1
|
M Al-Subaie A, Kamaraj B, Ahmad F, Alsamman K. Unraveling the molecular mechanism of novel leukemia mutations on NTRK2 (A203T & R458G) and NTRK3 (E176D & L449F) genes using molecular dynamics simulations approach. F1000Res 2024; 12:345. [PMID: 39119195 PMCID: PMC11307142 DOI: 10.12688/f1000research.131013.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/11/2024] [Indexed: 08/10/2024] Open
Abstract
Background: NTRK1, NTRK2, and NTRK3 are members of the neurotrophic receptor tyrosine kinases (NTRK) family, which encode TrkA, TrkB, and TrkC receptors, respectively. Hematologic cancers are also linked to point mutations in the NTRK gene's kinase domain. Trk fusions are the most common genetic change associated with oncogenic activity in Trk-driven liquid tumors. Thus, point mutations in NTRK genes may also play a role in tumorigenesis. The structural and functional effect of mutations in Trk-B & Trk-C proteins remains unclear. Methods: In this research, Homology (threading-based approach) modeling and the all-atom molecular dynamics simulations approaches are applied to examine the structural and functional behavior of native and mutant Trk-B and Trk-C proteins at the molecular level. Results: The result of this study reveals how the mutations in Trk-B (A203T & R458G) and Trk-C (E176D & L449F) proteins lost their stability and native conformations. The Trk-B mutant A203T became more flexible than the native protein, whereas the R458G mutation became more rigid than the native conformation of the Trk-B protein. Also, the Trk-C mutations (E176D & L449F) become more rigid compared to the native structure. Conclusions: This structural transition may interrupt the function of Trk-B and Trk-C proteins. Observing the impact of NTRK-2/3 gene alterations at the atomic level could aid in discovering a viable treatment for Trk-related leukemias.
Collapse
Affiliation(s)
- Abeer M Al-Subaie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, DAMMAM, Saudi Arabia
| | - Balu Kamaraj
- Department of Dental Education, College of Dentistry, Imam Abdulrahman Bin Faisal University, DAMMAM, Saudi Arabia
| | - Fazil Ahmad
- Department of Anesthesia Technology, College of Applied Medical Sciences in Jubail, , Imam Abdulrahman Bin Faisal University, Jubail, Saudi Arabia
| | - Khaldoon Alsamman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, DAMMAM, Saudi Arabia
| |
Collapse
|
2
|
Wang Y, Chang Y, Gao M, Zang W, Liu X. Genetic analysis of albinism caused by compound heterozygous mutations of the OCA2 gene in a Chinese family. Hereditas 2024; 161:8. [PMID: 38317267 PMCID: PMC10845747 DOI: 10.1186/s41065-024-00312-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/25/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Oculocutaneous albinism (OCA) is a group of rare genetic disorders characterized by a reduced or complete lack of melanin in the skin, hair, and eyes. Patients present with colorless retina, pale pink iris, and pupil, and fear of light. The skin, eyebrows, hair, and other body hair are white or yellowish-white. These conditions are caused by mutations in specific genes necessary for the production of melanin. OCA is divided into eight clinical types (OCA1-8), each with different clinical phenotypes and potential genetic factors. This study aimed to identify the genetic causes of non-syndromic OCA in a Chinese Han family. METHODS We performed a comprehensive clinical examination of family members, screened for mutation loci using whole exome sequencing (WES) technology, and predicted mutations using In silico tools. RESULTS The patient's clinical manifestations were white skin, yellow hair, a few freckles on the cheeks and bridge of the nose, decreased vision, blue iris, poorly defined optic disk borders, pigmentation of the fundus being insufficient, and significant vascular exposure. The WES test results indicate that the patient has compound heterozygous mutations in the OCA2 gene (c.1258G > A (p.G420R), c.1441G > A (p.A481T), and c.2267-2 A > C), respectively, originating from her parents. Among them, c.1258G > A (p.G420R) is a de novo mutation with pathogenic. Our analysis suggests that compound heterozygous mutations in the OCA2 gene are the primary cause of the disease in this patient. CONCLUSIONS The widespread application of next-generation sequencing technologies such as WES in clinical practice can effectively replace conventional detection methods and assist in the diagnosis of clinical diseases more quickly and accurately. The newly discovered c.1258G > A (p.G420R) mutation can update and expand the gene mutation spectrum of OCA2-type albinism.
Collapse
Affiliation(s)
- Yanan Wang
- Genetics and Prenatal Diagnosis Department, Luoyang Maternal and Child Health Hospital, Luoyang, China.
| | - Yujie Chang
- Genetics and Prenatal Diagnosis Department, Luoyang Maternal and Child Health Hospital, Luoyang, China
| | - Mingya Gao
- Genetics and Prenatal Diagnosis Department, Luoyang Maternal and Child Health Hospital, Luoyang, China
| | - Weiwei Zang
- Genetics and Prenatal Diagnosis Department, Luoyang Maternal and Child Health Hospital, Luoyang, China
| | - Xiaofei Liu
- Genetics and Prenatal Diagnosis Department, Luoyang Maternal and Child Health Hospital, Luoyang, China
| |
Collapse
|
3
|
Ang KC, Canfield VA, Foster TC, Harbaugh TD, Early KA, Harter RL, Reid KP, Leong SL, Kawasawa Y, Liu D, Hawley JW, Cheng KC. Native American genetic ancestry and pigmentation allele contributions to skin color in a Caribbean population. eLife 2023; 12:e77514. [PMID: 37294081 PMCID: PMC10371226 DOI: 10.7554/elife.77514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 06/08/2023] [Indexed: 06/10/2023] Open
Abstract
Our interest in the genetic basis of skin color variation between populations led us to seek a Native American population with genetically African admixture but low frequency of European light skin alleles. Analysis of 458 genomes from individuals residing in the Kalinago Territory of the Commonwealth of Dominica showed approximately 55% Native American, 32% African, and 12% European genetic ancestry, the highest Native American genetic ancestry among Caribbean populations to date. Skin pigmentation ranged from 20 to 80 melanin units, averaging 46. Three albino individuals were determined to be homozygous for a causative multi-nucleotide polymorphism OCA2NW273KV contained within a haplotype of African origin; its allele frequency was 0.03 and single allele effect size was -8 melanin units. Derived allele frequencies of SLC24A5A111T and SLC45A2L374F were 0.14 and 0.06, with single allele effect sizes of -6 and -4, respectively. Native American genetic ancestry by itself reduced pigmentation by more than 20 melanin units (range 24-29). The responsible hypopigmenting genetic variants remain to be identified, since none of the published polymorphisms predicted in prior literature to affect skin color in Native Americans caused detectable hypopigmentation in the Kalinago.
Collapse
Affiliation(s)
- Khai C Ang
- Department of Pathology, Penn State College of MedicineHersheyUnited States
- Jake Gittlen Laboratories for Cancer Research, Penn State College of MedicineHersheyUnited States
| | - Victor A Canfield
- Department of Pathology, Penn State College of MedicineHersheyUnited States
- Jake Gittlen Laboratories for Cancer Research, Penn State College of MedicineHersheyUnited States
| | - Tiffany C Foster
- Department of Pathology, Penn State College of MedicineHersheyUnited States
- Jake Gittlen Laboratories for Cancer Research, Penn State College of MedicineHersheyUnited States
| | - Thaddeus D Harbaugh
- Department of Pathology, Penn State College of MedicineHersheyUnited States
- Jake Gittlen Laboratories for Cancer Research, Penn State College of MedicineHersheyUnited States
| | - Kathryn A Early
- Department of Pathology, Penn State College of MedicineHersheyUnited States
- Jake Gittlen Laboratories for Cancer Research, Penn State College of MedicineHersheyUnited States
| | - Rachel L Harter
- Department of Pathology, Penn State College of MedicineHersheyUnited States
| | - Katherine P Reid
- Department of Pathology, Penn State College of MedicineHersheyUnited States
- Jake Gittlen Laboratories for Cancer Research, Penn State College of MedicineHersheyUnited States
| | - Shou Ling Leong
- Department of Family & Community Medicine, Penn State College of MedicineHersheyUnited States
| | - Yuka Kawasawa
- Department of Biochemistry and Molecular Biology, Penn State College of MedicineHersheyUnited States
- Department of Pharmacology, Penn State College of MedicineHersheyUnited States
- Institute of Personalized Medicine, Penn State College of MedicineHersheyUnited States
| | - Dajiang Liu
- Department of Biochemistry and Molecular Biology, Penn State College of MedicineHersheyUnited States
- Department of Public Health Sciences, Penn State College of MedicineHersheyUnited States
| | | | - Keith C Cheng
- Department of Pathology, Penn State College of MedicineHersheyUnited States
- Jake Gittlen Laboratories for Cancer Research, Penn State College of MedicineHersheyUnited States
- Department of Biochemistry and Molecular Biology, Penn State College of MedicineHersheyUnited States
- Department of Pharmacology, Penn State College of MedicineHersheyUnited States
| |
Collapse
|
4
|
Jawad Ul Hasnain M, Amin F, Ghani A, Ahmad S, Rahman Z, Aslam T, Pervez MT. Structural and Functional Impact of Damaging Nonsynonymous Single Nucleotide Polymorphisms (nsSNPs) on Human VPS35 Protein Using Computational Approaches. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:3715-3724. [PMID: 34613918 DOI: 10.1109/tcbb.2021.3118054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Parkinson's disease is the second most common progressive neurodegenerative movement disorder. Mutations in retromer complex subunit and VPS35 represent the second most common cause of late-onset familial Parkinson's disease. The mutation in VPS35 can disrupt the normal protein functions resulting in Parkinson's disease. The aim of this study was the identification of deleterious missense Single Nucleotide Polymorphisms (nsSNPs) and their structural and functional impact on the VPS35 protein. In this study, several insilico tools were used to identify deleterious and disease-associated nsSNPs. 3D structure of VPS35 protein was constructed through MODELLER 9.2, normalized using FOLDX, and evaluated through RAMPAGE and ERRAT whereas, FOLDX was used for mutagenesis. 25 ligands were obtained from literature and docked using PyRx 0.8 software. Based on the binding affinity, five ligands i.e., PG4, MSE, GOL, EDO, and CAF were further analyzed. Molecular Dynamic simulation analysis was performed using GROMACS 5.1.4, where temperature, pressure, density, RMSD, RMSF, Rg, and SASA graphs were analyzed. The results showed that the mutations Y67H, R524W, and D620N had a structural and functional impact on the VPS35 protein. The current findings will help in appropriate drug design against the disease caused by these mutations in a large population using in-vitro study.
Collapse
|
5
|
Yasmin T. In silico comprehensive analysis of coding and non-coding SNPs in human mTOR protein. PLoS One 2022; 17:e0270919. [PMID: 35788771 PMCID: PMC9255762 DOI: 10.1371/journal.pone.0270919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/17/2022] [Indexed: 11/21/2022] Open
Abstract
The mammalian/mechanistic target of rapamycin (mTOR) protein is an important growth regulator and has been linked with multiple diseases including cancer and diabetes. Non-synonymous mutations of this gene have already been found in patients with renal clear cell carcinoma, melanoma, and acute lymphoid leukemia among many others. Such mutations can potentially affect a protein’s structure and hence its functions. In this study, therefore, the most deleterious SNPs of mTOR protein have been determined to identify potential biomarkers for various disease treatments. The aim is to generate a structured dataset of the mTOR gene’s SNPs that may prove to be an asset for the identification and treatment of multiple diseases associated with the target gene. Both sequence and structure-based approaches were adopted and a wide variety of bioinformatics tools were applied to analyze the SNPs of mTOR protein. In total 11 nsSNPs have been filtered out of 2178 nsSNPs along with two non-coding variations. All of the nsSNPs were found to destabilize the protein structure and disrupt its function. While R619C, A1513D, and T1977R mutations were shown to alter C alpha distances and bond angles of the mTOR protein, L509Q, R619C and N2043S were predicted to disrupt the mTOR protein’s interaction with NBS1 protein and FKBP1A/rapamycin complex. In addition, one of the non-coding SNPs was shown to alter miRNA binding sites. Characterizing nsSNPs and non-coding SNPs and their harmful effects on a protein’s structure and functions will enable researchers to understand the critical impact of mutations on the molecular mechanisms of various diseases. This will ultimately lead to the identification of potential targets for disease diagnosis and therapeutic interventions.
Collapse
Affiliation(s)
- Tahirah Yasmin
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
- * E-mail:
| |
Collapse
|
6
|
High-Risk Polymorphisms Associated with the Molecular Function of Human HMGCR Gene Infer the Inhibition of Cholesterol Biosynthesis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4558867. [PMID: 35707384 PMCID: PMC9192228 DOI: 10.1155/2022/4558867] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 05/13/2022] [Indexed: 11/17/2022]
Abstract
HMG-CoA reductase or HMGCR (3-hydroxy-3-methylglutaryl-CoA reductase) is a rate-limiting enzyme involved in cholesterol biosynthesis. HMGCR plays an important role in the possible occurrence of hypercholesterolemia leading to atherosclerosis and coronary heart disease. This enzyme is a major target for cholesterol-lowering drugs such as "statin" which blocks the synthesis of mevalonate, a precursor for cholesterol biosynthesis. This study is aimed at characterizing deleterious mutations and classifying functional single nucleotide polymorphisms (SNPs) of the HMGCR gene through analysis of functional and structural evaluation, domain association, solvent accessibility, and energy minimization studies. The functional and characterization tools such as SIFT, PolyPhen, SNPs and GO, Panther, I-Mutant, and Pfam along with programming were employed to explore all the available SNPs in the HMGCR gene in the database. Among 6815 SNP entries from different databases, approximately 388 SNPs were found to be missense. Analysis showed that seven missense SNPs are more likely to have deleterious effects. A tertiary model of the mutant protein was constructed to determine the functional and structural effects of the HMGCR mutation. In addition, the location of the mutations suggests that they may have deleterious effects because most of the mutations are residing in the functional domain of the protein. The findings from the analysis predicted that rs147043821 and rs193026499 missense SNPs could cause significant structural and functional instability in the mutated proteins of the HMGCR gene. The findings of the current study will likely be useful in future efforts to uncover the mechanism and cause of hypercholesterolemia. In addition, the identified SNPs of HMGCR gene could set up a strong foundation for further therapeutic discovery.
Collapse
|
7
|
Pradhan D, Biswasroy P, Sahu DK, Ghosh G, Rath G. Isolation and structure elucidation of a steroidal moiety from Withania somnifera and in silico evaluation of antimalarial efficacy against artemisinin resistance Plasmodium falciparum kelch 13 protein. J Biomol Struct Dyn 2022:1-14. [PMID: 35585777 DOI: 10.1080/07391102.2022.2077448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
According to the 2021 Malaria report, 241 million clinical episodes with 627000 deaths penalty was estimated across the worldwide. However, mutation in the propeller domain of Plasmodium falciparum kelch 13 protein resulted in longer parasite clearance time following an artemisinin-based treatment and had a greater survival rate of ring-stage parasites even after a brief exposure to a high dose of artesunate. Clinical manifestations become more complex and worse with the emerging trend of drug resistance against artemisinin derivatives and the poor effectiveness of malaria vaccination drive. Steroidal lactone (withanolide) moiety (C-28) isolated from methanolic leaf extract Withania somnifera show a greater affinity towards Pfkelch 13 protein in comparison to the artemisinin derivatives (artesunate, artemether). The isolated compound was characterized to be withaferin A with a percentage yield of 29.01% w/w in chloroform fraction, 1.75% w/w in methanolic extract, and 0.29% w/w in raw leaf powder. Structure-based analysis shows that withaferin A (docking score -8.253, -9.802) has a higher affinity for two distinct binding pockets I and II of the Plasmodium falciparum kelch 13 protein than artesunate (docking score -4.470, -3.656). Further, Gibbs binding free energy signifies thermodynamic stability of the docked complex of withaferin A (-43.25, -43.76 Kcal/mol) in comparison to artesunate docked complex (-8.49, -5.75 Kcal/mol). The pharmacokinetic profile of withaferin A shows more drug-likeness characteristics without violating Jorgensen's rule of three, and Lipinski's rule of five. Hence above experimental findings suggest withaferin A could be a suitable therapeutic adjunct for preclinical evaluation of antimalarial potentiality in artemisinin-resistant malaria.
Collapse
Affiliation(s)
- Deepak Pradhan
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Prativa Biswasroy
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Dipak Kumar Sahu
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Goutam Ghosh
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Goutam Rath
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, India
| |
Collapse
|
8
|
Vyas B, Bhowmik R, Akhter M, Ahmad FJ. Identification, analysis of deleterious SNPs of the human GSR gene and their effects on the structure and functions of associated proteins and other diseases. Sci Rep 2022; 12:5474. [PMID: 35361806 PMCID: PMC8971378 DOI: 10.1038/s41598-022-09295-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/08/2022] [Indexed: 11/27/2022] Open
Abstract
Hereditary glutathione reductase deficiency, caused by mutations of the GSR gene, is an autosomal recessive disorder characterized by decreased glutathione disulfide (GSSG) reduction activity and increased thermal instability. This study implemented computational analysis to screen the most likely mutation that might be associated with hereditary glutathione reductase deficiency and other diseases. Using ten online computational tools, the study revealed four nsSNPs among the 17 nsSNPs identified as most deleterious and disease associated. Structural analyses and evolutionary confirmation study of native and mutant GSR proteins using the HOPE project and ConSruf. HOPE revealed more flexibility in the native GSR structure than in the mutant structure. The mutation in GSR might be responsible for changes in the structural conformation and function of the GSR protein and might also play a significant role in inducing hereditary glutathione reductase deficiency. LD and haplotype studies of the gene revealed that the identified variations rs2978663 and rs8190955 may be responsible for obstructive heart defects (OHDs) and hereditary anemia, respectively. These interethnic differences in the frequencies of SNPs and haplotypes might help explain the unpredictability that has been reported in association studies and can contribute to predicting the pharmacokinetics and pharmacodynamics of drugs that make use of GSR.
Collapse
Affiliation(s)
- Bharti Vyas
- School of Interdisciplinary Studies, Jamia Hamdard, New Delhi, India
| | - Ratul Bhowmik
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mymoona Akhter
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Farhan Jalees Ahmad
- School of Interdisciplinary Studies, Jamia Hamdard, New Delhi, India.,Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
9
|
Rafaee A, Kashani-Amin E, Meybodi AM, Ebrahim-Habibi A, Sabbaghian M. Structural modeling of human AKAP3 protein and in silico analysis of single nucleotide polymorphisms associated with sperm motility. Sci Rep 2022; 12:3656. [PMID: 35256641 PMCID: PMC8901789 DOI: 10.1038/s41598-022-07513-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 01/28/2022] [Indexed: 11/20/2022] Open
Abstract
AKAP3 is a member of the A-kinase anchoring proteins and it is a constituent of the sperm fibrous sheath. AKAP3 is needed for the formation of sperm flagellum structure, sperm motility, and male fertility. This study aims to model the AKAP3 tertiary structure and identify the probable impact of four mutations characterized in infertile men on the AKAP3 structure. The T464S, I500T, E525K, and I661T substitutions were analyzed using in silico methods. The secondary structure and three-dimensional model of AKAP3 were determined using PSI-BLAST based secondary structure prediction and Robetta servers. The TM-score was used to quantitatively measure the structural similarities between native and mutated models. All of the desired substitutions were classified as benign. I-Mutant results showed all of the substitutions decreased AKAP3 stability; however, the I500T and I661T were more effective. Superposition and secondary structure comparisons between native and mutants showed no dramatic deviations. Our study provided an appropriate model for AKAP3. Destabilization of AKAP3 caused by these substitutions did not appear to induce structural disturbances. As AKAP3 is involved in male infertility, providing more structural insights and the impact of mutations that cause protein functional diversity could elucidate the etiology of male fertility problems at molecular level.
Collapse
Affiliation(s)
- Alemeh Rafaee
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.,Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Elaheh Kashani-Amin
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Anahita Mohseni Meybodi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.,Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Azadeh Ebrahim-Habibi
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Marjan Sabbaghian
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| |
Collapse
|
10
|
Lim SW, Tan KJ, Azuraidi OM, Sathiya M, Lim EC, Lai KS, Yap WS, Afizan NARNM. Functional and structural analysis of non-synonymous single nucleotide polymorphisms (nsSNPs) in the MYB oncoproteins associated with human cancer. Sci Rep 2021; 11:24206. [PMID: 34921182 PMCID: PMC8683427 DOI: 10.1038/s41598-021-03624-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/26/2021] [Indexed: 12/17/2022] Open
Abstract
MYB proteins are highly conserved DNA-binding domains (DBD) and mutations in MYB oncoproteins have been reported to cause aberrant and augmented cancer progression. Identification of MYB molecular biomarkers predictive of cancer progression can be used for improving cancer management. To address this, a biomarker discovery pipeline was employed in investigating deleterious non-synonymous single nucleotide polymorphisms (nsSNPs) in predicting damaging and potential alterations on the properties of proteins. The nsSNP of the MYB family; MYB, MYBL1, and MYBL2 was extracted from the NCBI database. Five in silico tools (PROVEAN, SIFT, PolyPhen-2, SNPs&GO and PhD-SNP) were utilized to investigate the outcomes of nsSNPs. A total of 45 nsSNPs were predicted as high-risk and damaging, and were subjected to PMut and I-Mutant 2.0 for protein stability analysis. This resulted in 32 nsSNPs with decreased stability with a DDG score lower than - 0.5, indicating damaging effect. G111S, N183S, G122S, and S178C located within the helix-turn-helix (HTH) domain were predicted to be conserved, further posttranslational modifications and 3-D protein analysis indicated these nsSNPs to shift DNA-binding specificity of the protein thus altering the protein function. Findings from this study would help in the field of pharmacogenomic and cancer therapy towards better intervention and management of cancer.
Collapse
Affiliation(s)
- Shu Wen Lim
- Faculty of Applied Sciences, UCSI University, No. 1, Jalan Menara Gading UCSI Height, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Kennet JunKai Tan
- Faculty of Applied Sciences, UCSI University, No. 1, Jalan Menara Gading UCSI Height, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Osman Mohd Azuraidi
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, 43400, Serdang, Selangor, Malaysia
| | - Maran Sathiya
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Ee Chen Lim
- Faculty of Applied Sciences, UCSI University, No. 1, Jalan Menara Gading UCSI Height, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Kok Song Lai
- Health Sciences Division, Abu Dhabi Women's College, Higher Colleges of Technology, 41012, Abu Dhabi, United Arab Emirates
| | - Wai-Sum Yap
- Faculty of Applied Sciences, UCSI University, No. 1, Jalan Menara Gading UCSI Height, 56000, Cheras, Kuala Lumpur, Malaysia.
| | - Nik Abd Rahman Nik Mohd Afizan
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
11
|
Integrative Bioinformatics approaches to therapeutic gene target selection in various cancers for Nitroglycerin. Sci Rep 2021; 11:22036. [PMID: 34764329 PMCID: PMC8586365 DOI: 10.1038/s41598-021-01508-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/27/2021] [Indexed: 12/30/2022] Open
Abstract
Integrative Bioinformatics analysis helps to explore various mechanisms of Nitroglycerin activity in different types of cancers and help predict target genes through which Nitroglycerin affect cancers. Many publicly available databases and tools were used for our study. First step in this study is identification of Interconnected Genes. Using Pubchem and SwissTargetPrediction Direct Target Genes (activator, inhibitor, agonist and suppressor) of Nitroglycerin were identified. PPI network was constructed to identify different types of cancers that the 12 direct target genes affected and the Closeness Coefficient of the direct target genes so identified. Pathway analysis was performed to ascertain biomolecules functions for the direct target genes using CluePedia App. Mutation Analysis revealed Mutated Genes and types of cancers that are affected by the mutated genes. While the PPI network construction revealed the types of cancer that are affected by 12 target genes this step reveals the types of cancers affected by mutated cancers only. Only mutated genes were chosen for further study. These mutated genes were input into STRING to perform NW Analysis. NW Analysis revealed Interconnected Genes within the mutated genes as identified above. Second Step in this study is to predict and identify Upregulated and Downregulated genes. Data Sets for the identified cancers from the above procedure were obtained from GEO Database. DEG Analysis on the above Data sets was performed to predict Upregulated and Downregulated genes. A comparison of interconnected genes identified in step 1 with Upregulated and Downregulated genes obtained in step 2 revealed Co-Expressed Genes among Interconnected Genes. NW Analysis using STRING was performed on Co-Expressed Genes to ascertain Closeness Coefficient of Co-Expressed genes. Gene Ontology was performed on Co-Expressed Genes to ascertain their Functions. Pathway Analysis was performed on Co-Expressed Genes to identify the Types of Cancers that are influenced by co-expressed genes. The four types of cancers identified in Mutation analysis in step 1 were the same as the ones that were identified in this pathway analysis. This further corroborates the 4 types of cancers identified in Mutation analysis. Survival Analysis was done on the co-expressed genes as identified above using Survexpress. BIOMARKERS for Nitroglycerin were identified for four types of cancers through Survival Analysis. The four types of cancers are Bladder cancer, Endometrial cancer, Melanoma and Non-small cell lung cancer.
Collapse
|
12
|
Dongre VB, Awandkar SP, Salunke VM, Kulkarni MB, Kokate LS, Kale SB, Mugale RR. The investigation on allelic, genotypic frequencies and gene expression study in coding region of tyrosinase gene in Deoni cattle breed of western India. Anim Biotechnol 2021; 34:208-217. [PMID: 34355636 DOI: 10.1080/10495398.2021.1953515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
An investigation was carried out on Deoni animals of western India to study the allelic and genotypic frequencies in coding region of TYR gene as well as gene expression profile. The animals were grouped according to age, gender, strain and intensity of partial albinism (low, medium and high). The present study revealed that the genotypic frequency of TYR gene across different strains, gender, age group and level of partial albinism was found to be non-significant for both exon-I and exon-II. The AB genotype in Balankya (0.70) was observed highest genotypic frequency followed by Wanera (0.55) and Shewara (0.55) strains. The genotypic frequency of AB and BB genotypes were observed highest in male and female, respectively. In exon-I, genotype frequency of AA genotype was found highest (0.55) in low level of partial albinism. The allelic frequencies in Shewara strain, male and low level of partial albinism were 0.75, 0.63 and 0.73, respectively. However, in exon-II genotype frequency of AB and BB was observed highest (0.70) in Wanera and Balankya strains followed by AA genotype in Shewara (0.50). The highest genotypic frequency of AA (0.87) and BB (0.50) were in male and female, respectively. The genotype frequency of AB genotype was found highest in all level of partial albinism. The allelic frequency was highest (0.85 for B allele) in Wanera strain, male (0.80 for A allele) and high level (0.60 for A allele) of particle albinism. The highly significant (p = 0.002) expression of tyrosinase gene was observed in young animals as compared to adult animals. The TYR gene expression was significantly (p = 0.047) higher in animals with low intensity of partial albinism followed by in the animals with medium and high intensity. Therefore, it is inferred that the TYR gene expression in young animals were high and as compared to the old animals of Deoni cattle breed.
Collapse
Affiliation(s)
- Vilas B Dongre
- Subject Matter Specialist (Animal Genetics & Breeding), Cattle Breeding Farm, College of Veterinary and Animal Sciences, Udgir, Maharashtra Animal & Fishery Sciences University, Nagpur, India
| | - Sudhakar P Awandkar
- Department of Veterinary Microbiology, College of Veterinary & Animal Sciences, Udgir, Maharashtra Animal & Fishery Science University, Nagpur, Maharashtra, India
| | - Vishwas M Salunke
- Cattle Breeding Farm, College of Veterinary & Animal Sciences, Udgir, Maharashtra Animal & Fishery Science University, Nagpur, Maharashtra, India
| | - Mahesh B Kulkarni
- Department of Veterinary Microbiology, College of Veterinary & Animal Sciences, Udgir, Maharashtra Animal & Fishery Science University, Nagpur, Maharashtra, India
| | - Laxmikant S Kokate
- MAFSU Sub-Centre, College of Veterinary & Animal Sciences, Udgir, Maharashtra Animal & Fishery Science University, Nagpur, Maharashtra, India
| | - Shyam B Kale
- MAFSU Sub-Centre, College of Veterinary & Animal Sciences, Udgir, Maharashtra Animal & Fishery Science University, Nagpur, Maharashtra, India
| | - Ravji R Mugale
- Associate Dean, College of Veterinary & Animal Sciences, Udgir, Maharashtra Animal & Fishery Science University, Nagpur, Maharashtra, India
| |
Collapse
|
13
|
Computational Analysis of Gly482Ser Single-Nucleotide Polymorphism in PPARGC1A Gene Associated with CAD, NAFLD, T2DM, Obesity, Hypertension, and Metabolic Diseases. PPAR Res 2021; 2021:5544233. [PMID: 34394332 PMCID: PMC8360745 DOI: 10.1155/2021/5544233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/28/2021] [Accepted: 07/07/2021] [Indexed: 12/25/2022] Open
Abstract
Peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PPARGC1A) regulates the expression of energy metabolism's genes and mitochondrial biogenesis. The essential roles of PPARGC1A encouraged the researchers to assess the relation between metabolism-related diseases and its variants. To study Gly482Ser (+1564G/A) single-nucleotide polymorphism (SNP) after PPARGC1A modeling, we substitute Gly482 for Ser482. Stability prediction tools showed that this substitution decreases the stability of PPARGC1A or has a destabilizing effect on this protein. We then utilized molecular dynamics simulation of both the Gly482Ser variant and wild type of the PPARGC1A protein to analyze the structural changes and to reveal the conformational flexibility of the PPARGC1A protein. We observed loss flexibility in the RMSD plot of the Gly482Ser variant, which was further supported by a decrease in the SASA value in the Gly482Ser variant structure of PPARGC1A and an increase of H-bond with the increase of β-sheet and coil and decrease of turn in the DSSP plot of the Gly482Ser variant. Such alterations may significantly impact the structural conformation of the PPARGC1A protein, and it might also affect its function. It showed that the Gly482Ser variant affects the PPARGC1A structure and makes the backbone less flexible to move. In general, molecular dynamics simulation (MDS) showed more flexibility in the native PPARGC1A structure. Essential dynamics (ED) also revealed that the range of eigenvectors in the conformational space has lower extension of motion in the Gly482Ser variant compared with WT. The Gly482Ser variant also disrupts PPARGC1A interaction. Due to this single-nucleotide polymorphism in PPARGC1A, it became more rigid and might disarray the structural conformation and catalytic function of the protein and might also induce type 2 diabetes mellitus (T2DM), coronary artery disease (CAD), and nonalcoholic fatty liver disease (NAFLD). The results obtained from this study will assist wet lab research in expanding potent treatment on T2DM.
Collapse
|
14
|
Kumar SU, Rajan B, Kumar DT, Cathryn RH, Das S, Zayed H, Emmanuel Jebaraj Walter C, Ramanathan G, Priya Doss C G. Comparison of potential inhibitors and targeting fat mass and obesity-associated protein causing diabesity through docking and molecular dynamics strategies. J Cell Biochem 2021; 122:1625-1638. [PMID: 34289159 DOI: 10.1002/jcb.30109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/15/2022]
Abstract
Genome-wide association studies (GWAS) have identified an association between polymorphisms in the FTO gene and obesity. The FTO: rs9939609, an intronic variant, is considered a risk allele for developing diabesity in homozygous and heterozygous forms. This study aimed to investigate the molecular structure of the available inhibitors specific to the FTO mutations along with the rs9939609 variant. We identified the best-suited inhibitor molecules for each mutant type containing the rs9939609 risk allele. Missense mutations unique to obesity and containing the risk allele of rs9939609 were retrieved from dbSNP for this study. Further stability testing for the mutations were carried out using DynaMut and iStable tools. Three mutations (G187A, M223V, and I492V) were highly destabilizing the FTO structure. These three mutants and native FTO were docked with each of the nine-inhibitor molecules collected from literature studies with the help of PyRx and AutoDock. Further structural behavior of the mutants and native FTO were identified with molecular dynamics simulations and MM-PBSA analyses, along with the 19complex inhibitor compound. We found the compound 19complex exhibited better binding interactions and is the top candidate inhibitor for the M223V and I492V mutants. This study provided insights into the structural changes caused due to mutations in FTO, and the binding mechanism of the inhibitor molecules. It could aid in developing antiobesity drugs for treating patients with mutations and risk alleles predisposing to obesity.
Collapse
Affiliation(s)
- S Udhaya Kumar
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Bithia Rajan
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - D Thirumal Kumar
- Meenakshi Academy of Higher Education and Research, Chennai, Tamil Nadu, India
| | - R Hephzibah Cathryn
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Samprita Das
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health and Sciences, QU Health, Qatar University, Doha, Qatar
| | - Charles Emmanuel Jebaraj Walter
- Department of Biotechnology, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Chennai, Tamil Nadu, India
| | - Gnanasambandan Ramanathan
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.,Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - George Priya Doss C
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
15
|
Al-Subaie AM, Kamaraj B. The Structural Effect of FLT3 Mutations at 835th Position and Their Interaction with Acute Myeloid Leukemia Inhibitors: In Silico Approach. Int J Mol Sci 2021; 22:7602. [PMID: 34299222 PMCID: PMC8303888 DOI: 10.3390/ijms22147602] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/30/2021] [Accepted: 07/09/2021] [Indexed: 12/25/2022] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) gene mutations have been found in more than one-third of Acute Myeloid Leukemia (AML) cases. The most common point mutation in FLT3 occurs at the 835th residue (D835A/E/F/G/H/I/N/V/Y), in the activation loop region. The D835 residue is critical in maintaining FLT3 inactive conformation; these mutations might influence the interaction with clinically approved AML inhibitors used to treat the AML. The molecular mechanism of each of these mutations and their interactions with AML inhibitors at the atomic level is still unknown. In this manuscript, we have investigated the structural consequence of native and mutant FLT-3 proteins and their molecular mechanisms at the atomic level, using molecular dynamics simulations (MDS). In addition, we use the molecular docking method to investigate the binding pattern between the FLT-3 protein and AML inhibitors upon mutations. This study apparently elucidates that, due to mutations in the D835, the FLT-3 structure loses its conformation and becomes more flexible compared to the native FLT3 protein. These structural changes are suggested to contribute to the relapse and resistance responses to AML inhibitors. Identifying the effects of FLT3 at the molecular level will aid in developing a personalized therapeutic strategy for treating patients with FLT-3-associated AML.
Collapse
Affiliation(s)
- Abeer M. Al-Subaie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Balu Kamaraj
- Department of Neuroscience Technology, College of Applied Medical Sciences in Jubail, Imam Abdulrahman Bin Faisal University, Jubail 35816, Saudi Arabia
| |
Collapse
|
16
|
Aljindan RY, Al-Subaie AM, Al-Ohali AI, Kumar D T, Doss C GP, Kamaraj B. Investigation of nonsynonymous mutations in the spike protein of SARS-CoV-2 and its interaction with the ACE2 receptor by molecular docking and MM/GBSA approach. Comput Biol Med 2021; 135:104654. [PMID: 34346317 PMCID: PMC8282961 DOI: 10.1016/j.compbiomed.2021.104654] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/22/2022]
Abstract
COVID-19 is an infectious and pathogenic viral disease caused by SARS-CoV-2 that leads to septic shock, coagulation dysfunction, and acute respiratory distress syndrome. The spreading rate of SARS-CoV-2 is higher than MERS-CoV and SARS-CoV. The receptor-binding domain (RBD) of the Spike-protein (S-protein) interacts with the human cells through the host angiotensin-converting enzyme 2 (ACE2) receptor. However, the molecular mechanism of pathological mutations of S-protein is still unclear. In this perspective, we investigated the impact of mutations in the S-protein and their interaction with the ACE2 receptor for SAR-CoV-2 viral infection. We examined the stability of pathological nonsynonymous mutations in the S-protein, and the binding behavior of the ACE2 receptor with the S-protein upon nonsynonymous mutations using the molecular docking and MM_GBSA approaches. Using the extensive bioinformatics pipeline, we screened the destabilizing (L8V, L8W, L18F, Y145H, M153T, F157S, G476S, L611F, A879S, C1247F, and C1254F) and stabilizing (H49Y, S50L, N501Y, D614G, A845V, and P1143L) nonsynonymous mutations in the S-protein. The docking and binding free energy (ddG) scores revealed that the stabilizing nonsynonymous mutations show increased interaction between the S-protein and the ACE2 receptor compared to native and destabilizing S-proteins and that they may have been responsible for the virulent high level. Further, the molecular dynamics simulation (MDS) approach reveals the structural transition of mutants (N501Y and D614G) S-protein. These insights might help researchers to understand the pathological mechanisms of the S-protein and provide clues regarding mutations in viral infection and disease propagation. Further, it helps researchers to develop an efficient treatment approach against this SARS-CoV-2 pandemic.
Collapse
Affiliation(s)
- Reem Y Aljindan
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.
| | - Abeer M Al-Subaie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.
| | - Ahoud I Al-Ohali
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.
| | - Thirumal Kumar D
- Meenakshi Academy of Higher Education and Research, Chennai, Tamil Nadu, 600078, India.
| | - George Priya Doss C
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| | - Balu Kamaraj
- Department of Neuroscience Technology, College of Applied Medical Sciences in Jubail, Imam Abdulrahman Bin Faisal University, Jubail, Saudi Arabia.
| |
Collapse
|
17
|
Galeb HA, Wilkinson EL, Stowell AF, Lin H, Murphy ST, Martin‐Hirsch PL, Mort RL, Taylor AM, Hardy JG. Melanins as Sustainable Resources for Advanced Biotechnological Applications. GLOBAL CHALLENGES (HOBOKEN, NJ) 2021; 5:2000102. [PMID: 33552556 PMCID: PMC7857133 DOI: 10.1002/gch2.202000102] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/04/2020] [Indexed: 05/17/2023]
Abstract
Melanins are a class of biopolymers that are widespread in nature and have diverse origins, chemical compositions, and functions. Their chemical, electrical, optical, and paramagnetic properties offer opportunities for applications in materials science, particularly for medical and technical uses. This review focuses on the application of analytical techniques to study melanins in multidisciplinary contexts with a view to their use as sustainable resources for advanced biotechnological applications, and how these may facilitate the achievement of the United Nations Sustainable Development Goals.
Collapse
Affiliation(s)
- Hanaa A. Galeb
- Department of ChemistryLancaster UniversityLancasterLA1 4YBUK
- Department of ChemistryScience and Arts CollegeRabigh CampusKing Abdulaziz UniversityJeddah21577Saudi Arabia
| | - Emma L. Wilkinson
- Department of Biomedical and Life SciencesLancaster UniversityLancasterLA1 4YGUK
| | - Alison F. Stowell
- Department of Organisation, Work and TechnologyLancaster University Management SchoolLancaster UniversityLancasterLA1 4YXUK
| | - Hungyen Lin
- Department of EngineeringLancaster UniversityLancasterLA1 4YWUK
| | - Samuel T. Murphy
- Department of EngineeringLancaster UniversityLancasterLA1 4YWUK
- Materials Science InstituteLancaster UniversityLancasterLA1 4YBUK
| | - Pierre L. Martin‐Hirsch
- Lancashire Teaching Hospitals NHS TrustRoyal Preston HospitalSharoe Green LanePrestonPR2 9HTUK
| | - Richard L. Mort
- Department of Biomedical and Life SciencesLancaster UniversityLancasterLA1 4YGUK
| | - Adam M. Taylor
- Lancaster Medical SchoolLancaster UniversityLancasterLA1 4YWUK
| | - John G. Hardy
- Department of ChemistryLancaster UniversityLancasterLA1 4YBUK
- Materials Science InstituteLancaster UniversityLancasterLA1 4YBUK
| |
Collapse
|
18
|
S UK, R B, D TK, Doss CGP, Zayed H. Mutational landscape of K-Ras substitutions at 12th position-a systematic molecular dynamics approach. J Biomol Struct Dyn 2020; 40:1571-1585. [PMID: 33034275 DOI: 10.1080/07391102.2020.1830177] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
K-Ras is a small GTPase and acts as a molecular switch by recruiting GEFs and GAPs, and alternates between the inert GDP-bound and the dynamic GTP-bound forms. The amino acid at position 12 of K-Ras is a hot spot for oncogenic mutations (G12A, G12C, G12D, G12R, G12S, and G12V), disturbing the active fold of the protein, leading to cancer development. This study aimed to investigate the potential conformational changes induced by these oncogenic mutations at the 12th position, impairing GAP-mediated GTP hydrolysis. Comprehensive computational tools (iStable, FoldX, SNPeffect, DynaMut, and CUPSAT) were used to evaluate the effect of these six mutations on the stability of wild type K-Ras protein. The docking of GTP with K-Ras was carried out using AutoDock4.2, followed by molecular dynamics simulations. Furthermore, on comparison of binding energies between the wild type K-Ras and the six mutants, we have demonstrated that the G12A and G12V mutants exhibited the strongest binding efficiency compared to the other four mutants. Trajectory analyses of these mutations revealed that G12A encountered the least deviation, fluctuation, intermolecular H-bonds, and compactness compared to the wildtype, which was supported by the lower Gibbs free energy value. Our study investigates the molecular dynamics simulations of the mutant K-Ras forms at the 12th position, which expects to provide insights about the molecular mechanisms involved in cancer development, and may serve as a platform for targeted therapies against cancer. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Udhaya Kumar S
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Bithia R
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Thirumal Kumar D
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - C George Priya Doss
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health and Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
19
|
Singh A, Thakur M, Singh SK, Sharma LK, Chandra K. Exploring the effect of nsSNPs in human YPEL3 gene in cellular senescence. Sci Rep 2020; 10:15301. [PMID: 32943700 PMCID: PMC7498449 DOI: 10.1038/s41598-020-72333-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 08/28/2020] [Indexed: 12/19/2022] Open
Abstract
YPEL3 that induces cellular senescence in both normal and tumour cells of humans may show altered expression under the influence of incidental mutations. In this study, we proposed the first structure of Native YPEL3 protein and its five possible deleterious mutants—V40M, C61Y, G98R, G108S, and A131T and predicted their deleterious effects to alter stability, flexibility and conformational changes in the protein. The MD simulation (RMSD, RMSF, Rg, h-bond and SASA) analysis revealed that the variants V40M, G98R and G108S increased the flexibility in protein, and variant V40M imparted more compactness to the protein.. In general, variants attributed changes in the native conformation and structure of the YPEL3 protein which might affect the native function of cellular senescence. The study provides opportunities for health professionals and practitioners in formulating précised medicines to effectively cure various cancers. We propose in-vitro or in-vivo studies should consider these reported nsSNPs while examining any malfunction in the YPEL3 protein.
Collapse
Affiliation(s)
- Abhishek Singh
- Zoological Survey of India, New Alipore, Kolkata, 700053, India.
| | - Mukesh Thakur
- Zoological Survey of India, New Alipore, Kolkata, 700053, India.
| | | | | | - Kailash Chandra
- Zoological Survey of India, New Alipore, Kolkata, 700053, India
| |
Collapse
|
20
|
Alzahrani FA, Ahmed F, Sharma M, Rehan M, Mahfuz M, Baeshen MN, Hawsawi Y, Almatrafi A, Alsagaby SA, Kamal MA, Warsi MK, Choudhry H, Jamal MS. Investigating the pathogenic SNPs in BLM helicase and their biological consequences by computational approach. Sci Rep 2020; 10:12377. [PMID: 32704157 PMCID: PMC7378827 DOI: 10.1038/s41598-020-69033-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/06/2020] [Indexed: 12/15/2022] Open
Abstract
The BLM helicase protein plays a vital role in DNA replication and the maintenance of genomic integrity. Variation in the BLM helicase gene resulted in defects in the DNA repair mechanism and was reported to be associated with Bloom syndrome (BS) and cancer. Despite extensive investigation of helicase proteins in humans, no attempt has previously been made to comprehensively analyse the single nucleotide polymorphism (SNPs) of the BLM gene. In this study, a comprehensive analysis of SNPs on the BLM gene was performed to identify, characterize and validate the pathogenic SNPs using computational approaches. We obtained SNP data from the dbSNP database version 150 and mapped these data to the genomic coordinates of the "NM_000057.3" transcript expressing BLM helicase (P54132). There were 607 SNPs mapped to missense, 29 SNPs mapped to nonsense, and 19 SNPs mapped to 3'-UTR regions. Initially, we used many consensus tools of SIFT, PROVEAN, Condel, and PolyPhen-2, which together increased the accuracy of prediction and identified 18 highly pathogenic non-synonymous SNPs (nsSNPs) out of 607 SNPs. Subsequently, these 18 high-confidence pathogenic nsSNPs were analysed for BLM protein stability, structure-function relationships and disease associations using various bioinformatics tools. These 18 mutants of the BLM protein along with the native protein were further investigated using molecular dynamics simulations to examine the structural consequences of the mutations, which might reveal their malfunction and contribution to disease. In addition, 28 SNPs were predicted as "stop gained" nonsense SNPs and one SNP was predicted as "start lost". Two SNPs in the 3'UTR were found to abolish miRNA binding and thus may enhance the expression of BLM. Interestingly, we found that BLM mRNA overexpression is associated with different types of cancers. Further investigation showed that the dysregulation of BLM is associated with poor overall survival (OS) for lung and gastric cancer patients and hence led to the conclusion that BLM has the potential to be used as an important prognostic marker for the detection of lung and gastric cancer.
Collapse
Affiliation(s)
- Faisal A Alzahrani
- Department of Biochemistry, Faculty of Science, Stem Cells Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham, B4 7ET, UK
| | - Firoz Ahmed
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, 21589, Saudi Arabia.
- University of Jeddah Centre for Scientific and Medical Research (UJ-CSMR), University of Jeddah, Jeddah, 21589, Saudi Arabia.
| | - Monika Sharma
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Mohali, India
| | - Mohd Rehan
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maryam Mahfuz
- Department of Computer Science, Jamia Millia Islamia, New Delhi, Delhi, India
| | - Mohammed N Baeshen
- Department of Biology, College of Science, University of Jeddah, Jeddah, 21589, Saudi Arabia
| | - Yousef Hawsawi
- Department of Genetics, Research Center, King Faisal Specialist Hospital, and Research Center, MBC-03, PO Box 3354, Riyadh, 11211, Saudi Arabia
| | - Ahmed Almatrafi
- Department of Biology, Faculty of Science, University of Taibah, Medinah, Saudi Arabia
| | - Suliman Abdallah Alsagaby
- Department of Medical Laboratories, Central Biosciences Research Laboratories, College of Science in Al Zulfi, Majmaah University, Al Majma'ah, Saudi Arabia
| | - Mohammad Azhar Kamal
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, 21589, Saudi Arabia
- University of Jeddah Centre for Scientific and Medical Research (UJ-CSMR), University of Jeddah, Jeddah, 21589, Saudi Arabia
| | - Mohiuddin Khan Warsi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, 21589, Saudi Arabia
- University of Jeddah Centre for Scientific and Medical Research (UJ-CSMR), University of Jeddah, Jeddah, 21589, Saudi Arabia
| | - Hani Choudhry
- Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Sarwar Jamal
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
- Integrative Biosciences Center, Wayne State University, Detroit, MI, 48202, USA.
| |
Collapse
|
21
|
Morenikeji OB, Thomas BN. In silico analyses of CD14 molecule reveal significant evolutionary diversity, potentially associated with speciation and variable immune response in mammals. PeerJ 2019; 7:e7325. [PMID: 31338263 PMCID: PMC6628885 DOI: 10.7717/peerj.7325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/19/2019] [Indexed: 12/23/2022] Open
Abstract
The cluster differentiation gene (CD14) is a family of monocyte differentiating genes that works in conjunction with lipopolysaccharide binding protein, forming a complex with TLR4 or LY96 to mediate innate immune response to pathogens. In this paper, we used different computational methods to elucidate the evolution of CD14 gene coding region in 14 mammalian species. Our analyses identified leucine-rich repeats as the only significant domain across the CD14 protein of the 14 species, presenting with frequencies ranging from one to four. Importantly, we found signal peptides located at mutational hotspots demonstrating that this gene is conserved across these species. Out of the 10 selected variants analyzed in this study, only six were predicted to possess significant deleterious effect. Our predicted protein interactome showed a significant varying protein-protein interaction with CD14 protein across the species. This may be important for drug target and therapeutic manipulation for the treatment of many diseases. We conclude that these results contribute to our understanding of the CD14 molecular evolution, which underlays varying species response to complex disease traits.
Collapse
Affiliation(s)
| | - Bolaji N. Thomas
- Department of Biomedical Sciences, Rochester Institute of Technology, Rochester, NY, USA
| |
Collapse
|
22
|
Gopalakrishnan C, Al-Subaie AM, N N, Yeh HY, Tayubi IA, Kamaraj B. Prioritization of SNPs in y+LAT-1 culpable of Lysinuric protein intolerance and their mutational impacts using protein-protein docking and molecular dynamics simulation studies. J Cell Biochem 2019; 120:18496-18508. [PMID: 31211457 DOI: 10.1002/jcb.29172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 12/18/2022]
Abstract
Lysinuric protein intolerance (LPI) is a rare, yet inimical, genetic disorder characterized by the paucity of essential dibasic amino acids in the cells. Amino acid transporter y+LAT-1 interacts with 4F2 cell-surface antigen heavy chain to transport the required dibasic amino acids. Mutation in y+LAT-1 is rumored to cause LPI. However, the underlying pathological mechanism is unknown, and, in this analysis, we investigate the impact of point mutation in y+LAT-1's interaction with 4F2 cell-surface antigen heavy chain in causing LPI. Using an efficient and extensive computational pipeline, we have isolated M50K and L334R single-nucleotide polymorphisms to be the most deleterious mutations in y+LAT-1s. Docking of mutant y+LAT-1 with 4F2 cell-surface antigen heavy chain showed decreased interaction compared with native y+LAT-1. Further, molecular dynamic simulation analysis reveals that the protein molecules increase in size, become more flexible, and alter their secondary structure upon mutation. We believe that these conformational changes because of mutation could be the reason for decreased interaction with 4F2 cell-surface antigen heavy chain causing LPI. Our analysis gives pathological insights about LPI and helps researchers to better understand the disease mechanism and develop an effective treatment strategy.
Collapse
Affiliation(s)
| | - Abeer Mohammed Al-Subaie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Nagasundaram N
- School of Humanities, Nanyang Technological University, Singapore
| | - Hui-Yuan Yeh
- School of Humanities, Nanyang Technological University, Singapore
| | - Iftikhar Alam Tayubi
- Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Balu Kamaraj
- Department of Neuroscience Technology, Imam Abdulrahman Bin Faisal University, Jubail, Saudi Arabia
| |
Collapse
|
23
|
Yang Q, Yi S, Li M, Xie B, Luo J, Wang J, Rong X, Zhang Q, Qin Z, Hang L, Feng S, Fan X. Genetic analyses of oculocutaneous albinism types 1 and 2 with four novel mutations. BMC MEDICAL GENETICS 2019; 20:106. [PMID: 31196117 PMCID: PMC6567650 DOI: 10.1186/s12881-019-0842-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/04/2019] [Indexed: 11/17/2022]
Abstract
BACKGROUND Oculocutaneous albinism (OCA) is a human autosomal-recessive hypopigmentation disorder with hypopigmentation in the skin, hair, and eyes. OCA1 and OCA2 are caused by mutations of the TYR and OCA2 genes, respectively, which are responsible for most oculocutaneous albinism. However, the incidence of oculocutaneous albinism patients in Guangxi remains unclear. METHODS To evaluate the molecular basis of oculocutaneous albinism in thirty-six patients in Guangxi, China. Peripheral venous blood samples were collected from these unrelated patients. The TYR and OCA2 genes of all individuals were analyzed by direct DNA sequencing and the sequences compared with are reference database and bioinformatics analysis. RESULTS Among the 36 OCA patients, 8(22.2%) were found mutations on TYR gene, 28 (77.8%) on OCA2. And we identified Twenty-seven different TYR and OCA2 mutations in these patients, including one novel TYR framshift mutation c.561_562insTTATTATGTGTCAAATTATCCCCCA, three novel OCA2 mutations: one nonsense mutation c.2195C > G(p.S732X), one deletation mutation(c.1139-1141delTGG), one missense mutations c.2495A > C(p.H832P). The population screening and the bioinformatic analysis to determined the effects of the mutations, which revealed these four novel mutations were pathogenic. CONCLUSIONS This study expands the mutation spectrum of oculocutaneous albinism. Four novel mutational alleles c.1139-1141delTGG, c.1832 T > C and c.2195C > G and of the OCA2 gene and c.561_562insTTATTATGTGTCAAATTATCCCCCA of TYR were associated with OCA. The genotype-phenotype correlations suggest that molecular diagnosis is more accurate and important in OCA.
Collapse
Affiliation(s)
- Qi Yang
- Department of Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, No.59, Xiangzhu Road, Nanning, China
| | - Sheng Yi
- Department of Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, No.59, Xiangzhu Road, Nanning, China
| | - Mengting Li
- Department of Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, No.59, Xiangzhu Road, Nanning, China
| | - Bobo Xie
- Department of Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, No.59, Xiangzhu Road, Nanning, China
| | - Jinsi Luo
- Department of Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, No.59, Xiangzhu Road, Nanning, China
| | - Jin Wang
- Department of Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, No.59, Xiangzhu Road, Nanning, China
| | - Xiuliang Rong
- Department of Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, No.59, Xiangzhu Road, Nanning, China
| | - Qinle Zhang
- Department of Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, No.59, Xiangzhu Road, Nanning, China
| | - Zailong Qin
- Department of Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, No.59, Xiangzhu Road, Nanning, China
| | - Limei Hang
- Department of Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, No.59, Xiangzhu Road, Nanning, China
| | - Shihan Feng
- Department of Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, No.59, Xiangzhu Road, Nanning, China
| | - Xin Fan
- Department of Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, No.59, Xiangzhu Road, Nanning, China
| |
Collapse
|
24
|
Kulandaisamy A, Priya SB, Sakthivel R, Frishman D, Gromiha MM. Statistical analysis of disease‐causing and neutral mutations in human membrane proteins. Proteins 2019; 87:452-466. [DOI: 10.1002/prot.25667] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 01/16/2019] [Accepted: 01/31/2019] [Indexed: 11/11/2022]
Affiliation(s)
- A. Kulandaisamy
- Department of Biotechnology, Bhupat and Jyoti Mehta School of BiosciencesIndian Institute of Technology Madras Chennai Tamil Nadu India
| | - S. Binny Priya
- Department of Biotechnology, Bhupat and Jyoti Mehta School of BiosciencesIndian Institute of Technology Madras Chennai Tamil Nadu India
| | - R. Sakthivel
- Department of Biotechnology, Bhupat and Jyoti Mehta School of BiosciencesIndian Institute of Technology Madras Chennai Tamil Nadu India
| | - Dmitrij Frishman
- Department of BioinformaticsPeter the Great St. Petersburg Polytechnic University St. Petersburg Russian Federation
- Department of BioinformaticsTechnische Universität München, Wissenschaftszentrum Weihenstephan Freising Germany
| | - M. Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of BiosciencesIndian Institute of Technology Madras Chennai Tamil Nadu India
- Advanced Computational Drug Discovery Unit (ACDD)Institute of Innovative Research, Tokyo Institute of Technology Yokohama Kanagawa Japan
| |
Collapse
|
25
|
D K, C S. Comparative analysis of human and mouse transcriptional cofactors (TcoFs) with special emphasis on intrinsically disordered regions and their associated regulating post‐translational modifications. J Cell Biochem 2018; 119:8531-8546. [DOI: 10.1002/jcb.27083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 04/26/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Kamalesh D
- Department of Integrative Biology School of Bioscience and Technology, VIT University Vellore India
| | - Sudandiradoss C
- Department of Biotechnology School of Bioscience and Technology, VIT University Vellore India
| |
Collapse
|
26
|
Wang X, Zhu Y, Shen N, Peng J, Wang C, Liu H, Lu Y. Mutation analysis of a Chinese family with oculocutaneous albinism. Oncotarget 2018; 7:84981-84988. [PMID: 27829221 PMCID: PMC5356713 DOI: 10.18632/oncotarget.13109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/22/2016] [Indexed: 11/25/2022] Open
Abstract
Oculocutaneous albinism (OCA) is an autosomal recessive disorder characterized by either complete lack of or a reduction in melanin biosynthesis in the skin, hair, and eyes. OCA1, the most common and severe type, is caused by mutations in the tyrosinase (TYR) gene. In this study, we report a Chinese family with two members affected by OCA. Blood samples were collected from all family members. Genomic DNA was isolated from blood leukocytes, and all coding exons and adjacent intronic sequences of the TYR gene were examined for mutation analysis using polymerase chain reaction (PCR)-based sequencing. A pedigree chart was drawn, and clinical examinations and paraclinical tests were performed. Compound heterozygous mutations in TYR (c.832C>T and c.929_930insC, which resulted in p.Arg278* and p.Arg311Lysfs*7, respectively) were identified in the two patients with milky skin, white hair, photophobia, and reduced visual acuity, while other family members only carried one of two heterozygous mutations. In addition, a homozygous missense mutation c.814G>A (p.Glu272Lys) in the solute carrier family 45 member 2 (SLC45A2) gene was found in both patients and unaffected family members, suggesting that this may not be a causative mutation. The findings of this study expand the mutational spectrum of OCA. Compound heterozygous mutations (c.832C>T and c.929_930insC) in the TYR gene may be responsible for partial clinical manifestations of OCA, while the homozygous missense mutation c.814G>A (p.Glu272Lys) in the SLC45A2 gene may not be associated with OCA.
Collapse
Affiliation(s)
- Xiong Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yaowu Zhu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Na Shen
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing Peng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chunyu Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Haiyi Liu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yanjun Lu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
27
|
Soualmia LF, Lecroq T. Bioinformatics Methods and Tools to Advance Clinical Care. Findings from the Yearbook 2015 Section on Bioinformatics and Translational Informatics. Yearb Med Inform 2017; 10:170-3. [PMID: 26293864 DOI: 10.15265/iy-2015-026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES To summarize excellent current research in the field of Bioinformatics and Translational Informatics with application in the health domain and clinical care. METHOD We provide a synopsis of the articles selected for the IMIA Yearbook 2015, from which we attempt to derive a synthetic overview of current and future activities in the field. As last year, a first step of selection was performed by querying MEDLINE with a list of MeSH descriptors completed by a list of terms adapted to the section. Each section editor has evaluated separately the set of 1,594 articles and the evaluation results were merged for retaining 15 articles for peer-review. RESULTS The selection and evaluation process of this Yearbook's section on Bioinformatics and Translational Informatics yielded four excellent articles regarding data management and genome medicine that are mainly tool-based papers. In the first article, the authors present PPISURV a tool for uncovering the role of specific genes in cancer survival outcome. The second article describes the classifier PredictSNP which combines six performing tools for predicting disease-related mutations. In the third article, by presenting a high-coverage map of the human proteome using high resolution mass spectrometry, the authors highlight the need for using mass spectrometry to complement genome annotation. The fourth article is also related to patient survival and decision support. The authors present datamining methods of large-scale datasets of past transplants. The objective is to identify chances of survival. CONCLUSIONS The current research activities still attest the continuous convergence of Bioinformatics and Medical Informatics, with a focus this year on dedicated tools and methods to advance clinical care. Indeed, there is a need for powerful tools for managing and interpreting complex, large-scale genomic and biological datasets, but also a need for user-friendly tools developed for the clinicians in their daily practice. All the recent research and development efforts contribute to the challenge of impacting clinically the obtained results towards a personalized medicine.
Collapse
Affiliation(s)
- L F Soualmia
- Dr Lina F. Soualmia, Normandie Univ., Rouen University and Hospital, SIBM & LITIS EA 4108, Information Processing in Biology & Health, 1, rue de Germont, Cour Leschevin porte 21, 76031 Rouen Cedex, France, Tel : +33 232 885 869, E-mail:
| | | |
Collapse
|
28
|
Porto WF, Nolasco DO, Pires ÁS, Pereira RW, Franco OL, Alencar SA. Prediction of the impact of coding missense and nonsense single nucleotide polymorphisms on HD5 and HBD1 antibacterial activity against Escherichia coli. Biopolymers 2017; 106:633-44. [PMID: 27160989 DOI: 10.1002/bip.22866] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/14/2016] [Accepted: 04/26/2016] [Indexed: 01/01/2023]
Abstract
Defensins confer host defense against microorganisms and are important for human health. Single nucleotide polymorphisms (SNPs) in defensin gene-coding regions could lead to less active variants. Using SNP data available at the dbSNP database and frequency information from the 1000 Genomes Project, two DEFA5 (L26I and R13H) and eight DEFB1 (C35S, K31T, K33R, R29G, V06I, C12Y, Y28* and C05*) missense and nonsense SNPs that are located within mature regions of the coded defensins were retrieved. Such SNPs are rare and population restricted. In order to assess their antibacterial activity against Escherichia coli, two linear regression models were used from a previous work, which models the antibacterial activity as a function of solvation potential energy, using molecular dynamics data. Regarding only the antibacterial predictions, for HD5, no biological differences between wild-type and its variants were observed; while for HBD1, the results suggest that the R29G, K31T, Y28* and C05* variants could be less active than the wild-type one. The data here reported could lead to a substantial improvement in knowledge about the impact of missense SNPs in human defensins and their world distribution. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 633-644, 2016.
Collapse
Affiliation(s)
- William F Porto
- Programa De Pós-Graduação Em Ciências Genômicas E Biotecnologia, Universidade Católica De Brasília, Brasília, DF, Brazil.,Centro De Análises Proteômicas E Bioquímicas, Pós-Graduação Em Ciências Genômicas E Biotecnologia, Universidade Católica De Brasília, Brasília, DF, Brazil
| | - Diego O Nolasco
- Programa De Pós-Graduação Em Ciências Genômicas E Biotecnologia, Universidade Católica De Brasília, Brasília, DF, Brazil.,Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA
| | - Állan S Pires
- Programa De Pós-Graduação Em Ciências Genômicas E Biotecnologia, Universidade Católica De Brasília, Brasília, DF, Brazil.,Centro De Análises Proteômicas E Bioquímicas, Pós-Graduação Em Ciências Genômicas E Biotecnologia, Universidade Católica De Brasília, Brasília, DF, Brazil
| | - Rinaldo W Pereira
- Programa De Pós-Graduação Em Ciências Genômicas E Biotecnologia, Universidade Católica De Brasília, Brasília, DF, Brazil
| | - Octávio L Franco
- Programa De Pós-Graduação Em Ciências Genômicas E Biotecnologia, Universidade Católica De Brasília, Brasília, DF, Brazil. .,Centro De Análises Proteômicas E Bioquímicas, Pós-Graduação Em Ciências Genômicas E Biotecnologia, Universidade Católica De Brasília, Brasília, DF, Brazil. .,S-Inova Biotech, Pos-Graduação Em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil.
| | - Sérgio A Alencar
- Programa De Pós-Graduação Em Ciências Genômicas E Biotecnologia, Universidade Católica De Brasília, Brasília, DF, Brazil
| |
Collapse
|
29
|
Jamal S, Goyal S, Shanker A, Grover A. Computational Screening and Exploration of Disease-Associated Genes in Alzheimer's Disease. J Cell Biochem 2017; 118:1471-1479. [PMID: 27883225 DOI: 10.1002/jcb.25806] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/22/2016] [Indexed: 02/05/2023]
Abstract
Alzheimer's is a neurodegenerative disease affecting large populations worldwide characterized mainly by progressive loss of memory along with various other symptoms. The foremost cause of the disease is still unclear, however various mechanisms have been proposed to cause the disease that include amyloid hypothesis, tau hypothesis, and cholinergic hypothesis in addition to genetic factors. Various genes have been known to be involved which are APOE, PSEN1, PSEN2, and APP among others. In the present study, we have used computational methods to examine the pathogenic effects of non-synonymous single nucleotide polymorphisms (SNPs) associated with ABCA7, CR1, MS4A6A, CD2AP, PSEN1, PSEN2, and APP genes. The SNPs were obtained from dbSNP database followed by identification of deleterious SNPs and prediction of their functional impact. Prediction of disease-associated mutations was performed and the impact of the mutations on the stability of the protein was carried out. To study the structural significance of the computationally prioritized mutations on the proteins, molecular dynamics simulation studies were carried out. On analysis, the SNPs with IDs rs76282929 ABCA7; CR1 rs55962594; MS4A6A rs601172; CD2AP rs61747098; PSEN1 rs63750231, rs63750265, rs63750526, rs63750577, rs63750687, rs63750815, rs63750900, rs63751037, rs63751163, rs63751399; PSEN2 rs63749851; and APP rs63749964, rs63750066, rs63750734, and rs63751039 were predicted to be deleterious and disease-associated having significant structural impact on the proteins. The current study proposes a precise computational methodology for the identification of disease-associated SNPs. J. Cell. Biochem. 118: 1471-1479, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Salma Jamal
- Department of Bioscience and Biotechnology, Banasthali University, Tonk, Rajasthan, India
| | - Sukriti Goyal
- Department of Bioscience and Biotechnology, Banasthali University, Tonk, Rajasthan, India
| | - Asheesh Shanker
- Department of Bioscience and Biotechnology, Banasthali University, Tonk, Rajasthan, India.,Bioinformatics Programme, Centre for Biological Sciences, Central University of South Bihar, BIT Campus, Patna, Bihar, India
| | - Abhinav Grover
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
30
|
D. K, Ramireddy S, P. R, C. S. Expediting dynamics approach to understand the influence of 14-3-3ζ causing metastatic cancer through the interaction of YAP1 and β-TRCP. MOLECULAR BIOSYSTEMS 2017; 13:1981-1992. [DOI: 10.1039/c7mb00271h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The 14-3-3ζ protein acts as a molecular switch in regulating the TGF-β pathway, which alters from a tumor suppressor in the early stage of breast cancer to a promoter of metastasis in the late stage.
Collapse
Affiliation(s)
- Kamalesh D.
- Department of Integrative Biology
- School of Biosciences and Technology
- VIT University
- Vellore
- India
| | - Sriroopreddy Ramireddy
- Department of Biotechnology
- School of Biosciences and Technology
- VIT University
- Vellore
- India
| | - Raguraman P.
- Department of Biotechnology
- School of Biosciences and Technology
- VIT University
- Vellore
- India
| | - Sudandiradoss C.
- Department of Biotechnology
- School of Biosciences and Technology
- VIT University
- Vellore
- India
| |
Collapse
|
31
|
Clinical evaluation and molecular screening of a large consecutive series of albino patients. J Hum Genet 2016; 62:277-290. [PMID: 27734839 DOI: 10.1038/jhg.2016.123] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 09/08/2016] [Accepted: 09/10/2016] [Indexed: 12/26/2022]
Abstract
Oculocutaneous albinism (OCA) is characterized by hypopigmentation of the skin, hair and eye, and by ophthalmologic abnormalities caused by a deficiency in melanin biosynthesis. In this study we recruited 321 albino patients and screened them for the genes known to cause oculocutaneous albinism (OCA1-4 and OCA6) and ocular albinism (OA1). Our purpose was to detect mutations and genetic frequencies of the main causative genes, offering to albino patients an exhaustive diagnostic assessment within a multidisciplinary approach including ophthalmological, dermatological, audiological and genetic evaluations. We report 70 novel mutations and the frequencies of the major causative OCA genes that are as follows: TYR (44%), OCA2 (17%), TYRP1 (1%), SLC45A2 (7%) and SLC24A5 (<0.5%). An additional 5% of patients had GPR143 mutations. In 19% of cases, a second reliable mutation was not detected, whereas 7% of our patients remain still molecularly undiagnosed. This comprehensive study of a consecutive series of OCA/OA1 patients allowed us to perform a clinical evaluation of the different OCA forms.
Collapse
|
32
|
Kim KH, Blasco-Morente G, Cuende N, Arias-Santiago S. Mesenchymal stromal cells: properties and role in management of cutaneous diseases. J Eur Acad Dermatol Venereol 2016; 31:414-423. [PMID: 27549663 DOI: 10.1111/jdv.13934] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 07/28/2016] [Indexed: 12/18/2022]
Abstract
This review describes the current understanding and the potential use of mesenchymal stromal cells (MSCs) in cell-based therapies for clinical management of difficult wounds and other dermatoses. MSCs have been shown to possess many advantageous properties that make them a promising therapeutic modality in dermatology still under investigation. In fact, MSCs' ability to promote wound healing through its paracrine function and pro-angiogenic properties have generated increasing interest for treating acute and chronic wounds. There is also great interest in utilizing MSCs' immunological characteristics for therapeutic use especially for patients with debilitating systemic autoimmune and inflammatory skin conditions who have failed other therapies. Its role in aesthetics has also been explored with clinical data showing improvement of acne scars and wrinkles from photoaging. Clinical trials are underway investigating the safety and efficacy of MSCs in the treatment of different skin conditions such as acute burns, diabetic and venous stasis ulcers, epidermolysis bullosa and systemic sclerosis, among others. We anticipate that as our understanding of the characteristics and function of MSCs grow, so will its role in cell-based treatments of dermatological conditions.
Collapse
Affiliation(s)
- K H Kim
- Department of Dermatology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - G Blasco-Morente
- Department of Dermatology, Virgen de las Nieves University Hospital, Granada, Spain
| | - N Cuende
- Andalusian Initiative for Advanced Therapies, Seville, Spain
| | - S Arias-Santiago
- Department of Dermatology, Virgen de las Nieves University Hospital, Granada, Spain.,Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, Granada, Spain
| |
Collapse
|
33
|
Kamaraj B, Purohit R. Mutational Analysis on Membrane Associated Transporter Protein (MATP) and Their Structural Consequences in Oculocutaeous Albinism Type 4 (OCA4)-A Molecular Dynamics Approach. J Cell Biochem 2016; 117:2608-19. [PMID: 27019209 DOI: 10.1002/jcb.25555] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/24/2016] [Indexed: 12/11/2022]
Abstract
Oculocutaneous albinism type IV (OCA4) is an autosomal recessive inherited disorder which is characterized by reduced biosynthesis of melanin pigmentation in skin, hair, and eyes and caused by the genetic mutations in the membrane-associated transporter protein (MATP) encoded by SLC45A2 gene. The MATP protein consists of 530 amino acids which contains 12 putative transmembrane domains and plays an important role in pigmentation and probably functions as a membrane transporter in melanosomes. We scrutinized the most OCA4 disease-associated mutation and their structural consequences on SLC45A2 gene. To understand the atomic arrangement in 3D space, the native and mutant structures were modeled. Further the structural behavior of native and mutant MATP protein was investigated by molecular dynamics simulation (MDS) approach in explicit lipid and water background. We found Y317C as the most deleterious and disease-associated SNP on SLC45A2 gene. In MDS, mutations in MATP protein showed loss of stability and became more flexible, which alter its structural conformation and function. This phenomenon has indicated a significant role in inducing OCA4. Our study explored the understanding of molecular mechanism of MATP protein upon mutation at atomic level and further helps in the field of pharmacogenomics to develop a personalized medicine for OCA4 disorder. J. Cell. Biochem. 117: 2608-2619, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Balu Kamaraj
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk-Antwerp, Belgium
| | - Rituraj Purohit
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India.
| |
Collapse
|
34
|
Khordadpoor-Deilamani F, Akbari MT, Karimipoor M, Javadi GR. Homozygosity mapping in albinism patients using a novel panel of 13 STR markers inside the nonsyndromic OCA genes: introducing 5 novel mutations. J Hum Genet 2016; 61:373-9. [DOI: 10.1038/jhg.2015.167] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/16/2015] [Accepted: 11/26/2015] [Indexed: 02/06/2023]
|
35
|
Porto WF, Nolasco DO, Pires ÁS, Fernandes GR, Franco OL, Alencar SA. HD5 and HBD1 variants’ solvation potential energy correlates with their antibacterial activity against Escherichia coli. Biopolymers 2016; 106:43-50. [DOI: 10.1002/bip.22763] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 10/22/2015] [Accepted: 11/02/2015] [Indexed: 11/06/2022]
Affiliation(s)
- William F. Porto
- Programa De Pós-Graduação Em Ciências Genômicas E Biotecnologia; Universidade Católica De Brasília; Brasília- DF Brazil
- Centro De Análises Proteômicas E Bioquímicas, Pós-Graduação Em Ciências Genômicas E Biotecnologia; Universidade Católica De Brasília; Brasília- DF Brazil
| | - Diego O. Nolasco
- Programa De Pós-Graduação Em Ciências Genômicas E Biotecnologia; Universidade Católica De Brasília; Brasília- DF Brazil
- Curso De Física; Universidade Católica De Brasília; Brasília DF Brazil
| | - Állan S. Pires
- Programa De Pós-Graduação Em Ciências Genômicas E Biotecnologia; Universidade Católica De Brasília; Brasília- DF Brazil
- Centro De Análises Proteômicas E Bioquímicas, Pós-Graduação Em Ciências Genômicas E Biotecnologia; Universidade Católica De Brasília; Brasília- DF Brazil
| | - Gabriel R. Fernandes
- Programa De Pós-Graduação Em Ciências Genômicas E Biotecnologia; Universidade Católica De Brasília; Brasília- DF Brazil
| | - Octávio L. Franco
- Programa De Pós-Graduação Em Ciências Genômicas E Biotecnologia; Universidade Católica De Brasília; Brasília- DF Brazil
- Centro De Análises Proteômicas E Bioquímicas, Pós-Graduação Em Ciências Genômicas E Biotecnologia; Universidade Católica De Brasília; Brasília- DF Brazil
- S-Inova Biotech; Pos Graduação em Biotecnologia; Universidade Catolica Dom Bosco; Campo Grande Campo Grande Brazil
| | - Sérgio A. Alencar
- Programa De Pós-Graduação Em Ciências Genômicas E Biotecnologia; Universidade Católica De Brasília; Brasília- DF Brazil
| |
Collapse
|
36
|
Lu X, Sun D, Xu B, Pan J, Wei Y, Mao X, Yu D, Liu H, Gao B. In Silico Screening and Molecular Dynamic Study of Nonsynonymous Single Nucleotide Polymorphisms Associated with Kidney Stones in the SLC26A6 Gene. J Urol 2016; 196:118-23. [PMID: 26812303 DOI: 10.1016/j.juro.2016.01.093] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2016] [Indexed: 10/22/2022]
Abstract
PURPOSE SLC26A6 is a multifunctional anion transporter with a critical physiological role in the transport of oxalate anions. Recognizing a genetic variant of SLC26A6 would advance our understanding of oxalate transport in the formation of calcium oxalate stones. MATERIALS AND METHODS All nsSNPs (nonsynonymous single nucleotide polymorphisms) reported in human SLC26A6 were investigated using 4 in silico tools, including SIFT (Sorting Intolerant From Tolerant), PROVEAN (Protein Variation Effect Analyzer), PhD-SNP (Predictor of human Deleterious Single Nucleotide Polymorphisms) and MutPred. A total of 426 subjects, including 225 with kidney stones and 201 healthy controls, were included in study to genotype the candidate disease associated nsSNP using allele specific polymerase chain reaction. Furthermore, the structural consequences due to the mutation were assessed using homology modeling and molecular dynamics simulation methods. RESULTS The nsSNP rs184187143 was identified as a more probable disease associated variant in the SLC26A6 gene by in silico screening. The C allele carrier showed a 6.1-fold increased kidney stone risk compared with G allele carriers in the nsSNP (OR 6.1, 95% CI 1.36-27.38, p = 0.007). We found that the mutation from arginine to glycine leads to the loss of 2 hydrogen bonds and to an unstable structure in the STAS domain of SLC26A6. CONCLUSIONS Our results indicate that the variant G539R in the SLC26A6 gene is associated with kidney stone risk, providing a clear clue to further achieve insight into oxalate transport in kidney stone formation.
Collapse
Affiliation(s)
- Xiuli Lu
- Department of Biochemistry and Cell Biology, School of Life Science, Liaoning University, Shenyang, People's Republic of China; Research Center for Computer Simulating and Information Processing of Bio-macromolecules of Liaoning Province, Shenyang, People's Republic of China
| | - Deliang Sun
- Department of Biochemistry and Cell Biology, School of Life Science, Liaoning University, Shenyang, People's Republic of China
| | - Bo Xu
- Department of Biochemistry and Cell Biology, School of Life Science, Liaoning University, Shenyang, People's Republic of China
| | - Jichuan Pan
- Department of Cell Biology and Genetics, Shenyang Medical College, Shenyang, People's Republic of China
| | - Yanhong Wei
- Department of Cell Biology and Genetics, Shenyang Medical College, Shenyang, People's Republic of China
| | - Xu Mao
- Department of Cell Biology and Genetics, Shenyang Medical College, Shenyang, People's Republic of China
| | - Daojun Yu
- Department of Cell Biology and Genetics, Shenyang Medical College, Shenyang, People's Republic of China
| | - Hongsheng Liu
- Research Center for Computer Simulating and Information Processing of Bio-macromolecules of Liaoning Province, Shenyang, People's Republic of China
| | - Bing Gao
- Department of Cell Biology and Genetics, Shenyang Medical College, Shenyang, People's Republic of China; Key Laboratory of Environment and Population Health of Liaoning Education Ministry, Shenyang Medical College, Shenyang, People's Republic of China; China-Japan Kidney Stone Research Center, Shenyang, People's Republic of China.
| |
Collapse
|
37
|
Valimberti I, Tiberti M, Lambrughi M, Sarcevic B, Papaleo E. E2 superfamily of ubiquitin-conjugating enzymes: constitutively active or activated through phosphorylation in the catalytic cleft. Sci Rep 2015; 5:14849. [PMID: 26463729 PMCID: PMC4604453 DOI: 10.1038/srep14849] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 08/19/2015] [Indexed: 12/22/2022] Open
Abstract
Protein phosphorylation is a modification that offers a dynamic and reversible mechanism to regulate the majority of cellular processes. Numerous diseases are associated with aberrant regulation of phosphorylation-induced switches. Phosphorylation is emerging as a mechanism to modulate ubiquitination by regulating key enzymes in this pathway. The molecular mechanisms underpinning how phosphorylation regulates ubiquitinating enzymes, however, are elusive. Here, we show the high conservation of a functional site in E2 ubiquitin-conjugating enzymes. In catalytically active E2s, this site contains aspartate or a phosphorylatable serine and we refer to it as the conserved E2 serine/aspartate (CES/D) site. Molecular simulations of substrate-bound and -unbound forms of wild type, mutant and phosphorylated E2s, provide atomistic insight into the role of the CES/D residue for optimal E2 activity. Both the size and charge of the side group at the site play a central role in aligning the substrate lysine toward E2 catalytic cysteine to control ubiquitination efficiency. The CES/D site contributes to the fingerprint of the E2 superfamily. We propose that E2 enzymes can be divided into constitutively active or regulated families. E2s characterized by an aspartate at the CES/D site signify constitutively active E2s, whereas those containing a serine can be regulated by phosphorylation.
Collapse
Affiliation(s)
- Ilaria Valimberti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan (Italy)
| | - Matteo Tiberti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan (Italy)
| | - Matteo Lambrughi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan (Italy)
| | - Boris Sarcevic
- Cell Cycle and Cancer Unit, St. Vincent's Institute of Medical Research and The Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Melbourne, Victoria 3065, Australia
| | - Elena Papaleo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan (Italy)
| |
Collapse
|
38
|
Identification of Dual Natural Inhibitors for Chronic Myeloid Leukemia by Virtual Screening, Molecular Dynamics Simulation and ADMET Analysis. Interdiscip Sci 2015; 8:241-52. [PMID: 26297311 DOI: 10.1007/s12539-015-0118-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 03/05/2015] [Accepted: 03/30/2015] [Indexed: 11/27/2022]
Abstract
Chronic myeloid leukemia (CML) is a disease of bone marrow stem cells caused by excessive growth and accumulation of granulocytes in the blood. Aberrant expression of the BCR-ABL proteins in bone marrow stem cells have found out in 95 % cases of CML. Tyrosine Kinase domains (SH2 and SH3) of BCR-ABL proteins are the potent targets to inhibit the process. Initially, imatinib is preferred as an efficient inhibitor to control functional activity of disease. Recently, it has been reported that the advanced stage of CML developed resistance against imatinib. In continuation, dasatinib is the first drug to combat against this disease by targeting multiple receptors and proven better as compared to imatinib. Here, an attempt has been made to identify similar analogs of dasatinib. Virtual screening was performed against various natural compound databases to get some potent natural compounds which are able to inhibit more than one receptor. Binding affinity of screened natural compounds was compared with some of the well-known inhibitors like imatinib, dasatinib, nilotinib etc., by analyzing their docking score and binding efficiency with the receptor. Stability of the best ligand-receptor complex was checked by performing 10 ns molecular dynamics simulation. ADMET properties of the obtained screened compounds were analyzed to check drug like property. Based on the aforementioned analysis, it has been suggested that these screened potent compounds are capable to inhibit multiple receptor proteins like ABL and SRC and consequently combat against the deadly disease CML.
Collapse
|
39
|
Porto WF, Franco OL, Alencar SA. Computational analyses and prediction of guanylin deleterious SNPs. Peptides 2015; 69:92-102. [PMID: 25899674 DOI: 10.1016/j.peptides.2015.04.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 04/10/2015] [Accepted: 04/12/2015] [Indexed: 01/01/2023]
Abstract
Human guanylin, coded by the GUCA2A gene, is a member of a peptide family that activates intestinal membrane guanylate cyclase, regulating electrolyte and water transport in intestinal and renal epithelia. Deregulation of guanylin peptide activity has been associated with colon adenocarcinoma, adenoma and intestinal polyps. Besides, it is known that mutations on guanylin receptors could be involved in meconium ileus. However, there are no previous works regarding the alterations driven by single nucleotide polymorphisms in guanylin peptides. A comprehensive in silico analysis of missense SNPs present in the GUCA2A gene was performed taking into account 16 prediction tools in order to select the deleterious variations for further evaluation by molecular dynamics simulations (50 ns). Molecular dynamics data suggest that the three out of five variants (Cys104Arg, Cys112Ser and Cys115Tyr) have undergone structural modifications in terms of flexibility, volume and/or solvation. In addition, two nonsense SNPs were identified, both preventing the formation of disulfide bonds and resulting in the synthesis of truncated proteins. In summary the structural analysis of missense SNPs is important to decrease the number of potential mutations to be in vitro evaluated for associating them with some genetic diseases. In addition, data reported here could lead to a better understanding of structural and functional aspects of guanylin peptides.
Collapse
Affiliation(s)
- William F Porto
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, Brazil; Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, Brazil
| | - Octávio L Franco
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, Brazil; Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, Brazil; C S-Inova, Pos-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil.
| | - Sérgio A Alencar
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, Brazil.
| |
Collapse
|
40
|
Petukh M, Kucukkal TG, Alexov E. On human disease-causing amino acid variants: statistical study of sequence and structural patterns. Hum Mutat 2015; 36:524-534. [PMID: 25689729 DOI: 10.1002/humu.22770] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/09/2015] [Indexed: 12/28/2022]
Abstract
Statistical analysis was carried out on large set of naturally occurring human amino acid variations, and it was demonstrated that there is a preference for some amino acid substitutions to be associated with diseases. At an amino acid sequence level, it was shown that the disease-causing variants frequently involve drastic changes in amino acid physicochemical properties of proteins such as charge, hydrophobicity, and geometry. Structural analysis of variants involved in diseases and being frequently observed in human population showed similar trends: disease-causing variants tend to cause more changes in hydrogen bond network and salt bridges as compared with harmless amino acid mutations. Analysis of thermodynamics data reported in the literature, both experimental and computational, indicated that disease-causing variants tend to destabilize proteins and their interactions, which prompted us to investigate the effects of amino acid mutations on large databases of experimentally measured energy changes in unrelated proteins. Although the experimental datasets were linked neither to diseases nor exclusory to human proteins, the observed trends were the same: amino acid mutations tend to destabilize proteins and their interactions. Having in mind that structural and thermodynamics properties are interrelated, it is pointed out that any large change in any of them is anticipated to cause a disease.
Collapse
Affiliation(s)
- Marharyta Petukh
- Department of Physics, Clemson University, Clemson, SC 29642, USA
| | - Tugba G Kucukkal
- Department of Physics, Clemson University, Clemson, SC 29642, USA
| | - Emil Alexov
- Department of Physics, Clemson University, Clemson, SC 29642, USA
| |
Collapse
|
41
|
Hepp D, Gonçalves GL, de Freitas TRO. Prediction of the damage-associated non-synonymous single nucleotide polymorphisms in the human MC1R gene. PLoS One 2015; 10:e0121812. [PMID: 25794181 PMCID: PMC4368538 DOI: 10.1371/journal.pone.0121812] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 02/04/2015] [Indexed: 12/13/2022] Open
Abstract
The melanocortin 1 receptor (MC1R) is involved in the control of melanogenesis. Polymorphisms in this gene have been associated with variation in skin and hair color and with elevated risk for the development of melanoma. Here we used 11 computational tools based on different approaches to predict the damage-associated non-synonymous single nucleotide polymorphisms (nsSNPs) in the coding region of the human MC1R gene. Among the 92 nsSNPs arranged according to the predictions 62% were classified as damaging in more than five tools. The classification was significantly correlated with the scores of two consensus programs. Alleles associated with the red hair color (RHC) phenotype and with the risk of melanoma were examined. The R variants D84E, R142H, R151C, I155T, R160W and D294H were classified as damaging by the majority of the tools while the r variants V60L, V92M and R163Q have been predicted as neutral in most of the programs The combination of the prediction tools results in 14 nsSNPs indicated as the most damaging mutations in MC1R (L48P, R67W, H70Y, P72L, S83P, R151H, S172I, L206P, T242I, G255R, P256S, C273Y, C289R and R306H); C273Y showed to be highly damaging in SIFT, Polyphen-2, MutPred, PANTHER and PROVEAN scores. The computational analysis proved capable of identifying the potentially damaging nsSNPs in MC1R, which are candidates for further laboratory studies of the functional and pharmacological significance of the alterations in the receptor and the phenotypic outcomes.
Collapse
Affiliation(s)
- Diego Hepp
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul—Câmpus Porto Alegre, Rio Grande do Sul, Brazil
- * E-mail:
| | - Gislene Lopes Gonçalves
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Instituto de Alta Investigación, Universidad de Tarapacá, Antofagasta, 1520 Arica, Chile
| | | |
Collapse
|
42
|
Computational screening of disease associated mutations on NPC1 gene and its structural consequence in Niemann-Pick type-C1. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s11515-014-1314-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
43
|
Kamaraj B, Purohit R. Mutational analysis of oculocutaneous albinism: a compact review. BIOMED RESEARCH INTERNATIONAL 2014; 2014:905472. [PMID: 25093188 PMCID: PMC4100393 DOI: 10.1155/2014/905472] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 06/11/2014] [Indexed: 01/17/2023]
Abstract
Oculocutaneous albinism (OCA) is an autosomal recessive disorder caused by either complete lack of or a reduction of melanin biosynthesis in the melanocytes. The OCA1A is the most severe type with a complete lack of melanin production throughout life, while the milder forms OCA1B, OCA2, OCA3, and OCA4 show some pigment accumulation over time. Mutations in TYR, OCA2, TYRP1, and SLC45A2 are mainly responsible for causing oculocutaneous albinism. Recently, two new genes SLC24A5 and C10orf11 are identified that are responsible to cause OCA6 and OCA7, respectively. Also a locus has been mapped to the human chromosome 4q24 region which is responsible for genetic cause of OCA5. In this paper, we summarized the clinical and molecular features of OCA genes. Further, we reviewed the screening of pathological mutations of OCA genes and its molecular mechanism of the protein upon mutation by in silico approach. We also reviewed TYR (T373K, N371Y, M370T, and P313R), OCA2 (R305W), TYRP1 (R326H and R356Q) mutations and their structural consequences at molecular level. It is observed that the pathological genetic mutations and their structural and functional significance of OCA genes will aid in development of personalized medicine for albinism patients.
Collapse
Affiliation(s)
- Balu Kamaraj
- Bioinformatics Division, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology University, Vellore, Tamil Nadu 632014, India
| | - Rituraj Purohit
- Bioinformatics Division, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology University, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
44
|
Kamaraj B, Rajendran V, Sethumadhavan R, Kumar CV, Purohit R. Mutational analysis of FUS gene and its structural and functional role in amyotrophic lateral sclerosis 6. J Biomol Struct Dyn 2014; 33:834-44. [DOI: 10.1080/07391102.2014.915762] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Balu Kamaraj
- School of Bio Sciences and Technology (SBST), Bioinformatics Division, Vellore Institute of Technology University, Vellore 632014, Tamil Nadu, India
| | - Vidya Rajendran
- School of Bio Sciences and Technology (SBST), Bioinformatics Division, Vellore Institute of Technology University, Vellore 632014, Tamil Nadu, India
| | - Rao Sethumadhavan
- School of Bio Sciences and Technology (SBST), Bioinformatics Division, Vellore Institute of Technology University, Vellore 632014, Tamil Nadu, India
| | - Chundi Vinay Kumar
- School of Bio Sciences and Technology (SBST), Bioinformatics Division, Vellore Institute of Technology University, Vellore 632014, Tamil Nadu, India
| | - Rituraj Purohit
- School of Bio Sciences and Technology (SBST), Bioinformatics Division, Vellore Institute of Technology University, Vellore 632014, Tamil Nadu, India
| |
Collapse
|
45
|
de Beer TAP, Laskowski RA, Parks SL, Sipos B, Goldman N, Thornton JM. Amino acid changes in disease-associated variants differ radically from variants observed in the 1000 genomes project dataset. PLoS Comput Biol 2013; 9:e1003382. [PMID: 24348229 PMCID: PMC3861039 DOI: 10.1371/journal.pcbi.1003382] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 10/22/2013] [Indexed: 12/11/2022] Open
Abstract
The 1000 Genomes Project data provides a natural background dataset for amino acid germline mutations in humans. Since the direction of mutation is known, the amino acid exchange matrix generated from the observed nucleotide variants is asymmetric and the mutabilities of the different amino acids are very different. These differences predominantly reflect preferences for nucleotide mutations in the DNA (especially the high mutation rate of the CpG dinucleotide, which makes arginine mutability very much higher than other amino acids) rather than selection imposed by protein structure constraints, although there is evidence for the latter as well. The variants occur predominantly on the surface of proteins (82%), with a slight preference for sites which are more exposed and less well conserved than random. Mutations to functional residues occur about half as often as expected by chance. The disease-associated amino acid variant distributions in OMIM are radically different from those expected on the basis of the 1000 Genomes dataset. The disease-associated variants preferentially occur in more conserved sites, compared to 1000 Genomes mutations. Many of the amino acid exchange profiles appear to exhibit an anti-correlation, with common exchanges in one dataset being rare in the other. Disease-associated variants exhibit more extreme differences in amino acid size and hydrophobicity. More modelling of the mutational processes at the nucleotide level is needed, but these observations should contribute to an improved prediction of the effects of specific variants in humans. In this paper we compare the differences between ‘natural’ and disease-associated amino acid variants at both sequence as well as structural levels. We used data from the 1000 Genomes Project (1 kG), the OMIM database and UniProtKB Humsavar. The results highlight the complex interplay of features from the level of the DNA up to protein sequence and structure. The codon CpG dinucleotide content plays a large role in determining which amino acids mutate. This in turn affects the mutability of amino acids and a clear difference was seen between non-disease and disease variants where amino acids that are naturally very mutable show the opposite trend in the disease-associated data. The current results show evidence for some selection, mainly in that the variants occur slightly more often on the surface of the protein and are much less likely to be annotated as functional than expected by chance. However we should note that even the best definition of functional, taken from structural data, is limited. Even with these caveats, it is clear that the 1 kG variants eschew functional residues as defined here, a trend which is surprisingly even stronger in the OMIM data.
Collapse
Affiliation(s)
- Tjaart A. P. de Beer
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genomes Campus, Cambridge, Cambridgeshire, United Kingdom
- * E-mail:
| | - Roman A. Laskowski
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genomes Campus, Cambridge, Cambridgeshire, United Kingdom
| | - Sarah L. Parks
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genomes Campus, Cambridge, Cambridgeshire, United Kingdom
| | - Botond Sipos
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genomes Campus, Cambridge, Cambridgeshire, United Kingdom
| | - Nick Goldman
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genomes Campus, Cambridge, Cambridgeshire, United Kingdom
| | - Janet M. Thornton
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genomes Campus, Cambridge, Cambridgeshire, United Kingdom
| |
Collapse
|
46
|
Kumar A, Rajendran V, Sethumadhavan R, Purohit R. Molecular dynamic simulation reveals damaging impact of RAC1 F28L mutation in the switch I region. PLoS One 2013; 8:e77453. [PMID: 24146998 PMCID: PMC3797686 DOI: 10.1371/journal.pone.0077453] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 09/04/2013] [Indexed: 11/18/2022] Open
Abstract
Ras-related C3 botulinum toxin substrate 1 (RAC1) is a plasma membrane-associated small GTPase which cycles between the active GTP-bound and inactive GDP-bound states. There is wide range of evidences indicating its active participation in inducing cancer-associated phenotypes. RAC1 F28L mutation (RACF28L) is a fast recycling mutation which has been implicated in several cancer associated cases. In this work we have performed molecular docking and molecular dynamics simulation (~0.3 μs) to investigate the conformational changes occurring in the mutant protein. The RMSD, RMSF and NHbonds results strongly suggested that the loss of native conformation in the Switch I region in RAC1 mutant protein could be the reason behind its oncogenic transformation. The overall results suggested that the mutant protein attained compact conformation as compared to the native. The major impact of mutation was observed in the Switch I region which might be the crucial reason behind the loss of interaction between the guanine ring and F28 residue.
Collapse
Affiliation(s)
- Ambuj Kumar
- Bioinformatics Division, School of Bio Sciences and Technology, Vellore Institute of Technology University, Vellore, Tamil Nadu, India
| | - Vidya Rajendran
- Bioinformatics Division, School of Bio Sciences and Technology, Vellore Institute of Technology University, Vellore, Tamil Nadu, India
| | - Rao Sethumadhavan
- Bioinformatics Division, School of Bio Sciences and Technology, Vellore Institute of Technology University, Vellore, Tamil Nadu, India
| | - Rituraj Purohit
- Bioinformatics Division, School of Bio Sciences and Technology, Vellore Institute of Technology University, Vellore, Tamil Nadu, India
- Human Genetics Foundation, Torino, Torino, Italy
- * E-mail:
| |
Collapse
|