1
|
Nwokocha C, Palacios J, Ojukwu VE, Nna VU, Owu DU, Nwokocha M, McGrowder D, Orie NN. Oxidant-induced disruption of vascular K + channel function: implications for diabetic vasculopathy. Arch Physiol Biochem 2024; 130:361-372. [PMID: 35757993 DOI: 10.1080/13813455.2022.2090578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/07/2022] [Indexed: 11/02/2022]
Abstract
Diabetes in humans a chronic metabolic disorder characterised by hyperglycaemia, it is associated with an increased risk of cardiovascular disease, disruptions to metabolism and vascular functions. It is also linked to oxidative stress and its complications. Its role in vascular dysfunctions is generally reported without detailed impact on the molecular mechanisms. Potassium ion channel (K+ channels) are key regulators of vascular tone, and as membrane proteins, are modifiable by oxidant stress associated with diabetes. This review manuscript examined the impact of oxidant stress on vascular K+ channel functions in diabetes, its implication in vascular complications and metabolic and cardiovascular diseases.
Collapse
Affiliation(s)
| | - Javier Palacios
- Department of Pharmacy, Faculty of Health Sciences, Arturo Prat University, Iquique, Chile
| | - Victoria E Ojukwu
- Basic Medical Sciences, University of the West Indies, Mona, Kingston, Jamaica
| | - Victor Udo Nna
- Department of Physiology, College of Medical Sciences, University of Calabar, Calabar, Nigeria
| | - Daniel Udofia Owu
- Department of Physiology, College of Medical Sciences, University of Calabar, Calabar, Nigeria
| | - Magdalene Nwokocha
- Department of Pathology, Faculty of Medical Sciences, University of the West Indies, Mona, Kingston, Jamaica
| | - Donovan McGrowder
- Department of Pathology, Faculty of Medical Sciences, University of the West Indies, Mona, Kingston, Jamaica
| | - Nelson N Orie
- Centre of Metabolism and Inflammation, University College London, London, UK
| |
Collapse
|
2
|
Sepulchro Mulher LCC, Simões RP, Rossi KA, Schereider IRG, Silva Nascimento CLD, Ávila RA, Padilha AS. In vitro cadmium exposure induces structural damage and endothelial dysfunction in female rat aorta. Biometals 2023; 36:1405-1420. [PMID: 37651061 DOI: 10.1007/s10534-023-00526-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023]
Abstract
Cadmium is a heavy metal that is widespread in the environment and has been described as a metalloestrogen and a cardiovascular risk factor. Experimental studies conducted in male animals have shown that cadmium exposure induces vascular dysfunction, which could lead to vasculopathies caused by this metal. However, it is necessary to investigate the vascular effects of cadmium in female rats to understand its potential sex-dependent impact on the cardiovascular system. While its effects on male rats have been studied, cadmium may act differently in females due to its potential as a metalloestrogen. In vitro studies conducted in a controlled environment allow for a direct assessment of cadmium's impact on vascular function, and the use of female rats ensures that sex-dependent effects are evaluated. Therefore, the aim of this study was to investigate the in vitro effects of Cadmium Chloride (CdCl2, 5 µM) exposure on vascular reactivity in the isolated aorta of female Wistar rats. Exposure to CdCl2 damaged the architecture of the vascular endothelium. CdCl2 incubation increased the production and release of O2•-, reduced the participation of potassium (K+) channels, and increased the participation of the angiotensin II pathway in response to phenylephrine. Moreover, estrogen receptors alpha (Erα) modulated vascular reactivity to phenylephrine in the presence of cadmium, supporting the hypothesis that cadmium could act as a metalloestrogen. Our results demonstrated that in vitro cadmium exposure induces damage to endothelial architecture and an increase in oxidative stress in the isolated aorta of female rats, which could precipitate vasculopathies. Graphical Abstract. Own source from Canva and Servier Medical Art servers.
Collapse
Affiliation(s)
- Lorraine Christiny Costa Sepulchro Mulher
- Physiological Sciences Post-Graduation Program, CCS/UFES, Federal University of Espírito Santo, Av. Marechal Campos, 1468, 26 Maruípe, Vitoria, ES, 29043-900, Brazil
| | - Rakel Passos Simões
- Physiological Sciences Post-Graduation Program, CCS/UFES, Federal University of Espírito Santo, Av. Marechal Campos, 1468, 26 Maruípe, Vitoria, ES, 29043-900, Brazil
| | - Karoline Alves Rossi
- Physiological Sciences Post-Graduation Program, CCS/UFES, Federal University of Espírito Santo, Av. Marechal Campos, 1468, 26 Maruípe, Vitoria, ES, 29043-900, Brazil
| | - Ingridy Reinholz Grafites Schereider
- Physiological Sciences Post-Graduation Program, CCS/UFES, Federal University of Espírito Santo, Av. Marechal Campos, 1468, 26 Maruípe, Vitoria, ES, 29043-900, Brazil
| | - Camilla Lóren da Silva Nascimento
- Physiological Sciences Post-Graduation Program, CCS/UFES, Federal University of Espírito Santo, Av. Marechal Campos, 1468, 26 Maruípe, Vitoria, ES, 29043-900, Brazil
| | - Renata Andrade Ávila
- Physiological Sciences Post-Graduation Program, CCS/UFES, Federal University of Espírito Santo, Av. Marechal Campos, 1468, 26 Maruípe, Vitoria, ES, 29043-900, Brazil
| | - Alessandra Simão Padilha
- Physiological Sciences Post-Graduation Program, CCS/UFES, Federal University of Espírito Santo, Av. Marechal Campos, 1468, 26 Maruípe, Vitoria, ES, 29043-900, Brazil.
| |
Collapse
|
3
|
Santamaria-Juarez C, Atonal-Flores F, Diaz A, Sarmiento-Ortega VE, Garcia-Gonzalez M, Aguilar-Alonso P, Lopez-Lopez G, Brambila E, Treviño S. Aortic dysfunction by chronic cadmium exposure is linked to multiple metabolic risk factors that converge in anion superoxide production. Arch Physiol Biochem 2022; 128:748-756. [PMID: 32067514 DOI: 10.1080/13813455.2020.1726403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
CONTEXT The chronic exposure to Cadmium (Cd) constitute an risk to develop hypertension and cardiovascular diseases associated with the increase of oxidative stress. OBJECTIVE In this study, we investigate the role of metabolic changes produced by exposure to Cd on the endothelial dysfunction via oxidative stress. METHODS Male Wistar rats were exposed to Cd (32.5-ppm) for 2-months. The zoometry and blood pressure were evaluated, also glucose and lipids profiles in serum and vascular reactivity evaluated in isolated aorta rings. RESULTS Rats exposed to Cd showed an increase of blood pressure and biochemical parameters similar to metabolic syndrome. Additionally, rats exposed to Cd showed a reduced relaxation in aortic rings, which was reversed after the addition of SOD and apocynin an inhibitor of NADPH. CONCLUSION The Cd-exposition induced hypertension and endothelial injury by that modifying the vascular relaxation and develop oxidative stress via NADPH oxidase, superoxide and loss nitric oxide bioavailability.
Collapse
Affiliation(s)
- Celeste Santamaria-Juarez
- Department of Pharmacy, Faculty of Chemistry Science, University Autonomous of Puebla, Puebla, Mexico
| | - Fausto Atonal-Flores
- Department of Physiology, Faculty of Medicine, University Autonomous of Puebla, The Volcano, Mexico
| | - Alfonso Diaz
- Department of Pharmacy, Faculty of Chemistry Science, University Autonomous of Puebla, Puebla, Mexico
| | - Victor E Sarmiento-Ortega
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, University Autonomous of Puebla, Puebla, Mexico
| | - Miguel Garcia-Gonzalez
- Department of Pharmacy, Faculty of Chemistry Science, University Autonomous of Puebla, Puebla, Mexico
| | - Patricia Aguilar-Alonso
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, University Autonomous of Puebla, Puebla, Mexico
| | - Gustavo Lopez-Lopez
- Department of Pharmacy, Faculty of Chemistry Science, University Autonomous of Puebla, Puebla, Mexico
| | - Eduardo Brambila
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, University Autonomous of Puebla, Puebla, Mexico
| | - Samuel Treviño
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, University Autonomous of Puebla, Puebla, Mexico
| |
Collapse
|
4
|
Role of curcumin in ameliorating hypertension and associated conditions: a mechanistic insight. Mol Cell Biochem 2022; 477:2359-2385. [DOI: 10.1007/s11010-022-04447-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 04/24/2022] [Indexed: 12/23/2022]
|
5
|
Ju Y, Feng Y, Hou X, Wu L, Yang H, Zhang H, Ma Y. Combined apocyanin and aspirin treatment activates the PI3K/Nrf2/HO-1 signaling pathway and ameliorates preeclampsia symptoms in rats. Hypertens Pregnancy 2021; 41:39-50. [PMID: 34875953 DOI: 10.1080/10641955.2021.2014518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Pre-eclampsia (PE) is a pregnancy-associated disease characterized by placental dysfunction and increased oxidative stress. Apocyanin is a potent antioxidant and anti-inflammatory which has shown beneficial effects on PE pathogenesis. Aspirin is recognized as the recommendable drug in PE prevention and therapy. Therefore, we aimed to investigate the effects of combining apocyanin and aspirin to treat PE on rat models induced by N-nitro-L-arginine methyl ester (L-NAME) from gestational day (GD) 6 to 16 and elucidate the potential mechanisms. METHODS First, female pregnant rats were divided into five different groups: pregnant control, PE, PE + apocyanin, PE + aspirin, and PE + apocyanin + aspirin. Animals received apocyanin (16 mg/kg/day) orally or aspirin by gavage (1.5 mg/kg BM/day) from GD 4 to 16. Blood pressure and urine protein content were monitored every 4 days. RESULTS In the PE rat model, elevated systolic blood pressure and proteinuria were ameliorated by the combination of apocyanin and aspirin. Meanwhile, compared with single-dose apocyanin or aspirin, the combined treatment significantly corrected abnormal pregnancy outcomes, decreased sFlt-1 and PlGF, and alleviated oxidative stress both in blood and placental tissues. Moreover, the combined treatment upregulated PI3K, Akt, Nrf2, and HO-1 protein levels in the placental tissues from PE rats.Conclusion: Overall, our results suggested that combined treatment of apocyanin and aspirin ameliorates the PE symptoms compared with single-dose apocyanin or aspirin in a PE rat model. Also, we demonstrated that activating the PI3K/Nrf2/HO-1 pathway can be a valuable therapeutic target to improve the pregnancy outcomes of PE.
Collapse
Affiliation(s)
- Yaru Ju
- Perinatal Center, the Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
| | - Yan Feng
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Hebei, China
| | - Xiaolin Hou
- Prenatal Diagnostic, The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
| | - Lixia Wu
- Department of Obstetrics, The Fourth Hospital of Shijiazhuang; Hebei, China
| | - Huixia Yang
- Department of Obstetrics, Gaoyi County People's Hospital, Shijiazhuang, Hebei, China
| | - Hongjuan Zhang
- Department of Obstetrics, Xiongxian Maternal and Child Health Care Hospital, Baoding, Hebei China
| | - Yan'Na Ma
- Department of Obstetrics, Xiongxian Maternal and Child Health Care Hospital, Baoding, Hebei China
| |
Collapse
|
6
|
Cadmium-induced hypertension is associated with renal myosin light chain phosphatase inhibition via increased T697 phosphorylation and p44 mitogen-activated protein kinase levels. Hypertens Res 2021; 44:941-954. [PMID: 33972751 DOI: 10.1038/s41440-021-00662-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 12/29/2020] [Accepted: 02/17/2021] [Indexed: 02/03/2023]
Abstract
Dietary intake of the heavy metal cadmium (Cd2+) is implicated in hypertension, but potassium supplementation reportedly mitigates hypertension. This study aims to elucidate the hypertensive mechanism of Cd2+. Vascular reactivity and protein expression were assessed in Cd2+-exposed rats for 8 weeks to determine the calcium-handling effect of Cd2+ and the possible signaling pathways and mechanisms involved. Cd2+ induced hypertension in vivo by significantly (p < 0.001) elevating systolic blood pressure (160 ± 2 and 155 ± 1 vs 120 ± 1 mm Hg), diastolic blood pressure (119 ± 2 and 110 ± 1 vs 81 ± 1 mm Hg), and mean arterial pressure (133 ± 2 and 125 ± 1 vs 94 ± 1 mm Hg) (SBP, DBP, and MAP, respectively), while potassium supplementation protected against elevation of these parameters. The mechanism involved augmentation of the phosphorylation of renal myosin light chain phosphatase targeting subunit 1 (MYPT1) at threonine 697 (T697) (2.58 ± 0.36 vs 1 ± 0) and the expression of p44 mitogen-activated protein kinase (MAPK) (1.78 ± 0.20 vs 1 ± 0). While acetylcholine (ACh)-induced relaxation was unaffected, 5 mg/kg b.w. Cd2+ significantly (p < 0.001) attenuated phenylephrine (Phe)-induced contraction of the aorta, and 2.5 mg/kg b.w. Cd2+ significantly (p < 0.05) augmented sodium nitroprusside (SNP)-induced relaxation of the aorta. These results support the vital role of the kidney in regulating blood pressure changes after Cd2+ exposure, which may be a key drug target for hypertension management. Given the differential response to Cd2+, it is apparent that its hypertensive effects could be mediated by myosin light chain phosphatase (MLCP) inhibition via phosphorylation of renal MYPT1-T697 and p44 MAPK. Further investigation of small arteries and the Rho-kinase/MYPT1 interaction is recommended.
Collapse
|
7
|
Fevrier-Paul A, Soyibo AK, De Silva N, Mitchell S, Nwokocha C, Voutchkov M. Addressing the Challenge of Potentially Hazardous Elements in the Reduction of Hypertension, Diabetes and Chronic Kidney Disease in the Caribbean. J Health Pollut 2021; 11:210613. [PMID: 34268000 PMCID: PMC8276730 DOI: 10.5696/2156-9614-11.30.210613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/16/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Environmental surveys have characterized trace elements such as lead (Pb), cadmium (Cd) and arsenic (As) as potential risk factors for non-communicable diseases. There have been few studies conducted in the Caribbean region to explore, define or clarify such findings locally. Furthermore, local pollution control efforts are often juxtaposed against more seemingly immediate economic concerns in poor communities. OBJECTIVES The present commentary is a call to action for the evaluation of potentially hazardous elements as potential risk indicators and/or factors of common noncommunicable diseases in the Caribbean. DISCUSSION Findings from Jamaican studies have identified exposure to potentially hazardous elements (PHE) via water, food, and other anthropogenic activities to the detriment of the resident population. Several attempts have been made to abate toxic metal exposure in children with relative success. However, high levels of PHE have been noted in vulnerable populations such as patients with hypertension, diabetes mellitus and chronic kidney disease. Currently, there is low priority towards infrastructure building within the Caribbean region that would promote and sustain long term monitoring and better inform environmental polices impacting chronic diseases. CONCLUSIONS Further investigations are needed to clarify the role that PHE play in increasing the risk or progression of non-communicable diseases, especially in vulnerable groups. COMPETING INTERESTS The authors declare no competing financial interests.
Collapse
Affiliation(s)
- Adwalia Fevrier-Paul
- Department of Physics, Faculty of Science and Technology, University of the West Indies, Mona, Jamaica
| | - Adedamola K. Soyibo
- Department of Medicine, University Hospital of the West Indies, Kingston, Jamaica
| | - Nimal De Silva
- Earth and Environmental Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Sylvia Mitchell
- The Biotechnology Centre, Faculty of Science and Technology, University of the West Indies, Mona , Jamaica
| | - Chukwuemeka Nwokocha
- Department of Basic Medical Sciences, The University of the West Indies, Mona, Jamaica
| | - Mitko Voutchkov
- Department of Physics, Faculty of Science and Technology, University of the West Indies, Mona, Jamaica
| |
Collapse
|
8
|
Sha H, Ma Y, Tong Y, Zhao J, Qin F. Apocynin inhibits placental TLR4/NF-κB signaling pathway and ameliorates preeclampsia-like symptoms in rats. Pregnancy Hypertens 2020; 22:210-215. [PMID: 33099123 DOI: 10.1016/j.preghy.2020.10.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 10/04/2020] [Accepted: 10/08/2020] [Indexed: 12/23/2022]
Abstract
OBJECTIVE We aimed to investigate the potency of apocynin in ameliorating preeclampsia and explore the underlying mechanisms. METHODS Preeclampsia model was constructed in rats by administering 200 mg/kg/day L-NAME. Apocynin was given orally in drinking water. Systolic blood pressure and proteinuria were monitored during treatment. Survival rate rate of the pups and placental weight were assessed. Serum sFlt-1, PIGF, IL-6 and placental TLR4 levels were measured using ELISA or qRT-PCR. RESULTS Apocynin dose-dependently decreased systolic blood pressure and proteinuria during gestation. Survival rate of the pups and placental weight were improved by apocynin treatment. Apocynin ameliorated the imbalance of sFlt-1 and PIGF in serum and placenta of rats with preeclampsia. Apocynin attenuated serum inflammatory cytokine expression and placental inflammation most likely due to downregulation of the placental TLR4/NF-kB pathway in L-NAME treated rats. CONCLUSIONS Apocynin potently ameliorates the L-NAME-induced preeclampsia, which is achieved by re-balancing the sFlt-1 and PIGF levels, attenuating inflammation, and inhibiting TLR4/NF-κB p65 signaling.
Collapse
Affiliation(s)
- Han Sha
- Department of Obstetrics and Gynecology, Heze Municipal Hospital, No. 2888 Caozhou Road, Mudan District, Heze 274000, Shandong, China
| | - Yanchao Ma
- Department of Obstetrics and Gynecology, Heze Municipal Hospital, No. 2888 Caozhou Road, Mudan District, Heze 274000, Shandong, China
| | - Yuli Tong
- Department of Obstetrics and Gynecology, Heze Municipal Hospital, No. 2888 Caozhou Road, Mudan District, Heze 274000, Shandong, China
| | - Jie Zhao
- Department of Obstetrics and Gynecology, Heze Municipal Hospital, No. 2888 Caozhou Road, Mudan District, Heze 274000, Shandong, China
| | - Fengzhi Qin
- Department of Obstetrics and Gynecology, Heze Municipal Hospital, No. 2888 Caozhou Road, Mudan District, Heze 274000, Shandong, China.
| |
Collapse
|
9
|
Almenara CCP, Oliveira TF, Padilha AS. The Role of Antioxidants in the Prevention of Cadmium-Induced Endothelial Dysfunction. Curr Pharm Des 2020; 26:3667-3675. [DOI: 10.2174/1381612826666200415172338] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/06/2020] [Indexed: 11/22/2022]
Abstract
Background:
Cadmium is a worldwide spread toxicant that accumulates in tissues and affects many
organs, mainly through oxidative damage. Oxidative stress is often associated with cardiovascular diseases and,
when it affects vessels, it induces endothelial dysfunction, which, in turn, could precipitate atherosclerosis and
hypertension. Therefore, it is reasonable to suggest antioxidant supplementation as a therapy against cadmiuminduced
endothelial dysfunction.
Objective:
This literature review aims to present the mechanisms involving oxidative stress in which cadmium
induces endothelial dysfunction and the benefits of antioxidant supplementation as a therapeutic strategy against
its harmful effects.
Methods:
On PubMed Central, articles that contemplated studies on cadmium intoxication and associated oxidative
stress with endothelial dysfunction as well as articles that reported the use of antioxidant supplementation in
an attempt to prevent or avoid endothelial dysfunction induced by cadmium exposure were selected.
Results:
Most of the studies that associated cadmium intoxication with endothelial dysfunction suggested oxidative
stress as the major mechanism for this damage. Furthermore, experimental studies also revealed that the
administration of substances with antioxidant properties, such as ascorbic acid and curcumin, has beneficial effects
on the prevention of such dysfunction, reducing reactive oxygen species within the vessels, preventing a
reduction in the amount of glutathione and the increase in blood pressure observed in animals exposed to cadmium.
Conclusion:
Antioxidant therapy demonstrated to be a potential treatment to reduce cardiovascular injuries provoked
by cadmium, but more studies are needed to determine the best antioxidant substance and dose to treat or
avoid this complication.
Collapse
Affiliation(s)
- Camila Cruz Pereira Almenara
- Department of Physiological Sciences, Federal University of Espírito Santo, Av. Marechal Campos 1468, Maruipe, 29042-755 - Vitoria, ES, Brazil
| | - Thiago F. Oliveira
- Department of Physiological Sciences, Federal University of Espírito Santo, Av. Marechal Campos 1468, Maruipe, 29042-755 - Vitoria, ES, Brazil
| | - Alessandra S. Padilha
- Department of Physiological Sciences, Federal University of Espírito Santo, Av. Marechal Campos 1468, Maruipe, 29042-755 - Vitoria, ES, Brazil
| |
Collapse
|
10
|
Pinheiro Júnior JEG, Moraes PZ, Rodriguez MD, Simões MR, Cibin F, Pinton S, Barbosa Junior F, Peçanha FM, Vassallo DV, Miguel M, Wiggers GA. Cadmium exposure activates NADPH oxidase, renin-angiotensin system and cyclooxygenase 2 pathways in arteries, inducing hypertension and vascular damage. Toxicol Lett 2020; 333:80-89. [PMID: 32738273 DOI: 10.1016/j.toxlet.2020.07.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/20/2020] [Accepted: 07/26/2020] [Indexed: 10/23/2022]
Abstract
Exposure to high concentrations of cadmium (Cd), widely used in many industries and found in air, food and contaminated water, is not uncommon. Cd damages the cardiovascular system, but the vascular mechanisms involved are not fully understood. This study investigated the mechanisms involved in cardiovascular damage after exposure to high Cd concentrations. Three-month-old male Wistar rats were treated intraperitoneally for 14 days with distilled water (Untreated group) or 1 mg/kg cadmium chloride (Cd group). We investigated the systolic blood pressure (SBP) and vascular reactivity of mesenteric resistance arteries (MRA) and the aorta by analysing contractile and relaxation responses in the absence and presence of the endothelium; we also evaluated pathways involved in vascular tone regulation. Superoxide anion production, COX-2 protein expression and in situ detection of COX-2, AT-1, and NOX-1 were evaluated. Oxidative status, creatinine level and angiotensin-converting enzyme (ACE) activity in plasma were also evaluated. Fourteen-day exposure to a high Cd concentration induced hypertension associated with vascular dysfunction in MRA and the aorta. In both vessels, there was increased participation of cyclooxygenase 2 (COX2), angiotensin II type 1 (AT1) receptor and NOX1. MRA also presented endothelial dysfunction, denoted by impaired acetylcholine-mediated relaxation. All vascular changes were accompanied by increased reactive oxygen species production and COX2, NOX1 and AT1 receptor expression in vascular tissue. Overall, high Cd concentrations induced cardiovascular damage: hypertension, endothelial dysfunction and vascular damage in conductance and resistance arteries, NADPH oxidase, renin-angiotensin system and COX2 pathway activation.
Collapse
Affiliation(s)
- José Eudes Gomes Pinheiro Júnior
- Graduate Program in Biochemistry, Universidade Federal do Pampa, BR 472 - Km 592 - PO box 118, Zip Code: 97500-970, Uruguaiana, Rio Grande do Sul, Brazil
| | - Paola Zambelli Moraes
- Graduate Program in Biochemistry, Universidade Federal do Pampa, BR 472 - Km 592 - PO box 118, Zip Code: 97500-970, Uruguaiana, Rio Grande do Sul, Brazil
| | - Marina Diaz Rodriguez
- Graduate Program in Biochemistry, Universidade Federal do Pampa, BR 472 - Km 592 - PO box 118, Zip Code: 97500-970, Uruguaiana, Rio Grande do Sul, Brazil
| | - Maylla Ronacher Simões
- Departments of Physiological Sciences, Universidade Federal do Espírito Santo and School of Medicine of Santa Casa de Misericórdia (EMESCAM), Av. Marechal Campos 1468, Zip Code: 29040-090, Vitória, Espírito Santo, Brazil
| | - Francielli Cibin
- Graduate Program in Biochemistry, Universidade Federal do Pampa, BR 472 - Km 592 - PO box 118, Zip Code: 97500-970, Uruguaiana, Rio Grande do Sul, Brazil
| | - Simone Pinton
- Graduate Program in Biochemistry, Universidade Federal do Pampa, BR 472 - Km 592 - PO box 118, Zip Code: 97500-970, Uruguaiana, Rio Grande do Sul, Brazil
| | - Fernando Barbosa Junior
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, Universidade de São Paulo, Av. do Café s/n, 14049-903, Ribeirão Preto, São Paulo, Brazil
| | - Franck Maciel Peçanha
- Graduate Program in Biochemistry, Universidade Federal do Pampa, BR 472 - Km 592 - PO box 118, Zip Code: 97500-970, Uruguaiana, Rio Grande do Sul, Brazil
| | - Dalton Valentim Vassallo
- Departments of Physiological Sciences, Universidade Federal do Espírito Santo and School of Medicine of Santa Casa de Misericórdia (EMESCAM), Av. Marechal Campos 1468, Zip Code: 29040-090, Vitória, Espírito Santo, Brazil
| | - Marta Miguel
- Bioactivity and Food Analysis Laboratory, Instituto de Investigación en Ciencias de la Alimentación, Nicolás Cabrera, 9, Campus Universitario de Cantoblanco, Madrid, Spain
| | - Giulia Alessandra Wiggers
- Graduate Program in Biochemistry, Universidade Federal do Pampa, BR 472 - Km 592 - PO box 118, Zip Code: 97500-970, Uruguaiana, Rio Grande do Sul, Brazil.
| |
Collapse
|
11
|
Nwokocha CR, Palacios J, Rattray VR, McCalla G, Nwokocha M, McGrowder D. Protective effects of apocynin against cadmium toxicity and serum parameters; evidence of a cardio-protective influence. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Cifuentes F, Palacios J, Kuzmicic J, Carvajal L, Muñoz F, Quispe C, Nwokocha CR, Morales G, Norambuena-Soto I, Chiong M, Paredes A. Vasodilator and hypotensive effects of pure compounds and hydroalcoholic extract of Xenophyllum poposum (Phil) V.A Funk (Compositae) on rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 50:99-108. [PMID: 30466997 DOI: 10.1016/j.phymed.2018.09.226] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 09/06/2018] [Accepted: 09/25/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Xenophyllum poposum is an endemic species of the Andes Cordillera, popularly known as Popusa. Popusa is widely used by mountain communities as a folk medicine to treat altitude sickness and hypertension. PURPOSE The aim of this study is to evaluate the hypotensive effects and vascular reactivity of Popusa extracts and its pure isolated compounds. METHODS Hydroalcoholic extract of Xenophyllum poposum (HAE X. poposum; 40 mg/kg dose) were administered to rats by gavage and mean arterial pressures were recorded. Organ bath studies were conducted in endothelium-intact and denuded rings, and the vascular reactivity of the HAE X. poposum extract and its isolated compounds were compared and analysed. Cytosolic Ca2+ was measured in vascular smooth muscle cell line A7r5 using Fura2-AM. RESULTS HAE X. poposum significantly reduced the mean arterial blood pressure and heart rate in normotensive rats chronically treated with the extract, as well as mice acutely treated with the extract. A negative chronotropic effect was observed in the isolated rat heart. HAE X. poposum induced endothelial vasodilation mediated by nitric oxide (NO), reduced the contractile response to PE, and decreased PE-induced intracellular Ca2+ influx in vascular smooth muscle cells. Pure compounds isolated from HAE X. poposum such as 4‑hydroxy‑3-(3-methyl-2-butenyl) acetophenone, 5-acetyl-6‑hydroxy‑2-isopropenyl-2, and 3-dihydrobenzofurane (dihydroeuparin) also triggered endothelium-dependent vasodilation. CONCLUSION HAE X. poposum decreases blood pressure, heart rate and vascular response. The vasodilation properties of HAE X. poposum extract and its isolated compounds may act through the endothelial nitric oxide synthase, as well as calcium channel blocker mechanisms. The results of the present study provide the first qualitative analysis that supports the use of X. poposum in traditional folk medicine for the treatment of altitude sickness and hypertension.
Collapse
Affiliation(s)
- Fredi Cifuentes
- Laboratorio de Fisiología Experimental (EPhyL), Instituto Antofagasta (IA), Universidad de Antofagasta, Antofagasta, Chile
| | - Javier Palacios
- Laboratorio de Bioquímica Aplicada, Instituto de EtnoFarmacologia (IDE), Facultad de Ciencias de la Salud, Universidad Arturo Prat, Av. Arturo Prat Chacón, 2120, Iquique 1110939, Chile.
| | - Jovan Kuzmicic
- Laboratorio de Fisiología Experimental (EPhyL), Instituto Antofagasta (IA), Universidad de Antofagasta, Antofagasta, Chile
| | - Lorena Carvajal
- Laboratorio de Fisiología Experimental (EPhyL), Instituto Antofagasta (IA), Universidad de Antofagasta, Antofagasta, Chile
| | - Fernanda Muñoz
- Laboratorio de Fisiología Experimental (EPhyL), Instituto Antofagasta (IA), Universidad de Antofagasta, Antofagasta, Chile
| | - Cristina Quispe
- Laboratorio de Bioquímica Aplicada, Instituto de EtnoFarmacologia (IDE), Facultad de Ciencias de la Salud, Universidad Arturo Prat, Av. Arturo Prat Chacón, 2120, Iquique 1110939, Chile
| | - Chukwuemeka R Nwokocha
- Department of Basic Medical Sciences Physiology Section, Faculty of Medical Sciences, The University of the West Indies, Mona, Kingston 7, Jamaica
| | - Glauco Morales
- Laboratorio de Química Biológica, Instituto Antofagasta (IA), Universidad de Antofagasta, Antofagasta, Chile
| | - Ignacio Norambuena-Soto
- Advanced Center for Chronic Diseases, CEMC, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Chile
| | - Mario Chiong
- Advanced Center for Chronic Diseases, CEMC, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Chile
| | - Adrián Paredes
- Laboratorio de Química Biológica, Instituto Antofagasta (IA), Universidad de Antofagasta, Antofagasta, Chile
| |
Collapse
|
13
|
Yadav A, Choudhary R, Bodakhe SH. Role of Nitric Oxide in the Development of Cataract Formation in CdCl2-induced Hypertensive Animals. Curr Eye Res 2018; 43:1454-1464. [DOI: 10.1080/02713683.2018.1501490] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Apurva Yadav
- Department of Pharmacology, Institute of Pharmaceutical Sciences, Bilaspur, India
| | - Rajesh Choudhary
- Department of Pharmacology, Institute of Pharmaceutical Sciences, Bilaspur, India
| | - Surendra H. Bodakhe
- Department of Pharmacology, Institute of Pharmaceutical Sciences, Bilaspur, India
| |
Collapse
|
14
|
Shrivastava P, Choudhary R, Nirmalkar U, Singh A, Shree J, Vishwakarma PK, Bodakhe SH. Magnesium taurate attenuates progression of hypertension and cardiotoxicity against cadmium chloride-induced hypertensive albino rats. J Tradit Complement Med 2018; 9:119-123. [PMID: 30963046 PMCID: PMC6435948 DOI: 10.1016/j.jtcme.2017.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 06/13/2017] [Accepted: 06/26/2017] [Indexed: 12/14/2022] Open
Abstract
The present study was designed to evaluate the antihypertensive activity and cardioprotective effects of magnesium taurate against cadmium chloride (CdCl2)-intoxicated albino rats. Sprague Dawley male albino rats (120-150 g) were divided into five groups having six animals in each group. Hypertension and cardiotoxicity were induced in animals by administration of CdCl2 (0.5 mg/kg/day, i.p.) for four weeks. Magnesium taurate (2 and 4 mg/kg/day) was administered orally after induction of hypertension (after two weeks) in their respective groups concurrently with CdCl2 for next two weeks. Amlodipine (3 mg/kg/day, p.o.) was used as a standard and administered after induction of hypertension. Blood pressure was monitored biweekly by using non-invasive blood pressure system and biochemical parameters and histopathology of the heart were evaluated after four weeks of the experimental protocol. During the four weeks of the experimental protocol, the toxic control group showed significant elevation of systolic and diastolic blood pressure concomitant with augmentation of cardiotoxicity as indicated by reduction in myocardial antioxidants including glutathione peroxidase, catalase, superoxide dismutase, reduced glutathione and increased malondialdehyde level in heart as compared to the normal group. The oral administrations of magnesium taurate significantly restored the blood pressure, myocardial antioxidants and malondialdehyde level as compared to toxic control group. In addition, histopathological examination showed that magnesium taurate treatments substantially reduced the myocardial damages against CdCl2 treatment. The results suggest that magnesium taurate has prominent antihypertensive and cardioprotective activity via its potent antioxidant activity and can be used as a nutrition supplement to improve the cardiovascular health.
Collapse
Affiliation(s)
- Parikshit Shrivastava
- Department of Pharmacology, Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, 495009, India
| | - Rajesh Choudhary
- Department of Pharmacology, Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, 495009, India
| | - Umashankar Nirmalkar
- Department of Pharmacology, Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, 495009, India
| | - Amrita Singh
- Department of Pharmacology, Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, 495009, India
| | - Jaya Shree
- Department of Pharmacology, Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, 495009, India
| | - Prabhat Kumar Vishwakarma
- Department of Pharmacology, Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, 495009, India
| | - Surendra H Bodakhe
- Department of Pharmacology, Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, 495009, India
| |
Collapse
|
15
|
Liu H, Xia W, Xu S, Zhang B, lu B, Huang Z, Zhang H, Jiang Y, Liu W, Peng Y, Sun X, Li Y. Cadmium body burden and pregnancy-induced hypertension. Int J Hyg Environ Health 2018; 221:246-251. [DOI: 10.1016/j.ijheh.2017.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/13/2017] [Accepted: 11/13/2017] [Indexed: 12/22/2022]
|
16
|
Duran A, Ciloglu S, Sehirli O, Yigit A, Buyukdogan H, Duran A, Elcioğlu K, Kabasakal L. Apocynin and dimethyl sulfoxide synergistically protect against ischemia-reperfusion injury in a rat hind limb ischemia-reperfusion model. EUROPEAN JOURNAL OF PLASTIC SURGERY 2017. [DOI: 10.1007/s00238-017-1309-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Choudhary R, Bodakhe SH. Magnesium taurate prevents cataractogenesis via restoration of lenticular oxidative damage and ATPase function in cadmium chloride-induced hypertensive experimental animals. Biomed Pharmacother 2016; 84:836-844. [PMID: 27728893 DOI: 10.1016/j.biopha.2016.10.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/01/2016] [Accepted: 10/03/2016] [Indexed: 02/02/2023] Open
Abstract
Previously we found that hypertension potentiates the risk the cataractogenesis. In the present study, we investigated the protective effects of magnesium taurate (MgT) on hypertension and associated lenticular damages against cadmium chloride (CdCl2)-induced hypertensive animals. Male Sprague-Dawley albino rats (150-180g) were assigned to five experimental groups (n=6). Among the five groups, normal group received 0.3% carboxymethyl cellulose (10ml/kg/day, p.o.). Hypertension control group received CdCl2 (0.5mg/kg/day, i.p.). Tests and standard groups received MgT (3 and 6mg/kg/day, p.o.) and amlodipine (3mg/kg/day, p.o.) concurrently with CdCl2 respectively, for six consecutive weeks. Blood pressure, heart rate, and eyes were examined biweekly, and pathophysiological parameters in serum and eye lenses were evaluated after six weeks of the experimental protocol. The chronic administration of MgT concurrently with CdCl2 significantly restored the blood pressure, serum and lens antioxidants (CAT, SOD, GPx, and GSH), MDA level, and ions (Na+, K+, and Ca2+). Additionally, MgT treatment led to significant increase in the lens proteins (total and soluble), Ca2+ ATPase, and Na+K+ ATPase activity as compared to hypertension control group. Ophthalmoscope observations indicated that MgT treatments delayed the progression of cataract against the hypertensive state. The study shows that MgT prevents the progression of cataractogenesis via restoration of blood pressure, lenticular oxidative damages, and lens ATPase functions in the hypertensive state. The results suggest that MgT supplement may play a beneficial role to manage hypertension and associated cataractogenesis.
Collapse
Affiliation(s)
- Rajesh Choudhary
- Department of Pharmacology, Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009, Chhattisgarh, India
| | - Surendra H Bodakhe
- Department of Pharmacology, Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009, Chhattisgarh, India.
| |
Collapse
|
18
|
Treatment of Rats with Apocynin Has Considerable Inhibitory Effects on Arylamine N-Acetyltransferase Activity in the Liver. Sci Rep 2016; 6:26906. [PMID: 27242013 PMCID: PMC4886258 DOI: 10.1038/srep26906] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/09/2016] [Indexed: 12/23/2022] Open
Abstract
The effect of apocynin on the activity of arylamine N-acetyltransferases (NATs) in excised liver samples was examined using eighteen Sprague-Dawley rats. Three groups of six animals each were fed a normal diet alone or a treatment of 50 or 100 mg/kg/day of apocynin via gavages for eight (8) weeks. Chronic in vivo administration of apocynin led to significant (p < 0.001) reduction of in vitro liver NAT activity up to 93% as compared with untreated rats (18.80 ± 2.10 μmols p-anisidine/min/μg liver protein). In vitro exposure of untreated liver homogenates to apocynin led to a dose-dependent inhibition of NAT activity with IC50 = 0.69 ± 0.02 mM. In silico modelling of apocynin tautomers and radical species into human NAT crystal structures supported the hypothesis that thiol functionalities in NAT enzymes may be crucial in apocynin binding. The involvement of human NAT enzymes in different pathological conditions, such as cancer, has encouraged the research for selective NAT inhibitors in both humans and animal models with possible chemopreventive properties.
Collapse
|
19
|
Hirano K, Chen WS, Chueng ALW, Dunne AA, Seredenina T, Filippova A, Ramachandran S, Bridges A, Chaudry L, Pettman G, Allan C, Duncan S, Lee KC, Lim J, Ma MT, Ong AB, Ye NY, Nasir S, Mulyanidewi S, Aw CC, Oon PP, Liao S, Li D, Johns DG, Miller ND, Davies CH, Browne ER, Matsuoka Y, Chen DW, Jaquet V, Rutter AR. Discovery of GSK2795039, a Novel Small Molecule NADPH Oxidase 2 Inhibitor. Antioxid Redox Signal 2015; 23:358-74. [PMID: 26135714 PMCID: PMC4545375 DOI: 10.1089/ars.2014.6202] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AIMS The NADPH oxidase (NOX) family of enzymes catalyzes the formation of reactive oxygen species (ROS). NOX enzymes not only have a key role in a variety of physiological processes but also contribute to oxidative stress in certain disease states. To date, while numerous small molecule inhibitors have been reported (in particular for NOX2), none have demonstrated inhibitory activity in vivo. As such, there is a need for the identification of improved NOX inhibitors to enable further evaluation of the biological functions of NOX enzymes in vivo as well as the therapeutic potential of NOX inhibition. In this study, both the in vitro and in vivo pharmacological profiles of GSK2795039, a novel NOX2 inhibitor, were characterized in comparison with other published NOX inhibitors. RESULTS GSK2795039 inhibited both the formation of ROS and the utilization of the enzyme substrates, NADPH and oxygen, in a variety of semirecombinant cell-free and cell-based NOX2 assays. It inhibited NOX2 in an NADPH competitive manner and was selective over other NOX isoforms, xanthine oxidase, and endothelial nitric oxide synthase enzymes. Following systemic administration in mice, GSK2795039 abolished the production of ROS by activated NOX2 enzyme in a paw inflammation model. Furthermore, GSK2795039 showed activity in a murine model of acute pancreatitis, reducing the levels of serum amylase triggered by systemic injection of cerulein. INNOVATION AND CONCLUSIONS GSK2795039 is a novel NOX2 inhibitor that is the first small molecule to demonstrate inhibition of the NOX2 enzyme in vivo.
Collapse
Affiliation(s)
- Kazufumi Hirano
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Woei Shin Chen
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Adeline L W Chueng
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Angela A Dunne
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Tamara Seredenina
- 2 Department of Pathology and Immunology, Medical School, Centre Médical Universitaire, University of Geneva , Geneva, Switzerland
| | - Aleksandra Filippova
- 2 Department of Pathology and Immunology, Medical School, Centre Médical Universitaire, University of Geneva , Geneva, Switzerland
| | - Sumitra Ramachandran
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Angela Bridges
- 3 Platform Technology & Sciences Department, GlaxoSmithKline , Stevenage, United Kingdom
| | - Laiq Chaudry
- 3 Platform Technology & Sciences Department, GlaxoSmithKline , Stevenage, United Kingdom
| | - Gary Pettman
- 3 Platform Technology & Sciences Department, GlaxoSmithKline , Stevenage, United Kingdom
| | - Craig Allan
- 3 Platform Technology & Sciences Department, GlaxoSmithKline , Stevenage, United Kingdom
| | - Sarah Duncan
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Kiew Ching Lee
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Jean Lim
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - May Thu Ma
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Agnes B Ong
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Nicole Y Ye
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Shabina Nasir
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Sri Mulyanidewi
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Chiu Cheong Aw
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Pamela P Oon
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Shihua Liao
- 4 Neuroimmunology Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Shanghai, China
| | - Dizheng Li
- 4 Neuroimmunology Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Shanghai, China
| | - Douglas G Johns
- 5 Metabolic Pathways and Cardiovascular Therapeutic Area, GlaxoSmithKline , King of Prussia, Pennsylvania
| | - Neil D Miller
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Ceri H Davies
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Edward R Browne
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Yasuji Matsuoka
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Deborah W Chen
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Vincent Jaquet
- 2 Department of Pathology and Immunology, Medical School, Centre Médical Universitaire, University of Geneva , Geneva, Switzerland
| | - A Richard Rutter
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| |
Collapse
|
20
|
Şener TE, Yüksel M, Özyılmaz-Yay N, Ercan F, Akbal C, Şimşek F, Şener G. Apocynin attenuates testicular ischemia-reperfusion injury in rats. J Pediatr Surg 2015; 50:1382-7. [PMID: 25783298 DOI: 10.1016/j.jpedsurg.2014.11.033] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 11/04/2014] [Accepted: 11/04/2014] [Indexed: 01/30/2023]
Abstract
OBJECTIVE This study was designed to examine the possible protective effect of apocynin, a NADPH oxidase inhibitor, against torsion/detorsion (T/D) induced ischemia/reperfusion (I/R) injury in testis. METHODS Male Wistar albino rats were divided into sham-operated control, and either vehicle, apocynin 20mg/kg- or apocynin 50mg/kg-treated T/D groups. In order to induce I/R injury, left testis was rotated 720° clockwise for 4 hours (torsion) and then allowed reperfusion (detorsion) for 4 hours. Left orchiectomy was done for the measurement of tissue malondialdehyde (MDA), glutathione (GSH) levels, myeloperoxidase (MPO) activity, and luminol, lucigenin, nitric oxide (NO) and peroxynitrite chemiluminescences (CL). Testicular morphology was examined by light microscopy. RESULTS I/R caused significant increases in tissue luminol, lucigenin, nitric oxide and peroxynitrite CL demonstrating increased reactive oxygen and nitrogen metabolites. As a result of increased oxidative stress tissue MPO activity, MDA levels were increased and antioxidant GSH was decreased. On the other hand, apocynin treatment reversed all these biochemical indices, as well as histopathological alterations that were induced by I/R. According to data, although lower dose of apocynin tended to reverse the biochemical parameters, high dose of apocynin provides better protection since values were closer to the control levels. CONCLUSION Findings of the present study suggest that NADPH oxidase inhibitor apocynin by inhibiting free radical generation and increasing antioxidant defense exerts protective effects on testicular tissues against I/R. The protection with apocynin was more pronounced with high dose.
Collapse
Affiliation(s)
- T Emre Şener
- Department of Urology, School of Medicine, Marmara University, İstanbul, Turkey.
| | - Meral Yüksel
- Vocational School of Health Related Professions, Marmara University, İstanbul, Turkey
| | - Nagehan Özyılmaz-Yay
- Department of Histology & Embryology, School of Medicine, Marmara University, İstanbul, Turkey
| | - Feriha Ercan
- Department of Histology & Embryology, School of Medicine, Marmara University, İstanbul, Turkey
| | - Cem Akbal
- Department of Urology, School of Medicine, Marmara University, İstanbul, Turkey
| | - Ferruh Şimşek
- Department of Urology, School of Medicine, Marmara University, İstanbul, Turkey
| | - Göksel Şener
- Department of Pharmacology, School of Pharmacy, Marmara University, İstanbul, Turkey
| |
Collapse
|
21
|
Tetrahydrocurcumin protects against cadmium-induced hypertension, raised arterial stiffness and vascular remodeling in mice. PLoS One 2014; 9:e114908. [PMID: 25502771 PMCID: PMC4263715 DOI: 10.1371/journal.pone.0114908] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 11/14/2014] [Indexed: 12/15/2022] Open
Abstract
Background Cadmium (Cd) is a nonessential heavy metal, causing oxidative damage to various tissues and associated with hypertension. Tetrahydrocurcumin (THU), a major metabolite of curcumin, has been demonstrated to be an antioxidant, anti-diabetic, anti-hypertensive and anti-inflammatory agent. In this study, we investigated the protective effect of THU against Cd-induced hypertension, raised arterial stiffness and vascular remodeling in mice. Methods Male ICR mice received CdCl2 (100 mg/l) via drinking water for 8 weeks. THU was administered intragastrically at dose of 50 or 100 mg/kg/day concurrently with Cd treatment. Results Administration of CdCl2 significantly increased arterial blood pressure, blunted vascular responses to vasoactive agents, increased aortic stiffness, and induced hypertrophic aortic wall remodeling by increasing number of smooth muscle cells and collagen deposition, decreasing elastin, and increasing matrix metalloproteinase (MMP)-2 and MMP-9 levels in the aortic medial wall. Supplementation with THU significantly decreased blood pressure, improved vascular responsiveness, and reversed the structural and mechanical alterations of the aortas, including collagen and elastin deposition. The reduction on the adverse response of Cd treatment was associated with upregulated eNOS and downregulated iNOS protein expressions, increased nitrate/nitrite level, alleviated oxidative stress and enhanced antioxidant glutathione. Moreover, THU also reduced the accumulation of Cd in the blood and tissues. Conclusions Our results suggest that THU ameliorates cadmium-induced hypertension, vascular dysfunction, and arterial stiffness in mice through enhancing NO bioavailability, attenuating oxidative stress, improving vascular remodeling and decreasing Cd accumulation in other tissues. THU has a beneficial effect in moderating the vascular alterations associated with Cd exposure.
Collapse
|
22
|
Cabungcal JH, Counotte DS, Lewis E, Tejeda HA, Piantadosi P, Pollock C, Calhoon GG, Sullivan E, Presgraves E, Kil J, Hong LE, Cuenod M, Do KQ, O'Donnell P. Juvenile antioxidant treatment prevents adult deficits in a developmental model of schizophrenia. Neuron 2014; 83:1073-1084. [PMID: 25132466 DOI: 10.1016/j.neuron.2014.07.028] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2014] [Indexed: 12/13/2022]
Abstract
Abnormal development can lead to deficits in adult brain function, a trajectory likely underlying adolescent-onset psychiatric conditions such as schizophrenia. Developmental manipulations yielding adult deficits in rodents provide an opportunity to explore mechanisms involved in a delayed emergence of anomalies driven by developmental alterations. Here we assessed whether oxidative stress during presymptomatic stages causes adult anomalies in rats with a neonatal ventral hippocampal lesion, a developmental rodent model useful for schizophrenia research. Juvenile and adolescent treatment with the antioxidant N-acetyl cysteine prevented the reduction of prefrontal parvalbumin interneuron activity observed in this model, as well as electrophysiological and behavioral deficits relevant to schizophrenia. Adolescent treatment with the glutathione peroxidase mimic ebselen also reversed behavioral deficits in this animal model. These findings suggest that presymptomatic oxidative stress yields abnormal adult brain function in a developmentally compromised brain, and highlight redox modulation as a potential target for early intervention.
Collapse
Affiliation(s)
- Jan Harry Cabungcal
- Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| | - Danielle S Counotte
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Eastman Lewis
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hugo A Tejeda
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Patrick Piantadosi
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Cameron Pollock
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Gwendolyn G Calhoon
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Elyse Sullivan
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Echo Presgraves
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jonathan Kil
- Sound Pharmaceuticals, Inc, Research and Development, Seattle, WA, USA
| | - L Elliot Hong
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.,Maryland Psychiatric Research Center, Baltimore, MD, USA
| | - Michel Cuenod
- Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| | - Kim Q Do
- Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| | - Patricio O'Donnell
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
23
|
Kukongviriyapan U, Pannangpetch P, Kukongviriyapan V, Donpunha W, Sompamit K, Surawattanawan P. Curcumin protects against cadmium-induced vascular dysfunction, hypertension and tissue cadmium accumulation in mice. Nutrients 2014; 6:1194-208. [PMID: 24662163 PMCID: PMC3967187 DOI: 10.3390/nu6031194] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/05/2014] [Accepted: 03/12/2014] [Indexed: 12/16/2022] Open
Abstract
Curcumin from turmeric is commonly used worldwide as a spice and has been demonstrated to possess various biological activities. This study investigated the protective effect of curcumin on a mouse model of cadmium (Cd)—induced hypertension, vascular dysfunction and oxidative stress. Male ICR mice were exposed to Cd (100 mg/L) in drinking water for eight weeks. Curcumin (50 or 100 mg/kg) was intragastrically administered in mice every other day concurrently with Cd. Cd induced hypertension and impaired vascular responses to phenylephrine, acetylcholine and sodium nitroprusside. Curcumin reduced the toxic effects of Cd and protected vascular dysfunction by increasing vascular responsiveness and normalizing the blood pressure levels. The vascular protective effect of curcumin in Cd exposed mice is associated with up-regulation of endothelial nitric oxide synthase (eNOS) protein, restoration of glutathione redox ratio and alleviation of oxidative stress as indicated by decreasing superoxide production in the aortic tissues and reducing plasma malondialdehyde, plasma protein carbonyls, and urinary nitrate/nitrite levels. Curcumin also decreased Cd accumulation in the blood and various organs of Cd-intoxicated mice. These findings suggest that curcumin, due to its antioxidant and chelating properties, is a promising protective agent against hypertension and vascular dysfunction induced by Cd.
Collapse
Affiliation(s)
- Upa Kukongviriyapan
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | | | - Veerapol Kukongviriyapan
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Wanida Donpunha
- Department of Physical Therapy, Faculty of Associated Medical Science, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Kwanjit Sompamit
- Faculty of Medicine, Mahasarakham University, Mahasarakham 44000, Thailand.
| | - Praphassorn Surawattanawan
- Research and Development Institute, Government Pharmaceutical Organization, Rama 6 Road, Rajatevee, Bangkok 10400, Thailand.
| |
Collapse
|