1
|
Cavini IA, Winter AJ, D’Muniz Pereira H, Woolfson DN, Crump MP, Garratt RC. X-ray structure of the metastable SEPT14-SEPT7 coiled coil reveals a hendecad region crucial for heterodimerization. Acta Crystallogr D Struct Biol 2023; 79:881-894. [PMID: 37712436 PMCID: PMC10565730 DOI: 10.1107/s2059798323006514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/27/2023] [Indexed: 09/16/2023] Open
Abstract
Septins are membrane-associated, GTP-binding proteins that are present in most eukaryotes. They polymerize to play important roles as scaffolds and/or diffusion barriers as part of the cytoskeleton. α-Helical coiled-coil domains are believed to contribute to septin assembly, and those observed in both human SEPT6 and SEPT8 form antiparallel homodimers. These are not compatible with their parallel heterodimeric organization expected from the current model for protofilament assembly, but they could explain the interfilament cross-bridges observed by microscopy. Here, the first structure of a heterodimeric septin coiled coil is presented, that between SEPT14 and SEPT7; the former is a SEPT6/SEPT8 homolog. This new structure is parallel, with two long helices that are axially shifted by a full helical turn with reference to their sequence alignment. The structure also has unusual knobs-into-holes packing of side chains. Both standard seven-residue (heptad) and the less common 11-residue (hendecad) repeats are present, creating two distinct regions with opposite supercoiling, which gives rise to an overall straight coiled coil. Part of the hendecad region is required for heterodimerization and therefore may be crucial for selective septin recognition. These unconventional sequences and structural features produce a metastable heterocomplex that nonetheless has enough specificity to promote correct protofilament assembly. For instance, the lack of supercoiling may facilitate unzipping and transitioning to the antiparallel homodimeric state.
Collapse
Affiliation(s)
- Italo A. Cavini
- São Carlos Institute of Physics, University of São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-120, Brazil
| | - Ashley J. Winter
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| | - Humberto D’Muniz Pereira
- São Carlos Institute of Physics, University of São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-120, Brazil
| | - Derek N. Woolfson
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
- School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
- BrisSynBio, University of Bristol, School of Chemistry, Bristol BS8 1TS, United Kingdom
| | - Matthew P. Crump
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
- BrisSynBio, University of Bristol, School of Chemistry, Bristol BS8 1TS, United Kingdom
| | - Richard C. Garratt
- São Carlos Institute of Physics, University of São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-120, Brazil
| |
Collapse
|
2
|
K S V Castro D, V D Rosa H, Mendonça DC, Cavini IA, P U Araujo A, Garratt RC. Dissecting the binding interface of the septin polymerization enhancer Borg BD3. J Mol Biol 2023; 435:168132. [PMID: 37121395 DOI: 10.1016/j.jmb.2023.168132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/02/2023]
Abstract
The molecular basis for septin filament assembly has begun to emerge over recent years. These filaments are essential for many septin functions which depend on their association with biological membranes or components of the cytoskeleton. Much less is known about how septins specifically interact with their binding partners. Here we describe the essential role played by the C-terminal domains in both septin polymerization and their association with the BD3 motif of the Borg family of Cdc42 effector proteins. We provide a detailed description, at the molecular level, of a previously reported interaction between BD3 and the NC-interface between SEPT6 and SEPT7. Upon ternary complex formation, the heterodimeric coiled coil formed by the C-terminal domains of the septins becomes stabilized and filament formation is promoted under conditions of ionic strength/protein concentration which are not normally permissible, likely by favouring hexamers over smaller oligomeric states. This demonstrates that binding partners, such as Borg's, have the potential to control filament assembly/disassembly in vivo in a way which can be emulated in vitro by altering the ionic strength. Experimentally validated models indicate that the BD3 peptide lies antiparallel to the coiled coil and is stabilized by a mixture of polar and apolar contacts. At its center, an LGPS motif, common to all human Borg sequences, interacts with charged residues from both helices of the coiled coil (K368 from SEPT7 and the conserved E354 from SEPT6) suggesting a universal mechanism which governs Borg-septin interactions.
Collapse
Affiliation(s)
- Danielle K S V Castro
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, Brazil; São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Higor V D Rosa
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Deborah C Mendonça
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Italo A Cavini
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Ana P U Araujo
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Richard C Garratt
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil.
| |
Collapse
|
3
|
Martins CS, Taveneau C, Castro-Linares G, Baibakov M, Buzhinsky N, Eroles M, Milanović V, Omi S, Pedelacq JD, Iv F, Bouillard L, Llewellyn A, Gomes M, Belhabib M, Kuzmić M, Verdier-Pinard P, Lee S, Badache A, Kumar S, Chandre C, Brasselet S, Rico F, Rossier O, Koenderink GH, Wenger J, Cabantous S, Mavrakis M. Human septins organize as octamer-based filaments and mediate actin-membrane anchoring in cells. J Cell Biol 2023; 222:213778. [PMID: 36562751 PMCID: PMC9802686 DOI: 10.1083/jcb.202203016] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 10/20/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
Septins are cytoskeletal proteins conserved from algae and protists to mammals. A unique feature of septins is their presence as heteromeric complexes that polymerize into filaments in solution and on lipid membranes. Although animal septins associate extensively with actin-based structures in cells, whether septins organize as filaments in cells and if septin organization impacts septin function is not known. Customizing a tripartite split-GFP complementation assay, we show that all septins decorating actin stress fibers are octamer-containing filaments. Depleting octamers or preventing septins from polymerizing leads to a loss of stress fibers and reduced cell stiffness. Super-resolution microscopy revealed septin fibers with widths compatible with their organization as paired septin filaments. Nanometer-resolved distance measurements and single-protein tracking further showed that septin filaments are membrane bound and largely immobilized. Finally, reconstitution assays showed that septin filaments mediate actin-membrane anchoring. We propose that septin organization as octamer-based filaments is essential for septin function in anchoring and stabilizing actin filaments at the plasma membrane.
Collapse
Affiliation(s)
- Carla Silva Martins
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, Marseille, France.,Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, UPS, CNRS, Toulouse, France
| | - Cyntia Taveneau
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Gerard Castro-Linares
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, The Netherlands
| | - Mikhail Baibakov
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, Marseille, France
| | - Nicolas Buzhinsky
- CNRS, INSERM, LAI, Turing Centre for Living Systems, Aix-Marseille Univ, Marseille, France>
| | - Mar Eroles
- CNRS, INSERM, LAI, Turing Centre for Living Systems, Aix-Marseille Univ, Marseille, France>
| | - Violeta Milanović
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR, Bordeaux, France
| | - Shizue Omi
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, Marseille, France
| | - Jean-Denis Pedelacq
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Francois Iv
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, Marseille, France
| | - Léa Bouillard
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, Marseille, France
| | - Alexander Llewellyn
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, Marseille, France
| | - Maxime Gomes
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, Marseille, France
| | - Mayssa Belhabib
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, Marseille, France
| | - Mira Kuzmić
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, Institut Paoli-Calmettes, Aix Marseille Univ, CNRS, Marseille, France
| | - Pascal Verdier-Pinard
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, Institut Paoli-Calmettes, Aix Marseille Univ, CNRS, Marseille, France
| | - Stacey Lee
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Ali Badache
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, Institut Paoli-Calmettes, Aix Marseille Univ, CNRS, Marseille, France
| | - Sanjay Kumar
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | | | - Sophie Brasselet
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, Marseille, France
| | - Felix Rico
- CNRS, INSERM, LAI, Turing Centre for Living Systems, Aix-Marseille Univ, Marseille, France>
| | - Olivier Rossier
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR, Bordeaux, France
| | - Gijsje H Koenderink
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, The Netherlands
| | - Jerome Wenger
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, Marseille, France
| | - Stéphanie Cabantous
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, UPS, CNRS, Toulouse, France
| | - Manos Mavrakis
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, Marseille, France
| |
Collapse
|
4
|
Byeon S, Werner B, Falter R, Davidsen K, Snyder C, Ong SE, Yadav S. Proteomic Identification of Phosphorylation-Dependent Septin 7 Interactors that Drive Dendritic Spine Formation. Front Cell Dev Biol 2022; 10:836746. [PMID: 35602601 PMCID: PMC9114808 DOI: 10.3389/fcell.2022.836746] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/30/2022] [Indexed: 11/17/2022] Open
Abstract
Septins are a family of cytoskeletal proteins that regulate several important aspects of neuronal development. Septin 7 (Sept7) is enriched at the base of dendritic spines in excitatory neurons and mediates both spine formation and spine and synapse maturation. Phosphorylation at a conserved C-terminal tail residue of Sept7 mediates its translocation into the dendritic spine head to allow spine and synapse maturation. The mechanistic basis for postsynaptic stability and compartmentalization conferred by phosphorylated Sept7, however, is unclear. We report herein the proteomic identification of Sept7 phosphorylation-dependent neuronal interactors. Using Sept7 C-terminal phosphopeptide pulldown and biochemical assays, we show that the 14-3-3 family of proteins specifically interacts with Sept7 when phosphorylated at the T426 residue. Biochemically, we validate the interaction between Sept7 and 14-3-3 isoform gamma and show that 14-3-3 gamma is also enriched in the mature dendritic spine head. Furthermore, we demonstrate that interaction of phosphorylated Sept7 with 14-3-3 protects it from dephosphorylation, as expression of a 14-3-3 antagonist significantly decreases phosphorylated Sept7 in neurons. This study identifies 14-3-3 proteins as an important physiological regulator of Sept7 function in neuronal development.
Collapse
Affiliation(s)
- Sujin Byeon
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, United States
| | - Bailey Werner
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Reilly Falter
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Kristian Davidsen
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Calvin Snyder
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Shao-En Ong
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Smita Yadav
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| |
Collapse
|
5
|
Cavini IA, Leonardo DA, Rosa HVD, Castro DKSV, D'Muniz Pereira H, Valadares NF, Araujo APU, Garratt RC. The Structural Biology of Septins and Their Filaments: An Update. Front Cell Dev Biol 2021; 9:765085. [PMID: 34869357 PMCID: PMC8640212 DOI: 10.3389/fcell.2021.765085] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/27/2021] [Indexed: 01/22/2023] Open
Abstract
In order to fully understand any complex biochemical system from a mechanistic point of view, it is necessary to have access to the three-dimensional structures of the molecular components involved. Septins and their oligomers, filaments and higher-order complexes are no exception. Indeed, the spontaneous recruitment of different septin monomers to specific positions along a filament represents a fascinating example of subtle molecular recognition. Over the last few years, the amount of structural information available about these important cytoskeletal proteins has increased dramatically. This has allowed for a more detailed description of their individual domains and the different interfaces formed between them, which are the basis for stabilizing higher-order structures such as hexamers, octamers and fully formed filaments. The flexibility of these structures and the plasticity of the individual interfaces have also begun to be understood. Furthermore, recently, light has been shed on how filaments may bundle into higher-order structures by the formation of antiparallel coiled coils involving the C-terminal domains. Nevertheless, even with these advances, there is still some way to go before we fully understand how the structure and dynamics of septin assemblies are related to their physiological roles, including their interactions with biological membranes and other cytoskeletal components. In this review, we aim to bring together the various strands of structural evidence currently available into a more coherent picture. Although it would be an exaggeration to say that this is complete, recent progress seems to suggest that headway is being made in that direction.
Collapse
Affiliation(s)
- Italo A Cavini
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Diego A Leonardo
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Higor V D Rosa
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Danielle K S V Castro
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil.,São Carlos Institute of Chemistry, University of São Paulo, São Carlos, Brazil
| | | | | | - Ana P U Araujo
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Richard C Garratt
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| |
Collapse
|
6
|
Iv F, Martins CS, Castro-Linares G, Taveneau C, Barbier P, Verdier-Pinard P, Camoin L, Audebert S, Tsai FC, Ramond L, Llewellyn A, Belhabib M, Nakazawa K, Di Cicco A, Vincentelli R, Wenger J, Cabantous S, Koenderink GH, Bertin A, Mavrakis M. Insights into animal septins using recombinant human septin octamers with distinct SEPT9 isoforms. J Cell Sci 2021; 134:jcs258484. [PMID: 34350965 DOI: 10.1242/jcs.258484] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 07/02/2021] [Indexed: 01/22/2023] Open
Abstract
Septin GTP-binding proteins contribute essential biological functions that range from the establishment of cell polarity to animal tissue morphogenesis. Human septins in cells form hetero-octameric septin complexes containing the ubiquitously expressed SEPT9 subunit (also known as SEPTIN9). Despite the established role of SEPT9 in mammalian development and human pathophysiology, biochemical and biophysical studies have relied on monomeric SEPT9, thus not recapitulating its native assembly into hetero-octameric complexes. We established a protocol that enabled, for the first time, the isolation of recombinant human septin octamers containing distinct SEPT9 isoforms. A combination of biochemical and biophysical assays confirmed the octameric nature of the isolated complexes in solution. Reconstitution studies showed that octamers with either a long or a short SEPT9 isoform form filament assemblies, and can directly bind and cross-link actin filaments, raising the possibility that septin-decorated actin structures in cells reflect direct actin-septin interactions. Recombinant SEPT9-containing octamers will make it possible to design cell-free assays to dissect the complex interactions of septins with cell membranes and the actin and microtubule cytoskeleton.
Collapse
Affiliation(s)
- Francois Iv
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, 13013 Marseille, France
| | - Carla Silva Martins
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, 13013 Marseille, France
| | - Gerard Castro-Linares
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Cyntia Taveneau
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 168, Laboratoire Physico Chimie Curie, 75005 Paris, France
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Australia; Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, 3800 Clayton, Australia
| | - Pascale Barbier
- Aix-Marseille Univ, CNRS, UMR 7051, Institut de Neurophysiopathologie (INP), 13005 Marseille, France
| | - Pascal Verdier-Pinard
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, Institut Paoli-Calmettes, Aix Marseille Univ, CNRS, 13009 Marseille, France
| | - Luc Camoin
- Aix-Marseille Univ, INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Stéphane Audebert
- Aix-Marseille Univ, INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Feng-Ching Tsai
- Department of Living Matter, AMOLF, 1098 XG Amsterdam, The Netherlands
| | - Laurie Ramond
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, 13013 Marseille, France
| | - Alex Llewellyn
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, 13013 Marseille, France
| | - Mayssa Belhabib
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, 13013 Marseille, France
| | - Koyomi Nakazawa
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 168, Laboratoire Physico Chimie Curie, 75005 Paris, France
| | - Aurélie Di Cicco
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 168, Laboratoire Physico Chimie Curie, 75005 Paris, France
| | - Renaud Vincentelli
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS UMR7257, Aix Marseille Univ, 13009 Marseille, France
| | - Jerome Wenger
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, 13013 Marseille, France
| | - Stéphanie Cabantous
- Centre de Recherche en Cancérologie de Toulouse (CRCT), Inserm, Université Paul Sabatier-Toulouse III, CNRS, 31037 Toulouse, France
| | - Gijsje H Koenderink
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
- Department of Living Matter, AMOLF, 1098 XG Amsterdam, The Netherlands
| | - Aurélie Bertin
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 168, Laboratoire Physico Chimie Curie, 75005 Paris, France
| | - Manos Mavrakis
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, 13013 Marseille, France
| |
Collapse
|
7
|
Szuba A, Bano F, Castro-Linares G, Iv F, Mavrakis M, Richter RP, Bertin A, Koenderink GH. Membrane binding controls ordered self-assembly of animal septins. eLife 2021; 10:63349. [PMID: 33847563 PMCID: PMC8099429 DOI: 10.7554/elife.63349] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 04/12/2021] [Indexed: 12/23/2022] Open
Abstract
Septins are conserved cytoskeletal proteins that regulate cell cortex mechanics. The mechanisms of their interactions with the plasma membrane remain poorly understood. Here, we show by cell-free reconstitution that binding to flat lipid membranes requires electrostatic interactions of septins with anionic lipids and promotes the ordered self-assembly of fly septins into filamentous meshworks. Transmission electron microscopy reveals that both fly and mammalian septin hexamers form arrays of single and paired filaments. Atomic force microscopy and quartz crystal microbalance demonstrate that the fly filaments form mechanically rigid, 12- to 18-nm thick, double layers of septins. By contrast, C-terminally truncated septin mutants form 4-nm thin monolayers, indicating that stacking requires the C-terminal coiled coils on DSep2 and Pnut subunits. Our work shows that membrane binding is required for fly septins to form ordered arrays of single and paired filaments and provides new insights into the mechanisms by which septins may regulate cell surface mechanics.
Collapse
Affiliation(s)
- Agata Szuba
- AMOLF, Department of Living Matter, Biological Soft Matter group, Amsterdam, Netherlands
| | - Fouzia Bano
- School of Biomedical Sciences, Faculty of Biological Sciences, Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom.,School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, United Kingdom.,Bragg Centre for Materials Research, University of Leeds, Leeds, United Kingdom
| | - Gerard Castro-Linares
- AMOLF, Department of Living Matter, Biological Soft Matter group, Amsterdam, Netherlands.,Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| | - Francois Iv
- Institut Fresnel, CNRS, Aix-Marseille Univ, Centrale Marseille, Marseille, France
| | - Manos Mavrakis
- Institut Fresnel, CNRS, Aix-Marseille Univ, Centrale Marseille, Marseille, France
| | - Ralf P Richter
- School of Biomedical Sciences, Faculty of Biological Sciences, Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom.,School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, United Kingdom.,Bragg Centre for Materials Research, University of Leeds, Leeds, United Kingdom
| | - Aurélie Bertin
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, Paris, France.,Sorbonne Université, Paris, France
| | - Gijsje H Koenderink
- AMOLF, Department of Living Matter, Biological Soft Matter group, Amsterdam, Netherlands.,Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
8
|
Orientational Ambiguity in Septin Coiled Coils and its Structural Basis. J Mol Biol 2021; 433:166889. [PMID: 33639214 DOI: 10.1016/j.jmb.2021.166889] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/25/2021] [Accepted: 02/17/2021] [Indexed: 12/21/2022]
Abstract
Septins are an example of subtle molecular recognition whereby different paralogues must correctly assemble into functional filaments important for essential cellular events such as cytokinesis. Most possess C-terminal domains capable of forming coiled coils which are believed to be involved in filament formation and bundling. Here, we report an integrated structural approach which aims to unravel their architectural diversity and in so doing provide direct structural information for the coiled-coil regions of five human septins. Unexpectedly, we encounter dimeric structures presenting both parallel and antiparallel arrangements which are in consonance with molecular modelling suggesting that both are energetically accessible. These sequences therefore code for two metastable states of different orientations which employ different but overlapping interfaces. The antiparallel structures present a mixed coiled-coil interface, one side of which is dominated by a continuous chain of core hydrophilic residues. This unusual type of coiled coil could be used to expand the toolkit currently available to the protein engineer for the design of previously unforeseen coiled-coil based assemblies. Within a physiological context, our data provide the first atomic details related to the assumption that the parallel orientation is likely formed between septin monomers from the same filament whilst antiparallelism may participate in the widely described interfilament cross bridges necessary for higher order structures and thereby septin function.
Collapse
|
9
|
Castro DKSDV, da Silva SMDO, Pereira HD, Macedo JNA, Leonardo DA, Valadares NF, Kumagai PS, Brandão-Neto J, Araújo APU, Garratt RC. A complete compendium of crystal structures for the human SEPT3 subgroup reveals functional plasticity at a specific septin interface. IUCRJ 2020; 7:462-479. [PMID: 32431830 PMCID: PMC7201284 DOI: 10.1107/s2052252520002973] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/03/2020] [Indexed: 06/11/2023]
Abstract
Human septins 3, 9 and 12 are the only members of a specific subgroup of septins that display several unusual features, including the absence of a C-terminal coiled coil. This particular subgroup (the SEPT3 septins) are present in rod-like octameric protofilaments but are lacking in similar hexameric assemblies, which only contain representatives of the three remaining subgroups. Both hexamers and octamers can self-assemble into mixed filaments by end-to-end association, implying that the SEPT3 septins may facilitate polymerization but not necessarily function. These filaments frequently associate into higher order complexes which associate with biological membranes, triggering a wide range of cellular events. In the present work, a complete compendium of crystal structures for the GTP-binding domains of all of the SEPT3 subgroup members when bound to either GDP or to a GTP analogue is provided. The structures reveal a unique degree of plasticity at one of the filamentous interfaces (dubbed NC). Specifically, structures of the GDP and GTPγS complexes of SEPT9 reveal a squeezing mechanism at the NC interface which would expel a polybasic region from its binding site and render it free to interact with negatively charged membranes. On the other hand, a polyacidic region associated with helix α5', the orientation of which is particular to this subgroup, provides a safe haven for the polybasic region when retracted within the interface. Together, these results suggest a mechanism which couples GTP binding and hydrolysis to membrane association and implies a unique role for the SEPT3 subgroup in this process. These observations can be accounted for by constellations of specific amino-acid residues that are found only in this subgroup and by the absence of the C-terminal coiled coil. Such conclusions can only be reached owing to the completeness of the structural studies presented here.
Collapse
Affiliation(s)
- Danielle Karoline Silva do Vale Castro
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Joao Dagnone 1100, São Carlos-SP 13563-723, Brazil
- Instituto de Química de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense 400, São Carlos-SP 13566-590, Brazil
| | - Sabrina Matos de Oliveira da Silva
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Joao Dagnone 1100, São Carlos-SP 13563-723, Brazil
- Instituto de Química de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense 400, São Carlos-SP 13566-590, Brazil
| | - Humberto D’Muniz Pereira
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Joao Dagnone 1100, São Carlos-SP 13563-723, Brazil
| | - Joci Neuby Alves Macedo
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Joao Dagnone 1100, São Carlos-SP 13563-723, Brazil
- Federal Institute of Education, Science and Technology of Rondonia, Rodovia BR-174, Km 3, Vilhena-RO 76980-000, Brazil
| | - Diego Antonio Leonardo
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Joao Dagnone 1100, São Carlos-SP 13563-723, Brazil
| | - Napoleão Fonseca Valadares
- Departamento de Biologia Celular, Universidade de Brasília, Instituto de Ciências Biológicas, Brasília-DF 70910900, Brazil
| | - Patricia Suemy Kumagai
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Joao Dagnone 1100, São Carlos-SP 13563-723, Brazil
| | - José Brandão-Neto
- Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Ana Paula Ulian Araújo
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Joao Dagnone 1100, São Carlos-SP 13563-723, Brazil
| | - Richard Charles Garratt
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Joao Dagnone 1100, São Carlos-SP 13563-723, Brazil
| |
Collapse
|
10
|
Mendonça DC, Macedo JN, Guimarães SL, Barroso da Silva FL, Cassago A, Garratt RC, Portugal RV, Araujo APU. A revised order of subunits in mammalian septin complexes. Cytoskeleton (Hoboken) 2019; 76:457-466. [PMID: 31608568 DOI: 10.1002/cm.21569] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 12/15/2022]
Abstract
Septins are GTP binding proteins considered to be novel components of the cytoskeleton. They polymerize into filaments based on hexameric or octameric core particles in which two copies of either three or four different septins, respectively, assemble into a specific sequence. Viable combinations of the 13 human septins are believed to obey substitution rules in which the different septins involved must come from distinct subgroups. The hexameric assembly, for example, has been reported to be SEPT7-SEPT6-SEPT2-SEPT2-SEPT6-SEPT7. Here, we have replaced SEPT2 by SEPT5 according to the substitution rules and used transmission electron microscopy to demonstrate that the resulting recombinant complex assembles into hexameric particles which are inverted with respect that predicted previously. MBP-SEPT5 constructs and immunostaining show that SEPT5 occupies the terminal positions of the hexamer. We further show that this is also true for the assembly including SEPT2, in direct contradiction with that reported previously. Consequently, both complexes expose an NC interface, as reported for yeast, which we show to be more susceptible to high salt concentrations. The correct assembly for the canonical combination of septins 2-6-7 is therefore established to be SEPT2-SEPT6-SEPT7-SEPT7-SEPT6-SEPT2, implying the need for revision of the mechanisms involved in filament assembly.
Collapse
Affiliation(s)
| | - Joci N Macedo
- São Carlos Institute of Physics, USP, São Carlos, SP, Brazil
- Federal Institute of Education, Science and Technology of Rondonia
| | | | - Fernando L Barroso da Silva
- Faculty of Pharmaceutical Sciences, USP, Ribeirão Preto, SP, Brazil
- UMR_S 1134, Université Paris Diderot, Paris, France
| | - Alexandre Cassago
- Brazilian Nanotechnology National Laboratory, CNPEM, Campinas, SP, Brazil
| | | | - Rodrigo V Portugal
- Brazilian Nanotechnology National Laboratory, CNPEM, Campinas, SP, Brazil
| | - Ana P U Araujo
- São Carlos Institute of Physics, USP, São Carlos, SP, Brazil
| |
Collapse
|
11
|
Li H, Saucedo-Cuevas L, Yuan L, Ross D, Johansen A, Sands D, Stanley V, Guemez-Gamboa A, Gregor A, Evans T, Chen S, Tan L, Molina H, Sheets N, Shiryaev SA, Terskikh AV, Gladfelter AS, Shresta S, Xu Z, Gleeson JG. Zika Virus Protease Cleavage of Host Protein Septin-2 Mediates Mitotic Defects in Neural Progenitors. Neuron 2019; 101:1089-1098.e4. [PMID: 30713029 PMCID: PMC6690588 DOI: 10.1016/j.neuron.2019.01.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 10/17/2018] [Accepted: 12/31/2018] [Indexed: 01/06/2023]
Abstract
Zika virus (ZIKV) targets neural progenitor cells in the brain, attenuates cell proliferation, and leads to cell death. Here, we describe a role for the ZIKV protease NS2B-NS3 heterodimer in mediating neurotoxicity through cleavage of a host protein required for neurogenesis. Similar to ZIKV infection, NS2B-NS3 expression led to cytokinesis defects and cell death in a protease activity-dependent fashion. Among binding partners, NS2B-NS3 cleaved Septin-2, a cytoskeletal factor involved in cytokinesis. Cleavage of Septin-2 occurred at residue 306 and forced expression of a non-cleavable Septin-2 restored cytokinesis, suggesting a direct mechanism of ZIKV-induced neural toxicity. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Hongda Li
- Laboratory for Pediatric Brain Disease, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, Rady Children's Institute of Genomic Medicine, Department of Neurosciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Laura Saucedo-Cuevas
- Laboratory for Pediatric Brain Disease, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, Rady Children's Institute of Genomic Medicine, Department of Neurosciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Ling Yuan
- Institute of Genetics & Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Danica Ross
- Howard Hughes Medical Institute, Rady Children's Institute of Genomic Medicine, Department of Neurosciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Anide Johansen
- Laboratory for Pediatric Brain Disease, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, Rady Children's Institute of Genomic Medicine, Department of Neurosciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Daniel Sands
- Howard Hughes Medical Institute, Rady Children's Institute of Genomic Medicine, Department of Neurosciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Valentina Stanley
- Howard Hughes Medical Institute, Rady Children's Institute of Genomic Medicine, Department of Neurosciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Alicia Guemez-Gamboa
- Laboratory for Pediatric Brain Disease, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, Rady Children's Institute of Genomic Medicine, Department of Neurosciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Anne Gregor
- Laboratory for Pediatric Brain Disease, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, Rady Children's Institute of Genomic Medicine, Department of Neurosciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lei Tan
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Nicholas Sheets
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Sergey A Shiryaev
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Alexey V Terskikh
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Amy S Gladfelter
- Department of Biology, Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sujan Shresta
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Zhiheng Xu
- Institute of Genetics & Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Joseph G Gleeson
- Laboratory for Pediatric Brain Disease, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, Rady Children's Institute of Genomic Medicine, Department of Neurosciences, University of California, San Diego, San Diego, CA 92093, USA.
| |
Collapse
|
12
|
Li H, Saucedo-Cuevas L, Yuan L, Ross D, Johansen A, Sands D, Stanley V, Guemez-Gamboa A, Gregor A, Evans T, Chen S, Tan L, Molina H, Sheets N, Shiryaev SA, Terskikh AV, Gladfelter AS, Shresta S, Xu Z, Gleeson JG. Zika Virus Protease Cleavage of Host Protein Septin-2 Mediates Mitotic Defects in Neural Progenitors. Neuron 2019; 101:1089-1098.e4. [PMID: 30713029 PMCID: PMC6690588 DOI: 10.1016/j.neuron.2019.01.010#mmc4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 10/17/2018] [Accepted: 12/31/2018] [Indexed: 10/03/2024]
Abstract
Zika virus (ZIKV) targets neural progenitor cells in the brain, attenuates cell proliferation, and leads to cell death. Here, we describe a role for the ZIKV protease NS2B-NS3 heterodimer in mediating neurotoxicity through cleavage of a host protein required for neurogenesis. Similar to ZIKV infection, NS2B-NS3 expression led to cytokinesis defects and cell death in a protease activity-dependent fashion. Among binding partners, NS2B-NS3 cleaved Septin-2, a cytoskeletal factor involved in cytokinesis. Cleavage of Septin-2 occurred at residue 306 and forced expression of a non-cleavable Septin-2 restored cytokinesis, suggesting a direct mechanism of ZIKV-induced neural toxicity. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Hongda Li
- Laboratory for Pediatric Brain Disease, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, Rady Children's Institute of Genomic Medicine, Department of Neurosciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Laura Saucedo-Cuevas
- Laboratory for Pediatric Brain Disease, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, Rady Children's Institute of Genomic Medicine, Department of Neurosciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Ling Yuan
- Institute of Genetics & Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Danica Ross
- Howard Hughes Medical Institute, Rady Children's Institute of Genomic Medicine, Department of Neurosciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Anide Johansen
- Laboratory for Pediatric Brain Disease, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, Rady Children's Institute of Genomic Medicine, Department of Neurosciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Daniel Sands
- Howard Hughes Medical Institute, Rady Children's Institute of Genomic Medicine, Department of Neurosciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Valentina Stanley
- Howard Hughes Medical Institute, Rady Children's Institute of Genomic Medicine, Department of Neurosciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Alicia Guemez-Gamboa
- Laboratory for Pediatric Brain Disease, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, Rady Children's Institute of Genomic Medicine, Department of Neurosciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Anne Gregor
- Laboratory for Pediatric Brain Disease, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, Rady Children's Institute of Genomic Medicine, Department of Neurosciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lei Tan
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Nicholas Sheets
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Sergey A Shiryaev
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Alexey V Terskikh
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Amy S Gladfelter
- Department of Biology, Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sujan Shresta
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Zhiheng Xu
- Institute of Genetics & Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Joseph G Gleeson
- Laboratory for Pediatric Brain Disease, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, Rady Children's Institute of Genomic Medicine, Department of Neurosciences, University of California, San Diego, San Diego, CA 92093, USA.
| |
Collapse
|
13
|
Akhmetova KA, Chesnokov IN, Fedorova SA. [Functional Characterization of Septin Complexes]. Mol Biol (Mosk) 2018; 52:155-171. [PMID: 29695686 DOI: 10.7868/s0026898418020015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/27/2016] [Indexed: 12/28/2022]
Abstract
Septins belong to a family of conserved GTP-binding proteins found in majority of eukaryotic species except for higher plants. Septins form nonpolar complexes that further polymerize into filaments and associate with cell membranes, thus comprising newly acknowledged cytoskeletal system. Septins participate in a variety of cell processes and contribute to various pathophysiological states, including tumorigenesis and neurodegeneration. Here, we review the structural and functional properties of septins and the regulation of their dynamics with special emphasis on the role of septin filaments as a cytoskeletal system and its interaction with actin and microtubule cytoskeletons. We also discuss how septins compartmentalize the cell by forming local protein-anchoring scaffolds and by providing barriers for the lateral diffusion of the membrane proteins.
Collapse
Affiliation(s)
- K A Akhmetova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 Russia.,University of Alabama at Birmingham, Birmingham, 35294 USA.,Novosibirsk National Research State University, Novosibirsk, 630090 Russia
| | - I N Chesnokov
- University of Alabama at Birmingham, Birmingham, 35294 USA
| | - S A Fedorova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 Russia.,Novosibirsk National Research State University, Novosibirsk, 630090 Russia.,
| |
Collapse
|
14
|
Lam M, Calvo F. Regulation of mechanotransduction: Emerging roles for septins. Cytoskeleton (Hoboken) 2018; 76:115-122. [PMID: 30091182 PMCID: PMC6519387 DOI: 10.1002/cm.21485] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/10/2018] [Accepted: 08/02/2018] [Indexed: 12/31/2022]
Abstract
Cells exist in dynamic three‐dimensional environments where they experience variable mechanical forces due to their interaction with the extracellular matrix, neighbouring cells and physical stresses. The ability to constantly and rapidly alter cellular behaviour in response to the mechanical environment is therefore crucial for cell viability, tissue development and homeostasis. Mechanotransduction is the process whereby cells translate mechanical inputs into biochemical signals. These signals in turn adjust cell morphology and cellular functions as diverse as proliferation, differentiation, migration and apoptosis. Here, we provide an overview of the current understanding of mechanotransduction and how septins may participate in it, drawing on their architecture and localization, their ability to directly bind and modify actomyosin networks and membranes, and their associations with the nuclear envelope.
Collapse
Affiliation(s)
- Maxine Lam
- Tumour Microenvironment Team, Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
| | - Fernando Calvo
- Tumour Microenvironment Team, Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom.,Tumour Microenvironment Team, Department of Molecular and Cellular Signalling, Instituto de Biomedicina y Biotecnología de Cantabria, Santander, Spain
| |
Collapse
|
15
|
|
16
|
Ribet D, Boscaini S, Cauvin C, Siguier M, Mostowy S, Echard A, Cossart P. SUMOylation of human septins is critical for septin filament bundling and cytokinesis. J Cell Biol 2017; 216:4041-4052. [PMID: 29051266 PMCID: PMC5716278 DOI: 10.1083/jcb.201703096] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/25/2017] [Accepted: 08/23/2017] [Indexed: 01/22/2023] Open
Abstract
Septins are cytoskeletal proteins that assemble into nonpolar filaments. They are critical in diverse cellular functions, acting as scaffolds for protein recruitment and as diffusion barriers for subcellular compartmentalization. Human septins are encoded by 13 different genes and are classified into four groups based on sequence homology (SEPT2, SEPT3, SEPT6, and SEPT7 groups). In yeast, septins were among the first proteins reported to be modified by SUMOylation, a ubiquitin-like posttranslational modification. However, whether human septins could be modified by small ubiquitin-like modifiers (SUMOs) and what roles this modification may have in septin function remains unknown. In this study, we first show that septins from all four human septin groups can be covalently modified by SUMOs. We show in particular that endogenous SEPT7 is constitutively SUMOylated during the cell cycle. We then map SUMOylation sites to the C-terminal domain of septins belonging to the SEPT6 and SEPT7 groups and to the N-terminal domain of septins from the SEPT3 group. We finally demonstrate that expression of non-SUMOylatable septin variants from the SEPT6 and SEPT7 groups leads to aberrant septin bundle formation and defects in cytokinesis after furrow ingression. Altogether, our results demonstrate a pivotal role for SUMOylation in septin filament bundling and cell division.
Collapse
Affiliation(s)
- David Ribet
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Institut National de la Santé et de la Recherche Médicale, Institut National de la Recherche Agronomique, Paris, France
| | - Serena Boscaini
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Institut National de la Santé et de la Recherche Médicale, Institut National de la Recherche Agronomique, Paris, France
| | - Clothilde Cauvin
- Unité de Trafic Membranaire et Division Cellulaire, Département de Biologie Cellulaire et Infection, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique UMR3691, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, Institut de Formation Doctorale, Paris, France
| | - Martin Siguier
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Institut National de la Santé et de la Recherche Médicale, Institut National de la Recherche Agronomique, Paris, France
| | - Serge Mostowy
- Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London, England, UK
| | - Arnaud Echard
- Unité de Trafic Membranaire et Division Cellulaire, Département de Biologie Cellulaire et Infection, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique UMR3691, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, Institut de Formation Doctorale, Paris, France
| | - Pascale Cossart
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Institut National de la Santé et de la Recherche Médicale, Institut National de la Recherche Agronomique, Paris, France
| |
Collapse
|
17
|
Valadares NF, d' Muniz Pereira H, Ulian Araujo AP, Garratt RC. Septin structure and filament assembly. Biophys Rev 2017; 9:481-500. [PMID: 28905266 DOI: 10.1007/s12551-017-0320-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 08/17/2017] [Indexed: 12/13/2022] Open
Abstract
Septins are able to polymerize into long apolar filaments and have long been considered to be a component of the cytoskeleton alongside intermediate filaments (which are also apolar in nature), microtubules and actin filaments (which are not). Their central guanosine triphosphate (GTP)-binding domain, which is essential for stabilizing the filament itself, is flanked by N- and C-terminal domains for which no direct structural information is yet available. In most cases, physiological filaments are built from a number of different septin monomers, and in the case of mammalian septins this is most commonly either three or four. Comprehending the structural basis for the spontaneous assembly of such filaments requires a deeper understanding of the interfaces between individual GTP-binding domains than is currently available. Nevertheless, in this review we will summarize the considerable progress which has been made over the course of the last 10 years. We will provide a brief description of each structure determined to date and comment on how it has added to the body of knowledge which is rapidly growing. Rather than simply repeat data which have already been described in the literature, as far as is possible we will try to take advantage of the full set of information now available (mostly derived from human septins) and draw the reader's attention to some of the details of the structures themselves and the filaments they form which have not be commented on previously. An additional aim is to clarify some misconceptions.
Collapse
Affiliation(s)
| | - Humberto d' Muniz Pereira
- Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador Sancarlense, 400, São Carlos, SP, 13560-590, Brazil
| | - Ana Paula Ulian Araujo
- Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador Sancarlense, 400, São Carlos, SP, 13560-590, Brazil
| | - Richard Charles Garratt
- Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador Sancarlense, 400, São Carlos, SP, 13560-590, Brazil.
| |
Collapse
|
18
|
Heterotypic Coiled-Coil Formation is Essential for the Correct Assembly of the Septin Heterofilament. Biophys J 2017; 111:2608-2619. [PMID: 28002737 DOI: 10.1016/j.bpj.2016.10.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/03/2016] [Accepted: 10/05/2016] [Indexed: 11/20/2022] Open
Abstract
Protein-protein interactions play a critical role in promoting the stability of protein quaternary structure and in the assembly of large macromolecular complexes. What drives the stabilization of such assemblies is a central question in biology. A limiting factor in fully understanding such systems is the transient nature of many complexes, making structural studies difficult. Septins comprise a conserved family of guanine nucleotide binding proteins that polymerize in the form of heterofilaments. In structural terms, they have a common organization: a central GTPase domain, an N-terminal domain, and a C-terminal domain; the latter is predicted to form a coiled coil. Currently, even for the best characterized human septin heterocomplex (SEPT2/SEPT6/SEPT7), the role of C-terminal domain is not fully established, and this is partly due to the absence of electron density for the C-terminal domains in the x-ray structure. Here we present results on the homo/heterotypical affinity for the C-terminal domains of human septins belonging to the SEPT6 and SEPT7 groups (SEPT6C/8C/10C/11C and SEPT7C, respectively) and provide clear evidence that this domain determines the preference for heterotypic interactions at one specific interface during the assembly of the heterofilament. This observation has wider implications where macromolecular assemblies are defined by coiled-coil protein interactions.
Collapse
|
19
|
Abstract
Septins are GTP-binding and membrane-interacting proteins with a highly conserved domain structure involved in various cellular processes, including cytoskeleton organization, cytokinesis, and membrane dynamics. To date, 13 different septin genes have been identified in mammals (SEPT1 to SEPT12 and SEPT14), which can be classified into four distinct subgroups based on the sequence homology of their domain structure (SEPT2, SEPT3, SEPT6, and SEPT7 subgroup). The family members of these subgroups have a strong affinity for other septins and form apolar tri-, hexa-, or octameric complexes consisting of multiple septin polypeptides. The first characterized core complex is the hetero-trimer SEPT2-6-7. Within these complexes single septins can be exchanged in a subgroup-specific manner. Hexamers contain SEPT2 and SEPT6 subgroup members and SEPT7 in two copies each whereas the octamers additionally comprise two SEPT9 subgroup septins. The various isoforms seem to determine the function and regulation of the septin complex. Septins self-assemble into higher-order structures, including filaments and rings in orders, which are typical for different cell types. Misregulation of septins leads to human diseases such as neurodegenerative and bleeding disorders. In non-dividing cells such as neuronal tissue and platelets septins have been associated with exocytosis. However, many mechanistic details and roles attributed to septins are poorly understood. We describe here some important mammalian septin interactions with a special focus on the clinically relevant septin interactions.
Collapse
Affiliation(s)
- Katharina Neubauer
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, Medical Center-University of Freiburg Freiburg, Germany
| | - Barbara Zieger
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, Medical Center-University of Freiburg Freiburg, Germany
| |
Collapse
|
20
|
Yadav S, Oses-Prieto JA, Peters CJ, Zhou J, Pleasure SJ, Burlingame AL, Jan LY, Jan YN. TAOK2 Kinase Mediates PSD95 Stability and Dendritic Spine Maturation through Septin7 Phosphorylation. Neuron 2017; 93:379-393. [PMID: 28065648 DOI: 10.1016/j.neuron.2016.12.006] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 10/11/2016] [Accepted: 11/23/2016] [Indexed: 01/09/2023]
Abstract
Abnormalities in dendritic spines are manifestations of several neurodevelopmental and psychiatric diseases. TAOK2 is one of the genes in the 16p11.2 locus, copy number variations of which are associated with autism and schizophrenia. Here, we show that the kinase activity of the serine/threonine kinase encoded by TAOK2 is required for spine maturation. TAOK2 depletion results in unstable dendritic protrusions, mislocalized shaft-synapses, and loss of compartmentalization of NMDA receptor-mediated calcium influx. Using chemical-genetics and mass spectrometry, we identified several TAOK2 phosphorylation targets. We show that TAOK2 directly phosphorylates the cytoskeletal GTPase Septin7, at an evolutionary conserved residue. This phosphorylation induces translocation of Septin7 to the spine, where it associates with and stabilizes the scaffolding protein PSD95, promoting dendritic spine maturation. This study provides a mechanistic basis for postsynaptic stability and compartmentalization via TAOK2-Sept7 signaling, with implications toward understanding the potential role of TAOK2 in neurological deficits associated with the 16p11.2 region.
Collapse
Affiliation(s)
- Smita Yadav
- Departments of Physiology, Biochemistry, and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Juan A Oses-Prieto
- Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Christian J Peters
- Departments of Physiology, Biochemistry, and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jing Zhou
- Department of Neurology, Programs in Neuroscience and Developmental Biology, Institute for Regenerative Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Samuel J Pleasure
- Department of Neurology, Programs in Neuroscience and Developmental Biology, Institute for Regenerative Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alma L Burlingame
- Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lily Y Jan
- Departments of Physiology, Biochemistry, and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yuh-Nung Jan
- Departments of Physiology, Biochemistry, and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
21
|
Angelis D, Spiliotis ET. Septin Mutations in Human Cancers. Front Cell Dev Biol 2016; 4:122. [PMID: 27882315 PMCID: PMC5101219 DOI: 10.3389/fcell.2016.00122] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 10/17/2016] [Indexed: 12/22/2022] Open
Abstract
Septins are GTP-binding proteins that are evolutionarily and structurally related to the RAS oncogenes. Septin expression levels are altered in many cancers and new advances point to how abnormal septin expression may contribute to the progression of cancer. In contrast to the RAS GTPases, which are frequently mutated and actively promote tumorigenesis, little is known about the occurrence and role of septin mutations in human cancers. Here, we review septin missense mutations that are currently in the Catalog of Somatic Mutations in Cancer (COSMIC) database. The majority of septin mutations occur in tumors of the large intestine, skin, endometrium and stomach. Over 25% of the annotated mutations in SEPT2, SEPT4, and SEPT9 belong to large intestine tumors. From all septins, SEPT9 and SEPT14 exhibit the highest mutation frequencies in skin, stomach and large intestine cancers. While septin mutations occur with frequencies lower than 3%, recurring mutations in several invariant and highly conserved amino acids are found across different septin paralogs and tumor types. Interestingly, a significant number of these mutations occur in the GTP-binding pocket and septin dimerization interfaces. Future studies may determine how these somatic mutations affect septin structure and function, whether they contribute to the progression of specific cancers and if they could serve as tumor-specific biomarkers.
Collapse
|
22
|
Zeraik AE, Staykova M, Fontes MG, Nemuraitė I, Quinlan R, Araújo APU, DeMarco R. Biophysical dissection of schistosome septins: Insights into oligomerization and membrane binding. Biochimie 2016; 131:96-105. [PMID: 27687162 DOI: 10.1016/j.biochi.2016.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/24/2016] [Indexed: 01/22/2023]
Abstract
Septins are GTP-binding proteins that are highly conserved among eukaryotes and which are usually membrane-associated. They have been linked to several critical cellular functions such as exocytosis and ciliogenesis, but little mechanistic detail is known. Their assembly into filaments and membrane binding properties are incompletely understood and that is specially so for non-human septins where such information would offer therapeutic potential. In this study we use Schistosoma mansoni, exhibiting just four septin genes, as a simpler model for characterizing the septin structure and organization. We show that the biochemical and biophysical proprieties of its SmSEPT5 and SmSEPT10 septins are consistent with their human counterparts of subgroups SEPT2 and SEPT6, respectively. By succeeding to isolate stable constructs comprising distinct domains of SmSEPT5 and SmSEPT10 we were able to infer the influence of terminal interfaces in the oligomerization and membrane binding properties. For example, both proteins tended to form oligomers interacting by the N- and C-terminal interfaces in a nucleotide independent fashion but form heterodimers via the G interface, which are nucleotide dependent. Furthermore, we report for the first time that it is the C-terminus of SmSETP10, rather than the N-terminal polybasic region found in other septins, that mediates its binding to liposomes. Upon binding we observe formation of discrete lipo-protein clusters and higher order septin structures, making our system an exciting model to study interactions of septins with biological membranes.
Collapse
Affiliation(s)
- Ana Eliza Zeraik
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil
| | | | - Marina Gabriel Fontes
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil
| | | | - Roy Quinlan
- School of Biological and Biomedical Sciences, University of Durham, UK
| | | | - Ricardo DeMarco
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil.
| |
Collapse
|
23
|
Ortore MG, Macedo JNA, Araujo APU, Ferrero C, Mariani P, Spinozzi F, Itri R. Structural and Thermodynamic Properties of Septin 3 Investigated by Small-Angle X-Ray Scattering. Biophys J 2016; 108:2896-902. [PMID: 26083929 DOI: 10.1016/j.bpj.2015.05.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 04/30/2015] [Accepted: 05/11/2015] [Indexed: 01/22/2023] Open
Abstract
Septins comprise a family of proteins involved in a variety of cellular processes and related to several human pathologies. They are constituted by three structural domains: the N- and C-terminal domains, highly variable in length and composition, and the central domain, involved in the guanine nucleotide (GTP) binding. Thirteen different human septins are known to form heterogeneous complexes or homofilaments, which are stabilized by specific interactions between the different interfaces present in the domains. In this work, we have investigated by in-solution small-angle x-ray scattering the structural and thermodynamic properties of a human septin 3 construct, SEPT3-GC, which contains both of both interfaces (G and NC) responsible for septin-septin interactions. In order to shed light on the role of these interactions, small-angle x-ray scattering measurements were performed in a wide range of temperatures, from 2 up to 56°C, both with and without a nonhydrolysable form of GTP (GTPγS). The acquired data show a temperature-dependent coexistence of monomers, dimers, and higher-order aggregates that were analyzed using a global fitting approach, taking into account the crystallographic structure of the recently reported SEPT3 dimer, PDB:3SOP. As a result, the enthalpy, entropy, and heat capacity variations that control the dimer-monomer dissociation equilibrium in solution were derived and GTPγS was detected to increase the enthalpic stability of the dimeric species. Moreover, a temperature increase was observed to induce dissociation of SEPT3-GC dimers into monomers just preceding their reassembling into amyloid aggregates, as revealed by the Thioflavin-T fluorescence assays.
Collapse
Affiliation(s)
- Maria Grazia Ortore
- Dipartimento di Scienze della Vita e dell'Ambiente and Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, Università Politecnica delle Marche, Ancona, Italy
| | - Joci N A Macedo
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil
| | - Ana Paula U Araujo
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil
| | | | - Paolo Mariani
- Dipartimento di Scienze della Vita e dell'Ambiente and Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, Università Politecnica delle Marche, Ancona, Italy
| | - Francesco Spinozzi
- Dipartimento di Scienze della Vita e dell'Ambiente and Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, Università Politecnica delle Marche, Ancona, Italy.
| | - Rosangela Itri
- Instituto de Física da Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
24
|
Garcia G, Finnigan GC, Heasley LR, Sterling SM, Aggarwal A, Pearson CG, Nogales E, McMurray MA, Thorner J. Assembly, molecular organization, and membrane-binding properties of development-specific septins. J Cell Biol 2016; 212:515-29. [PMID: 26929450 PMCID: PMC4772501 DOI: 10.1083/jcb.201511029] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 01/22/2016] [Indexed: 01/22/2023] Open
Abstract
Septin complexes display remarkable plasticity in subunit composition, yet how a new subunit assembled into higher-order structures confers different functions is not fully understood. Here, this question is addressed in budding yeast, where during meiosis Spr3 and Spr28 replace the mitotic septin subunits Cdc12 and Cdc11 (and Shs1), respectively. In vitro, the sole stable complex that contains both meiosis-specific septins is a linear Spr28-Spr3-Cdc3-Cdc10-Cdc10-Cdc3-Spr3-Spr28 hetero-octamer. Only coexpressed Spr3 and Spr28 colocalize with Cdc3 and Cdc10 in mitotic cells, indicating that incorporation requires a Spr28-Spr3 protomer. Unlike their mitotic counterparts, Spr28-Spr3-capped rods are unable to form higher-order structures in solution but assemble to form long paired filaments on lipid monolayers containing phosphatidylinositol-4,5-bisphosphate, mimicking presence of this phosphoinositide in the prospore membrane. Spr28 and Spr3 fail to rescue the lethality of a cdc11Δ cdc12Δ mutant, and Cdc11 and Cdc12 fail to restore sporulation proficiency to spr3Δ/spr3Δ spr28Δ/spr28Δ diploids. Thus, specific meiotic and mitotic subunits endow septin complexes with functionally distinct properties.
Collapse
Affiliation(s)
- Galo Garcia
- Division of Biochemistry, Biophysics, and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Gregory C Finnigan
- Division of Biochemistry, Biophysics, and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Lydia R Heasley
- Department of Cell and Developmental Biology, University of Colorado Denver School of Medicine, Aurora, CO 80045
| | - Sarah M Sterling
- Division of Biochemistry, Biophysics, and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Adeeti Aggarwal
- Division of Biochemistry, Biophysics, and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Chad G Pearson
- Department of Cell and Developmental Biology, University of Colorado Denver School of Medicine, Aurora, CO 80045
| | - Eva Nogales
- Division of Biochemistry, Biophysics, and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720 Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 Howard Hughes Medical Institute, Chevy Chase, MD 20815
| | - Michael A McMurray
- Department of Cell and Developmental Biology, University of Colorado Denver School of Medicine, Aurora, CO 80045
| | - Jeremy Thorner
- Division of Biochemistry, Biophysics, and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| |
Collapse
|
25
|
|
26
|
Booth EA, Vane EW, Dovala D, Thorner J. A Förster Resonance Energy Transfer (FRET)-based System Provides Insight into the Ordered Assembly of Yeast Septin Hetero-octamers. J Biol Chem 2015; 290:28388-28401. [PMID: 26416886 PMCID: PMC4653696 DOI: 10.1074/jbc.m115.683128] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Indexed: 12/21/2022] Open
Abstract
Prior studies in both budding yeast (Saccharomyces cerevisiae) and in human cells have established that septin protomers assemble into linear hetero-octameric rods with 2-fold rotational symmetry. In mitotically growing yeast cells, five septin subunits are expressed (Cdc3, Cdc10, Cdc11, Cdc12, and Shs1) and assemble into two types of rods that differ only in their terminal subunit: Cdc11-Cdc12-Cdc3-Cdc10-Cdc10-Cdc3-Cdc12-Cdc11 and Shs1-Cdc12-Cdc3-Cdc10-Cdc10-Cdc3-Cdc12-Shs1. EM analysis has shown that, under low salt conditions, the Cdc11-capped rods polymerize end to end to form long paired filaments, whereas Shs1-capped rods form arcs, spirals, and rings. To develop a facile method to study septin polymerization in vitro, we exploited our previous work in which we generated septin complexes in which all endogenous cysteine (Cys) residues were eliminated by site-directed mutagenesis, except an introduced E294C mutation in Cdc11 in these experiments. Mixing samples of a preparation of such single-Cys containing Cdc11-capped rods that have been separately derivatized with organic dyes that serve as donor and acceptor, respectively, for FRET provided a spectroscopic method to monitor filament assembly mediated by Cdc11-Cdc11 interaction and to measure its affinity under specified conditions. Modifications of this same FRET scheme also allow us to assess whether Shs1-capped rods are capable of end to end association either with themselves or with Cdc11-capped rods. This FRET approach also was used to follow the binding to septin filaments of a septin-interacting protein, the type II myosin-binding protein Bni5.
Collapse
Affiliation(s)
- Elizabeth A Booth
- Division of Biochemistry, Biophysics, and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202
| | - Eleanor W Vane
- Division of Biochemistry, Biophysics, and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202
| | - Dustin Dovala
- Program in Microbial Pathogenesis and Host Defense, Department of Microbiology and Immunology, University of California School of Medicine, San Francisco, California 94158-2200
| | - Jeremy Thorner
- Division of Biochemistry, Biophysics, and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202.
| |
Collapse
|
27
|
Lu Y, Cai G, Cui S, Geng W, Chen D, Wen J, Zhang Y, Zhang F, Xie Y, Fu B, Chen X. FHL2-driven molecular network mediated Septin2 knockdown inducing apoptosis in mesangial cell. Proteomics 2014; 14:2485-97. [PMID: 25103794 DOI: 10.1002/pmic.201400252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/22/2014] [Accepted: 08/04/2014] [Indexed: 01/20/2023]
Affiliation(s)
- Yang Lu
- Department of Nephrology; Chinese PLA General Hospital; Chinese PLA Institute of Nephrology; State Key Laboratory of Kidney Diseases; National Clinical Research Center of Kidney Diseases; Beijing P. R. China
| | - Guangyan Cai
- Department of Nephrology; Chinese PLA General Hospital; Chinese PLA Institute of Nephrology; State Key Laboratory of Kidney Diseases; National Clinical Research Center of Kidney Diseases; Beijing P. R. China
| | - Shaoyuan Cui
- Department of Nephrology; Chinese PLA General Hospital; Chinese PLA Institute of Nephrology; State Key Laboratory of Kidney Diseases; National Clinical Research Center of Kidney Diseases; Beijing P. R. China
| | - Wenjia Geng
- Department of Nephrology; Chinese PLA General Hospital; Chinese PLA Institute of Nephrology; State Key Laboratory of Kidney Diseases; National Clinical Research Center of Kidney Diseases; Beijing P. R. China
| | - Dapeng Chen
- Department of Nephrology; Chinese PLA General Hospital; Chinese PLA Institute of Nephrology; State Key Laboratory of Kidney Diseases; National Clinical Research Center of Kidney Diseases; Beijing P. R. China
| | - Jun Wen
- Department of Nephrology; Chinese PLA General Hospital; Chinese PLA Institute of Nephrology; State Key Laboratory of Kidney Diseases; National Clinical Research Center of Kidney Diseases; Beijing P. R. China
| | - Yuanyuan Zhang
- Department of Nephrology; Chinese PLA General Hospital; Chinese PLA Institute of Nephrology; State Key Laboratory of Kidney Diseases; National Clinical Research Center of Kidney Diseases; Beijing P. R. China
| | - Fujian Zhang
- Department of Nephrology; Chinese PLA General Hospital; Chinese PLA Institute of Nephrology; State Key Laboratory of Kidney Diseases; National Clinical Research Center of Kidney Diseases; Beijing P. R. China
| | - Yuansheng Xie
- Department of Nephrology; Chinese PLA General Hospital; Chinese PLA Institute of Nephrology; State Key Laboratory of Kidney Diseases; National Clinical Research Center of Kidney Diseases; Beijing P. R. China
| | - Bo Fu
- Department of Nephrology; Chinese PLA General Hospital; Chinese PLA Institute of Nephrology; State Key Laboratory of Kidney Diseases; National Clinical Research Center of Kidney Diseases; Beijing P. R. China
| | - Xiangmei Chen
- Department of Nephrology; Chinese PLA General Hospital; Chinese PLA Institute of Nephrology; State Key Laboratory of Kidney Diseases; National Clinical Research Center of Kidney Diseases; Beijing P. R. China
| |
Collapse
|
28
|
Dolat L, Hu Q, Spiliotis ET. Septin functions in organ system physiology and pathology. Biol Chem 2014; 395:123-41. [PMID: 24114910 DOI: 10.1515/hsz-2013-0233] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 10/08/2013] [Indexed: 02/07/2023]
Abstract
Human septins comprise a family of 13 genes that encode for >30 protein isoforms with ubiquitous and tissue-specific expressions. Septins are GTP-binding proteins that assemble into higher-order oligomers and filamentous polymers, which associate with cell membranes and the cytoskeleton. In the last decade, much progress has been made in understanding the biochemical properties and cell biological functions of septins. In parallel, a growing number of studies show that septins play important roles for the development and physiology of specific tissues and organs. Here, we review the expression and function of septins in the cardiovascular, immune, nervous, urinary, digestive, respiratory, endocrine, reproductive, and integumentary organ systems. Furthermore, we discuss how the tissue-specific functions of septins relate to the pathology of human diseases that arise from aberrations in septin expression.
Collapse
|
29
|
Bai X, Bowen JR, Knox TK, Zhou K, Pendziwiat M, Kuhlenbäumer G, Sindelar CV, Spiliotis ET. Novel septin 9 repeat motifs altered in neuralgic amyotrophy bind and bundle microtubules. ACTA ACUST UNITED AC 2014; 203:895-905. [PMID: 24344182 PMCID: PMC3871440 DOI: 10.1083/jcb.201308068] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Novel septin 9 repeat motifs interact with the acidic C-terminal tails of β-tubulin to promote microtubule bundling and asymmetric neurite growth. Septin 9 (SEPT9) interacts with microtubules (MTs) and is mutated in hereditary neuralgic amyotrophy (HNA), an autosomal-dominant neuropathy. The mechanism of SEPT9 interaction with MTs and the molecular basis of HNA are unknown. Here, we show that the N-terminal domain of SEPT9 contains the novel repeat motifs K/R-x-x-E/D and R/K-R-x-E, which bind and bundle MTs by interacting with the acidic C-terminal tails of β-tubulin. Alanine scanning mutagenesis revealed that the K/R-R/x-x-E/D motifs pair electrostatically with one another and the tails of β-tubulin, enabling septin–septin interactions that link MTs together. SEPT9 isoforms lacking repeat motifs or containing the HNA-linked mutation R88W, which maps to the R/K-R-x-E motif, diminished intracellular MT bundling and impaired asymmetric neurite growth in PC-12 cells. Thus, the SEPT9 repeat motifs bind and bundle MTs, and thereby promote asymmetric neurite growth. These results provide the first insight into the mechanism of septin interaction with MTs and the molecular and cellular basis of HNA.
Collapse
|
30
|
Zeraik AE, Pereira HM, Santos YV, Brandão-Neto J, Spoerner M, Santos MS, Colnago LA, Garratt RC, Araújo APU, DeMarco R. Crystal structure of a Schistosoma mansoni septin reveals the phenomenon of strand slippage in septins dependent on the nature of the bound nucleotide. J Biol Chem 2014; 289:7799-811. [PMID: 24464615 DOI: 10.1074/jbc.m113.525352] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Septins are filament-forming GTP-binding proteins involved in important cellular events, such as cytokinesis, barrier formation, and membrane remodeling. Here, we present two crystal structures of the GTPase domain of a Schistosoma mansoni septin (SmSEPT10), one bound to GDP and the other to GTP. The structures have been solved at an unprecedented resolution for septins (1.93 and 2.1 Å, respectively), which has allowed for unambiguous structural assignment of regions previously poorly defined. Consequently, we provide a reliable model for functional interpretation and a solid foundation for future structural studies. Upon comparing the two complexes, we observe for the first time the phenomenon of a strand slippage in septins. Such slippage generates a front-back communication mechanism between the G and NC interfaces. These data provide a novel mechanistic framework for the influence of nucleotide binding to the GTPase domain, opening new possibilities for the study of the dynamics of septin filaments.
Collapse
Affiliation(s)
- Ana E Zeraik
- From the Instituto de Física de São Carlos, Universidade de São Paulo, 13563-120 São Carlos, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
The structure and properties of septin 3: a possible missing link in septin filament formation. Biochem J 2013; 450:95-105. [PMID: 23163726 DOI: 10.1042/bj20120851] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The human genome codes for 13 members of a family of filament-forming GTP-binding proteins known as septins. These have been divided into four different subgroups on the basis of sequence similarity. The differences between the subgroups are believed to control their correct assembly into heterofilaments which have specific roles in membrane remodelling events. Many different combinations of the 13 proteins are theoretically possible and it is therefore important to understand the structural basis of specific filament assembly. However, three-dimensional structures are currently available for only three of the four subgroups. In the present study we describe the crystal structure of a construct of human SEPT3 which belongs to the outstanding subgroup. This construct (SEPT3-GC), which includes the GTP-binding and C-terminal domains, purifies as a nucleotide-free monomer, allowing for its characterization in terms of GTP-binding and hydrolysis. In the crystal structure, SEPT3-GC forms foreshortened filaments which employ the same NC and G interfaces observed in the heterotrimeric complex of human septins 2, 6 and 7, reinforcing the notion of 'promiscuous' interactions described previously. In the present study we describe these two interfaces and relate the structure to its tendency to form monomers and its efficiency in the hydrolysis of GTP. The relevance of these results is emphasized by the fact that septins from the SEPT3 subgroup may be important determinants of polymerization by occupying the terminal position in octameric units which themselves form the building blocks of at least some heterofilaments.
Collapse
|
32
|
Meseroll RA, Howard L, Gladfelter AS. Septin ring size scaling and dynamics require the coiled-coil region of Shs1p. Mol Biol Cell 2012; 23:3391-406. [PMID: 22767579 PMCID: PMC3431940 DOI: 10.1091/mbc.e12-03-0207] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
How the size and dynamics of higher-order septin structures is determined is not well understood in any system. In this paper, we show that the coiled-coil domain of the septin Shs1p limits septin ring size and dynamics in the filamentous fungus Ashbya gossypii, providing a link between protein exchange and the scaling of septin assemblies. Septins are conserved GTP-binding proteins that assemble into heteromeric complexes that form filaments and higher-order structures in cells. What directs filament assembly, determines the size of higher-order septin structures, and governs septin dynamics is still not well understood. We previously identified two kinases essential for septin ring assembly in the filamentous fungus Ashbya gossypii and demonstrate here that the septin Shs1p is multiphosphorylated at the C-terminus of the protein near the predicted coiled-coil domain. Expression of the nonphosphorylatable allele shs1-9A does not mimic the loss of the kinase nor does complete truncation of the Shs1p C-terminus. Surprisingly, however, loss of the C-terminus or the predicted coiled-coil domain of Shs1p generates expanded zones of septin assemblies and ectopic septin fibers, as well as aberrant cell morphology. The expanded structures form coincident with ring assembly and are heteromeric. Interestingly, while septin recruitment to convex membranes is increased, septin localization is diminished at concave membranes in these mutants. Additionally, the loss of the coiled-coil leads to increased mobility of Shs1p. These data indicate the coiled-coil of Shs1p is an important negative regulator of septin ring size and mobility, and its absence may make septin assembly sensitive to local membrane curvature.
Collapse
Affiliation(s)
- Rebecca A Meseroll
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | | | | |
Collapse
|
33
|
Abstract
Septins belong to a family of proteins that is highly conserved in eukaryotes and is increasingly recognized as a novel component of the cytoskeleton. All septins are GTP-binding proteins that form hetero-oligomeric complexes and higher-order structures, including filaments and rings. Recent studies have provided structural information about the different levels of septin organization; however, the crucial structural determinants and factors responsible for septin assembly remain unclear. Investigations on the molecular functions of septins have highlighted their roles as scaffolds for protein recruitment and as diffusion barriers for subcellular compartmentalization in numerous biological processes, including cell division and host-microorganism interactions.
Collapse
|