1
|
Aminzare Z, Kay AR. Mathematical modeling of intracellular osmolarity and cell volume stabilization: The Donnan effect and ion transport. J Gen Physiol 2024; 156:e202413554. [PMID: 38995224 PMCID: PMC11247275 DOI: 10.1085/jgp.202413554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/01/2024] [Accepted: 06/13/2024] [Indexed: 07/13/2024] Open
Abstract
The presence of impermeant molecules within a cell can lead to an increase in cell volume through the influx of water driven by osmosis. This phenomenon is known as the Donnan (or Gibbs-Donnan) effect. Animal cells actively transport ions to counteract the Donnan effect and regulate their volume, actively pumping Na+ out and K+ into their cytosol using the Na+/K+ ATPase (NKA) pump. The pump-leak equations (PLEs) are a system of algebraic-differential equations to model the membrane potential, ion (Na+, K+, and Cl-), and water flux across the cell membrane, which provide insight into how the combination of passive ions fluxes and active transport contribute to stabilizing cell volume. Our broad objective is to provide analytical insight into the PLEs through three lines of investigation: (1) we show that the provision of impermeant extracellular molecules can stabilize the volume of a passive cell; (2) we demonstrate that the mathematical form of the NKA pump is not as important as the stoichiometry for cell stabilization; and (3) we investigate the interaction between the NKA pump and cation-chloride co-transporters (CCCs) on cell stabilization, showing that NCC can destabilize a cell while NKCC and KCC can stabilize it. We incorporate extracellular impermeant molecules, NKA pump, and CCCs into the PLEs and derive the exact formula for the steady states in terms of all the parameters. This analytical expression enables us to easily explore the effect of each of the system parameters on the existence and stability of the steady states.
Collapse
Affiliation(s)
- Zahra Aminzare
- Department of Mathematics, University of Iowa, Iowa City, IA, USA
| | - Alan R. Kay
- Department of Biology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
2
|
Cardon I, Grobecker S, Kücükoktay S, Bader S, Jahner T, Nothdurfter C, Koschitzki K, Berneburg M, Weber BHF, Stöhr H, Höring M, Liebisch G, Braun F, Rothammer-Hampl T, Riemenschneider MJ, Rupprecht R, Milenkovic VM, Wetzel CH. Mitochondrial and Cellular Function in Fibroblasts, Induced Neurons, and Astrocytes Derived from Case Study Patients: Insights into Major Depression as a Mitochondria-Associated Disease. Int J Mol Sci 2024; 25:963. [PMID: 38256041 PMCID: PMC10815943 DOI: 10.3390/ijms25020963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
The link between mitochondria and major depressive disorder (MDD) is increasingly evident, underscored both by mitochondria's involvement in many mechanisms identified in depression and the high prevalence of MDD in individuals with mitochondrial disorders. Mitochondrial functions and energy metabolism are increasingly considered to be involved in MDD's pathogenesis. This study focused on cellular and mitochondrial (dys)function in two atypical cases: an antidepressant non-responding MDD patient ("Non-R") and another with an unexplained mitochondrial disorder ("Mito"). Skin biopsies from these patients and controls were used to generate various cell types, including astrocytes and neurons, and cellular and mitochondrial functions were analyzed. Similarities were observed between the Mito patient and a broader MDD cohort, including decreased respiration and mitochondrial function. Conversely, the Non-R patient exhibited increased respiratory rates, mitochondrial calcium, and resting membrane potential. In conclusion, the Non-R patient's data offered a new perspective on MDD, suggesting a detrimental imbalance in mitochondrial and cellular processes, rather than simply reduced functions. Meanwhile, the Mito patient's data revealed the extensive effects of mitochondrial dysfunctions on cellular functions, potentially highlighting new MDD-associated impairments. Together, these case studies enhance our comprehension of MDD.
Collapse
Affiliation(s)
- Iseline Cardon
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany; (I.C.)
| | - Sonja Grobecker
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany; (I.C.)
| | - Selin Kücükoktay
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany; (I.C.)
| | - Stefanie Bader
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany; (I.C.)
| | - Tatjana Jahner
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany; (I.C.)
| | - Caroline Nothdurfter
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany; (I.C.)
| | - Kevin Koschitzki
- Department of Dermatology, Regensburg University Hospital, 93053 Regensburg, Germany
| | - Mark Berneburg
- Department of Dermatology, Regensburg University Hospital, 93053 Regensburg, Germany
| | - Bernhard H. F. Weber
- Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany
- Institute of Clinical Human Genetics, Regensburg University Hospital, 93053 Regensburg, Germany
| | - Heidi Stöhr
- Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany
| | - Marcus Höring
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, 93053 Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, 93053 Regensburg, Germany
| | - Frank Braun
- Department of Neuropathology, Regensburg University Hospital, 93053 Regensburg, Germany
| | - Tanja Rothammer-Hampl
- Department of Neuropathology, Regensburg University Hospital, 93053 Regensburg, Germany
| | | | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany; (I.C.)
| | - Vladimir M. Milenkovic
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany; (I.C.)
| | - Christian H. Wetzel
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany; (I.C.)
| |
Collapse
|
3
|
Gerevich Z, Kovács R, Liotta A, Hasam-Henderson LA, Weh L, Wallach I, Berndt N. Metabolic implications of axonal demyelination and its consequences for synchronized network activity: An in silico and in vitro study. J Cereb Blood Flow Metab 2023; 43:1571-1587. [PMID: 37125487 PMCID: PMC10414014 DOI: 10.1177/0271678x231170746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/13/2023] [Accepted: 03/22/2023] [Indexed: 05/02/2023]
Abstract
Myelination enhances the conduction velocity of action potentials (AP) and increases energy efficiency. Thick myelin sheaths are typically found on large-distance axonal connections or in fast-spiking interneurons, which are critical for synchronizing neuronal networks during gamma-band oscillations. Loss of myelin sheath is associated with multiple alterations in axonal architecture leading to impaired AP propagation. While numerous studies are devoted to the effects of demyelination on conduction velocity, the metabolic effects and the consequences for network synchronization have not been investigated. Here we present a unifying computational model for electrophysiology and metabolism of the myelinated axon. The computational model suggested that demyelination not only decreases the AP speed but AP propagation in demyelinated axons requires compensatory processes like mitochondrial mass increase and a switch from saltatory to continuous propagation to rescue axon functionality at the cost of reduced AP propagation speed and increased energy expenditure. Indeed, these predictions were proven to be true in a culture model of demyelination where the pharmacologically-induced loss of myelin was associated with increased oxygen consumption rates, and a significant broadening of bandwidth as well as a decrease in the power of gamma oscillations.
Collapse
Affiliation(s)
- Zoltan Gerevich
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Richard Kovács
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Agustin Liotta
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Anesthesiology and Intensive Care, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Computer-assisted Cardiovascular Medicine, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
| | - Luisa A Hasam-Henderson
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ludwig Weh
- Institute of Biochemistry, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Iwona Wallach
- Institute of Computer-assisted Cardiovascular Medicine, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nikolaus Berndt
- Institute of Computer-assisted Cardiovascular Medicine, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
4
|
Cheung G, Lin YC, Papadopoulos V. Translocator protein in the rise and fall of central nervous system neurons. Front Cell Neurosci 2023; 17:1210205. [PMID: 37416505 PMCID: PMC10322222 DOI: 10.3389/fncel.2023.1210205] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/07/2023] [Indexed: 07/08/2023] Open
Abstract
Translocator protein (TSPO), a 18 kDa protein found in the outer mitochondrial membrane, has historically been associated with the transport of cholesterol in highly steroidogenic tissues though it is found in all cells throughout the mammalian body. TSPO has also been associated with molecular transport, oxidative stress, apoptosis, and energy metabolism. TSPO levels are typically low in the central nervous system (CNS), but a significant upregulation is observed in activated microglia during neuroinflammation. However, there are also a few specific regions that have been reported to have higher TSPO levels than the rest of the brain under normal conditions. These include the dentate gyrus of the hippocampus, the olfactory bulb, the subventricular zone, the choroid plexus, and the cerebellum. These areas are also all associated with adult neurogenesis, yet there is no explanation of TSPO's function in these cells. Current studies have investigated the role of TSPO in microglia during neuron degeneration, but TSPO's role in the rest of the neuron lifecycle remains to be elucidated. This review aims to discuss the known functions of TSPO and its potential role in the lifecycle of neurons within the CNS.
Collapse
|
5
|
Fogarty MJ, Rana S, Mantilla CB, Sieck GC. Size-dependent differences in mitochondrial volume density in phrenic motor neurons. J Appl Physiol (1985) 2023; 134:1332-1340. [PMID: 37022966 PMCID: PMC10190832 DOI: 10.1152/japplphysiol.00021.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/07/2023] Open
Abstract
Neuromotor control of diaphragm muscle (DIAm) motor units is dependent on an orderly size-dependent recruitment of phrenic motor neurons (PhMNs). Slow (type S) and fast, fatigue resistant (type FR) DIAm motor units, which are frequently recruited to sustain ventilation, comprise smaller PhMNs that innervate type I and IIa DIAm fibers. More fatigable fast (type FF) motor units, which are infrequently recruited for higher force, expulsive behaviors, comprise larger PhMNs that innervate more type IIx/IIb DIAm fibers. We hypothesize that due to the more frequent activation and thus higher energy demand of type S and FR motor units, the mitochondrial volume density (MVD) of smaller PhMNs is greater compared with larger PhMNs. In eight adult (6 mo old) Fischer 344 rats, PhMNs were identified via intrapleural injection of Alexa488-conjugated cholera toxin B (CTB). Following retrograde CTB labeling, mitochondria in PhMNs were labeled by transdural infusion of MitoTracker Red. PhMNs and mitochondria were imaged using multichannel confocal microscopy using a ×60 oil objective. Following optical sectioning and three-dimensional (3-D) rendering, PhMNs and mitochondria were analyzed volumetrically using Nikon Elements software. Analysis of MVD in somal and dendritic compartments was stratified by PhMN somal surface area. Smaller PhMNs (likely S and FR units) had greater somal MVDs compared with larger PhMNs (likely FF units). By contrast, proximal dendrites or larger PhMNs had higher MVD compared with dendrites of smaller PhMNs. We conclude that more active smaller PhMNs have a higher mitochondrial volume density to support their higher energy demand in sustaining ventilation.NEW & NOTEWORTHY Type S and FR motor units, comprising smaller phrenic motor neurons (PhMNs) are regularly activated to perform indefatigable ventilatory requirements. By contrast, type FF motor units, comprising larger PhMNs, are infrequently activated to perform expulsive straining and airway defense maneuvers. This difference in activation history is mirrored in the mitochondrial volume density (MVD), with smaller PhMNs having higher MVD than larger PhMNs. In proximal dendrites, this trend was reversed, with larger PhMNs having higher MVD than smaller PhMNs, likely due to the maintenance requirements for the larger dendritic arbor of FF PhMNs.
Collapse
Affiliation(s)
- Matthew J Fogarty
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Sabhya Rana
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Carlos B Mantilla
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
6
|
Akter M, Ma H, Hasan M, Karim A, Zhu X, Zhang L, Li Y. Exogenous L-lactate administration in rat hippocampus increases expression of key regulators of mitochondrial biogenesis and antioxidant defense. Front Mol Neurosci 2023; 16:1117146. [PMID: 37008779 PMCID: PMC10062455 DOI: 10.3389/fnmol.2023.1117146] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/13/2023] [Indexed: 03/18/2023] Open
Abstract
L-lactate plays a critical role in learning and memory. Studies in rats showed that administration of exogenous L-lactate into the anterior cingulate cortex and hippocampus (HPC) improved decision-making and enhanced long-term memory formation, respectively. Although the molecular mechanisms by which L-lactate confers its beneficial effect are an active area of investigations, one recent study found that L-lactate supplementation results in a mild reactive oxygen species burst and induction of pro-survival pathways. To further investigate the molecular changes induced by L-lactate, we injected rats with either L-lactate or artificial CSF bilaterally into the dorsal HPC and collected the HPC after 60 minutes for mass spectrometry. We identified increased levels of several proteins that include SIRT3, KIF5B, OXR1, PYGM, and ATG7 in the HPC of the L-lactate treated rats. SIRT3 (Sirtuin 3) is a key regulator of mitochondrial functions and homeostasis and protects cells against oxidative stress. Further experiments identified increased expression of the key regulator of mitochondrial biogenesis (PGC-1α) and mitochondrial proteins (ATPB, Cyt-c) as well as increased mitochondrial DNA (mtDNA) copy number in the HPC of L-lactate treated rats. OXR1 (Oxidation resistance protein 1) is known to maintain mitochondrial stability. It mitigates the deleterious effects of oxidative damage in neurons by inducing a resistance response against oxidative stress. Together, our study suggests that L-lactate can induce expression of key regulators of mitochondrial biogenesis and antioxidant defense. These findings create new research avenues to explore their contribution to the L-lactate’s beneficial effect in cognitive functions as these cellular responses might enable neurons to generate more ATP to meet energy demand of neuronal activity and synaptic plasticity as well as attenuate the associated oxidative stress.
Collapse
Affiliation(s)
- Mastura Akter
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Haiying Ma
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Mahadi Hasan
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Anwarul Karim
- School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Xiaowei Zhu
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Liang Zhang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong, Futian Research Institute, Shenzhen, Guangdong, China
| | - Ying Li
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, Hong Kong SAR, China
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- *Correspondence: Ying Li,
| |
Collapse
|
7
|
Labba NA, Wæhler HA, Houdaifi N, Zosen D, Haugen F, Paulsen RE, Hadera MG, Eskeland R. Paracetamol perturbs neuronal arborization and disrupts the cytoskeletal proteins SPTBN1 and TUBB3 in both human and chicken in vitro models. Toxicol Appl Pharmacol 2022; 449:116130. [PMID: 35714712 DOI: 10.1016/j.taap.2022.116130] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/28/2022] [Accepted: 06/10/2022] [Indexed: 11/26/2022]
Abstract
Epidemiological studies have linked long-term/high-dose usage of paracetamol (N-acetyl-para-aminophenol, APAP) during pregnancy to adverse neuropsychiatric outcomes, primarily attention-deficit hyperactive disorder (ADHD), in the offspring. Though variable, ADHD has been associated with phenotypic alterations characterized by reductions in grey matter densities and aberrations in structural connectivity, effects which are thought to originate in neurodevelopment. We used embryonic chicken cerebellar granule neurons (CGNs) and neuronally differentiating human NTERA2 cells (NT2Ns) to investigate the in vitro effects of APAP on cell viability, migration, neuritogenesis, and the intracellular levels of various proteins involved in neurodevelopment as well as in the maintenance of the structure and function of neurites. Exposure to APAP ranging from 100 to 1600 μM yielded concentration- and time-dependent reductions in cell viability and levels of neurite arborization, as well as reductions in the levels of the cytoskeletal protein β2-spectrin, with the highest APAP concentration resulting in between 50 and 75% reductions in the aforementioned metrics over the course of 72 h. Exposure to APAP also reduced migration in the NT2Ns but not CGNs. Moreover, we found concentration- and time-dependent increases in punctate aggregation of the cytoskeletal protein β3-tubulin following exposure to APAP in both cell model systems, with the highest APAP concentration approximately doubling the number of aggregates over 72-120 h. Our findings demonstrate that APAP negatively perturbs neurite arborization degree, with concurrent reductions in the protein levels of β2-spectrin and disruption of the integrity of β3-tubulin, both proteins of which play important roles in neuronal structure and function.
Collapse
Affiliation(s)
- Nils-Anders Labba
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Norway; Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway; PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Norway
| | - Hallvard Austin Wæhler
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway; PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Norway
| | - Nora Houdaifi
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Norway
| | - Denis Zosen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Norway
| | - Fred Haugen
- Department of Work Psychology and Physiology, National Institute of Occupational Health (STAMI), Oslo, Norway
| | - Ragnhild Elisabeth Paulsen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Norway; PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Norway
| | - Mussie Ghezu Hadera
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Norway; PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Norway
| | - Ragnhild Eskeland
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway; PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Norway.
| |
Collapse
|
8
|
Kim JH, Yan Q, Uppal K, Cui X, Ling C, Walker DI, Heck JE, von Ehrenstein OS, Jones DP, Ritz B. Metabolomics analysis of maternal serum exposed to high air pollution during pregnancy and risk of autism spectrum disorder in offspring. ENVIRONMENTAL RESEARCH 2021; 196:110823. [PMID: 33548296 PMCID: PMC9059845 DOI: 10.1016/j.envres.2021.110823] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Previously, numerous epidemiologic studies reported an association between autism spectrum disorder (ASD) and exposure to air pollution during pregnancy. However, there have been no metabolomics studies investigating the impact of pregnancy pollution exposure to ASD risk in offspring. OBJECTIVES To identify differences in maternal metabolism that may reflect a biological response to exposure to high air pollution in pregnancies of offspring who later did or did not develop ASD. METHODS We obtained stored mid-pregnancy serum from 214 mothers who lived in California's Central Valley and experienced the highest levels of air pollution during early pregnancy. We estimated each woman's average traffic-related air pollution exposure (carbon monoxide, nitric oxides, and particulate matter <2.5 μm) during the first trimester using the California Line Source Dispersion Model, version 4 (CALINE4). By utilizing liquid chromatography-high resolution mass spectrometry, we identified the metabolic profiles of maternal serum for 116 mothers with offspring who later developed ASD and 98 control mothers. Partial least squares discriminant analysis (PLS-DA) was employed to select metabolic features associated with air pollution exposure or autism risk in offspring. We also conducted extensive pathway enrichment analysis to elucidate potential ASD-related changes in the metabolome of pregnant women. RESULTS We extracted 4022 and 4945 metabolic features from maternal serum samples in hydrophilic interaction (HILIC) chromatography (positive ion mode) and C18 (negative ion mode) columns, respectively. After controlling for potential confounders, we identified 167 and 222 discriminative features (HILIC and C18, respectively). Pathway enrichment analysis to discriminate metabolic features associated with ASD risk indicated various metabolic pathway perturbations linked to the tricarboxylic acid (TCA) cycle and mitochondrial function, including carnitine shuttle, amino acid metabolism, bile acid metabolism, and vitamin A metabolism. CONCLUSION Using high resolution metabolomics, we identified several metabolic pathways disturbed in mothers with ASD offspring among women experiencing high exposure to traffic-related air pollution during pregnancy that were associated with mitochondrial dysfunction. These findings provide us with a better understanding of metabolic disturbances involved in the development of ASD under adverse environmental conditions.
Collapse
Affiliation(s)
- Ja Hyeong Kim
- Department of Pediatrics, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, 44033, South Korea.
| | - Qi Yan
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA, 90095, USA.
| | - Karan Uppal
- Computational Systems Medicine & Metabolomics Laboratory, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA.
| | - Xin Cui
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA, 90095, USA; Perinatal Epidemiology and Health Outcomes Research Unit, Division of Neonatology, Department of Pediatrics, Stanford University School of Medicine and Lucile Packard Children's Hospital, Palo Alto, CA, 94304, USA; California Perinatal Quality Care Collaborative, Palo Alto, CA, 94305, USA.
| | - Chenxiao Ling
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA, 90095, USA.
| | - Douglas I Walker
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Julia E Heck
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA, 90095, USA.
| | - Ondine S von Ehrenstein
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA, 90095, USA; Department of Community Health Sciences, Fielding School of Public Health, University of California, Los Angeles, CA, 90095, USA.
| | - Dean P Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, School of Medicine, Emory University, Atlanta, GA, 30322, USA.
| | - Beate Ritz
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA, 90095, USA; Department of Community Health Sciences, Fielding School of Public Health, University of California, Los Angeles, CA, 90095, USA; Department of Neurology, Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
9
|
Raffaele S, Boccazzi M, Fumagalli M. Oligodendrocyte Dysfunction in Amyotrophic Lateral Sclerosis: Mechanisms and Therapeutic Perspectives. Cells 2021; 10:cells10030565. [PMID: 33807572 PMCID: PMC8000560 DOI: 10.3390/cells10030565] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/11/2022] Open
Abstract
Myelin is the lipid-rich structure formed by oligodendrocytes (OLs) that wraps the axons in multilayered sheaths, assuring protection, efficient saltatory signal conduction and metabolic support to neurons. In the last few years, the impact of OL dysfunction and myelin damage has progressively received more attention and is now considered to be a major contributing factor to neurodegeneration in several neurological diseases, including amyotrophic lateral sclerosis (ALS). Upon OL injury, oligodendrocyte precursor cells (OPCs) of adult nervous tissue sustain the generation of new OLs for myelin reconstitution, but this spontaneous regeneration process fails to successfully counteract myelin damage. Of note, the functions of OPCs exceed the formation and repair of myelin, and also involve the trophic support to axons and the capability to exert an immunomodulatory role, which are particularly relevant in the context of neurodegeneration. In this review, we deeply analyze the impact of dysfunctional OLs in ALS pathogenesis. The possible mechanisms underlying OL degeneration, defective OPC maturation, and impairment in energy supply to motor neurons (MNs) have also been examined to provide insights on future therapeutic interventions. On this basis, we discuss the potential therapeutic utility in ALS of several molecules, based on their remyelinating potential or capability to enhance energy metabolism.
Collapse
|
10
|
Panchal K, Tiwari AK. Miro, a Rho GTPase genetically interacts with Alzheimer's disease-associated genes ( Tau, Aβ42 and Appl) in Drosophila melanogaster. Biol Open 2020; 9:bio049569. [PMID: 32747449 PMCID: PMC7489762 DOI: 10.1242/bio.049569] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 07/24/2020] [Indexed: 12/13/2022] Open
Abstract
Miro (mitochondrial Rho GTPases), a mitochondrial outer membrane protein, facilitates mitochondrial axonal transport along the microtubules to facilitate neuronal function. It plays an important role in regulating mitochondrial dynamics (fusion and fission) and cellular energy generation. Thus, Miro might be associated with the key pathologies of several neurodegenerative diseases (NDs) including Alzheimer's disease (AD). In the present manuscript, we have demonstrated the possible genetic interaction between Miro and AD-related genes such as Tau, Aβ42 and Appl in Drosophila melanogaster Ectopic expression of Tau, Aβ42 and Appl induced a rough eye phenotype, defects in phototaxis and climbing activity, and shortened lifespan in the flies. In our study, we have observed that overexpression of Miro improves the rough eye phenotype, behavioral activities (climbing and phototaxis) and ATP level in AD model flies. Further, the improvement examined in AD-related phenotypes was correlated with decreased oxidative stress, cell death and neurodegeneration in Miro overexpressing AD model flies. Thus, the obtained results suggested that Miro genetically interacts with AD-related genes in Drosophila and has the potential to be used as a therapeutic target for the design of therapeutic strategies for NDs.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Komal Panchal
- Genetics and Developmental Biology Laboratory, Department of Biological Sciences and Biotechnology, Institute of Advanced Research (IAR), Koba, Gandhinagar, Gujarat 382426, India
| | - Anand Krishna Tiwari
- Genetics and Developmental Biology Laboratory, Department of Biological Sciences and Biotechnology, Institute of Advanced Research (IAR), Koba, Gandhinagar, Gujarat 382426, India
| |
Collapse
|
11
|
Orgah JO, Ren J, Liu X, Orgah EA, Gao XM, Zhu Y. Danhong injection facilitates recovery of post-stroke motion deficit via Parkin-enhanced mitochondrial function. Restor Neurol Neurosci 2020; 37:375-395. [PMID: 31282440 DOI: 10.3233/rnn-180828] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND A cerebral ischemic stroke involves mitochondrial dysfunction, motor deficits, and paralysis; and Danhong injection (DHI) might possess mitochondrial protection and functional recovery in a stroke subject through promoting expression of parkin, a ubiquitin ligase playing a key role in the regulation of proteins and mitochondria quality control. OBJECTIVE To investigate the therapeutic effects of DHI on the histological, cellular, and functional recovery of Wistar rats after middle cerebral artery occlusion/reperfusion (MCAO/R). METHODS One hundred and twenty healthy male Wistar rats (250-300 g), were randomly assigned to six groups (twenty rats/group). Rats were subjected to 1 h MCAO/R and subsequently administered the intravenous doses of DHI (0.75, 1.5, and 3 mL/kg) to the respective groups (twice a day for 14 days). Unlike the other groups, the sham group received surgery without vessel occlusion. All the animals were tested for gait behavior using the CatWalk system. The body weight/survival rates were recorded daily for 14 days. The parkin protein expression of the brain tissue was quantified by immunohistochemistry analysis. Additionally, cultured cortical neurons were incubation with DHI or minocycline (MC) and then deprived of oxygen and glucose for 2 h (to resemble ischemic/reperfusion), followed by 4 h reoxygenation. Cellular and mitochondrial phenotypes were assayed by high content analysis. RESULTS Neurological integrity and paw parameters of the animals were altered in the model group but significantly ameliorated by DHI administration. Also, the infarct volume and survival rate were significantly improved in DHI groups. DHI enhanced the expression of parkin protein in the brain and improved the relative mitochondrial reductase activity of the cultured neurons. CONCLUSIONS The overall result shows that daily intervention with DHI provides neuroprotection and survival to improve gait motion in Wistar rats.
Collapse
Affiliation(s)
- John Owoicho Orgah
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai District, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, TEDA, Tianjin, China
| | - Jie Ren
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai District, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, TEDA, Tianjin, China
| | - Xinyan Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai District, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, TEDA, Tianjin, China
| | - Emmanuel A Orgah
- Nigeria Natural Medicine Development Agency, Victoria Island, Lagos, Nigeria
| | - Xiu Mei Gao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai District, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, TEDA, Tianjin, China
| | - Yan Zhu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai District, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, TEDA, Tianjin, China
| |
Collapse
|
12
|
Kalvala AK, Yerra VG, Kumar A. LONP1 induction by SRT1720 attenuates mitochondrial dysfunction against high glucose induced neurotoxicity in PC12 cells. Toxicol In Vitro 2020; 62:104695. [DOI: 10.1016/j.tiv.2019.104695] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/17/2019] [Accepted: 10/17/2019] [Indexed: 12/16/2022]
|
13
|
Hjelmervik H, Hausmann M, Craven AR, Hirnstein M, Hugdahl K, Specht K. Sex- and sex hormone-related variations in energy-metabolic frontal brain asymmetries: A magnetic resonance spectroscopy study. Neuroimage 2018; 172:817-825. [DOI: 10.1016/j.neuroimage.2018.01.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/22/2017] [Accepted: 01/17/2018] [Indexed: 12/26/2022] Open
|
14
|
LoCoco PM, Risinger AL, Smith HR, Chavera TS, Berg KA, Clarke WP. Pharmacological augmentation of nicotinamide phosphoribosyltransferase (NAMPT) protects against paclitaxel-induced peripheral neuropathy. eLife 2017; 6:e29626. [PMID: 29125463 PMCID: PMC5701795 DOI: 10.7554/elife.29626] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/03/2017] [Indexed: 01/03/2023] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) arises from collateral damage to peripheral afferent sensory neurons by anticancer pharmacotherapy, leading to debilitating neuropathic pain. No effective treatment for CIPN exists, short of dose-reduction which worsens cancer prognosis. Here, we report that stimulation of nicotinamide phosphoribosyltransferase (NAMPT) produced robust neuroprotection in an aggressive CIPN model utilizing the frontline anticancer drug, paclitaxel (PTX). Daily treatment of rats with the first-in-class NAMPT stimulator, P7C3-A20, prevented behavioral and histologic indicators of peripheral neuropathy, stimulated tissue NAD recovery, improved general health, and abolished attrition produced by a near maximum-tolerated dose of PTX. Inhibition of NAMPT blocked P7C3-A20-mediated neuroprotection, whereas supplementation with the NAMPT substrate, nicotinamide, potentiated a subthreshold dose of P7C3-A20 to full efficacy. Importantly, P7C3-A20 blocked PTX-induced allodynia in tumored mice without reducing antitumoral efficacy. These findings identify enhancement of NAMPT activity as a promising new therapeutic strategy to protect against anticancer drug-induced peripheral neurotoxicity.
Collapse
Affiliation(s)
- Peter M LoCoco
- Department of PharmacologyUniversity of Texas Health Science Center at San AntonioSan AntonioUnited States
| | - April L Risinger
- Department of PharmacologyUniversity of Texas Health Science Center at San AntonioSan AntonioUnited States
| | - Hudson R Smith
- Department of PharmacologyUniversity of Texas Health Science Center at San AntonioSan AntonioUnited States
| | - Teresa S Chavera
- Department of PharmacologyUniversity of Texas Health Science Center at San AntonioSan AntonioUnited States
| | - Kelly A Berg
- Department of PharmacologyUniversity of Texas Health Science Center at San AntonioSan AntonioUnited States
| | - William P Clarke
- Department of PharmacologyUniversity of Texas Health Science Center at San AntonioSan AntonioUnited States
| |
Collapse
|
15
|
Quality Saving Mechanisms of Mitochondria during Aging in a Fully Time-Dependent Computational Biophysical Model. PLoS One 2016; 11:e0146973. [PMID: 26771181 PMCID: PMC4738421 DOI: 10.1371/journal.pone.0146973] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/23/2015] [Indexed: 11/22/2022] Open
Abstract
Mitochondria are essential for the energy production of eukaryotic cells. During aging mitochondria run through various processes which change their quality in terms of activity, health and metabolic supply. In recent years, many of these processes such as fission and fusion of mitochondria, mitophagy, mitochondrial biogenesis and energy consumption have been subject of research. Based on numerous experimental insights, it was possible to qualify mitochondrial behaviour in computational simulations. Here, we present a new biophysical model based on the approach of Figge et al. in 2012. We introduce exponential decay and growth laws for each mitochondrial process to derive its time-dependent probability during the aging of cells. All mitochondrial processes of the original model are mathematically and biophysically redefined and additional processes are implemented: Mitochondrial fission and fusion is separated into a metabolic outer-membrane part and a protein-related inner-membrane part, a quality-dependent threshold for mitophagy and mitochondrial biogenesis is introduced and processes for activity-dependent internal oxidative stress as well as mitochondrial repair mechanisms are newly included. Our findings reveal a decrease of mitochondrial quality and a fragmentation of the mitochondrial network during aging. Additionally, the model discloses a quality increasing mechanism due to the interplay of the mitophagy and biogenesis cycle and the fission and fusion cycle of mitochondria. It is revealed that decreased mitochondrial repair can be a quality saving process in aged cells. Furthermore, the model finds strategies to sustain the quality of the mitochondrial network in cells with high production rates of reactive oxygen species due to large energy demands. Hence, the model adds new insights to biophysical mechanisms of mitochondrial aging and provides novel understandings of the interdependency of mitochondrial processes.
Collapse
|