1
|
Abstract
Stem cell therapies are being explored for the treatment of various diseases, including haematological disease, immune disease, neurodegenerative disease, and tissue injuries. Alternatively, stem cell-derived exosomes may provide similar clinical benefits without the biosafety concerns associated with the transplantation of living cells. However, large-scale manufacturing and purification, batch-to-batch variation, and analysis of the complex cargos of exosomes will need to be addressed to enable their clinical translation.
Collapse
Affiliation(s)
- Kaiyue Zhang
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Ke Cheng
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| |
Collapse
|
2
|
Song WP, Jin LY, Zhu MD, Wang H, Xia DS. Clinical trials using dental stem cells: 2022 update. World J Stem Cells 2023; 15:31-51. [PMID: 37007456 PMCID: PMC10052340 DOI: 10.4252/wjsc.v15.i3.31] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/20/2023] [Accepted: 03/08/2023] [Indexed: 03/23/2023] Open
Abstract
For nearly 20 years, dental stem cells (DSCs) have been successfully isolated from mature/immature teeth and surrounding tissue, including dental pulp of permanent teeth and exfoliated deciduous teeth, periodontal ligaments, dental follicles, and gingival and apical papilla. They have several properties (such as self-renewal, multidirectional differentiation, and immunomodulation) and exhibit enormous potential for clinical applications. To date, many clinical articles and clinical trials using DSCs have reported the treatment of pulpitis, periapical lesions, periodontitis, cleft lip and palate, acute ischemic stroke, and so on, and DSC-based therapies obtained satisfactory effects in most clinical trials. In these studies, no adverse events were reported, which suggested the safety of DSC-based therapy. In this review, we outline the characteristics of DSCs and summarize clinical trials and their safety as DSC-based therapies. Meanwhile, we also present the current limitations and perspectives of DSC-based therapy (such as harvesting DSCs from inflamed tissue, applying DSC-conditioned medium/DSC-derived extracellular vesicles, and expanding-free strategies) to provide a theoretical basis for their clinical applications.
Collapse
Affiliation(s)
- Wen-Peng Song
- Department of Stomatology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Lu-Yuan Jin
- Department of General Dentistry and Integrated Emergency Dental Care, Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, China
| | - Meng-Di Zhu
- Department of General Dentistry and Integrated Emergency Dental Care, Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, China
| | - Hao Wang
- Department of Stomatology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Deng-Sheng Xia
- Department of General Dentistry and Integrated Emergency Dental Care, Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, China.
| |
Collapse
|
3
|
Kang W, Liang Q, Du L, Shang L, Wang T, Ge S. Sequential application of bFGF and BMP-2 facilitates osteogenic differentiation of human periodontal ligament stem cells. J Periodontal Res 2019; 54:424-434. [DOI: 10.1111/jre.12644] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 12/12/2018] [Accepted: 02/01/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Wenyan Kang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration; School of Stomatology; Shandong University; Jinan China
- Department of Periodontology; School of Stomatology; Shandong University; Jinan China
| | - Qianyu Liang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration; School of Stomatology; Shandong University; Jinan China
- Department of Periodontology; School of Stomatology; Shandong University; Jinan China
| | - Lingqian Du
- Department of Stomatology; The Second Hospital of Shandong University; Jinan China
| | - Lingling Shang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration; School of Stomatology; Shandong University; Jinan China
- Department of Periodontology; School of Stomatology; Shandong University; Jinan China
| | - Ting Wang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration; School of Stomatology; Shandong University; Jinan China
- Department of Periodontology; School of Stomatology; Shandong University; Jinan China
| | - Shaohua Ge
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration; School of Stomatology; Shandong University; Jinan China
- Department of Periodontology; School of Stomatology; Shandong University; Jinan China
| |
Collapse
|
4
|
Kirby RJ, Divlianska DB, Whig K, Bryan N, Morfa CJ, Koo A, Nguyen KH, Maloney P, Peddibhotla S, Sessions EH, Hershberger PM, Smith LH, Malany S. Discovery of Novel Small-Molecule Inducers of Heme Oxygenase-1 That Protect Human iPSC-Derived Cardiomyocytes from Oxidative Stress. J Pharmacol Exp Ther 2017; 364:87-96. [PMID: 29101218 DOI: 10.1124/jpet.117.243717] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/31/2017] [Indexed: 01/09/2023] Open
Abstract
Oxidative injury to cardiomyocytes plays a critical role in cardiac pathogenesis following myocardial infarction. Transplantation of stem cell-derived cardiomyocytes has recently progressed as a novel treatment to repair damaged cardiac tissue but its efficacy has been limited by poor survival of transplanted cells owing to oxidative stress in the post-transplantation environment. Identification of small molecules that activate cardioprotective pathways to prevent oxidative damage and increase survival of stem cells post-transplantation is therefore of great interest for improving the efficacy of stem cell therapies. This report describes a chemical biology phenotypic screening approach to identify and validate small molecules that protect human-induced pluripotent stem cell cardiomyocytes (hiPSC-CMs) from oxidative stress. A luminescence-based high-throughput assay for cell viability was used to screen a diverse collection of 48,640 small molecules for protection of hiPSC-CMs from peroxide-induced cell death. Cardioprotective activity of "hit" compounds was confirmed using impedance-based detection of cardiomyocyte monolayer integrity and contractile function. Structure-activity relationship studies led to the identification of a potent class of compounds with 4-(pyridine-2-yl)thiazole scaffold. Examination of gene expression in hiPSC-CMs revealed that the hit compound, designated cardioprotectant 312 (CP-312), induces robust upregulation of heme oxygenase-1, a marker of the antioxidant response network that has been strongly correlated with protection of cardiomyocytes from oxidative stress. CP-312 therefore represents a novel chemical scaffold identified by phenotypic high-throughput screening using hiPSC-CMs that activates the antioxidant defense response and may lead to improved pharmacological cardioprotective therapies.
Collapse
Affiliation(s)
- R Jason Kirby
- Sanford Burham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, Orlando, Florida
| | - Daniela B Divlianska
- Sanford Burham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, Orlando, Florida
| | - Kanupriya Whig
- Sanford Burham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, Orlando, Florida
| | - Nadezda Bryan
- Sanford Burham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, Orlando, Florida
| | - Camilo J Morfa
- Sanford Burham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, Orlando, Florida
| | - Ada Koo
- Sanford Burham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, Orlando, Florida
| | - Kevin H Nguyen
- Sanford Burham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, Orlando, Florida
| | - Patrick Maloney
- Sanford Burham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, Orlando, Florida
| | - Satayamaheshwar Peddibhotla
- Sanford Burham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, Orlando, Florida
| | - E Hampton Sessions
- Sanford Burham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, Orlando, Florida
| | - Paul M Hershberger
- Sanford Burham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, Orlando, Florida
| | - Layton H Smith
- Sanford Burham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, Orlando, Florida
| | - Siobhan Malany
- Sanford Burham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, Orlando, Florida
| |
Collapse
|
5
|
Wang H, Lau BWM, Wang NL, Wang SY, Lu QJ, Chang RCC, So KF. Lycium barbarum polysaccharides promotes in vivo proliferation of adult rat retinal progenitor cells. Neural Regen Res 2016; 10:1976-81. [PMID: 26889185 PMCID: PMC4730821 DOI: 10.4103/1673-5374.172315] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Lycium barbarum is a widely used Chinese herbal medicine prescription for protection of optic nerve. However, it remains unclear regarding the effects of Lycium barbarum polysaccharides, the main component of Lycium barbarum, on in vivo proliferation of adult ciliary body cells. In this study, adult rats were intragastrically administered low- and high-dose Lycium barbarum polysaccharides (1 and 10 mg/kg) for 35 days and those intragastrically administered phosphate buffered saline served as controls. The number of Ki-67-positive cells in rat ciliary body in the Lycium barbarum polysaccharides groups, in particular low-dose Lycium barbarum polysaccharides group, was significantly greater than that in the phosphate buffered saline group. Ki-67-positive rat ciliary body cells expressed nestin but they did not express glial fibrillary acidic protein. These findings suggest that Lycium barbarum polysaccharides can promote the proliferation of adult rat retinal progenitor cells and the proliferated cells present with neuronal phenotype.
Collapse
Affiliation(s)
- Hua Wang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China
| | - Benson Wui-Man Lau
- Department of Rehabilitation Science, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Ning-Li Wang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China
| | - Si-Ying Wang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China
| | - Qing-Jun Lu
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China
| | - Raymond Chuen-Chung Chang
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, China; Research Centre of Heart, Brain, Hormone and Healthy Aging, Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Kwok-Fai So
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, China; GMH Institute of Central Nervous System Regeneration, Jinan University, Guangzhou, Guangdong Province, China; Research Centre of Heart, Brain, Hormone and Healthy Aging, Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| |
Collapse
|
6
|
Anisimov SV. Stem cell therapy for neurodegenerative diseases: mind the gap. FUTURE NEUROLOGY 2014. [DOI: 10.2217/fnl.13.64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Sergey V Anisimov
- Research Unit of Cellular & Genetic Engineering, VA Almazov Federal Center for Heart, Blood & Endocrinology, Akkuratova Street 2, Saint Petersburg, 197341, Russiaand Department of Intracellular Signaling & Transport, Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, Russia
| |
Collapse
|
7
|
Diniz B, Thomas P, Thomas B, Ribeiro R, Hu Y, Brant R, Ahuja A, Zhu D, Liu L, Koss M, Maia M, Chader G, Hinton DR, Humayun MS. Subretinal implantation of retinal pigment epithelial cells derived from human embryonic stem cells: improved survival when implanted as a monolayer. Invest Ophthalmol Vis Sci 2013; 54:5087-96. [PMID: 23833067 DOI: 10.1167/iovs.12-11239] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
PURPOSE To evaluate cell survival and tumorigenicity of human embryonic stem cell-derived retinal pigment epithelium (hESC-RPE) transplantation in immunocompromised nude rats. Cells were transplanted as a cell suspension (CS) or as a polarized monolayer plated on a parylene membrane (PM). METHODS Sixty-nine rats (38 male, 31 female) were surgically implanted with CS (n = 33) or PM (n = 36). Cohort subsets were killed at 1, 6, and 12 months after surgery. Both ocular tissues and systemic organs (brain, liver, kidneys, spleen, heart, and lungs) were fixed in 4% paraformaldehyde, embedded in paraffin, and sectioned. Every fifth section was stained with hematoxylin and eosin and analyzed histologically. Adjacent sections were processed for immunohistochemical analysis (as needed) using the following antibodies: anti-RPE65 (RPE-specific marker), anti-TRA-1-85 (human cell marker), anti-Ki67 (proliferation marker), anti-CD68 (macrophage), and anti-cytokeratin (epithelial marker). RESULTS The implanted cells were immunopositive for the RPE65 and TRA-1-85. Cell survival (P = 0.006) and the presence of a monolayer (P < 0.001) of hESC-RPE were significantly higher in eyes that received the PM. Gross morphological and histological analysis of the eye and the systemic organs after the surgery revealed no evidence of tumor or ectopic tissue formation in either group. CONCLUSIONS hESC-RPE can survive for at least 12 months in an immunocompromised animal model. Polarized monolayers of hESC-RPE show improved survival compared to cell suspensions. The lack of teratoma or any ectopic tissue formation in the implanted rats bodes well for similar results with respect to safety in human subjects.
Collapse
Affiliation(s)
- Bruno Diniz
- Doheny Eye Institute, Los Angeles, California, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Berdasco M, Melguizo C, Prados J, Gómez A, Alaminos M, Pujana MA, Lopez M, Setien F, Ortiz R, Zafra I, Aranega A, Esteller M. DNA methylation plasticity of human adipose-derived stem cells in lineage commitment. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:2079-93. [PMID: 23031258 DOI: 10.1016/j.ajpath.2012.08.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 08/17/2012] [Accepted: 08/23/2012] [Indexed: 01/28/2023]
Abstract
Adult stem cells have an enormous potential for clinical use in regenerative medicine that avoids many of the drawbacks characteristic of embryonic stem cells and induced pluripotent stem cells. In this context, easily obtainable human adipose-derived stem cells offer an interesting option for future strategies in regenerative medicine. However, little is known about their repertoire of differentiation capacities, how closely they resemble the target primary tissues, and the potential safety issues associated with their use. DNA methylation is one of the most widely recognized epigenetic factors involved in cellular identity, prompting us to consider how the analyses of 27,578 CpG sites in the genome of these cells under different conditions reflect their different natural history. We show that human adipose-derived stem cells generate myogenic and osteogenic lineages that share much of the DNA methylation landscape characteristic of primary myocytes and osteocytes. Most important, adult stem cells and in vitro-generated myocytes and osteocytes display a significantly different DNA methylome from that observed in transformed cells from these tissue types, such as rhabdomyosarcoma and osteosarcoma. These results suggest that the plasticity of the DNA methylation patterns plays an important role in lineage commitment of adult stem cells and that it could be used for clinical purposes as a biomarker of efficient and safely differentiated cells.
Collapse
Affiliation(s)
- María Berdasco
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program, Bellvitge Biomedical Biomedical Research Institute, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Ogura A, Morizane A, Nakajima Y, Miyamoto S, Takahashi J. γ-secretase inhibitors prevent overgrowth of transplanted neural progenitors derived from human-induced pluripotent stem cells. Stem Cells Dev 2012; 22:374-82. [PMID: 23020188 DOI: 10.1089/scd.2012.0198] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Although transplanted pluripotent stem cell-derived neurons can contribute to functional recovery in animal models of Parkinson's disease, the risk of tumor formation hinders clinical applications of this approach. Removing undifferentiated cells from the donor population is critical to reduce tumorigenesis. Moreover, immature neural progenitors in transplants can proliferate unpredictably, resulting in neural overgrowth and long-term risks of compressing the surrounding host tissue. Because Notch signaling plays a role in maintaining the multipotency and proliferative capacity of neural progenitors, we used γ-secretase inhibitors (GSIs) to dampen Notch signaling in human-induced pluripotent stem cell-derived neural progenitors before transplantation and examined the effects on the growth of proliferative grafts. We observed a marked reduction in the percentage of dividing cells and increased neuronal maturation in GSI-treated samples in vitro. Next, grafts were transplanted into the striata of nonobese diabetic/severe combined immune deficiency mice. Histological analyses performed 8 weeks after the operation showed that grafts pretreated with GSIs--N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester or compound E--were significantly smaller than control samples. Immunohistologic analyses revealed that briefly treating the donor population with GSIs not only reduced the graft volume, but also altered the composition of the graft; control grafts showed neural overgrowth with numerous PAX6+ and Ki67+ neural rosettes, whereas GSI-treated samples developed into mature neuronal grafts containing primarily Tubβ3+ cells. These results suggest that pretreating potentially proliferative progenitors with GSIs may improve the safety of cell replacement therapies using pluripotent stem cells.
Collapse
Affiliation(s)
- Aya Ogura
- Department of Biological Repair, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | | | | | | | | |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW Studying heterogeneous populations, such as hematopoietic stem cells (HSCs), requires continuous long-term observation of living cells at the single-cell level. The purpose of this review is to discuss recent advances in technologies required for continuous single-cell analysis and the contribution of this approach to find answers in hematopoiesis research. RECENT FINDINGS Continuous long-term imaging at the single-cell level still requires custom-made hardware, software and manual in-depth analysis of large amounts of data. Despite these technical difficulties, continuous time-lapse imaging and single-cell tracking are increasingly used in hematopoiesis research. It has already contributed to answering decades-old questions. SUMMARY Continuous long-term single-cell analysis is indispensable for a comprehensive analysis of dynamic processes in heterogeneous cell populations. Despite many remaining technological hurdles, this approach is increasingly used in hematopoiesis research.
Collapse
|
11
|
Schriebl K, Satianegara G, Hwang A, Tan HL, Fong WJ, Yang HH, Jungbauer A, Choo A. Selective Removal of Undifferentiated Human Embryonic Stem Cells Using Magnetic Activated Cell Sorting Followed by a Cytotoxic Antibody. Tissue Eng Part A 2012; 18:899-909. [DOI: 10.1089/ten.tea.2011.0311] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Kornelia Schriebl
- Bioprocessing Technology Institute, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
| | - Gernalia Satianegara
- Bioprocessing Technology Institute, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
| | - Austin Hwang
- Bioprocessing Technology Institute, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
| | - Heng Liang Tan
- Bioprocessing Technology Institute, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
| | - Wey Jia Fong
- Bioprocessing Technology Institute, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
| | - Henry He Yang
- Singapore Immunology Network, A*STAR (Agency of Science, Technology and Research), Biopolis, Singapore
| | - Alois Jungbauer
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Andre Choo
- Bioprocessing Technology Institute, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
| |
Collapse
|
12
|
Goldring CEP, Duffy PA, Benvenisty N, Andrews PW, Ben-David U, Eakins R, French N, Hanley NA, Kelly L, Kitteringham NR, Kurth J, Ladenheim D, Laverty H, McBlane J, Narayanan G, Patel S, Reinhardt J, Rossi A, Sharpe M, Park BK. Assessing the safety of stem cell therapeutics. Cell Stem Cell 2012; 8:618-28. [PMID: 21624806 DOI: 10.1016/j.stem.2011.05.012] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Unprecedented developments in stem cell research herald a new era of hope and expectation for novel therapies. However, they also present a major challenge for regulators since safety assessment criteria, designed for conventional agents, are largely inappropriate for cell-based therapies. This article aims to set out the safety issues pertaining to novel stem cell-derived treatments, to identify knowledge gaps that require further research, and to suggest a roadmap for developing safety assessment criteria. It is essential that regulators, pharmaceutical providers, and safety scientists work together to frame new safety guidelines, based on "acceptable risk," so that patients are adequately protected but the safety "bar" is not set so high that exciting new treatments are lost.
Collapse
Affiliation(s)
- Chris E P Goldring
- MRC Centre for Drug Safety Science, Division of Molecular & Clinical Pharmacology, The Institute of Translational Medicine, The University of Liverpool, Liverpool L69 3GE, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Castaneda RT, Boddington S, Henning TD, Wendland M, Mandrussow L, Liu S, Daldrup-Link H. Labeling human embryonic stem-cell-derived cardiomyocytes for tracking with MR imaging. Pediatr Radiol 2011; 41:1384-92. [PMID: 21594541 DOI: 10.1007/s00247-011-2130-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 04/12/2011] [Accepted: 04/18/2011] [Indexed: 12/21/2022]
Abstract
BACKGROUND Human embryonic stem cells (hESC) can generate cardiomyocytes (CM), which offer promising treatments for cardiomyopathies in children. However, challenges for clinical translation result from loss of transplanted cell from target sites and high cell death. An imaging technique that noninvasively and repetitively monitors transplanted hESC-CM could guide improvements in transplantation techniques and advance therapies. OBJECTIVE To develop a clinically applicable labeling technique for hESC-CM with FDA-approved superparamagnetic iron oxide nanoparticles (SPIO) by examining labeling before and after CM differentiation. MATERIALS AND METHODS Triplicates of hESC were labeled by simple incubation with 50 μg/ml of ferumoxides before or after differentiation into CM, then imaged on a 7T MR scanner using a T2-weighted multi-echo spin-echo sequence. Viability, iron uptake and T2-relaxation times were compared between groups using t-tests. RESULTS hESC-CM labeled before differentiation demonstrated significant MR effects, iron uptake and preserved function. hESC-CM labeled after differentiation showed no significant iron uptake or change in MR signal (P < 0.05). Morphology, differentiation and viability were consistent between experimental groups. CONCLUSION hESC-CM should be labeled prior to CM differentiation to achieve a significant MR signal. This technique permits monitoring delivery and engraftment of hESC-CM for potential advancements of stem cell-based therapies in the reconstitution of damaged myocardium.
Collapse
Affiliation(s)
- Rosalinda T Castaneda
- Pediatric Radiology, Lucile Packard Children's Hospital, Stanford School of Medicine, Stanford, CA 94305-5654, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
Effects of histocompatibility and host immune responses on the tumorigenicity of pluripotent stem cells. Semin Immunopathol 2011; 33:573-91. [PMID: 21461989 PMCID: PMC3204002 DOI: 10.1007/s00281-011-0266-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 03/16/2011] [Indexed: 12/11/2022]
Abstract
Pluripotent stem cells hold great promises for regenerative medicine. They might become useful as a universal source for a battery of new cell replacement therapies. Among the major concerns for the clinical application of stem cell-derived grafts are the risks of immune rejection and tumor formation. Pluripotency and tumorigenicity are closely linked features of pluripotent stem cells. However, the capacity to form teratomas or other tumors is not sufficiently described by inherited features of a stem cell line or a stem cell-derived graft. The tumorigenicity always depends on the inability of the recipient to reject the tumorigenic cells. This review summarizes recent data on the tumorigenicity of pluripotent stem cells in immunodeficient, syngeneic, allogeneic, and xenogeneic hosts. The effects of immunosuppressive treatment and cell differentiation are discussed. Different immune effector mechanisms appear to be involved in the rejection of undifferentiated and differentiated cell populations. Elements of the innate immune system, such as natural killer cells and the complement system, which are active also in syngeneic recipients, appear to preferentially reject undifferentiated cells. This effect could reduce the risk of tumor formation in immunocompetent recipients. Cell differentiation apparently increases susceptibility to rejection by the adaptive immune system in allogeneic hosts. The current data suggest that the immune system of the recipient has a major impact on the outcome of pluripotent stem cell transplantation, whether it is rejection, engraftment, or tumor development. This has to be considered when the results of experimental transplantation models are interpreted and even more when translation into clinics is planned.
Collapse
|