were applied to hPDLCs with H2O2 to estimate the influence of CeO2 NPs on the viability of cells under these conditions, as well as to reveal any ROS scavenging properties. Total antioxidant capacity (TAC) of cell lysates with NPs was also investigated. Finally, the macro broth dilution method was the method of choice for checking the antibacterial capacity of CeO2 against the anaerobic pathogens Porphyromonas gingivalis and Prevotella intermedia. (3) Results: Cell viability assay indicated that hPDLCs increase their proliferation rate in a time-dependent manner in the presence of CeO2 NPs. ALP and ARS measurements showed that CeO2 NPs can promote the osteogenic differentiation of hPDLCs. In addition, the MTT assay and ROS determination demonstrated some interesting results concerning the viability of cells under oxidative stress conditions and, respectively, the capability of NPs to decrease free radical levels over the course of time. Antimicrobial toxicity was observed mainly against P. gingivalis. (4) Conclusions: CeO2 NPs could provide an excellent choice for use in clinical practices as they could prohibit bacterial proliferation and control inflammatory conditions.
Collapse
Affiliation(s)
- Iason Chatzimentor
- Department of Prosthodontics, Faculty of Health Sciences, School of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.C.); (I.T.); (M.-E.I.); (G.K.P.); (A.B.)
| | - Ioannis Tsamesidis
- Department of Prosthodontics, Faculty of Health Sciences, School of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.C.); (I.T.); (M.-E.I.); (G.K.P.); (A.B.)
| | - Maria-Eleni Ioannou
- Department of Prosthodontics, Faculty of Health Sciences, School of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.C.); (I.T.); (M.-E.I.); (G.K.P.); (A.B.)
| | - Georgia K. Pouroutzidou
- Department of Prosthodontics, Faculty of Health Sciences, School of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.C.); (I.T.); (M.-E.I.); (G.K.P.); (A.B.)
- Laboratory of Advanced Materials and Devices (AMDeLab), Faculty of Sciences, School of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Anastasia Beketova
- Department of Prosthodontics, Faculty of Health Sciences, School of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.C.); (I.T.); (M.-E.I.); (G.K.P.); (A.B.)
| | - Veronica Giourieva
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (V.G.); (R.P.)
| | - Rigini Papi
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (V.G.); (R.P.)
| | - Eleana Kontonasaki
- Department of Prosthodontics, Faculty of Health Sciences, School of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.C.); (I.T.); (M.-E.I.); (G.K.P.); (A.B.)
| |
Collapse
|
8
|
Huang Y, Zhang M, Jin M, Ma T, Guo J, Zhai X, Du Y. Recent Advances on Cerium Oxide-Based Biomaterials: Toward the Next Generation of Intelligent Theranostics Platforms. Adv Healthc Mater 2023; 12:e2300748. [PMID: 37314429 DOI: 10.1002/adhm.202300748] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/24/2023] [Indexed: 06/15/2023]
Abstract
Disease or organ damage due to unhealthy living habits, or accidents, is inevitable. Discovering an efficient strategy to address these problems is urgently needed in the clinic. In recent years, the biological applications of nanotechnology have received extensive attention. Among them, as a widely used rare earth oxide, cerium oxide (CeO2 ) has shown good application prospects in biomedical fields due to its attractive physical and chemical properties. Here, the enzyme-like mechanism of CeO2 is elucidated, and the latest research progress in the biomedical field is reviewed. At the nanoscale, Ce ions in CeO2 can be reversibly converted between +3 and +4. The conversion process is accompanied by the generation and elimination of oxygen vacancies, which give CeO2 the performance of dual redox properties. This property facilitates nano-CeO2 to catalyze the scavenging of excess free radicals in organisms, hence providing a possibility for the treatment of oxidative stress diseases such as diabetic foot, arthritis, degenerative neurological diseases, and cancer. In addition, relying on its excellent catalytic properties, customizable life-signaling factor detectors based on electrochemical techniques are developed. At the end of this review, an outlook on the opportunities and challenges of CeO2 in various fields is provided.
Collapse
Affiliation(s)
- Yongkang Huang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
- College of Chemistry, Nankai University, Tianjin, 300350, China
| | - Mengzhen Zhang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
- College of Chemistry, Nankai University, Tianjin, 300350, China
| | - Mengdie Jin
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Tengfei Ma
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Jialiang Guo
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Xinyun Zhai
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Yaping Du
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| |
Collapse
|
9
|
Babu B, Pawar S, Mittal A, Kolanthai E, Neal CJ, Coathup M, Seal S. Nanotechnology enabled radioprotectants to reduce space radiation-induced reactive oxidative species. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1896. [PMID: 37190884 DOI: 10.1002/wnan.1896] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/04/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023]
Abstract
Interest in space exploration has seen substantial growth following recent launch and operation of modern space technologies. In particular, the possibility of travel beyond low earth orbit is seeing sustained support. However, future deep space travel requires addressing health concerns for crews under continuous, longer-term exposure to adverse environmental conditions. Among these challenges, radiation-induced health issues are a major concern. Their potential to induce chronic illness is further potentiated by the microgravity environment. While investigations into the physiological effects of space radiation are still under investigation, studies on model ionizing radiation conditions, in earth and micro-gravity conditions, can provide needed insight into relevant processes. Substantial formation of high, sustained reactive oxygen species (ROS) evolution during radiation exposure is a clear threat to physiological health of space travelers, producing indirect damage to various cell structures and requiring therapeutic address. Radioprotection toward the skeletal system components is essential to astronaut health, due to the high radio-absorption cross-section of bone mineral and local hematopoiesis. Nanotechnology can potentially function as radioprotectant and radiomitigating agents toward ROS and direct radiation damage. Nanoparticle compositions such as gold, silver, platinum, carbon-based materials, silica, transition metal dichalcogenides, and ceria have all shown potential as viable radioprotectants to mitigate space radiation effects with nanoceria further showing the ability to protect genetic material from oxidative damage in several studies. As research into space radiation-induced health problems develops, this review intends to provide insights into the nanomaterial design to ameliorate pathological effects from ionizing radiation exposure. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Nanotechnology Approaches to Biology > Cells at the Nanoscale Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Balaashwin Babu
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
- Nanoscience Technology Center, University of Central Florida, Orlando, Florida, USA
| | - Shreya Pawar
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Agastya Mittal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Elayaraja Kolanthai
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
| | - Craig J Neal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
| | - Melanie Coathup
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
| | - Sudipta Seal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
- College of Medicine, Nanoscience Technology Center, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
10
|
Chen L, Zhou C, Jiang C, Huang X, Liu Z, Zhang H, Liang W, Zhao J. Translation of nanotechnology-based implants for orthopedic applications: current barriers and future perspective. Front Bioeng Biotechnol 2023; 11:1206806. [PMID: 37675405 PMCID: PMC10478008 DOI: 10.3389/fbioe.2023.1206806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/21/2023] [Indexed: 09/08/2023] Open
Abstract
The objective of bioimplant engineering is to develop biologically compatible materials for restoring, preserving, or altering damaged tissues and/or organ functions. The variety of substances used for orthopedic implant applications has been substantially influenced by modern material technology. Therefore, nanomaterials can mimic the surface properties of normal tissues, including surface chemistry, topography, energy, and wettability. Moreover, the new characteristics of nanomaterials promote their application in sustaining the progression of many tissues. The current review establishes a basis for nanotechnology-driven biomaterials by demonstrating the fundamental design problems that influence the success or failure of an orthopedic graft, cell adhesion, proliferation, antimicrobial/antibacterial activity, and differentiation. In this context, extensive research has been conducted on the nano-functionalization of biomaterial surfaces to enhance cell adhesion, differentiation, propagation, and implant population with potent antimicrobial activity. The possible nanomaterials applications (in terms of a functional nanocoating or a nanostructured surface) may resolve a variety of issues (such as bacterial adhesion and corrosion) associated with conventional metallic or non-metallic grafts, primarily for optimizing implant procedures. Future developments in orthopedic biomaterials, such as smart biomaterials, porous structures, and 3D implants, show promise for achieving the necessary characteristics and shape of a stimuli-responsive implant. Ultimately, the major barriers to the commercialization of nanotechnology-derived biomaterials are addressed to help overcome the limitations of current orthopedic biomaterials in terms of critical fundamental factors including cost of therapy, quality, pain relief, and implant life. Despite the recent success of nanotechnology, there are significant hurdles that must be overcome before nanomedicine may be applied to orthopedics. The objective of this review was to provide a thorough examination of recent advancements, their commercialization prospects, as well as the challenges and potential perspectives associated with them. This review aims to assist healthcare providers and researchers in extracting relevant data to develop translational research within the field. In addition, it will assist the readers in comprehending the scope and gaps of nanomedicine's applicability in the orthopedics field.
Collapse
Affiliation(s)
- Long Chen
- Department of Orthopedics, Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | - Chao Zhou
- Department of Orthopedics, Zhoushan Guanghua Hospital, Zhoushan, China
| | - Chanyi Jiang
- Department of Pharmacy, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Xiaogang Huang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, Zhejiang, China
| | - Zunyong Liu
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, Zhejiang, China
| | - Hengjian Zhang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, Zhejiang, China
| | - Wenqing Liang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, Zhejiang, China
| | - Jiayi Zhao
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, Zhejiang, China
| |
Collapse
|
11
|
Choi SR, Kwon JW, Suk KS, Kim HS, Moon SH, Park SY, Lee BH. The Clinical Use of Osteobiologic and Metallic Biomaterials in Orthopedic Surgery: The Present and the Future. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16103633. [PMID: 37241260 DOI: 10.3390/ma16103633] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/21/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023]
Abstract
As the area and range of surgical treatments in the orthopedic field have expanded, the development of biomaterials used for these treatments has also advanced. Biomaterials have osteobiologic properties, including osteogenicity, osteoconduction, and osteoinduction. Natural polymers, synthetic polymers, ceramics, and allograft-based substitutes can all be classified as biomaterials. Metallic implants are first-generation biomaterials that continue to be used and are constantly evolving. Metallic implants can be made from pure metals, such as cobalt, nickel, iron, or titanium, or from alloys, such as stainless steel, cobalt-based alloys, or titanium-based alloys. This review describes the fundamental characteristics of metals and biomaterials used in the orthopedic field and new developments in nanotechnology and 3D-printing technology. This overview discusses the biomaterials that clinicians commonly use. A complementary relationship between doctors and biomaterial scientists is likely to be necessary in the future.
Collapse
Affiliation(s)
- Sung-Ryul Choi
- Department of Orthopedic Surgery, Spine and Spinal Cord Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| | - Ji-Won Kwon
- Department of Orthopedic Surgery, Spine and Spinal Cord Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| | - Kyung-Soo Suk
- Department of Orthopedic Surgery, Spine and Spinal Cord Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| | - Hak-Sun Kim
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Seong-Hwan Moon
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Si-Young Park
- Department of Orthopedic Surgery, Spine and Spinal Cord Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| | - Byung Ho Lee
- Department of Orthopedic Surgery, Spine and Spinal Cord Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| |
Collapse
|
12
|
Zhang M, Zhai X, Ma T, Huang Y, Jin M, Yang H, Fu H, Zhang S, Sun T, Jin X, Du Y, Yan CH. Sequential Therapy for Bone Regeneration by Cerium Oxide-Reinforced 3D-Printed Bioactive Glass Scaffolds. ACS NANO 2023; 17:4433-4444. [PMID: 36802532 DOI: 10.1021/acsnano.2c09855] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Rational design of multifunctional biomaterials with customized architecture and on demand bioactivity is of great significance for bone tissue engineering (BTE) in modern society. Herein, a versatile therapeutic platform has been established by integrating cerium oxide nanoparticles (CeO2 NPs) into bioactive glass (BG) to fabricate three-dimensional (3D)-printed scaffolds, achieving a sequential therapeutic effect against inflammation and promoting osteogenesis toward bone defect. The antioxidative activity of CeO2 NPs plays a crucial role in alleviating the oxidative stress upon formation of bone defects. Subsequently, CeO2 NPs exert a promotion effect on the proliferation and osteogenic differentiation of rat osteoblasts through enhancing mineral deposition and alkaline phosphatase and osteogenic gene expression. Strikingly, the incorporation of CeO2 NPs bestows on the BG scaffolds greatly reinforced mechanical properties, improved biocompatibility, adequate cell adhesion, elevated osteogenic capability, and multifunctional performance in a single platform. In vivo studies on the treatment of rat tibial defect confirmed the better osteogenic properties of CeO2-BG scaffolds compared with pure BG scaffolds. Additionally, the employment of the 3D printing technique creates a proper porous microenvironment around the bone defect, which further facilitates the cell in-growth and new bone formation. This report provides a systematic study on CeO2-BG 3D-printed scaffolds prepared by simple ball milling method, achieving sequential and integral treatment in BTE based on a single platform.
Collapse
Affiliation(s)
| | | | | | | | | | - Houzhi Yang
- Graduate School, Tianjin Medical University, Tianjin 300070, China
- Department of Spinal Surgery, Tianjin Union Medical Center, Tianjin 300131, China
| | | | | | - Tianwei Sun
- Department of Spinal Surgery, Tianjin Union Medical Center, Tianjin 300131, China
| | | | | | - Chun-Hua Yan
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
13
|
Tsamesidis I, Theocharidou A, Beketova A, Bousnaki M, Chatzimentor I, Pouroutzidou GK, Gkiliopoulos D, Kontonasaki E. Artemisinin Loaded Cerium-Doped Nanopowders Improved In Vitro the Biomineralization in Human Periodontal Ligament Cells. Pharmaceutics 2023; 15:pharmaceutics15020655. [PMID: 36839977 PMCID: PMC9962187 DOI: 10.3390/pharmaceutics15020655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/03/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND A promising strategy to enhance bone regeneration is the use of bioactive materials doped with metallic ions with therapeutic effects and their combination with active substances and/or drugs. The aim of the present study was to investigate the osteogenic capacity of human periodontal ligament cells (hPDLCs) in culture with artemisinin (ART)-loaded Ce-doped calcium silicate nanopowders (NPs); Methods: Mesoporous silica, calcium-doped and calcium/cerium-doped silicate NPs were synthesized via a surfactant-assisted cooperative self-assembly process. Human periodontal ligament cells (hPDLCs) were isolated and tested for their osteogenic differentiation in the presence of ART-loaded and unloaded NPs through alkaline phosphatase (ALP) activity and Alizarine red S staining, while their antioxidant capacity was also evaluated; Results: ART promoted further the osteogenic differentiation of hPDLCs in the presence of Ce-doped NPs. Higher amounts of Ce in the ART-loaded NPs inversely affected the mineral deposition process by the hPDLCs. ART and Ce in the NPs have a synergistic role controlling the redox status and reducing ROS production from the hPDLCs; Conclusions: By monitoring the Ce amount and ART concentration, mesoporous NPs with optimum properties can be developed towards bone tissue regeneration demonstrating also potential application in periodontal tissue regeneration strategies.
Collapse
Affiliation(s)
- Ioannis Tsamesidis
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Correspondence: or
| | - Anna Theocharidou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Anastasia Beketova
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Maria Bousnaki
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Iason Chatzimentor
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Georgia K. Pouroutzidou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Laboratory of Advanced Materials and Devices (AMDeLab), School of Physics, Faculty of Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Dimitrios Gkiliopoulos
- Laboratory of Chemical and Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Eleana Kontonasaki
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| |
Collapse
|
14
|
Li F, Li J, Song X, Sun T, Mi L, Liu J, Xia X, Bai N, Li X. Alginate/Gelatin Hydrogel Scaffold Containing nCeO 2 as a Potential Osteogenic Nanomaterial for Bone Tissue Engineering. Int J Nanomedicine 2022; 17:6561-6578. [PMID: 36578441 PMCID: PMC9791564 DOI: 10.2147/ijn.s388942] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Background Clinicians frequently face difficulties when trying to fix bone abnormalities. Gelatin-Alginate (GA) is frequently employed as a carrier because it is non-toxic, biodegradable, and has a three-dimensional network structure. Meanwhile, cerium oxide nanoparticles (nCeO2) demonstrated high antioxidant enzyme simulation activity. Therefore, in order to develop a porous hydrogel scaffold for the application of bone tissue engineering, an appropriate-type GA-nCeO2 hydrogel scaffold was developed and evaluated. Methods GA-nCeO2 hydrogel scaffold was prepared by the lyophilized method and characterized. The surface morphology and cell adhesion of the scaffold were observed by the scanning electron microscope. CCK8 and live-dead staining methods were used to evaluate its biological safety and cell proliferation. Then the osteogenic differentiation in early and late stages was discussed. The expression of osteogenic genes was also detected by RT-PCR. Finally, a bone defect model was made in SD rats, and bone formation in vivo was detected. Results The results showed that GA-nCeO2 hydrogel scaffold exhibited a typical three-dimensional porous structure with a mean pore ratio of 70.61 ± 1.94%. The GA-nCeO2 hydrogel was successfully endowed with simulated enzyme activity including superoxide dismutase (SOD) and catalase (CAT) after the addition of nCeO2. Osteoblasts demonstrated superior cell proliferation and adhesion on composite scaffolds, and both mineralization test and gene expression demonstrated the strong osteogenic potential of GA-nCeO2 hydrogel. The outcomes of hematoxylin and eosin (H&E) staining and Masson trichrome staining in the femoral defect model of SD rats further supported the scaffold's favorable biocompatibility and bone-promoting capacity. Conclusion Due to its favorable safety, degradability, and bone formation property, GA-nCeO2 hydrogel was anticipated to be used as a potential bone defect healing material.
Collapse
Affiliation(s)
- Feng Li
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, People’s Republic of China,School of Stomatology, Qingdao University, Qingdao, 266071, People’s Republic of China
| | - Jian Li
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, People’s Republic of China,School of Stomatology, Qingdao University, Qingdao, 266071, People’s Republic of China
| | - Xujun Song
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, People’s Republic of China,School of Stomatology, Qingdao University, Qingdao, 266071, People’s Republic of China
| | - Tong Sun
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People’s Republic of China
| | - Lian Mi
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, People’s Republic of China,School of Stomatology, Qingdao University, Qingdao, 266071, People’s Republic of China
| | - Jian Liu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, People’s Republic of China,School of Stomatology, Qingdao University, Qingdao, 266071, People’s Republic of China
| | - Xiaomin Xia
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, People’s Republic of China,School of Stomatology, Qingdao University, Qingdao, 266071, People’s Republic of China
| | - Na Bai
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, People’s Republic of China,School of Stomatology, Qingdao University, Qingdao, 266071, People’s Republic of China,Correspondence: Na Bai; Xue Li, Tel +86-15621438983, Email ;
| | - Xue Li
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, People’s Republic of China,School of Stomatology, Qingdao University, Qingdao, 266071, People’s Republic of China
| |
Collapse
|
15
|
Wei F, Neal CJ, Sakthivel TS, Fu Y, Omer M, Adhikary A, Ward S, Ta KM, Moxon S, Molinari M, Asiatico J, Kinzel M, Yarmolenko SN, San Cheong V, Orlovskaya N, Ghosh R, Seal S, Coathup M. A novel approach for the prevention of ionizing radiation-induced bone loss using a designer multifunctional cerium oxide nanozyme. Bioact Mater 2022; 21:547-565. [PMID: 36185749 PMCID: PMC9507991 DOI: 10.1016/j.bioactmat.2022.09.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/18/2022] Open
Abstract
The disability, mortality and costs due to ionizing radiation (IR)-induced osteoporotic bone fractures are substantial and no effective therapy exists. Ionizing radiation increases cellular oxidative damage, causing an imbalance in bone turnover that is primarily driven via heightened activity of the bone-resorbing osteoclast. We demonstrate that rats exposed to sublethal levels of IR develop fragile, osteoporotic bone. At reactive surface sites, cerium ions have the ability to easily undergo redox cycling: drastically adjusting their electronic configurations and versatile catalytic activities. These properties make cerium oxide nanomaterials fascinating. We show that an engineered artificial nanozyme composed of cerium oxide, and designed to possess a higher fraction of trivalent (Ce3+) surface sites, mitigates the IR-induced loss in bone area, bone architecture, and strength. These investigations also demonstrate that our nanozyme furnishes several mechanistic avenues of protection and selectively targets highly damaging reactive oxygen species, protecting the rats against IR-induced DNA damage, cellular senescence, and elevated osteoclastic activity in vitro and in vivo. Further, we reveal that our nanozyme is a previously unreported key regulator of osteoclast formation derived from macrophages while also directly targeting bone progenitor cells, favoring new bone formation despite its exposure to harmful levels of IR in vitro. These findings open a new approach for the specific prevention of IR-induced bone loss using synthesis-mediated designer multifunctional nanomaterials.
Collapse
Key Words
- ALP, Alkaline phosphatase
- BMSC, Bone marrow derived mesenchymal stem cells
- Bone resorption
- Bone strength
- CAT, Catalase
- COLI, Collagen type I
- CTSK, Cathepsin K
- CTX-1, Cross-linked C-telopeptide of type I collagen
- CeONPs, Cerium oxide nanoparticles
- Cerium oxide
- DFT, Density functional theory
- DNA, Deoxyribonucleic acid
- EPR, Electron paramagnetic resonance
- FDA, Food and Drug Administration
- GPX, Glutathione peroxidase
- Gy, Gray
- HIF1α, Hypoxia-inducible factor 1 alpha
- IL-1β, Interleukin 1 beta
- IL-6, Interleukin 6
- IR, Ionizing radiation
- Ionizing radiation
- MNGC, Multinucleated giant cell
- Nanozyme
- OCN, Osteocalcin
- Osteoporosis
- RANKL, Receptor activator of nuclear factor kappa-Β ligand
- ROS, Reactive oxygen species
- SAED, Selected area electron diffraction
- SOD, Superoxide dismutase
- TRAP, Tartrate-resistant acid phosphatase
- XPS, X-ray photoelectron spectroscopy
Collapse
Affiliation(s)
- Fei Wei
- Biionix Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Craig J. Neal
- Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center (NSTC), Materials Science and Engineering, College of Medicine, University of Central Florida, Orlando, FL, USA
| | | | - Yifei Fu
- Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center (NSTC), Materials Science and Engineering, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Mahmoud Omer
- Biionix Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Amitava Adhikary
- Department of Chemistry, Oakland University, Rochester, MI, MI, USA
| | - Samuel Ward
- Department of Chemistry, Oakland University, Rochester, MI, MI, USA
| | - Khoa Minh Ta
- School of Applied Sciences, Department of Chemical Sciences, University of Huddersfield, UK
| | - Samuel Moxon
- School of Applied Sciences, Department of Chemical Sciences, University of Huddersfield, UK
| | - Marco Molinari
- School of Applied Sciences, Department of Chemical Sciences, University of Huddersfield, UK
| | - Jackson Asiatico
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, USA
| | - Michael Kinzel
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, USA
| | - Sergey N. Yarmolenko
- Engineering Research Center for Revolutionizing Biomaterials, North Carolina A & T University, Greensboro, NC, USA
| | - Vee San Cheong
- Department of Automatic Control and Systems Engineering, Insigneo Institute for In Silico Medicine, University of Sheffield, Sheffield, S1 3JD, UK
| | - Nina Orlovskaya
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, USA
| | - Ranajay Ghosh
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, USA
| | - Sudipta Seal
- Biionix Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, USA
- Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center (NSTC), Materials Science and Engineering, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Melanie Coathup
- Biionix Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, USA
- Corresponding author. Biionix Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|