1
|
Kar S, Maji N, Sen K, Roy S, Maity A, Ghosh Dastidar S, Nath S, Basu G, Basu M. Reprogramming of glucose metabolism via PFKFB4 is critical in FGF16-driven invasion of breast cancer cells. Biosci Rep 2023; 43:BSR20230677. [PMID: 37222403 PMCID: PMC10407156 DOI: 10.1042/bsr20230677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/25/2023] Open
Abstract
Fibroblast growth factors (FGFs) are expressed in both developing and adult tissues and play important roles in embryogenesis, tissue homeostasis, angiogenesis, and neoplastic transformation. Here, we report the elevated expression of FGF16 in human breast tumor and investigate its potential involvement in breast cancer progression. The onset of epithelial-mesenchymal transition (EMT), a prerequisite for cancer metastasis, was observed in human mammary epithelial cell-line MCF10A by FGF16. Further study unveiled that FGF16 alters mRNA expression of a set of extracellular matrix genes to promote cellular invasion. Cancer cells undergoing EMT often show metabolic alteration to sustain their continuous proliferation and energy-intensive migration. Similarly, FGF16 induced a significant metabolic shift toward aerobic glycolysis. At the molecular level, FGF16 enhanced GLUT3 expression to facilitate glucose transport into cells, which through aerobic glycolysis generates lactate. The bi-functional protein, 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase 4 (PFKFB4) was found to be a mediator in FGF16-driven glycolysis and subsequent invasion. Furthermore, PFKFB4 was found to play a critical role in promoting lactate-induced cell invasion since silencing PFKFB4 decreased lactate level and rendered the cells less invasive. These findings support potential clinical intervention of any of the members of FGF16-GLUT3-PFKFB4 axis to control the invasion of breast cancer cells.
Collapse
Affiliation(s)
- Swarnali Kar
- Department of Biophysics, Bose Institute, P 1/12, C.I.T. Scheme VIIM, Kolkata 700054, India
| | - Nilanjana Maji
- Department of Biophysics, Bose Institute, P 1/12, C.I.T. Scheme VIIM, Kolkata 700054, India
| | - Kamalika Sen
- Bioinformatics Centre, Bose Institute, P 1/12, C.I.T. Scheme VIIM, Kolkata 700054, India
| | - Stuti Roy
- Basic and Translational Research Division, Saroj Gupta Cancer Centre and Research Institute (SGCC & RI), Kolkata 700063, India
| | - Atanu Maity
- Bioinformatics Centre, Bose Institute, P 1/12, C.I.T. Scheme VIIM, Kolkata 700054, India
| | - Shubhra Ghosh Dastidar
- Bioinformatics Centre, Bose Institute, P 1/12, C.I.T. Scheme VIIM, Kolkata 700054, India
| | - Somsubhra Nath
- Basic and Translational Research Division, Saroj Gupta Cancer Centre and Research Institute (SGCC & RI), Kolkata 700063, India
| | - Gautam Basu
- Department of Biophysics, Bose Institute, P 1/12, C.I.T. Scheme VIIM, Kolkata 700054, India
| | - Moitri Basu
- Department of Biophysics, Bose Institute, P 1/12, C.I.T. Scheme VIIM, Kolkata 700054, India
| |
Collapse
|
2
|
Michna A, Pomorska A, Ozcan O. Biocompatible Macroion/Growth Factor Assemblies for Medical Applications. Biomolecules 2023; 13:biom13040609. [PMID: 37189357 DOI: 10.3390/biom13040609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 03/31/2023] Open
Abstract
Growth factors are a class of proteins that play a role in the proliferation (the increase in the number of cells resulting from cell division) and differentiation (when a cell undergoes changes in gene expression becoming a more specific type of cell) of cells. They can have both positive (accelerating the normal healing process) and negative effects (causing cancer) on disease progression and have potential applications in gene therapy and wound healing. However, their short half-life, low stability, and susceptibility to degradation by enzymes at body temperature make them easily degradable in vivo. To improve their effectiveness and stability, growth factors require carriers for delivery that protect them from heat, pH changes, and proteolysis. These carriers should also be able to deliver the growth factors to their intended destination. This review focuses on the current scientific literature concerning the physicochemical properties (such as biocompatibility, high affinity for binding growth factors, improved bioactivity and stability of the growth factors, protection from heat, pH changes or appropriate electric charge for growth factor attachment via electrostatic interactions) of macroions, growth factors, and macroion-growth factor assemblies, as well as their potential uses in medicine (e.g., diabetic wound healing, tissue regeneration, and cancer therapy). Specific attention is given to three types of growth factors: vascular endothelial growth factors, human fibroblast growth factors, and neurotrophins, as well as selected biocompatible synthetic macroions (obtained through standard polymerization techniques) and polysaccharides (natural macroions composed of repeating monomeric units of monosaccharides). Understanding the mechanisms by which growth factors bind to potential carriers could lead to more effective delivery methods for these proteins, which are of significant interest in the diagnosis and treatment of neurodegenerative and civilization diseases, as well as in the healing of chronic wounds.
Collapse
|
3
|
Ornitz DM, Itoh N. New developments in the biology of fibroblast growth factors. WIREs Mech Dis 2022; 14:e1549. [PMID: 35142107 PMCID: PMC10115509 DOI: 10.1002/wsbm.1549] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/28/2023]
Abstract
The fibroblast growth factor (FGF) family is composed of 18 secreted signaling proteins consisting of canonical FGFs and endocrine FGFs that activate four receptor tyrosine kinases (FGFRs 1-4) and four intracellular proteins (intracellular FGFs or iFGFs) that primarily function to regulate the activity of voltage-gated sodium channels and other molecules. The canonical FGFs, endocrine FGFs, and iFGFs have been reviewed extensively by us and others. In this review, we briefly summarize past reviews and then focus on new developments in the FGF field since our last review in 2015. Some of the highlights in the past 6 years include the use of optogenetic tools, viral vectors, and inducible transgenes to experimentally modulate FGF signaling, the clinical use of small molecule FGFR inhibitors, an expanded understanding of endocrine FGF signaling, functions for FGF signaling in stem cell pluripotency and differentiation, roles for FGF signaling in tissue homeostasis and regeneration, a continuing elaboration of mechanisms of FGF signaling in development, and an expanding appreciation of roles for FGF signaling in neuropsychiatric diseases. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology Congenital Diseases > Stem Cells and Development Cancer > Stem Cells and Development.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nobuyuki Itoh
- Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| |
Collapse
|
4
|
Andreou C, Matsakas A. Current insights into cellular senescence and myotoxicity induced by doxorubicin. Int J Sports Med 2022; 43:1084-1096. [PMID: 35288882 DOI: 10.1055/a-1797-7622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Doxorubicin is an anti-neoplasmic drug that prevents DNA replication but induces senescence and cellular toxicity. Intensive research has focused on strategies to alleviate the doxorubicin-induced skeletal myotoxicity. The aim of the present review is to critically discuss the relevant scientific evidence about the role of exercise and growth factor administration and offer novel insights about newly developed-tools to combat the adverse drug reactions of doxorubicin treatment on skeletal muscle. In the first part, we discuss current data and mechanistic details on the impact of doxorubicin on skeletal myotoxicity. We next, review key aspects about the role of regular exercise and the impact of growth factors either administered pharmacologically or via genetic interventions. Future strategies such as combination of exercise and growth factor administration remain to be established to combat the pharmacologically-induced myotoxicity.
Collapse
Affiliation(s)
- Charalampos Andreou
- Hull York Medical School, University of Hull, Hull, United Kingdom of Great Britain and Northern Ireland
| | - Antonios Matsakas
- Hull York Medical School, University of Hull, Hull, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
5
|
Ye L, Yu Y, Zhao ZA, Zhao D, Ni X, Wang Y, Fang X, Yu M, Wang Y, Tang JM, Chen Y, Shen Z, Lei W, Hu S. Patient-specific iPSC-derived cardiomyocytes reveal abnormal regulation of FGF16 in a familial atrial septal defect. Cardiovasc Res 2022; 118:859-871. [PMID: 33956078 DOI: 10.1093/cvr/cvab154] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/04/2021] [Indexed: 12/15/2022] Open
Abstract
AIMS Congenital heart disease (CHD) frequently occurs in newborns due to abnormal formation of the heart or major blood vessels. Mutations in the GATA4 gene, which encodes GATA binding protein 4, are responsible for atrial septal defect (ASD), a common CHD. This study aims to gain insights into the molecular mechanisms of CHD using human-induced pluripotent stem cells (iPSCs) from a family cohort with ASD. METHODS AND RESULTS Patient-specific iPSCs possess the same genetic information as the donor and can differentiate into various cell types from all three germ layers in vitro, thus presenting a promising approach for disease modelling and molecular mechanism research. Here, we generated a patient-specific iPSC line (iPSC-G4T280M) from a family cohort carrying a hereditary ASD mutation in GATA4 gene (T280M), as well as a human embryonic stem cell line (ESC-G4T280M) carrying the isogenic T280M mutation using the CRISPR/Cas9 genome editing method. The GATA4-mutant iPSCs and ESCs were then differentiated into cardiomyocytes (CMs) to model GATA4 mutation-associated ASD. We observed an obvious defect in cell proliferation in cardiomyocytes derived from both GATA4T280M-mutant iPSCs (iPSC-G4T280M-CMs) and ESCs (ESC-G4T280M-CMs), while the impaired proliferation ability of iPSC-G4T280M-CMs could be restored by gene correction. Integrated analysis of RNA-Seq and ChIP-Seq data indicated that FGF16 is a direct target of wild-type GATA4. However, the T280M mutation obstructed GATA4 occupancy at the FGF16 promoter region, leading to impaired activation of FGF16 transcription. Overexpression of FGF16 in GATA4-mutant cardiomyocytes rescued the cell proliferation defect. The direct relationship between GATA4T280M and ASD was demonstrated in a human iPSC model for the first time. CONCLUSIONS In summary, our study revealed the molecular mechanism of the GATA4T280M mutation in ASD. Understanding the roles of the GATA4-FGF16 axis in iPSC-CMs will shed light on heart development and provide novel insights for the treatment of ASD and other CHD disorders.
Collapse
Affiliation(s)
- Lingqun Ye
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou 215000, China
| | - You Yu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou 215000, China
| | - Zhen-Ao Zhao
- Institute of Microcirculation & Department of Pathophysiology of Basic Medical College, Hebei North University, Zhangjiakou 075000, China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Zhangjiakou 075000, China
| | - Dandan Zhao
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou 215000, China
| | - Xuan Ni
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou 215000, China
| | - Yong Wang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou 215000, China
| | - Xing Fang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou 215000, China
| | - Miao Yu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou 215000, China
| | - Yongming Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200432, China
| | - Jun-Ming Tang
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine Science, Hubei University of Medicine, Shiyan 442000, China
| | - Ying Chen
- Central Lab, the Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, China
| | - Zhenya Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou 215000, China
| | - Wei Lei
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou 215000, China
| | - Shijun Hu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou 215000, China
| |
Collapse
|
6
|
Phenotypic Screen with the Human Secretome Identifies FGF16 as Inducing Proliferation of iPSC-Derived Cardiac Progenitor Cells. Int J Mol Sci 2019; 20:ijms20236037. [PMID: 31801200 PMCID: PMC6928864 DOI: 10.3390/ijms20236037] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 12/15/2022] Open
Abstract
Paracrine factors can induce cardiac regeneration and repair post myocardial infarction by stimulating proliferation of cardiac cells and inducing the anti-fibrotic, antiapoptotic, and immunomodulatory effects of angiogenesis. Here, we screened a human secretome library, consisting of 923 growth factors, cytokines, and proteins with unknown function, in a phenotypic screen with human cardiac progenitor cells. The primary readout in the screen was proliferation measured by nuclear count. From this screen, we identified FGF1, FGF4, FGF9, FGF16, FGF18, and seven additional proteins that induce proliferation of cardiac progenitor cells. FGF9 and FGF16 belong to the same FGF subfamily, share high sequence identity, and are described to have similar receptor preferences. Interestingly, FGF16 was shown to be specific for proliferation of cardiac progenitor cells, whereas FGF9 also proliferated human cardiac fibroblasts. Biosensor analysis of receptor preferences and quantification of receptor abundances suggested that FGF16 and FGF9 bind to different FGF receptors on the cardiac progenitor cells and cardiac fibroblasts. FGF16 also proliferated naïve cardiac progenitor cells isolated from mouse heart and human cardiomyocytes derived from induced pluripotent cells. Taken together, the data suggest that FGF16 could be a suitable paracrine factor to induce cardiac regeneration and repair.
Collapse
|
7
|
Effect of Basic Fibroblast Growth Factor on Xenogeneic Islets in Subcutaneous Transplantation—A Murine Model. Transplant Proc 2019; 51:1458-1462. [DOI: 10.1016/j.transproceed.2019.01.135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 01/28/2019] [Indexed: 12/18/2022]
|
8
|
Koleini N, Nickel BE, Edel AL, Fandrich RR, Ravandi A, Kardami E. Non-mitogenic FGF2 protects cardiomyocytes from acute doxorubicin-induced toxicity independently of the protein kinase CK2/heme oxygenase-1 pathway. Cell Tissue Res 2018; 374:607-617. [PMID: 30159756 PMCID: PMC6267702 DOI: 10.1007/s00441-018-2905-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/25/2018] [Indexed: 12/01/2022]
Abstract
Doxorubicin (Dox)-induced cardiotoxicity, a limiting factor in the use of Dox to treat cancer, can be mitigated by the mitogenic factor FGF2 in vitro, via a heme oxygenase 1 (HO-1)-dependent pathway. HO-1 upregulation was reported to require protein kinase CK2 activity. We show that a mutant non-mitogenic FGF2 (S117A-FGF2), which does not activate CK2, is cardioprotective against acute cardiac ischemic injury. We now investigate the potential of S117A-FGF2 to protect cardiomyocytes against acute Dox injury and decrease Dox-induced upregulation of oxidized phospholipids. The roles of CK2 and HO-1 in cardiomyocyte protection are also addressed.Rat neonatal cardiomyocyte cultures were used as an established in vitro model of acute Dox toxicity. Pretreatment with S117A-FGF2 protected against Dox-induced: oxidative stress; upregulation of fragmented and non-fragmented oxidized phosphatidylcholine species, measured by LC/MS/MS; and cardiomyocyte injury and cell death measured by LDH release and a live-dead assay. CK2 inhibitors (TBB and Ellagic acid), did not affect protection by S117A-FGF2 but prevented protection by mitogenic FGF2. Furthermore, protection by S117A-FGF2, unlike that of FGF2, was not prevented by HO-1 inhibitors and S117A-FGF2 did not upregulate HO-1. Protection by S117A-FGF2 required the activity of FGF receptor 1 and ERK.We conclude that mitogenic and non-mitogenic FGF2 protect from acute Dox toxicity by common (FGFR1) and distinct, CK2/HO-1- dependent or CK2/HO-1-independent (respectively), pathways. Non-mitogenic FGF2 merits further consideration as a preventative treatment against Dox cardiotoxicity.
Collapse
Affiliation(s)
- Navid Koleini
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre., 351 Tache Ave, Winnipeg, Manitoba, R2H2A6, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
| | - Barbara E Nickel
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre., 351 Tache Ave, Winnipeg, Manitoba, R2H2A6, Canada
| | - Andrea L Edel
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre., 351 Tache Ave, Winnipeg, Manitoba, R2H2A6, Canada
| | - Robert R Fandrich
- Department of Human Anatomy and Cell Sciences, University of Manitoba, Winnipeg, Canada
| | - Amir Ravandi
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre., 351 Tache Ave, Winnipeg, Manitoba, R2H2A6, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
- Interventional Cardiology, Section of Cardiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Elissavet Kardami
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre., 351 Tache Ave, Winnipeg, Manitoba, R2H2A6, Canada.
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada.
- Department of Human Anatomy and Cell Sciences, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
9
|
Wang J, Xiang B, Dolinsky VW, Kardami E, Cattini PA. Cardiac Fgf-16 Expression Supports Cardiomyocyte Survival and Increases Resistance to Doxorubicin Cytotoxicity. DNA Cell Biol 2018; 37:866-877. [PMID: 30230915 DOI: 10.1089/dna.2018.4362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The fibroblast growth factor (FGF) 16 gene is preferentially expressed by cardiomyocytes after birth with levels increasing into adulthood. Null mice and isolated heart studies suggest a role for FGF-16 in cardiac maintenance and survival, including increased resistance to doxorubicin (DOX)-induced injury. A single treatment with DOX was also shown to rapidly deplete endogenous rat FGF-16 mRNA at 6 h in both adult heart and neonatal cardiomyocytes. However, the effect of DOX on rat cardiac function at the time of decreased FGF-16 gene expression and the effect of FGF-16 availability on cardiomyocyte survival, including in the context of acute DOX cytotoxicity, have not been reported. The objective was to assess the effect of acute (6 and 24 h) DOX treatment on cardiac function and the effects of FGF-16 small interfering RNA "knockdown," as well as adenoviral overexpression, in the context of acute DOX cytotoxicity, including cardiomyocyte survival and DOX efflux transport. A significant decrease in heart systolic function was detected by echocardiography in adult rats treated with 15 mg DOX/kg at 6 h; however, unlike FGF-16, there was no change in atrial natriuretic peptide transcript levels. Both systolic and diastolic dysfunctions were observed at 24 h. In addition, specific FGF-16 "knockdown" in neonatal rat cardiomyocytes results in a significant increase in cell death. Conversely, adenoviral FGF-16 overexpression was associated with a significant decrease in cardiomyocyte injury as a result of 1 μM DOX treatment. A specific increase in efflux transporter gene expression and DOX efflux was also seen, which is consistent with a reduction in DOX cytotoxicity. Finally, the increased efflux and decreased DOX-induced damage with FGF-16 overexpression were blunted by inhibition of FGF receptor signaling. These observations are consistent with FGF-16 serving as an endogenous cardiomyocyte survival factor, which may involve a positive effect on regulating efflux transport to reduce cardiotoxicity.
Collapse
Affiliation(s)
- Jie Wang
- 1 Department of Physiology & Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba , Winnipeg, Canada
| | - Bo Xiang
- 2 Department of Pharmacology & Therapeutics, and Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba , Winnipeg, Canada
| | - Vernon W Dolinsky
- 2 Department of Pharmacology & Therapeutics, and Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba , Winnipeg, Canada
| | - Elissavet Kardami
- 3 Department of Human Anatomy & Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba , Winnipeg, Canada
| | - Peter A Cattini
- 1 Department of Physiology & Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba , Winnipeg, Canada
| |
Collapse
|
10
|
Xu FF, Xie WF, Zha GQ, Chen HW, Deng L. MiR-520f promotes cell aggressiveness by regulating fibroblast growth factor 16 in hepatocellular carcinoma. Oncotarget 2017; 8:109546-109558. [PMID: 29312628 PMCID: PMC5752541 DOI: 10.18632/oncotarget.22726] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/02/2017] [Indexed: 12/13/2022] Open
Abstract
Cancer metastasis is a multistep cellular process, which has be confirmed one of mainly causes of cancer associated-death in hepatocellular carcinoma (HCC). MicroRNAs (miRNAs) participate in tumorigenesis function as either tumor suppressor genes or oncogenes. In order to elaborate the critical miRNAs and their targets in HCC, we compared the differential expression of miRNA between HCC tissues and normal tissues. Microarray analysis revealed there were several significantly up-expression miRNAs in HCC, compared to normal solid tissue. Among them, the expression of miR-520f was the most over-expression in HCC cell lines than that in human normal liver cells LO2, as well as up-regulated in HCC than that in the corresponding normal tissues. Moreover, Kaplan Meier-plotter analyses revealed that higher miR-520f levels were negatively correlated with poor overall survival. By applying bioinformatics methods to identify the targeting genes of miRNA, we demonstrated that fibroblast growth factor 16 (FGF16) was the miR-520f-targeted gene. Meanwhile, FGF16 exhibited similar expression patterns to miR-520f in HCC. Forced miR-520f expression accelerated HCC cells proliferation and aggressiveness in vitro and in vivo, whereas down-regulation of miR-520f caused an opposite outcome. Moreover, over-expression of FGF16 was closely related to the metastatic potential of HCC cells. Herein, we also confirmed that ectopic expression of FGF16 in HCC cells promoted proliferation, colony formation, and increased migration, invasion of HCC cells in vitro. Collectively, our results indicated that over-expression of miR-520f and FGF16 was positively associated with aggressive phenotypes and poor survival of patients with HCC, and miR-520f promoted HCC aggressive phenotypes by regulating the expression of FGF16. MiR-520f may be employed as a prognostic factor and therapeutic target for HCC.
Collapse
Affiliation(s)
- Feng Feng Xu
- Department II of General Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510700, China
| | - Wen Feng Xie
- Department of Intensive Care Unit, The Eastern Hospital of the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510700, China
| | - Guo Qing Zha
- Upper Limb Department Of Orthopedics, The Eastern Hospital of the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510700, China
| | - Hong Wu Chen
- Department of Emergency, The Eastern Hospital of the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510700, China
| | - Liang Deng
- Department of Hepatobiliary Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
11
|
Wang S, Li Y, Jiang C, Tian H. Fibroblast growth factor 9 subfamily and the heart. Appl Microbiol Biotechnol 2017; 102:605-613. [PMID: 29198068 DOI: 10.1007/s00253-017-8652-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/13/2017] [Accepted: 11/13/2017] [Indexed: 12/22/2022]
Abstract
The fibroblast growth factor (FGF) 9 subfamily is a member of the FGF family, including FGF9, 16, and 20, potentially sharing similar biochemical functions due to their high degree of sequence homology. Unlike other secreted proteins which have a cleavable N-terminal secreted signal peptide, FGF9/16/20 have non-cleaved N-terminal signal peptides. As an intercellular signaling molecule, they are involved in a variety of complex responses in animal development. Cardiogenesis is controlled by many members of the transcription factor family. Evidence suggests that FGF signaling, including the FGF9 subfamily, has a pretty close association with these cardiac-specific genes. In addition, recent studies have shown that the FGF9 subfamily maintains functional adaptation and survival after myocardial infarction in adult myocardium. Since FGF9/16/20 are secreted proteins, their function characterization in cardiac regeneration can promote their potential to be developed for the treatment of cardioprotection and revascularization. Here, we conclude that the FGF9 subfamily roles in cardiac development and maintenance of postnatal cardiac homeostasis, especially cardiac function maturation and functional maintenance of the heart after injury.
Collapse
Affiliation(s)
- Shen Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yong Li
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Chao Jiang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China. .,Biomedicine Collaborative Innovation Center, Wenzhou University, Wenzhou, Zhejiang, 325035, China.
| | - Haishan Tian
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
12
|
Koleini N, Nickel BE, Wang J, Roveimiab Z, Fandrich RR, Kirshenbaum LA, Cattini PA, Kardami E. Fibroblast growth factor-2-mediated protection of cardiomyocytes from the toxic effects of doxorubicin requires the mTOR/Nrf-2/HO-1 pathway. Oncotarget 2017; 8:87415-87430. [PMID: 29152091 PMCID: PMC5675643 DOI: 10.18632/oncotarget.20558] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/04/2017] [Indexed: 12/09/2022] Open
Abstract
Background Cardiotoxic side effects impose limits to the use of anti-tumour chemotherapeutic drugs such as doxorubicin (Dox). There is a need for cardioprotective strategies to prevent the multiple deleterious effects of Dox. Here, we examined the ability of administered fibroblast growth factor-2 (FGF-2), a cardioprotective protein that is synthesized as high and low molecular weight (Hi-, Lo-FGF-2) isoforms, to prevent Dox-induced: oxidative stress; cell death; lysosome dysregulation; and inactivation of potent endogenous protective pathways, such as the anti-oxidant/detoxification nuclear factor erythroid-2-related factor (Nrf-2), heme oxygenase-1 (HO-1) axis. Methods and Results Brief pre-incubation of neonatal rat cardiomyocyte cultures with either Hi- or Lo-FGF-2 reduced the Dox-induced: oxidative stress; apoptotic/necrotic cell death; lysosomal dysregulation; decrease in active mammalian target of Rapamycin (mTOR). FGF-2 isoforms prevented the Dox-induced downregulation of Nrf-2, and promoted robust increases in the Nrf-2-downstream targets including the cardioprotective protein HO-1, and p62/SQSTM1, a multifunctional scaffold protein involved in autophagy. Chloroquine, an autophagic flux inhibitor, caused a further increase in p62/SQSTM1, indicating intact autophagic flux in the FGF-2-treated groups. A selective inhibitor for HO-1, Tin-Protoporphyrin, prevented the FGF-2 protection against cell death. The mTOR inhibitor Rapamycin prevented FGF-2 protection, and blocked the FGF-2 effects on Nrf-2, HO-1 and p62/SQSTM1. Conclusions In an acute setting Hi- or Lo-FGF-2 protect cardiomyocytes against multiple Dox-induced deleterious effects, by a mechanism dependent on preservation of mTOR activity, Nrf-2 levels, and the upregulation of HO-1. Preservation/activation of endogenous anti-oxidant/detoxification defences by FGF-2 is a desirable property in the setting of Dox-cardiotoxicity.
Collapse
Affiliation(s)
- Navid Koleini
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, Winnipeg, Manitoba, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Barbara E Nickel
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| | - Jie Wang
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Zeinab Roveimiab
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| | - Robert R Fandrich
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, Winnipeg, Manitoba, Canada.,Department of Human Anatomy and Cell Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Lorrie A Kirshenbaum
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, Winnipeg, Manitoba, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Peter A Cattini
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Elissavet Kardami
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, Winnipeg, Manitoba, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Human Anatomy and Cell Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
13
|
Abstract
Fibroblast growth factors (FGF) are mitogenic signal mediators that induce cell proliferation and survival. Although cardiac myocytes are post-mitotic, they have been shown to be able to respond to local and circulating FGFs. While precise molecular mechanisms are not well characterized, some FGF family members have been shown to induce cardiac remodeling under physiologic conditions by mediating hypertrophic growth in cardiac myocytes and by promoting angiogenesis, both events leading to increased cardiac function and output. This FGF-mediated physiologic scenario might transition into a pathologic situation involving cardiac cell death, fibrosis and inflammation, and eventually cardiac dysfunction and heart failure. As discussed here, cardiac actions of FGFs - with the majority of studies focusing on FGF2, FGF21 and FGF23 - and their specific FGF receptors (FGFR) and precise target cell types within the heart, are currently under experimental investigation. Especially cardiac effects of endocrine FGFs entered center stage over the past five years, as they might provide communication routes that couple metabolic mechanisms, such as bone-regulated phosphate homeostasis, or metabolic stress, such as hyperphosphatemia associated with kidney injury, with changes in cardiac structure and function. In this context, it has been shown that elevated serum FGF23 can directly tackle cardiac myocytes via FGFR4 thereby contributing to cardiac hypertrophy in models of chronic kidney disease, also called uremic cardiomyopathy. Precise characterization of FGFs and their origin and regulation of expression, and even more importantly, the identification of the FGFR isoforms that mediate their cardiac actions should help to develop novel pharmacological interventions for heart failure, such as FGFR4 inhibition to tackle uremic cardiomyopathy.
Collapse
Affiliation(s)
- Christian Faul
- Katz Family Drug Discovery Center, Division of Nephrology and Hypertension, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA; Department of Cell Biology and Anatomy, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
14
|
Al-Mohanna F. The Cardiokines. ENDOCRINOLOGY OF THE HEART IN HEALTH AND DISEASE 2017:87-114. [DOI: 10.1016/b978-0-12-803111-7.00004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
15
|
Wang J, Jin Y, Cattini PA. Expression of the Cardiac Maintenance and Survival Factor FGF-16 Gene Is Regulated by Csx/Nkx2.5 and Is an Early Target of Doxorubicin Cardiotoxicity. DNA Cell Biol 2016; 36:117-126. [PMID: 27929351 DOI: 10.1089/dna.2016.3507] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The fibroblast growth factor (FGF) 16 gene (Fgf-16) is preferentially expressed by neonatal cardiomyocytes after birth, with levels increasing into adulthood. Null mice and isolated heart studies suggest a role for FGF-16 in cardiac maintenance and survival, including increased resistance to doxorubicin (DOX)-induced injury. However, the effect of DOX on endogenous FGF-16 synthesis and specifically regulation of cardiac Fgf-16 expression has not been reported. Here we assess the effect of DOX on FGF-16 RNA levels and stability as well as promoter activity and use sequence analysis, knockdown, and overexpression to investigate the role of cardiac transcription factor(s) implicated in the response. Endogenous FGF-16 RNA levels were reduced >70% in 8-week-old rats treated with 15 mg DOX/kg for 6 h. This was modeled in neonatal rat cardiomyocyte cultures, where an equivalent decrease was also seen within 6 h of 1 μM DOX treatment. Six kilobases of mouse Fgf-16 upstream flanking and promoter DNA was also assessed for DOX responsiveness in transfected cardiomyocytes. A decrease in FGF-16 promoter activity was seen with only 747 base pairs containing the Fgf-16 TATA box that includes a putative and highly conserved binding site for the cardiac transcription factor Csx/Nkx2.5. There was also no effect of DOX on FGF-16 RNA stability, consistent with transcriptional control. Levels and binding of Csx/Nkx2.5 to the FGF-16 promoter were reduced with DOX treatment. Knockdown of Csx/Nkx2.5 specifically decreased endogenous FGF-16 RNA and protein levels, whereas Csx/Nkx2.5 overexpression stimulated levels, and increased resistance to the rapid DOX-induced depletion of FGF-16. These observations indicate that Fgf-16 expression is directly regulated by Csx/Nkx2.5 in neonatal cardiomyocytes, and a negative effect of DOX on Csx/Nkx2.5 and, thus, endogenous FGF-16 synthesis may contribute indirectly to its cardiotoxic effects. Targeting FGF-16 levels could, however, offer increased resistance to cardiac injury.
Collapse
Affiliation(s)
- Jie Wang
- Department of Physiology & Pathophysiology, University of Manitoba , Winnipeg, Canada
| | - Yan Jin
- Department of Physiology & Pathophysiology, University of Manitoba , Winnipeg, Canada
| | - Peter A Cattini
- Department of Physiology & Pathophysiology, University of Manitoba , Winnipeg, Canada
| |
Collapse
|
16
|
Yu W, Huang X, Tian X, Zhang H, He L, Wang Y, Nie Y, Hu S, Lin Z, Zhou B, Pu W, Lui KO, Zhou B. GATA4 regulates Fgf16 to promote heart repair after injury. Development 2016; 143:936-49. [PMID: 26893347 DOI: 10.1242/dev.130971] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 02/09/2016] [Indexed: 12/20/2022]
Abstract
Although the mammalian heart can regenerate during the neonatal stage, this endogenous regenerative capacity is lost with age. Importantly, replication of cardiomyocytes has been found to be the key mechanism responsible for neonatal cardiac regeneration. Unraveling the transcriptional regulatory network for inducing cardiomyocyte replication will, therefore, be crucial for the development of novel therapies to drive cardiac repair after injury. Here, we investigated whether the key cardiac transcription factor GATA4 is required for neonatal mouse heart regeneration. Using the neonatal mouse heart cryoinjury and apical resection models with an inducible loss of GATA4 specifically in cardiomyocytes, we found severely depressed ventricular function in the Gata4-ablated mice (mutant) after injury. This was accompanied by reduced cardiomyocyte replication. In addition, the mutant hearts displayed impaired coronary angiogenesis and increased hypertrophy and fibrosis after injury. Mechanistically, we found that the paracrine factor FGF16 was significantly reduced in the mutant hearts after injury compared with littermate controls and was directly regulated by GATA4. Cardiac-specific overexpression of FGF16 via adeno-associated virus subtype 9 (AAV9) in the mutant hearts partially rescued the cryoinjury-induced cardiac hypertrophy, promoted cardiomyocyte replication and improved heart function after injury. Altogether, our data demonstrate that GATA4 is required for neonatal heart regeneration through regulation of Fgf16, suggesting that paracrine factors could be of potential use in promoting myocardial repair.
Collapse
Affiliation(s)
- Wei Yu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiuzhen Huang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xueying Tian
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hui Zhang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lingjuan He
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yue Wang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yu Nie
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Shengshou Hu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Zhiqiang Lin
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Bin Zhou
- Departments of Genetics, Pediatrics and Medicine (Cardiology), Albert Einstein College of Medicine of Yeshiva University, 1301 Morris Park Avenue, Bronx, NY 10461, USA
| | - William Pu
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Kathy O Lui
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, 999077 China
| | - Bin Zhou
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210 China
| |
Collapse
|
17
|
Wang Z, Wang Y, Ye J, Lu X, Cheng Y, Xiang L, Chen L, Feng W, Shi H, Yu X, Lin L, Zhang H, Xiao J, Li X. bFGF attenuates endoplasmic reticulum stress and mitochondrial injury on myocardial ischaemia/reperfusion via activation of PI3K/Akt/ERK1/2 pathway. J Cell Mol Med 2014; 19:595-607. [PMID: 25533999 PMCID: PMC4369816 DOI: 10.1111/jcmm.12346] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 05/14/2014] [Indexed: 12/11/2022] Open
Abstract
Extensive research focused on finding effective strategies to prevent or improve recovery from myocardial ischaemia/reperfusion (I/R) injury. Basic fibroblast growth factor (bFGF) has been shown to have therapeutic potential in some heart disorders, including ischaemic injury. In this study, we demonstrate that bFGF administration can inhibit the endoplasmic reticulum (ER) stress and mitochondrial dysfunction induced in the heart in a mouse model of I/R injury. In vitro, bFGF exerts a protective effect by inhibiting the ER stress response and mitochondrial dysfunction proteins that are induced by tert-Butyl hydroperoxide (TBHP) treatment. Both of these in vivo and in vitro effects are related to the activation of two downstream signalling pathways, PI3K/Akt and ERK1/2. Inhibition of these PI3K/Akt and ERK1/2 pathways by specific inhibitors, LY294002 and PD98059, partially reduces the protective effect of bFGF. Taken together, our results indicate that the cardioprotective role of bFGF involves the suppression of ER stress and mitochondrial dysfunction in ischaemic oxidative damage models and oxidative stress-induced H9C2 cell injury; furthermore, these effects underlie the activation of the PI3K/Akt and ERK1/2 signalling pathways.
Collapse
Affiliation(s)
- Zhouguang Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Jilin University, Changchun, China; School of Pharmacy, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Lindsey ML, Lange RA, Parsons H, Andrews T, Aune GJ. The tell-tale heart: molecular and cellular responses to childhood anthracycline exposure. Am J Physiol Heart Circ Physiol 2014; 307:H1379-89. [PMID: 25217655 DOI: 10.1152/ajpheart.00099.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since the modern era of cancer chemotherapy that began in the mid-1940s, survival rates for children afflicted with cancer have steadily improved from 10% to current rates that approach 80% (60). Unfortunately, many long-term survivors of pediatric cancer develop chemotherapy-related health effects; 25% are afflicted with a severe or life-threatening medical condition, with cardiovascular disease being a primary risk (96). Childhood cancer survivors have markedly elevated incidences of stroke, congestive heart failure (CHF), coronary artery disease, and valvular disease (96). Their cardiac mortality is 8.2 times higher than expected (93). Anthracyclines are a key component of most curative chemotherapeutic regimens used in pediatric cancer, and approximately half of all childhood cancer patients are exposed to them (78). Numerous epidemiologic and observational studies have linked childhood anthracycline exposure to an increased risk of developing cardiomyopathy and CHF, often decades after treatment. The acute toxic effects of anthracyclines on cardiomyocytes are well described; however, myocardial tissue is comprised of additional resident cell types, and events occurring in the cardiomyocyte do not fully explain the pathological processes leading to late cardiomyopathy and CHF. This review will summarize the current literature regarding the cellular and molecular responses to anthracyclines, with an important emphasis on nonmyocyte cardiac cell types as well as those that mediate the myocardial injury response.
Collapse
Affiliation(s)
- Merry L Lindsey
- Department of Physiology and Biophysics, San Antonio Cardiovascular Proteomics Center and Jackson Center for Heart Research, Mississippi Medical Center, Jackson, Mississippi
| | - Richard A Lange
- Division of Cardiology, Department of Medicine, San Antonio Cardiovascular Proteomics Center, University of Texas Health Science Center San Antonio, San Antonio, Texas
| | - Helen Parsons
- Department of Epidemiology and Biostatistics, University of Texas Health Science Center San Antonio, San Antonio, Texas; and
| | - Thomas Andrews
- Division of Hematology-Oncology, Department of Pediatrics, Greehey Children's Cancer Research Institute, University of Texas Health Science Center San Antonio, San Antonio, Texas
| | - Gregory J Aune
- Division of Hematology-Oncology, Department of Pediatrics, Greehey Children's Cancer Research Institute, University of Texas Health Science Center San Antonio, San Antonio, Texas
| |
Collapse
|
19
|
Wang J, Sontag D, Cattini PA. Heart-specific expression of FGF-16 and a potential role in postnatal cardioprotection. Cytokine Growth Factor Rev 2014; 26:59-66. [PMID: 25106133 DOI: 10.1016/j.cytogfr.2014.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 07/11/2014] [Accepted: 07/14/2014] [Indexed: 10/25/2022]
Abstract
Fibroblast growth factor 16 (FGF-16) was originally cloned from rat heart. Subsequent investigation of mouse FGF-16, including generation of null mice, revealed a specific pattern of expression in the endocardium and epicardium, and role for FGF-16 during embryonic heart development. FGF-16 is expressed mainly in brown adipose tissue during rat embryonic development, but is expressed mainly in the murine heart after birth. There is also an apparent switch from limited endocardial and epicardial expression in the embryo to the myocardium in the perinatal period. The FGF-16 gene and its location on the X chromosome are conserved between human and murine species, and no other member of the FGF family shows this pattern of spatial and temporal expression. The human and murine FGF-16 gene promoter regions also share an equivalent location for TATA sequences, as well as adjacent putative binding sites for transcription factors linked to cardiac expression and response to stress. Recent evidence has implicated nonsense mutation of FGF-16 with increased cardiovascular risk, and FGF-16 supplementation with cardioprotection. Here we review the important role of FGF-16 in embryonic heart development, its gene regulation, and evidence for FGF-16 as an endogenous and exogenous cardiac-specific and protective factor in the postnatal heart. Moreover, given the conservation of the FGF-16 gene and its chromosomal location between species, the question of support for a cardiac role in the human population is also considered.
Collapse
Affiliation(s)
- Jie Wang
- Department of Physiology & Pathophysiology, University of Manitoba, Manitoba, Canada.
| | - David Sontag
- Department of Physiology & Pathophysiology, University of Manitoba, Manitoba, Canada
| | - Peter A Cattini
- Department of Physiology & Pathophysiology, University of Manitoba, Manitoba, Canada
| |
Collapse
|
20
|
Laurell T, Nilsson D, Hofmeister W, Lindstrand A, Ahituv N, Vandermeer J, Amilon A, Annerén G, Arner M, Pettersson M, Jäntti N, Rosberg HE, Cattini PA, Nordenskjöld A, Mäkitie O, Grigelioniene G, Nordgren A. Identification of three novel FGF16 mutations in X-linked recessive fusion of the fourth and fifth metacarpals and possible correlation with heart disease. Mol Genet Genomic Med 2014; 2:402-11. [PMID: 25333065 PMCID: PMC4190875 DOI: 10.1002/mgg3.81] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 03/26/2014] [Accepted: 04/04/2014] [Indexed: 11/24/2022] Open
Abstract
Nonsense mutations in FGF16 have recently been linked to X-linked recessive hand malformations with fusion between the fourth and the fifth metacarpals and hypoplasia of the fifth digit (MF4; MIM#309630). The purpose of this study was to perform careful clinical phenotyping and to define molecular mechanisms behind X-linked recessive MF4 in three unrelated families. We performed whole-exome sequencing, and identified three novel mutations in FGF16. The functional impact of FGF16 loss was further studied using morpholino-based suppression of fgf16 in zebrafish. In addition, clinical investigations revealed reduced penetrance and variable expressivity of the MF4 phenotype. Cardiac disorders, including myocardial infarction and atrial fibrillation followed the X-linked FGF16 mutated trait in one large family. Our findings establish that a mutation in exon 1, 2 or 3 of FGF16 results in X-linked recessive MF4 and expand the phenotypic spectrum of FGF16 mutations to include a possible correlation with heart disease.
Collapse
Affiliation(s)
- Tobias Laurell
- Department of Molecular Medicine and Surgery and Center of Molecular Medicine, Karolinska Institutet Stockholm, Sweden ; Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet Stockholm, Sweden ; Department of Hand Surgery, Södersjukhuset Stockholm, Sweden
| | - Daniel Nilsson
- Department of Molecular Medicine and Surgery and Center of Molecular Medicine, Karolinska Institutet Stockholm, Sweden ; Department of Clinical Genetics, Karolinska University Hospital Stockholm, Sweden ; Science for Life Laboratory, Karolinska Institutet Science Park Stockholm, Sweden
| | - Wolfgang Hofmeister
- Department of Molecular Medicine and Surgery and Center of Molecular Medicine, Karolinska Institutet Stockholm, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery and Center of Molecular Medicine, Karolinska Institutet Stockholm, Sweden ; Department of Clinical Genetics, Karolinska University Hospital Stockholm, Sweden
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco San Francisco ; Institute for Human Genetics, University of California San Francisco San Francisco
| | - Julia Vandermeer
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco San Francisco ; Institute for Human Genetics, University of California San Francisco San Francisco
| | - Anders Amilon
- Department of Hand Surgery, Örebro University Hospital Örebro, Sweden
| | - Göran Annerén
- Department of Immunology Genetics and Pathology Science for Life Laboratory, Uppsala University Uppsala, Sweden
| | - Marianne Arner
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet Stockholm, Sweden ; Department of Hand Surgery, Södersjukhuset Stockholm, Sweden
| | - Maria Pettersson
- Department of Molecular Medicine and Surgery and Center of Molecular Medicine, Karolinska Institutet Stockholm, Sweden
| | - Nina Jäntti
- Department of Molecular Medicine and Surgery and Center of Molecular Medicine, Karolinska Institutet Stockholm, Sweden
| | - Hans-Eric Rosberg
- Department of Clinical Sciences Malmö Section of Hand Surgery, Lund University Malmö, Sweden ; Department of Hand Surgery, Skåne University Hospital Malmö, Sweden
| | | | - Agneta Nordenskjöld
- Department of Women's and Children's Health and Center of Molecular Medicine, Karolinska Institutet Stockholm, Sweden ; Unit of Paediatric Surgery Astrid Lindgren Children's Hospital, Karolinska University Hospital Stockholm, Sweden
| | - Outi Mäkitie
- Department of Molecular Medicine and Surgery and Center of Molecular Medicine, Karolinska Institutet Stockholm, Sweden ; Department of Clinical Genetics, Karolinska University Hospital Stockholm, Sweden ; Folkhälsan Institute of Genetics Helsinki, Finland
| | - Giedre Grigelioniene
- Department of Molecular Medicine and Surgery and Center of Molecular Medicine, Karolinska Institutet Stockholm, Sweden ; Department of Clinical Genetics, Karolinska University Hospital Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery and Center of Molecular Medicine, Karolinska Institutet Stockholm, Sweden ; Department of Clinical Genetics, Karolinska University Hospital Stockholm, Sweden
| |
Collapse
|