1
|
Gauthier H, Zedet M, Wahab A, Baldé S, Bapst B, Lafont C, Créange A. Metabolic syndrome and the phenotype of multiple sclerosis. Rev Neurol (Paris) 2024; 180:673-681. [PMID: 38729781 DOI: 10.1016/j.neurol.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/27/2024] [Accepted: 03/07/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Comorbidities, particularly vascular comorbidities, have been shown to exacerbate the progression of disability in multiple sclerosis (MS). Metabolic syndrome (MetS) is a cluster of conditions including abdominal obesity, insulin resistance, atherogenic dyslipidemia, and vascular dysfunction, which contribute to vascular morbidity and chronic inflammation. OBJECTIVE To describe the characteristics of MetS in a cohort of MS patients and evaluate its relationship with the MS phenotype. METHODS A monocentric cohort study was conducted on MS patients, collecting demographic, clinical, radiological, and therapeutic data, as well as metabolic data including waist circumference, blood pressure, serum triglycerides, high-density lipoprotein cholesterol, and fasting blood glucose. RESULTS Among the 84 patients included in the study, 27% were diagnosed with MetS. MetS was found to be associated with secondary progressive MS (SPMS). Patients with SPMS had a higher prevalence of MetS compared to those with relapsing-remitting MS (RRMS), even after adjusting for disease duration. While MetS was associated with Expanded Disability Status Scale (EDSS) progression in the 3-year period according to univariate analysis, it did not show a significant association with disease activity. CONCLUSION This study provides evidence supporting the connection between MetS and the progression of disability in MS, independent of disease relapse activity.
Collapse
Affiliation(s)
- H Gauthier
- Service de neurologie, hôpital Henri-Mondor, centre hospitalier universitaire Henri-Mondor, AP-HP, 51, avenue du Maréchal-de-Lattre-de-Tassigny, 94010 Créteil, France; CRC SEP Grand-Paris-Est, hôpital Henri-Mondor, AP-HP, Créteil, France
| | - M Zedet
- Service de neurologie, hôpital Henri-Mondor, centre hospitalier universitaire Henri-Mondor, AP-HP, 51, avenue du Maréchal-de-Lattre-de-Tassigny, 94010 Créteil, France; CRC SEP Grand-Paris-Est, hôpital Henri-Mondor, AP-HP, Créteil, France; EA4391, université Paris-Est, Créteil, France
| | - A Wahab
- Service de neurologie, hôpital Henri-Mondor, centre hospitalier universitaire Henri-Mondor, AP-HP, 51, avenue du Maréchal-de-Lattre-de-Tassigny, 94010 Créteil, France; CRC SEP Grand-Paris-Est, hôpital Henri-Mondor, AP-HP, Créteil, France; EA4391, université Paris-Est, Créteil, France
| | - S Baldé
- CRC SEP Grand-Paris-Est, hôpital Henri-Mondor, AP-HP, Créteil, France
| | - B Bapst
- EA4391, université Paris-Est, Créteil, France; Service de neuroradiologie, hôpital Henri-Mondor, AP-HP, Créteil, France
| | - C Lafont
- IMRB, Inserm, université Paris-Est-Créteil, 94010 Créteil, France; Service de santé publique, hôpital Henri-Mondor, AP-HP, 94010 Créteil, France
| | - A Créange
- Service de neurologie, hôpital Henri-Mondor, centre hospitalier universitaire Henri-Mondor, AP-HP, 51, avenue du Maréchal-de-Lattre-de-Tassigny, 94010 Créteil, France; CRC SEP Grand-Paris-Est, hôpital Henri-Mondor, AP-HP, Créteil, France; EA4391, université Paris-Est, Créteil, France.
| |
Collapse
|
2
|
Correale J, Marrodan M. Multiple sclerosis and obesity: The role of adipokines. Front Immunol 2022; 13:1038393. [PMID: 36457996 PMCID: PMC9705772 DOI: 10.3389/fimmu.2022.1038393] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/28/2022] [Indexed: 11/24/2023] Open
Abstract
Multiple Sclerosis (MS), a chronic inflammatory disease of the central nervous system that leads to demyelination and neurodegeneration has been associated with various environmental and lifestyle factors. Population-based studies have provided evidence showing the prevalence of MS is increasing worldwide. Because a similar trend has been observed for obesity and metabolic syndrome, interest has grown in possible underlying biological mechanisms shared by both conditions. Adipokines, a family of soluble factors produced by adipose tissue that participate in a wide range of biological functions, contribute to a low state of chronic inflammation observed in obesity, and influence immune function, metabolism, and nutritional state. In this review, we aim to describe epidemiological and biological factors common to MS and obesity, as well as provide an update on current knowledge of how different pro- and anti-inflammatory adipokines participate as immune response mediators in MS, as well as in the animal model for MS, namely, experimental autoimmune encephalomyelitis (EAE). Multiple Sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) leading to demyelination, and neurodegeneration. Although its pathogenesis is not yet fully understood, there is considerable evidence to suggest MS arises from complex interactions between individual genetic susceptibility and external environmental factors. In recent decades, population-based studies have provided evidence indicating the prevalence of MS is increasing worldwide, in parallel with the rise in obesity and metabolic syndrome. This synchronous increment in the incidence of both MS and obesity has led to a search for potential biological mechanisms linking both conditions. Notably, a large number of studies have established significant correlation between obesity and higher prevalence, or worse prognosis, of several immune-mediated conditions. Fat tissue has been found to produce a variety of soluble factors named adipokines. These mediators, secreted by both adipocytes as well as diverse immune cells, participate in a wide range of biological functions, further strengthening the concept of a link between immune function, metabolism, and nutritional state. Because obesity causes overproduction of pro-inflammatory adipokines (namely leptin, resistin and visfatin) and reduction of anti-inflammatory adipokines (adiponectin and apelin), adipose tissue dysregulation would appear to contribute to a state of chronic, low-grade inflammation favoring the development of disease. In this review, we present a summary of current knowledge related to the pathological effects of different adipokines, prevalent in obese MS patients.
Collapse
Affiliation(s)
- Jorge Correale
- Departamento de Neurología, Fleni, Buenos Aires, Argentina
- Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Universidad de Buenos Aires/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | |
Collapse
|
3
|
Khan S, Pati S, Singh S, Akhtar M, Khare P, Khan S, Shafi S, Najmi AK. Targeting hypercoagulation to alleviate Alzheimer's disease progression in metabolic syndrome. Int J Obes (Lond) 2022; 46:245-254. [PMID: 34686782 DOI: 10.1038/s41366-021-00977-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 09/17/2021] [Accepted: 09/27/2021] [Indexed: 11/09/2022]
Abstract
INTRODUCTION Metabolic Syndrome (MetS) constitutes an important risk factor for Alzheimer's disease (AD); however, the mechanism linking these two disorders has not been completely elucidated. Hence, hypercoagulation may account for the missing hallmark connecting MetS and AD. The present review proposes how hemostatic imbalance triggered in MetS advances in the context of AD. MetS causes interruption of insulin signaling and inflammation, inciting insulin resistance in the brain. Subsequently, neuroinflammation and brain endothelial dysfunction are prompted that further intensify the exorbitant infiltration of circulating lipids and platelet aggregation, thereby causing hypercoagulable state, impairing fibrinolysis and eventually inducing prothrombic state in the brain leading to neurodegeneration. OBJECTIVE This study aims to understand the role of hypercoagulation in triggering the progression of neurodegeneration in MetS. It also offers a few interventions to prevent the progression of AD in MetS targeting hypercoagulation. METHODS Literature studies based on MetS related neurodegeneration, the impact of coagulation on aggravating obesity and AD via the mechanisms of BBB disruption, neuroinflammation, and hypofibrinolysis. CONCLUSION The present paper proposes the hypothesis that hypercoagulation might amplify MetS associated insulin resistance, neuroinflammation, BBB disruption, and amyloid beta accumulation which eventually leads to AD.
Collapse
Affiliation(s)
- Sana Khan
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Soumya Pati
- Translational Neurobiology Laboratory. Host Pathogen Interactions & Disease Modeling Group, Dept. of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, Pin-201314, UP, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Mohd Akhtar
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Piush Khare
- Wave Pharma Regulatory Services Limited, New Delhi, India
| | - Saba Khan
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Sadat Shafi
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
4
|
Fecal Transplantation from db/db Mice Treated with Sodium Butyrate Attenuates Ischemic Stroke Injury. Microbiol Spectr 2021; 9:e0004221. [PMID: 34612696 PMCID: PMC8510264 DOI: 10.1128/spectrum.00042-21] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The complication of type 2 diabetes (T2D) exacerbates brain infarction in acute ischemic stroke (AIS). Because butyrate-producing bacteria are decreased in T2D and butyrate has been reported to be associated with attenuated brain injury in AIS, we hypothesize that administering butyrate could ameliorate T2D-associated exacerbation of brain infarction in AIS. Therefore, we first validated that Chinese AIS patients with T2D comorbidity have significantly lower levels of fecal butyrate-producing bacteria and butyrate than AIS patients without T2D. Then, we performed a 4-week intervention in T2D mice receiving either sodium butyrate (SB) or sodium chloride (NaCl) and found that SB improved the diabetic phenotype, altered the gut microbiota, and ameliorated brain injury after stroke. Fecal samples were collected from T2D mice after SB or NaCl treatment and were transplanted into antibiotic-treated C57BL/6 mice. After 2 weeks of transplantation, the gut microbiota profile and butyrate level of recipient mice were tested, and then the recipient mice were subjected to ischemic stroke. Stroke mice that received gut microbiota from SB-treated mice had a smaller cerebral infarct volume than mice that received gut microbiota from NaCl-treated mice. This protection was also associated with improvements in gut barrier function, reduced serum levels of lipopolysaccharide (LPS), LPS binding protein (LBP), and proinflammatory cytokines, and improvements in the blood-brain barrier. IMPORTANCE Ischemic stroke is a major global health burden, and T2D is a well-known comorbidity that aggravates brain injury after ischemic stroke. However, the underlying mechanism by which T2D exacerbates stroke injury has not been completely elucidated. A large amount of evidence suggests that the gut microbiota composition affects stroke outcomes. Our results showed that the gut microbiota of T2D aggravated brain injury after ischemic stroke and could be modified by SB to afford neuroprotection against stroke injury. These findings suggest that supplementation with SB is a potential therapeutic strategy for T2D patients with ischemic stroke.
Collapse
|
5
|
Tang W, Zhu H, Feng Y, Guo R, Wan D. The Impact of Gut Microbiota Disorders on the Blood-Brain Barrier. Infect Drug Resist 2020; 13:3351-3363. [PMID: 33061482 PMCID: PMC7532923 DOI: 10.2147/idr.s254403] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 08/30/2020] [Indexed: 12/14/2022] Open
Abstract
The gut microbiota is symbiotic with the human host and has been extensively studied in recent years resulting in increasing awareness of the effects of the gut microbiota on human health. In this review, we summarize the current evidence for the effects of gut microbes on the integrity of the cerebral blood-brain barrier (BBB), focusing on the pathogenic impact of gut microbiota disorders. Based on our description and summarization of the effects of the gut microbiota and its metabolites on the nervous, endocrine, and immune systems and related signaling pathways and the resulting destruction of the BBB, we suggest that regulating and supplementing the intestinal microbiota as well as targeting immune cells and inflammatory mediators are required to protect the BBB.
Collapse
Affiliation(s)
- Wei Tang
- Department of Emergency & Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Huifeng Zhu
- College of Pharmaceutical Sciences & Chinese Medicine, Southwest University, Chongqing 400716, People's Republic of China
| | - Yanmei Feng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Rui Guo
- Department of Emergency & Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Dong Wan
- Department of Emergency & Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| |
Collapse
|
6
|
Van Dyken P, Lacoste B. Impact of Metabolic Syndrome on Neuroinflammation and the Blood-Brain Barrier. Front Neurosci 2018; 12:930. [PMID: 30618559 PMCID: PMC6297847 DOI: 10.3389/fnins.2018.00930] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/27/2018] [Indexed: 12/29/2022] Open
Abstract
Metabolic syndrome, which includes diabetes and obesity, is one of the most widespread medical conditions. It induces systemic inflammation, causing far reaching effects on the body that are still being uncovered. Neuropathologies triggered by metabolic syndrome often result from increased permeability of the blood-brain-barrier (BBB). The BBB, a system designed to restrict entry of toxins, immune cells, and pathogens to the brain, is vital for proper neuronal function. Local and systemic inflammation induced by obesity or type 2 diabetes mellitus can cause BBB breakdown, decreased removal of waste, and increased infiltration of immune cells. This leads to disruption of glial and neuronal cells, causing hormonal dysregulation, increased immune sensitivity, or cognitive impairment depending on the affected brain region. Inflammatory effects of metabolic syndrome have been linked to neurodegenerative diseases. In this review, we discuss the effects of obesity and diabetes-induced inflammation on the BBB, the roles played by leptin and insulin resistance, as well as BBB changes occurring at the molecular level. We explore signaling pathways including VEGF, HIFs, PKC, Rho/ROCK, eNOS, and miRNAs. Finally, we discuss the broader implications of neural inflammation, including its connection to Alzheimer's disease, multiple sclerosis, and the gut microbiome.
Collapse
Affiliation(s)
- Peter Van Dyken
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Baptiste Lacoste
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
7
|
Wise ES, Brophy CM. The Case for Endothelial Preservation via Pressure-Regulated Distension in the Preparation of Autologous Saphenous Vein Conduits in Cardiac and Peripheral Bypass Operations. Front Surg 2016; 3:54. [PMID: 27713879 PMCID: PMC5031700 DOI: 10.3389/fsurg.2016.00054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 09/12/2016] [Indexed: 12/04/2022] Open
Affiliation(s)
- Eric S Wise
- Department of Surgery, University of Maryland Medical Center , Baltimore, MD , USA
| | - Colleen M Brophy
- VA Tennessee Valley Healthcare System, Vanderbilt University, Nashville, TN, USA; Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|