1
|
Qi Z, Zhao Q, Yu Z, Yang Z, Feng J, Song P, He X, Lu X, Chen X, Li S, Yuan Y, Cai Z. Assessing the Impact of PM 2.5-Bound Arsenic on Cardiovascular Risk among Workers in a Non-ferrous Metal Smelting Area: Insights from Chemical Speciation and Bioavailability. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8228-8238. [PMID: 38695658 PMCID: PMC11097390 DOI: 10.1021/acs.est.3c10761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/01/2024] [Accepted: 04/23/2024] [Indexed: 05/15/2024]
Abstract
Inhalation of fine particulate matter PM2.5-bound arsenic (PM2.5-As) may cause significant cardiovascular damage, due to its high concentration, long transmission range, and good absorption efficiency in organisms. However, both the contribution and the effect of the arsenic exposure pathway, with PM2.5 as the medium, on cardiovascular system damage in nonferrous smelting sites remain to be studied. In this work, a one-year site sample collection and analysis work showed that the annual concentration of PM2.5-As reached 0.74 μg/m3, which was 120 times the national standard. The predominant species in the PM2.5 samples were As (V) and As (III). A panel study among workers revealed that PM2.5-As exposure dominantly contributed to human absorption of As. After exposure of mice to PM2.5-As for 8 weeks, the accumulation of As in the high exposure group reached equilibrium, and its bioavailability was 24.5%. A series of animal experiments revealed that PM2.5-As exposure induced cardiac injury and dysfunction at the environmental relevant concentration and speciation. By integrating environmental and animal exposure assessments, more accurate health risk assessment models exposed to PM2.5-As were established for metal smelting areas. Therefore, our research provides an important scientific basis for relevant departments to formulate industry supervision, prevention and control policies.
Collapse
Affiliation(s)
- Zenghua Qi
- Guangdong-Hong
Kong-Macao Joint Laboratory for Contaminants Exposure and Health,
School of Environmental Science and Engineering, Institute of Environmental
Health and Pollution Control, Guangdong
University of Technology, Guangzhou 510006, China
| | - Qiting Zhao
- Guangdong-Hong
Kong-Macao Joint Laboratory for Contaminants Exposure and Health,
School of Environmental Science and Engineering, Institute of Environmental
Health and Pollution Control, Guangdong
University of Technology, Guangzhou 510006, China
| | - Zixun Yu
- Guangdong-Hong
Kong-Macao Joint Laboratory for Contaminants Exposure and Health,
School of Environmental Science and Engineering, Institute of Environmental
Health and Pollution Control, Guangdong
University of Technology, Guangzhou 510006, China
| | - Zhu Yang
- State
Key Laboratory of Environmental and Biological Analysis, Department
of Chemistry, Hong Kong Baptist University, Kowloon 999077, Hong Kong, China
| | - Jie Feng
- Guangdong-Hong
Kong-Macao Joint Laboratory for Contaminants Exposure and Health,
School of Environmental Science and Engineering, Institute of Environmental
Health and Pollution Control, Guangdong
University of Technology, Guangzhou 510006, China
| | - Pengfei Song
- Guangdong-Hong
Kong-Macao Joint Laboratory for Contaminants Exposure and Health,
School of Environmental Science and Engineering, Institute of Environmental
Health and Pollution Control, Guangdong
University of Technology, Guangzhou 510006, China
| | - Xiaochong He
- Guangdong-Hong
Kong-Macao Joint Laboratory for Contaminants Exposure and Health,
School of Environmental Science and Engineering, Institute of Environmental
Health and Pollution Control, Guangdong
University of Technology, Guangzhou 510006, China
| | - Xingwen Lu
- Guangdong-Hong
Kong-Macao Joint Laboratory for Contaminants Exposure and Health,
School of Environmental Science and Engineering, Institute of Environmental
Health and Pollution Control, Guangdong
University of Technology, Guangzhou 510006, China
| | - Xin Chen
- The
Center for Reproductive Medicine, Shunde Hospital, Southern Medical University (The First People’s Hospital of
Shunde), 528300 Foshan, Guangdong, China
| | - Shoupeng Li
- Analysis
and Test Center, Guangdong University of
Technology, Guangzhou 510006, China
| | - Yong Yuan
- Guangdong-Hong
Kong-Macao Joint Laboratory for Contaminants Exposure and Health,
School of Environmental Science and Engineering, Institute of Environmental
Health and Pollution Control, Guangdong
University of Technology, Guangzhou 510006, China
| | - Zongwei Cai
- Guangdong-Hong
Kong-Macao Joint Laboratory for Contaminants Exposure and Health,
School of Environmental Science and Engineering, Institute of Environmental
Health and Pollution Control, Guangdong
University of Technology, Guangzhou 510006, China
- State
Key Laboratory of Environmental and Biological Analysis, Department
of Chemistry, Hong Kong Baptist University, Kowloon 999077, Hong Kong, China
| |
Collapse
|
2
|
Revand R, Dontham A, Sarkar S, Patil A. Subacute Exposure to Gaseous Pollutants from Diesel Engine Exhaust Attenuates Capsaicin-Induced Cardio-Pulmonary Reflex Responses Involving Oxidant Stress Mechanisms in Adult Wistar Rats. Cardiovasc Toxicol 2024; 24:396-407. [PMID: 38451349 DOI: 10.1007/s12012-024-09842-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/12/2024] [Indexed: 03/08/2024]
Abstract
Intravenous injection of capsaicin produces vagal-mediated protective cardio-pulmonary (CP) reflexes manifesting as tachypnea, bradycardia, and triphasic blood pressure (BP) response in anesthetized rats. Particulate matter from diesel engine exhaust has been reported to attenuate these reflexes. However, the effects of gaseous constituents of diesel exhaust are not known. Therefore, the present study was designed to investigate the effects of gaseous pollutants in diesel exhaust, on capsaicin-induced CP reflexes in rat model. Adult male rats were randomly assigned to three groups: Non-exposed (NE) group, filtered diesel exhaust-exposed (FDE) group and N-acetyl cysteine (NAC)-treated FDE group. FDE group of rats (n = 6) were exposed to filtered diesel exhaust for 5 h a day for 5 days (D1-D5), and were taken for dissection on day 6 (D6), while NE group of rats (n = 6) remained unexposed. On D6, rats were anesthetized, following which jugular vein was cannulated for injection of chemicals, and femoral artery was cannulated to record the BP. Lead II electrocardiogram and respiratory movements were also recorded. Results show that intravenous injection of capsaicin (0.1 ml; 10 µg/kg) produced immediate tachypneic, hyperventilatory, hypotensive, and bradycardiac responses in both NE and FDE groups of rats. However, these capsaicin-induced CP responses were significantly attenuated in FDE group as compared to the NE group of rats. Further, FDE-induced attenuation of capsaicin-evoked CP responses were diminished in the N-acetyl cysteine-treated FDE rats. These findings demonstrate that oxidant stress mechanisms could possibly be involved in inhibition of CP reflexes by gaseous pollutants in diesel engine exhaust.
Collapse
Affiliation(s)
- Ravindran Revand
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Aditya Dontham
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Swarnabha Sarkar
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Asmita Patil
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
3
|
Sidwell A, Smith SC, Roper C. A comparison of fine particulate matter (PM 2.5) in vivo exposure studies incorporating chemical analysis. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2022; 25:422-444. [PMID: 36351256 DOI: 10.1080/10937404.2022.2142345] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The complex, variable mixtures present in fine particulate matter (PM2.5) have been well established, and associations between chemical constituents and human health are expanding. In the past decade, there has been an increase in PM2.5 toxicology studies that include chemical analysis of samples. This investigation is a crucial component for identifying the causal constituents for observed adverse health effects following exposure to PM2.5. In this review, investigations of PM2.5 that used both in vivo models were explored and chemical analysis with a focus on respiratory, cardiovascular, central nervous system, reproductive, and developmental toxicity was examined to determine if chemical constituents were considered in the interpretation of the toxicity findings. Comparisons between model systems, PM2.5 characteristics, endpoints, and results were made. A vast majority of studies observed adverse effects in vivo following exposure to PM2.5. While limited, investigations that explored connections between chemical components and measured endpoints noted significant associations between biological measurements and a variety of PM2.5 constituents including elements, ions, and organic/elemental carbon, indicating the need for such analysis. Current limitations in available data, including relatively scarce statistical comparisons between collected toxicity and chemical datasets, are provided. Future progress in this field in combination with epidemiologic research examining chemical composition may support regulatory standards of PM2.5 to protect human health.
Collapse
Affiliation(s)
- Allie Sidwell
- Department of Biology, University of Mississippi, Mississippi, MS, USA
| | - Samuel Cole Smith
- Department of Bio-Molecular Sciences, University of Mississippi, Mississippi, MS, USA
| | - Courtney Roper
- Department of Bio-Molecular Sciences, University of Mississippi, Mississippi, MS, USA
| |
Collapse
|
4
|
Wu M, Xing Q, Duan H, Qin G, Sang N. Suppression of NADPH oxidase 4 inhibits PM 2.5-induced cardiac fibrosis through ROS-P38 MAPK pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155558. [PMID: 35504386 DOI: 10.1016/j.scitotenv.2022.155558] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/14/2022] [Accepted: 04/23/2022] [Indexed: 06/14/2023]
Abstract
Fine particulate matter (PM2.5) has been consistently linked to cardiovascular diseases, and cardiac fibrosis plays a crucial role in the occurrence and development of heart diseases. It is reported that NOX4-dependent redox signaling are responsible for TGFβ-mediated profibrotic responses. The current study was designed to explore the possible mechanisms of cardiac fibrosis by PM2.5 both in vitro and in vivo. Female C57BL/6 mice received PM2.5 (3 mg/kg b.w.) exposure with/without NOX4 inhibitor (apocynin, 25 mg/kg b.w.) or ROS scavenger (NALC, 50 mg/kg b.w.), every other day, for 4 weeks. H9C2 cells were incubated with PM2.5 (3 μg/mL) with/without 5 mM NALC, TGFβ inhibitor (SB431542, 10 μM), or siRNA-NOX4 for 24 h. The results demonstrated that PM2.5 induced evident collagen deposition and elevated expression of fibrosis biomarkers (Col1a1 & Col3a1). Significant systemic inflammatory response and cardiac oxidative stress were triggered by PM2.5. PM2.5 increased the protein expression of TGFβ1, NOX4, and P38 MAPK. Notably, the increased effects of PM2.5 could be suppressed by SB431542, siRNA-NOX4 in vitro or apocynin in vivo, and NALC. The reverse verification experiments further supported the involvement of the TGFβ/NOX4/ROS/P38 MAPK signaling pathway in the myocardial fibrosis induced by PM2.5. In summary, the current study provided evidence that PM2.5 challenge led to cardiac fibrosis through oxidative stress, systemic inflammation, and subsequent TGFβ/NOX4/ROS/P38 MAPK pathway and may offer new therapeutic targets in cardiac fibrosis.
Collapse
Affiliation(s)
- Meiqiong Wu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China; Department of Children and Adolescences Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China.
| | - Qisong Xing
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Huiling Duan
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Guohua Qin
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| |
Collapse
|
5
|
Piantoni C, Carnevali L, Molla D, Barbuti A, DiFrancesco D, Bucchi A, Baruscotti M. Age-Related Changes in Cardiac Autonomic Modulation and Heart Rate Variability in Mice. Front Neurosci 2021; 15:617698. [PMID: 34084126 PMCID: PMC8168539 DOI: 10.3389/fnins.2021.617698] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/20/2021] [Indexed: 01/08/2023] Open
Abstract
Objective The aim of this study was to assess age-related changes in cardiac autonomic modulation and heart rate variability (HRV) and their association with spontaneous and pharmacologically induced vulnerability to cardiac arrhythmias, to verify the translational relevance of mouse models for further in-depth evaluation of the link between autonomic changes and increased arrhythmic risk with advancing age. Methods Heart rate (HR) and time- and frequency-domain indexes of HRV were calculated from Electrocardiogram (ECG) recordings in two groups of conscious mice of different ages (4 and 19 months old) (i) during daily undisturbed conditions, (ii) following peripheral β-adrenergic (atenolol), muscarinic (methylscopolamine), and β-adrenergic + muscarinic blockades, and (iii) following β-adrenergic (isoprenaline) stimulation. Vulnerability to arrhythmias was evaluated during daily undisturbed conditions and following β-adrenergic stimulation. Results HRV analysis and HR responses to autonomic blockades revealed that 19-month-old mice had a lower vagal modulation of cardiac function compared with 4-month-old mice. This age-related autonomic effect was not reflected in changes in HR, since intrinsic HR was lower in 19-month-old compared with 4-month-old mice. Both time- and frequency-domain HRV indexes were reduced following muscarinic, but not β-adrenergic blockade in younger mice, and to a lesser extent in older mice, suggesting that HRV is largely modulated by vagal tone in mice. Finally, 19-month-old mice showed a larger vulnerability to both spontaneous and isoprenaline-induced arrhythmias. Conclusion The present study combines HRV analysis and selective pharmacological autonomic blockades to document an age-related impairment in cardiac vagal modulation in mice which is consistent with the human condition. Given their short life span, mice could be further exploited as an aged model for studying the trajectory of vagal decline with advancing age using HRV measures, and the mechanisms underlying its association with proarrhythmic remodeling of the senescent heart.
Collapse
Affiliation(s)
- Chiara Piantoni
- Department of Biosciences, The PaceLab and "Centro Interuniversitario di Medicina Molecolare e Biofisica Applicata", Università degli Studi di Milano, Milan, Italy.,Institute of Neurophysiology, Hannover Medical School, Hanover, Germany
| | - Luca Carnevali
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - David Molla
- Department of Biosciences, The PaceLab and "Centro Interuniversitario di Medicina Molecolare e Biofisica Applicata", Università degli Studi di Milano, Milan, Italy
| | - Andrea Barbuti
- Department of Biosciences, The PaceLab and "Centro Interuniversitario di Medicina Molecolare e Biofisica Applicata", Università degli Studi di Milano, Milan, Italy
| | - Dario DiFrancesco
- Department of Biosciences, The PaceLab and "Centro Interuniversitario di Medicina Molecolare e Biofisica Applicata", Università degli Studi di Milano, Milan, Italy.,IBF-CNR, University of Milano Unit, Milan, Italy
| | - Annalisa Bucchi
- Department of Biosciences, The PaceLab and "Centro Interuniversitario di Medicina Molecolare e Biofisica Applicata", Università degli Studi di Milano, Milan, Italy
| | - Mirko Baruscotti
- Department of Biosciences, The PaceLab and "Centro Interuniversitario di Medicina Molecolare e Biofisica Applicata", Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
6
|
Lederer AM, Fredriksen PM, Nkeh-Chungag BN, Everson F, Strijdom H, De Boever P, Goswami N. Cardiovascular effects of air pollution: current evidence from animal and human studies. Am J Physiol Heart Circ Physiol 2021; 320:H1417-H1439. [PMID: 33513082 DOI: 10.1152/ajpheart.00706.2020] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Air pollution is a global health concern. Particulate matter (PM)2.5, a component of ambient air pollution, has been identified by the World Health Organization as one of the pollutants that poses the greatest threat to public health. Cardiovascular health effects have been extensively documented, and these effects are still being researched to provide an overview of recent literature regarding air pollution-associated cardiovascular morbidity and mortality in humans. Additionally, potential mechanisms through which air pollutants affect the cardiovascular system are discussed based on human and additional animal studies. We used the strategy of a narrative review to summarize the scientific literature of studies that were published in the past 7 yr. Searches were carried out on PubMed and Web of Science using predefined search queries. We obtained an initial set of 800 publications that were filtered to 78 publications that were relevant to include in this review. Analysis of the literature showed significant associations between air pollution, especially PM2.5, and the risk of elevated blood pressure (BP), acute coronary syndrome, myocardial infarction (MI), cardiac arrhythmia, and heart failure (HF). Prominent mechanisms that underlie the adverse effects of air pollution include oxidative stress, systemic inflammation, endothelial dysfunction, autonomic imbalance, and thrombogenicity. The current review underscores the relevance of air pollution as a global health concern that affects cardiovascular health. More rigorous standards are needed to reduce the cardiovascular disease burden imposed by air pollution. Continued research on the health impact of air pollution is needed to provide further insight.
Collapse
Affiliation(s)
- Agnes Maria Lederer
- Physiology Division, Otto Loewi Research Centre, Medical University of Graz, Graz, Austria
| | | | - Benedicta Ngwenchi Nkeh-Chungag
- Department of Biological and Environmental Sciences, Faculty of Natural Sciences, Walter Sisulu University, Mthatha, South Africa
| | - Frans Everson
- Centre for Cardio-metabolic Research in Africa, Division of Medical Physiology, Stellenbosch University, Stellenbosch, South Africa
| | - Hans Strijdom
- Centre for Cardio-metabolic Research in Africa, Division of Medical Physiology, Stellenbosch University, Stellenbosch, South Africa
| | - Patrick De Boever
- Department of Biology, University of Antwerp, Wilrijk, Belgium.,Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Nandu Goswami
- Physiology Division, Otto Loewi Research Centre, Medical University of Graz, Graz, Austria.,Department of Health Sciences, Alma Mater Europaea Maribor, Maribor, Slovenia
| |
Collapse
|
7
|
Wang F, Liang Q, Sun M, Ma Y, Lin L, Li T, Duan J, Sun Z. The relationship between exposure to PM 2.5 and heart rate variability in older adults: A systematic review and meta-analysis. CHEMOSPHERE 2020; 261:127635. [PMID: 32768749 DOI: 10.1016/j.chemosphere.2020.127635] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/28/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
Ambient air pollution is recognized as a major threat to those with cardiovascular disease (CVD), especially among old adults within this high risk group. Heart rate variability (HRV) is a marker of cardiac autonomic system, which links air pollution and CVD. However, the relationship between PM and HRV has been inconsistently reported. To investigate the associations of PM2.5 and HRV in old adults whose average age was 55 years old or above, we conducted a meta-analysis of nineteen longitudinal studies including nine short-term and ten long-term studies. In the short-term exposure group, per 10 μg/m3 increase of PM2.5 was associated with decreases in the time-domain measurements, for SDNN -0.39% (95% CI: -0.72%, -0.06%) and for RMSSD -1.20% (95% CI: -2.17%, -0.23%) and in frequency-domain measurements, for LF -2.31% (95% CI: -3.85%, -0.77%) and for HF -1.87% (95% CI: -3.45%, -0.29%); In the long-term exposure group, per 10 μg/m3 increase of PM2.5 was associated with decreases in the time-domain measurements, for SDNN -0.92% (95% CI: -2.14%, 0.31%) and for RMSSD -1.96% (95% CI: -3.48%, -0.44%) and in frequency-domain measurements, for LF -2.78% (95% CI: -4.02%, -1.55%) and for HF -1.61% (95% CI: -4.02%, 0.80%). Exposure to PM2.5 is associated with decreased indicators of HRV in older adults suggesting an affected cardiac autonomic system upon exposure, which may explain the association between PM2.5 and risk of CVD in older adults. Long-term exposure to PM2.5 was more strongly associated with indicators of HRV than short-term exposure.
Collapse
Affiliation(s)
- Fenghong Wang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Qingqing Liang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Mengqi Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Yuexiao Ma
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Lisen Lin
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Tianyu Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China.
| |
Collapse
|
8
|
Abstract
Air pollutants pose a serious worldwide health hazard, causing respiratory and cardiovascular morbidity and mortality. Pollutants perturb the autonomic nervous system, whose function is critical to cardiopulmonary homeostasis. Recent studies suggest that pollutants can stimulate defensive sensory nerves within the cardiopulmonary system, thus providing a possible mechanism for pollutant-induced autonomic dysfunction. A better understanding of the mechanisms involved would likely improve the management and treatment of pollution-related disease.
Collapse
Affiliation(s)
- Thomas E Taylor-Clark
- Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| |
Collapse
|
9
|
Yang JW, Shen YC, Lin KC, Cheng SJ, Chen SL, Chen CY, Kumar PV, Lin SF, Lu HE, Chen GY. Organ-on-a-Chip: Opportunities for Assessing the Toxicity of Particulate Matter. Front Bioeng Biotechnol 2020; 8:519. [PMID: 32548105 PMCID: PMC7272695 DOI: 10.3389/fbioe.2020.00519] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 05/01/2020] [Indexed: 12/25/2022] Open
Abstract
Recent developments in epidemiology have confirmed that airborne particulates are directly associated with respiratory pathology and mortality. Although clinical studies have yielded evidence of the effects of many types of fine particulates on human health, it still does not have a complete understanding of how physiological reactions are caused nor to the changes and damages associated with cellular and molecular mechanisms. Currently, most health assessment studies of particulate matter (PM) are conducted through cell culture or animal experiments. The results of such experiments often do not correlate with clinical findings or actual human reactions, and they also cause difficulty when investigating the causes of air pollution and associated human health hazards, the analysis of biomarkers, and the development of future pollution control strategies. Microfluidic-based cell culture technology has considerable potential to expand the capabilities of conventional cell culture by providing high-precision measurement, considerably increasing the potential for the parallelization of cellular assays, ensuring inexpensive automation, and improving the response of the overall cell culture in a more physiologically relevant context. This review paper focuses on integrating the important respiratory health problems caused by air pollution today, as well as the development and application of biomimetic organ-on-a-chip technology. This more precise experimental model is expected to accelerate studies elucidating the effect of PM on the human body and to reveal new opportunities for breakthroughs in disease research and drug development.
Collapse
Affiliation(s)
- Jia-Wei Yang
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering National Chiao Tung University, Hsinchu, Taiwan.,Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Yu-Chih Shen
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu, Taiwan.,Ph.D. Degree Program of Biomedical Science and Engineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Ko-Chih Lin
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering National Chiao Tung University, Hsinchu, Taiwan.,Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Sheng-Jen Cheng
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering National Chiao Tung University, Hsinchu, Taiwan.,Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Shiue-Luen Chen
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering National Chiao Tung University, Hsinchu, Taiwan.,Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Chong-You Chen
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering National Chiao Tung University, Hsinchu, Taiwan.,Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Priyank V Kumar
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Shien-Fong Lin
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering National Chiao Tung University, Hsinchu, Taiwan.,Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Huai-En Lu
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan
| | - Guan-Yu Chen
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering National Chiao Tung University, Hsinchu, Taiwan.,Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu, Taiwan.,Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
10
|
Cui L, Shi L, Li D, Li X, Su X, Chen L, Jiang Q, Jiang M, Luo J, Ji A, Chen C, Wang J, Tang J, Pi J, Chen R, Chen W, Zhang R, Zheng Y. Real-Ambient Particulate Matter Exposure-Induced Cardiotoxicity in C57/B6 Mice. Front Pharmacol 2020; 11:199. [PMID: 32296328 PMCID: PMC7136766 DOI: 10.3389/fphar.2020.00199] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/14/2020] [Indexed: 12/14/2022] Open
Abstract
It is generally accepted that exposure to particulate matter (PM) increases the risk of cardiovascular-related morbidity and mortality, though the exact mechanism behind this has yet to be elucidated. Oxidative stress plays a potentially important role in the mechanism of toxicity, with Nrf2 serving as a major antioxidant gene. In the current study, a Nrf2 knockout mouse model was used in combination with an individual ventilated cage (IVC)-based real-ambient PM exposure system to assess the potential cardiotoxicity induced by real-ambient PM exposure and the potential role of Nrf2 and related signaling in this endpoint. After 6- or 11-weeks exposure to PM, ICP-mass spectrometry was used to assess the metal depositions in the heart tissue following PM exposure. Functional and morphological changes in the hearts were investigated with echocardiography and histopathology, and oxidative stress levels were assessed with a serum malondialdehyde content assay. In the further mechanistic study, an RNA-seq technique was utilized to assess the gene transcription status in the hearts of C57/B6 mice exposed to PM with or without Nrf2 knockout. The expression levels of genes of interest were then further investigated with quantitative real-time PCR and western blotting. The results indicated that PM exposure resulted in significant elevation of sodium, potassium, selenium, and ferrum levels in mouse heart tissue. Meanwhile, significantly altered heart function and morphology were observed. Interestingly, Nrf2 knockout led to abolishment of PM-induced effects in several functional parameters but not the morphological changes. Meanwhile, elevated malondialdehyde content was observed in Nrf2 knockout animals. RNA-seq results revealed thousands of genes altered by PM exposure and/or Nrf2 knockout, and this affected several pathways, such as MAPK, phagosome, calcium signaling, and JAK-STAT. In subsequent molecular studies, enhanced nuclear translocation of Nrf2 was also observed following PM exposure, while the MAPK signaling pathway along with related JAK-STAT and TGF-β1 pathway genes, such as p38MAPK, AKT, TAK1, JAK1, STAT3, GRB2, TGFb1, and SMAD2, were confirmed to be affected by PM exposure and/or Nrf2 knockout. The data suggested that PM may induce cardiotoxicity in C57/B6 mice in which Nrf2 plays both protective and detrimental roles involving cardiac-related pathways, such as MAPK, JAK-STAT, and TGF-β1.
Collapse
Affiliation(s)
- Lianhua Cui
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Limei Shi
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Daochuan Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xiaobo Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Xuan Su
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Liping Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Qixiao Jiang
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Menghui Jiang
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Jing Luo
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Andong Ji
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Chen Chen
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Jianxun Wang
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - JingLong Tang
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Jingbo Pi
- School of Public Health, China Medical University, Shenyang, China
| | - Rui Chen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Yuxin Zheng
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| |
Collapse
|
11
|
Hadei M, Naddafi K. Cardiovascular effects of airborne particulate matter: A review of rodent model studies. CHEMOSPHERE 2020; 242:125204. [PMID: 31675579 DOI: 10.1016/j.chemosphere.2019.125204] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 05/20/2023]
Abstract
In recent year, animal models have been growingly used to increase our knowledge about the toxicity of PM and underlying mechanisms leading to cardiovascular diseases. In this article, we review the current state of knowledge and findings of studies investigating the cardiovascular effects of PM in rats and mice. The six main areas covered in this review include: I) nature of particulate matter and toxicity mechanisms, II) systemic inflammation, III) heart rate and heart rate variability, IV) histopathological effects, V) atherosclerosis, VI) thrombosis, and VI) myocardial infarction. This review showed that animal model studies have been successful to bring new insights into the mechanisms underlying PM-induced cardiovascular diseases. However, there are some areas that the exact mechanisms are still unclear. In conclusion, investigating the cardiovascular effects of PM in vivo or interpreting the results should attempt to justify the role of different PM compositions, which may vastly affect the overall cytotoxicity of particles.
Collapse
Affiliation(s)
- Mostafa Hadei
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Kazem Naddafi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Huang F, Wang P, Pan X, Wang Y, Ren S. Effects of short-term exposure to particulate matters on heart rate variability: A systematic review and meta-analysis based on controlled animal studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113306. [PMID: 31733955 DOI: 10.1016/j.envpol.2019.113306] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/21/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Exposure to particulate matters (PM) is recognized as an important risk factor for cardiovascular disease. A change in cardiac autonomic function is one postulated mechanism leading to PM related cardiovascular events. This study therefore evaluated the associations of short-term exposure to PM and heart rate variability (HRV) parameters, which can reflect the cardiac autonomic function. METHODS Four electronic databases were searched for controlled studies of rodents published prior to December 2018. A systematic review and meta-analysis was conducted. Effect sizes were calculated for five main HRV parameters, including standard deviation of normal-to-normal intervals (SDNN), square root of mean squared differences between successive normal-to-normal intervals (rMSSD), low frequency (LF), high frequency (HF), and the ratio of LF and HF (LF/HF). RESULTS The review included 23 studies with 401 animals. Short-term exposure to PM by instillation yielded statistically significant effects on SDNN (Standardized Mean Difference [SMD] = -1.11, 95% Confidence Intervals [CI] = -2.22 to -0.01, P = 0.05), LF (SMD = -1.19, 95% CI = -1.99 to -0.40, P = 0.003) and LF/HF (SMD = -1.05, 95% CI = -2.03 to -0.07, P = 0.04). Short-term exposure to PM by inhalation only yielded statistically significant effect on LF/HF (SMD = -0.83, 95% CI = -1.39 to -0.27, P = 0.004). There was no evidence that animal model and exposure frequency influenced the relationship of PM and HRV. CONCLUSIONS Short-term exposure to PM can decrease HRV of rodents, affecting cardiac autonomic function. Exposure methods can influence the relationships of PM and HRV parameters. Further studies should focus on the effects of long-term PM exposure, on human beings, and potential influential factors of PM-HRV associations.
Collapse
Affiliation(s)
- Fangfang Huang
- Medical College, Henan University of Science and Technology, Luoyang, China
| | - Ping Wang
- Medical College, Henan University of Science and Technology, Luoyang, China
| | - Xinjuan Pan
- Medical College, Henan University of Science and Technology, Luoyang, China
| | - Yingfang Wang
- Medical College, Henan University of Science and Technology, Luoyang, China
| | - Shuai Ren
- Luoyang Fifth People's Hospital, The Fifth Affiliated Hospital of Henan University of Science and Technology, Luoyang, China.
| |
Collapse
|
13
|
Rhee J, Han E, Nam KJ, Lim KH, Chan Rah Y, Park S, Koun S, Park HC, Choi J. Assessment of hair cell damage and developmental toxicity after fine particulate matter 2.5 μm (PM 2.5) exposure using zebrafish (Danio rerio) models. Int J Pediatr Otorhinolaryngol 2019; 126:109611. [PMID: 31374386 DOI: 10.1016/j.ijporl.2019.109611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 07/25/2019] [Accepted: 07/25/2019] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Particulate matter (PM) exposure has become one of the most serious problems. The aim of the present study was to evaluate the hair cell damage and possible developmental toxicity caused by PM2.5 exposure using a zebrafish model. METHODS Zebrafish embryos were exposed to various concentrations of PM2.5. Developmental toxicity was evaluated based on general morphology score (GMS) system and Panzica-Kelly score, and by measurement of body length and heart rate. To evaluate hair cell damage, the average number of total hair cells within four neuromasts exposed to various concentrations of PM2.5 was compared with that of the control group. RESULTS Morphological abnormalities evaluated by the GMS system and Panzica-Kelly score were rare and body length tended to be shorter in the PM2.5-exposed groups. Heart rate decreased significantly in the PM2.5-exposed group. Additionally, significant hair cell damage was observed after PM2.5 exposure. It was dose-dependent and more severe after a longer period exposure (10 dpf). CONCLUSIONS In zebrafish embryos, exposure of PM2.5 in the early stages of life decreased heart rate and caused significant hair cell damage in a dose-dependent manner.
Collapse
Affiliation(s)
- Jihye Rhee
- Department of Otorhinolaryngology-Head and Neck Surgery, Veterans Health Service Medical Center, Seoul, Republic of Korea; Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Korea University Ansan Hospital, Seoul, Republic of Korea
| | - Eunjung Han
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Korea University Ansan Hospital, Seoul, Republic of Korea; Laboratory of Neurodevelopmental Genetics, Graduate School of Medicine, Korea University, Seoul, Republic of Korea
| | - Kuk Jin Nam
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Korea University Ansan Hospital, Seoul, Republic of Korea
| | - Kang Hyeon Lim
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Korea University Ansan Hospital, Seoul, Republic of Korea
| | - Yoon Chan Rah
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Korea University Ansan Hospital, Seoul, Republic of Korea
| | - Saemi Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Korea University Ansan Hospital, Seoul, Republic of Korea
| | - Soonil Koun
- Biomedical Research Center, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Hae-Chul Park
- Laboratory of Neurodevelopmental Genetics, Graduate School of Medicine, Korea University, Seoul, Republic of Korea
| | - June Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Korea University Ansan Hospital, Seoul, Republic of Korea.
| |
Collapse
|
14
|
Pinkerton KE, Chen CY, Mack SM, Upadhyay P, Wu CW, Yuan W. Cardiopulmonary Health Effects of Airborne Particulate Matter: Correlating Animal Toxicology to Human Epidemiology. Toxicol Pathol 2019; 47:954-961. [PMID: 31645209 DOI: 10.1177/0192623319879091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The effects of particulate matter (PM) on cardiopulmonary health have been studied extensively over the past three decades. Particulate matter is the primary criteria air pollutant most commonly associated with adverse health effects on the cardiovascular and respiratory systems. The mechanisms by which PM exerts its effects are thought to be due to a variety of factors which may include, but are not limited to, concentration, duration of exposure, and age of exposed persons. Adverse effects of PM are strongly driven by their physicochemical properties, sites of deposition, and interactions with cells of the respiratory and cardiovascular systems. The direct translocation of particles, as well as neural and local inflammatory events, are primary drivers for the observed cardiopulmonary health effects. In this review, toxicological studies in animals, and clinical and epidemiological studies in humans are examined to demonstrate the importance of using all three approaches to better define potential mechanisms driving health outcomes upon exposure to airborne PM of diverse physicochemical compositions.
Collapse
Affiliation(s)
- Kent E Pinkerton
- Center for Health and the Environment, University of California, Davis, USA
| | - Chao-Yin Chen
- Department of Pharmacology, University of California, Davis, USA
| | - Savannah M Mack
- Center for Health and the Environment, University of California, Davis, USA
| | - Priya Upadhyay
- Center for Health and the Environment, University of California, Davis, USA
| | - Ching-Wen Wu
- Center for Health and the Environment, University of California, Davis, USA
| | - Wanjun Yuan
- Center for Health and the Environment, University of California, Davis, USA.,College of Environmental & Resource Sciences, Shanxi University, Taiyuan, Shanxi, China
| |
Collapse
|
15
|
Karey E, Pan S, Morris AN, Bruun DA, Lein PJ, Chen CY. The Use of Percent Change in RR Interval for Data Exclusion in Analyzing 24-h Time Domain Heart Rate Variability in Rodents. Front Physiol 2019; 10:693. [PMID: 31244671 PMCID: PMC6562196 DOI: 10.3389/fphys.2019.00693] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/16/2019] [Indexed: 11/13/2022] Open
Abstract
While epidemiological data support the link between reduced heart rate variability (HRV) and a multitude of pathologies, the mechanisms underlying changes in HRV and disease progression are poorly understood. Even though we have numerous rodent models of disease for mechanistic studies, not being able to reliably measure HRV in conscious, freely moving rodents has hindered our ability to extrapolate the role of HRV in the progression from normal physiology to pathology. The sheer number of heart beats per day (>800,000 in mice) makes data exclusion both time consuming and daunting. We sought to evaluate an RR interval exclusion method based on percent (%) change of adjacent RR intervals. Two approaches were evaluated: % change from “either” and “both” adjacent RR intervals. The data exclusion method based on standard deviation (SD) was also evaluated for comparison. Receiver operating characteristic (ROC) curves were generated to determine the performance of each method. Results showed that exclusion based on % change from “either” adjacent RR intervals was the most accurate method in identifying normal and abnormal RR intervals, with an overall accuracy of 0.92–0.99. As the exclusion value increased (% change or SD), the sensitivity (correctly including normal RR intervals) increased exponentially while the specificity (correctly rejecting abnormal RR intervals) decreased linearly. Compared to the SD method, the “either” approach had a steeper rise in sensitivity and a more gradual decrease in specificity. The intersection of sensitivity and specificity where the exclusion criterion had the same accuracy in identifying normal and abnormal RR intervals was 10–20% change for the “either” approach and ∼ 1 SD for the SD-based exclusion method. Graphically (tachogram and Lorenz plot), 20% change from either adjacent RR interval resembled the data after manual exclusion. Finally, overall (SDNN) and short-term (rMSSD) indices of HRV generated using 20% change from “either” adjacent RR intervals as the exclusion criterion were closer to the manual exclusion method with lower subject-to-subject variability than those generated using the 2 SD exclusion criterion. Thus, 20% change from “either” adjacent RR intervals is a good criterion for data exclusion for reliable 24-h time domain HRV analysis in rodents.
Collapse
Affiliation(s)
- Emma Karey
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Shiyue Pan
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Amber N Morris
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Donald A Bruun
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Chao-Yin Chen
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|