1
|
Hassan MH, Emam IA, Farghali H, Ibrahim MA, Hassan NH, Farroh KY, Hassanen EI. Toxicological screening of zinc oxide nanoparticles in mongrel dogs after seven days of repeated subcutaneous injections. BMC Vet Res 2024; 20:476. [PMID: 39425163 PMCID: PMC11487719 DOI: 10.1186/s12917-024-04268-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/04/2024] [Indexed: 10/21/2024] Open
Abstract
Zinc oxide nanoparticles (ZnO NPs) have recently been applied in various veterinary and medical fields, however, the toxicological evaluations of these NPs in dogs are lacking. Therefore, the current study is designed to assess the impact of exposure to daily subcutaneous (SC) injections of ZnO NPs at different concentrations on various organs of mongrel dogs. Nine dogs were randomly divided into three groups (n = 3 for each) as follows: group (1) served as the control group, whereas groups (2&3) received SC injections of 50 and 100 ppm ZnO NPs (8 and 16 μg/kg bwt), respectively, once/day for 7 days. Our results revealed that ZnO NPs disrupted the oxidant/antioxidant balance in the lungs, liver, and kidneys of dogs in a dose-dependent manner. ZnO NPs induced dose-dependent radiological, ultrasonographical, and histopathological alterations in various organs especially lungs, spleen, liver, and kidneys along with disturbance in both liver and kidney biomarkers levels. Most organs of both ZnO NPs receiving groups displayed strong caspase-3 protein expression. Additionally, it upregulates the transcriptase levels of TNF-α and VEGF, as well as downregulates the antiapoptotic gene IL-10 in lung, kidney, and liver tissue homogenates. It was concluded that the daily SC injections of dogs with ZnO NPs at concentrations of 50 and 100 ppm caused extensive oxidative stress damage in various organs which provoked serious pathological processes such as apoptosis and inflammation.
Collapse
Affiliation(s)
- Marwa H Hassan
- Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ibrahim A Emam
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Haitham Farghali
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Marwa A Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Neven H Hassan
- Department of Physiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Khaled Y Farroh
- Nanotechnology and Advanced Materials Central Lab, Agricultural Research Center, Giza, Egypt
| | - Eman I Hassanen
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, P.O. Box 12211, Giza, Egypt.
| |
Collapse
|
2
|
Hassanen EI, Morsy EA, Abuowarda M, Ibrahim MA, Shaalan M. Silver and gold nanoparticles as a novel approach to fight Sarcoptic mange in rabbits. Sci Rep 2024; 14:10618. [PMID: 38724594 PMCID: PMC11081955 DOI: 10.1038/s41598-024-60736-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
Various kinds of pets have been known to contract the ectoparasite Sarcoptes scabiei. Current acaricides are becoming less effective because of the resistance developed by the mite besides their adverse effects on the general activity and reproductive performance of domestic pets. For this reason, the present study aims to discover a novel and safe approach using silver and gold nanoparticles to fight Sarcoptic mange in rabbits as well as to explain their mechanism of action. 15 pet rabbits with clinical signs of Sarcoptic mange that were confirmed by the microscopic examination were used in our study. All rabbits used in this study were assessed positive for the presence of different developing stages of S. scabiei. Three groups of rabbits (n = 5) were used as follows: group (1) didn't receive any treatment, and group (2 and 3) was treated with either AgNPs or GNPs, respectively. Both nanoparticles were applied daily on the affected skin areas via a dressing and injected subcutaneously once a week for 2 weeks at a dose of 0.5 mg/kg bwt. Our results revealed that all rabbits were severely infested and took a mean score = 3. The skin lesions in rabbits that didn't receive any treatments progressed extensively and took a mean score = of 4. On the other hand, all nanoparticle-treated groups displayed marked improvement in the skin lesion and took an average score of 0-1. All NPs treated groups showed remarkable improvement in the microscopic pictures along with mild iNOS, TNF-α, and Cox-2 expression. Both nanoparticles could downregulate the m-RNA levels of IL-6 and IFγ and upregulate IL-10 and TGF-1β genes to promote skin healing. Dressing rabbits with both NPs didn't affect either liver and kidney biomarkers or serum Ig levels indicating their safety. Our residual analysis detected AgNPs in the liver of rabbits but did not detect any residues of GNPs in such organs. We recommend using GNPs as an alternative acaricide to fight rabbit mange.
Collapse
Affiliation(s)
- Eman I Hassanen
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, P.O. Box 12211, Giza, Egypt.
| | - Eman A Morsy
- Department of Poultry Disease, Faculty of Veterinary Medicine, Cairo University, P.O. Box 12211, Giza, Egypt
| | - Mai Abuowarda
- Department of Parasitology, Faculty of Veterinary Medicine, Cairo University, P.O. Box 12211, Giza, Egypt
| | - Marwa A Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, P.O. Box 12211, Giza, Egypt
| | - Mohamed Shaalan
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, P.O. Box 12211, Giza, Egypt
- Polymer Institute, Slovak Academy of Science, Bratislava, Slovakia
| |
Collapse
|
3
|
Hashim AR, Bashir DW, Rashad E, Galal MK, Rashad MM, Khalil HMA, Deraz NM, S M EG. Neuroprotective Assessment of Betaine against Copper Oxide Nanoparticle-Induced Neurotoxicity in the Brains of Albino Rats: A Histopathological, Neurochemical, and Molecular Investigation. ACS Chem Neurosci 2024; 15:1684-1701. [PMID: 38564598 DOI: 10.1021/acschemneuro.3c00810] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Copper oxide nanoparticles (CuO-NPs) are commonly used metal oxides. Betaine possesses antioxidant and neuroprotective activities. The current study aimed to investigate the neurotoxic effect of CuO-NPs on rats and the capability of betaine to mitigate neurotoxicity. Forty rats; 4 groups: group I a control, group II intraperitoneally CuO-NPs (0.5 mg/kg/day), group III orally betaine (250 mg/kg/day) and CuO-NPs, group IV orally betaine for 28 days. Rats were subjected to neurobehavioral assessments. Brain samples were processed for biochemical, molecular, histopathological, and immunohistochemical analyses. Behavioral performance of betaine demonstrated increasing locomotion and cognitive abilities. Group II exhibited significantly elevated malondialdehyde (MDA), overexpression of interleukin-1 beta (IL-1β), and tumor necrosis factor-alpha (TNF-α). Significant decrease in glutathione (GSH), and downregulation of acetylcholine esterase (AChE), nuclear factor erythroid 2-like protein 2 (Nrf-2), and superoxide dismutase (SOD). Histopathological alterations; neuronal degeneration, pericellular spaces, and neuropillar vacuolation. Immunohistochemically, an intense immunoreactivity is observed against IL-1β and glial fibrillary acidic protein (GFAP). Betaine partially neuroprotected against CuO-NPs associated alterations. A significant decrease at MDA, downregulation of IL-1β, and TNF-α, a significant increase at GSH, and upregulation of AChE, Nrf-2, and SOD. Histopathological alterations partially ameliorated. Immunohistochemical intensity of IL-1β and GFAP reduced. It is concluded that betaine neuroprotected against most of CuO-NP neurotoxic effects through antioxidant and cell redox system stimulating efficacy.
Collapse
Affiliation(s)
- Asmaa R Hashim
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Dina W Bashir
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Eman Rashad
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Mona K Galal
- Biochemistry and Chemistry of Nutrition Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Maha M Rashad
- Biochemistry and Chemistry of Nutrition Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Heba M A Khalil
- Veterinary Hygiene and Management Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Nasrallah M Deraz
- Physical Chemistry Department, National Research Centre, Dokki, Giza, Egypt
| | - El-Gharbawy S M
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| |
Collapse
|
4
|
Nie J, Hu Z, Xian C, He M, Lu D, Zhang W. The single and mixed impacts of cadmium, cobalt, lead, and PAHs on systemic immunity inflammation index in male and female. Front Public Health 2024; 12:1356459. [PMID: 38425464 PMCID: PMC10902425 DOI: 10.3389/fpubh.2024.1356459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
Background Studies on the association between mixed exposure to common pollutants such as cadmium (Cd), cobalt (Co), lead (Pb), and polycyclic aromatic hydrocarbons (PAHs) with Systemic Immune Inflammatory Index (SII), a novel hemocyte-based inflammatory marker, have not been reported. This study explored the relationship between co-exposure to Cd, Co, Pb, PAHs, and SII. Methods In this study, we used data from the National Health and Nutrition Examination Survey and enrolled adults with complete information on Cd, Co, Pb, PAHs, and SII. The linear regression was used to analyze the association of single pollutants with SII. Furthermore, a Bayesian Kernel Machine Regression analysis and a generalized weighted quantile sum regression analysis were used to analyze the association between mixed exposure to Cd, Co, Pb, and six PAHs and SII. We also separated males and females and analyzed the different effects of pollutants on SII, respectively. Results 5,176 participants were included in the study. After adjusting for age, gender, race, education, smoking, drinking, physical activity, and sedentary, Cd, Co, 1-OHN, 2-OHN and 2-OHF were positive with SII in the total population. Compared with the 50th percentile, the joint effect of pollutants on SII was positive. In the total population, males, and females, the top contaminant with the highest effect weights on SII were Co, Cd, and 1-OHN, respectively. The result of interaction analysis showed that the low concentrations of Cd had an elevation effect on SII in males. Conclusion This study found a positive association of mixed exposure to Cd, Co, Pb, and six PAHs with SII, which occurred mainly in females.
Collapse
|
5
|
Hassanen EI, Hussien AM, Mehanna S, Morsy EA. Chitosan coating silver nanoparticles as a promising feed additive in broilers chicken. BMC Vet Res 2023; 19:265. [PMID: 38071292 PMCID: PMC10709949 DOI: 10.1186/s12917-023-03826-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The present study aimed to evaluate the potential of chitosan coating silver nanoparticles to enhance the growth performance and immune status of broilers without inducing oxidative stress-related pathological lesions in any organs or leaving residues of silver in the edible parts. Five clusters of Cobb one-day-old chicks (n = 10/group in each replication) were given oral therapy, once a week for 36 days as follows: (1) distilled water, (2, 3) 0.5- and 5 ppm silver nanoparticles (AgNPs), respectively, (4, 5) 0.5- and 5 ppm chitosan/silver nanoconjugates (CS/Ag-NCs), respectively. The results demonstrated a marked elevation in the body weight gain with a decline in the food conversion ratio and marked improvement in feeding and drinking behavior of all nanoparticles treated groups, but higher in CS/Ag-NCs groups than AgNPs groups and control group. In contrast to the 0.5 ppm AgNPs receiving group, the group receiving 5 ppm AgNPs noticed remarkable histological changes in some organs, including the liver, kidneys, spleen, and heart. Moreover, the administration of CS/Ag-NCs at two dosage levels didn't influence any histological changes. The AgNPs groups' antibody titers against the ND and AI viruses were almost identical to those of the control group. Otherwise, CS/Ag-NCs groups recorded the highest antibody titers. Additionally, there was a significant increase in silver content in most edible organs of AgNPs groups at a dosage level of 5 ppm. Otherwise, the coating of AgNPs by CSNPs could decrease the aggregation of silver in the biological organs. Thus, we recommend utilizing 0.5 ppm CS/Ag-NCs in broiler farms to promote their growth performance and strengthen their immune defense.
Collapse
Affiliation(s)
- Eman I Hassanen
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, P.O.Box 12211, Giza, Egypt.
| | - Ahmed M Hussien
- Toxicology and Forensic Medicine Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Sally Mehanna
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Eman A Morsy
- Poultry Disease Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
6
|
Hassanen EI, Ahmed LI, Fahim KM, Shehata MG, Badr AN. Chitosan nanoparticle encapsulation increased the prophylactic efficacy of Lactobacillus plantarum RM1 against AFM 1-induced hepatorenal toxicity in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:123925-123938. [PMID: 37995030 PMCID: PMC10746602 DOI: 10.1007/s11356-023-31016-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/07/2023] [Indexed: 11/24/2023]
Abstract
Aflatoxin M1 (AFM1) is a significant contaminant of food, particularly dairy products and can resist various industrial processes. Several probiotic strains like Lactobacillus plantarum are known to reduce aflatoxin availability in synthetic media and some food products. The current work investigated the possible chitosan coating prophylactic efficacy of Lactobacillus plantarum RM1 nanoemulsion (CS-RM1) against AFM1-induced hepatorenal toxicity in rats. Twenty-eight male Wistar rats were divided into four groups (n = 7) as follows: group 1 received normal saline, group 2 received CS-RM1 (1mL contains 6.7 × 1010 CFU), group 3 received AFM1 (60 µg/kg bwt), and group 4 received both CS-RM1(1 mL contains 6.7 × 1010 CFU) and AFM1 (60 µg/kg bwt). All receiving materials were given to rats daily via oral gavage for 28 days. AFM1 caused a significant elevation in serum levels of ALT, AST, ALP, uric acid, urea, and creatinine with marked alterations in protein and lipid profiles. Additionally, AFM1 caused marked pathological changes in the liver and kidneys, such as cellular necrosis, vascular congestion, and interstitial inflammation. AFM1 also increased the MDA levels and decreased several enzymatic and non-enzymatic antioxidants. Liver and kidney sections of the AFM1 group displayed strong caspase-3, TNF-α, and iNOS immunopositivity. Co-treatment of CS-RM1 with AFM1 significantly lowered the investigated toxicological parameter changes and markedly improved the microscopic appearance of liver and kidneys. In conclusion, AFM1 induces hepatorenal oxidative stress damage via ROS overgeneration, which induces mitochondrial caspase-3-dependent apoptosis and inflammation. Furthermore, CS-RM1 can reduce AFM1 toxicity in both the liver and kidneys. The study recommends adding CS-RM1 to milk and milk products for AFM1-elimination.
Collapse
Affiliation(s)
- Eman I Hassanen
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Lamiaa I Ahmed
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Karima M Fahim
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Mohamed G Shehata
- Department of Food Technology, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Application, Alexandria, Egypt
| | - Ahmed N Badr
- Department of Food Toxicology and Contaminants, National Research Centre, Dokki, 12622, Cairo, Egypt
| |
Collapse
|