1
|
Mohite P, Puri A, Dave R, Budar A, Munde S, Ghosh SB, Alqahtani T, Shmrany HA, Kumer A, Dhara B. Unlocking the therapeutic potential: odyssey of induced pluripotent stem cells in precision cell therapies. Int J Surg 2024; 110:6432-6455. [PMID: 38963728 PMCID: PMC11487032 DOI: 10.1097/js9.0000000000001892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/17/2024] [Indexed: 07/06/2024]
Abstract
This review explores the application of induced pluripotent stem cells (iPSCs) in regenerative medicine. The therapeutic significance of iPSC-derived cell therapy within regenerative medicine, emphasizes their reprogramming process and crucial role in cellular differentiation while setting the purpose and scope for the comprehensive exploration of iPSC-derived cell therapy. The subsequent sections intricately examine iPSC-derived cell therapy, unraveling the diverse derivatives of iPSCs and striking a delicate balance between advantages and limitations in therapeutic applications. Mechanisms of action, revealing how iPSC-derived cells seamlessly integrate into tissues, induce regeneration, and contribute to disease modeling and drug screening advancements is discussed. The analysis extends to clinical trials, shedding light on outcomes, safety considerations, and ethical dimensions. Challenges and concerns, including the risk of tumorigenesis and scalability issues, are explored. The focus extends to disease-specific applications, showcasing iPSC-derived cell therapy as a promising avenue for various medical conditions, supported by illustrative case studies. Future directions and research needs are outlined, identifying areas for further exploration, safety considerations and potential enhancements that will shape the future landscape of iPSC-derived therapies. In conclusion, this review provides a significant understanding of iPSC-derived cell therapy's status that contemplates the implications for regenerative medicine and personalized treatment using iPSCs, offering a comprehensive perspective on the evolving field within the confines of a dynamic and promising scientific frontier.
Collapse
Affiliation(s)
- Popat Mohite
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra
| | - Abhijeet Puri
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra
| | - Roshan Dave
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra
| | - Aarati Budar
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra
| | - Shubham Munde
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra
| | - Shruti Bagchi Ghosh
- Department of Pharmaceutical Chemistry, Calcutta Institute of Pharmaceutical Technology and Allied Health Science, Uluberia, Howrah
| | - Taha Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha
| | - Humood Al Shmrany
- Department of Medical Laboratory Sciences, College of Applied medical sciences, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Ajoy Kumer
- Department of Chemistry, IUBAT-International University of Business Agriculture & Technology, Dhaka, Bangladesh
| | - Bikram Dhara
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India
- Department of Health Sciences, Novel Global Community and Educational Foundation. Hebersham, NSW, Australia
| |
Collapse
|
2
|
Domínguez LM, Bueloni B, Cantero MJ, Albornoz M, Pacienza N, Biani C, Luzzani C, Miriuka S, García M, Atorrasagasti C, Yannarelli G, Bayo J, Fiore E, Mazzolini G. Chromatographic Scalable Method to Isolate Engineered Extracellular Vesicles Derived from Mesenchymal Stem Cells for the Treatment of Liver Fibrosis in Mice. Int J Mol Sci 2023; 24:ijms24119586. [PMID: 37298538 DOI: 10.3390/ijms24119586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
New therapeutic options for liver cirrhosis are needed. Mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) have emerged as a promising tool for delivering therapeutic factors in regenerative medicine. Our aim is to establish a new therapeutic tool that employs EVs derived from MSCs to deliver therapeutic factors for liver fibrosis. EVs were isolated from supernatants of adipose tissue MSCs, induced-pluripotent-stem-cell-derived MSCs, and umbilical cord perivascular cells (HUCPVC-EVs) by ion exchange chromatography (IEC). To produce engineered EVs, HUCPVCs were transduced with adenoviruses that code for insulin-like growth factor 1 (AdhIGF-I-HUCPVC-EVs) or green fluorescent protein. EVs were characterized by electron microscopy, flow cytometry, ELISA, and proteomic analysis. We evaluated EVs' antifibrotic effect in thioacetamide-induced liver fibrosis in mice and on hepatic stellate cells in vitro. We found that IEC-isolated HUCPVC-EVs have an analogous phenotype and antifibrotic activity to those isolated by ultracentrifugation. EVs derived from the three MSCs sources showed a similar phenotype and antifibrotic potential. EVs derived from AdhIGF-I-HUCPVC carried IGF-1 and showed a higher therapeutic effect in vitro and in vivo. Remarkably, proteomic analysis revealed that HUCPVC-EVs carry key proteins involved in their antifibrotic process. This scalable MSC-derived EV manufacturing strategy is a promising therapeutic tool for liver fibrosis.
Collapse
Affiliation(s)
- Luciana M Domínguez
- Laboratorio de Terapia Génica, Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral-CONICET, Pilar B1629, Buenos Aires, Argentina
| | - Bárbara Bueloni
- Laboratorio de Terapia Génica, Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral-CONICET, Pilar B1629, Buenos Aires, Argentina
| | - Ma José Cantero
- Laboratorio de Terapia Génica, Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral-CONICET, Pilar B1629, Buenos Aires, Argentina
| | - Milagros Albornoz
- Laboratorio de Terapia Génica, Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral-CONICET, Pilar B1629, Buenos Aires, Argentina
| | - Natalia Pacienza
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Ciudad Autónoma de Buenos Aires C1078, Argentina
| | - Celeste Biani
- LIAN-CONICET, Fleni, Belén de Escobar B1625, Buenos Aires, Argentina
| | - Carlos Luzzani
- LIAN-CONICET, Fleni, Belén de Escobar B1625, Buenos Aires, Argentina
| | - Santiago Miriuka
- LIAN-CONICET, Fleni, Belén de Escobar B1625, Buenos Aires, Argentina
| | - Mariana García
- Laboratorio de Terapia Génica, Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral-CONICET, Pilar B1629, Buenos Aires, Argentina
| | - Catalina Atorrasagasti
- Laboratorio de Terapia Génica, Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral-CONICET, Pilar B1629, Buenos Aires, Argentina
| | - Gustavo Yannarelli
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Ciudad Autónoma de Buenos Aires C1078, Argentina
| | - Juan Bayo
- Laboratorio de Terapia Génica, Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral-CONICET, Pilar B1629, Buenos Aires, Argentina
| | - Esteban Fiore
- Laboratorio de Terapia Génica, Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral-CONICET, Pilar B1629, Buenos Aires, Argentina
| | - Guillermo Mazzolini
- Laboratorio de Terapia Génica, Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral-CONICET, Pilar B1629, Buenos Aires, Argentina
- Liver Unit, Hospital Universitario Austral, Universidad Austral-CONICET, Pilar B1629, Buenos Aires, Argentina
| |
Collapse
|
3
|
Zamorano M, Castillo RL, Beltran JF, Herrera L, Farias JA, Antileo C, Aguilar-Gallardo C, Pessoa A, Calle Y, Farias JG. Tackling Ischemic Reperfusion Injury With the Aid of Stem Cells and Tissue Engineering. Front Physiol 2021; 12:705256. [PMID: 34603075 PMCID: PMC8484708 DOI: 10.3389/fphys.2021.705256] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/11/2021] [Indexed: 01/14/2023] Open
Abstract
Ischemia is a severe condition in which blood supply, including oxygen (O), to organs and tissues is interrupted and reduced. This is usually due to a clog or blockage in the arteries that feed the affected organ. Reinstatement of blood flow is essential to salvage ischemic tissues, restoring O, and nutrient supply. However, reperfusion itself may lead to major adverse consequences. Ischemia-reperfusion injury is often prompted by the local and systemic inflammatory reaction, as well as oxidative stress, and contributes to organ and tissue damage. In addition, the duration and consecutive ischemia-reperfusion cycles are related to the severity of the damage and could lead to chronic wounds. Clinical pathophysiological conditions associated with reperfusion events, including stroke, myocardial infarction, wounds, lung, renal, liver, and intestinal damage or failure, are concomitant in due process with a disability, morbidity, and mortality. Consequently, preventive or palliative therapies for this injury are in demand. Tissue engineering offers a promising toolset to tackle ischemia-reperfusion injuries. It devises tissue-mimetics by using the following: (1) the unique therapeutic features of stem cells, i.e., self-renewal, differentiability, anti-inflammatory, and immunosuppressants effects; (2) growth factors to drive cell growth, and development; (3) functional biomaterials, to provide defined microarchitecture for cell-cell interactions; (4) bioprocess design tools to emulate the macroscopic environment that interacts with tissues. This strategy allows the production of cell therapeutics capable of addressing ischemia-reperfusion injury (IRI). In addition, it allows the development of physiological-tissue-mimetics to study this condition or to assess the effect of drugs. Thus, it provides a sound platform for a better understanding of the reperfusion condition. This review article presents a synopsis and discusses tissue engineering applications available to treat various types of ischemia-reperfusions, ultimately aiming to highlight possible therapies and to bring closer the gap between preclinical and clinical settings.
Collapse
Affiliation(s)
- Mauricio Zamorano
- Department of Chemical Engineering, Universidad de La Frontera, Temuco, Chile
| | | | - Jorge F Beltran
- Department of Chemical Engineering, Universidad de La Frontera, Temuco, Chile
| | - Lisandra Herrera
- Department of Chemical Engineering, Universidad de La Frontera, Temuco, Chile
| | - Joaquín A Farias
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibíñtez, Santiago, Chile
| | - Christian Antileo
- Department of Chemical Engineering, Universidad de La Frontera, Temuco, Chile
| | - Cristobal Aguilar-Gallardo
- Hematological Transplant and Cell Therapy Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Adalberto Pessoa
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Yolanda Calle
- Department of Life Sciences, Whitelands College, University of Roehampton, London, United Kingdom
| | - Jorge G Farias
- Department of Chemical Engineering, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
4
|
Li C, Mills Z, Zheng Z. Novel cell sources for bone regeneration. MedComm (Beijing) 2021; 2:145-174. [PMID: 34766140 PMCID: PMC8491221 DOI: 10.1002/mco2.51] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 01/09/2023] Open
Abstract
A plethora of both acute and chronic conditions, including traumatic, degenerative, malignant, or congenital disorders, commonly induce bone disorders often associated with severe persisting pain and limited mobility. Over 1 million surgical procedures involving bone excision, bone grafting, and fracture repair are performed each year in the U.S. alone, resulting in immense levels of public health challenges and corresponding financial burdens. Unfortunately, the innate self-healing capacity of bone is often inadequate for larger defects over a critical size. Moreover, as direct transplantation of committed osteoblasts is hindered by deficient cell availability, limited cell spreading, and poor survivability, an urgent need for novel cell sources for bone regeneration is concurrent. Thanks to the development in stem cell biology and cell reprogramming technology, many multipotent and pluripotent cells that manifest promising osteogenic potential are considered the regenerative remedy for bone defects. Considering these cells' investigation is still in its relative infancy, each of them offers their own particular challenges that must be conquered before the large-scale clinical application.
Collapse
Affiliation(s)
- Chenshuang Li
- Department of Orthodontics, School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Zane Mills
- College of DentistryUniversity of OklahomaOklahoma CityOklahomaUSA
| | - Zhong Zheng
- Division of Growth and Development, School of DentistryUniversity of CaliforniaLos AngelesCaliforniaUSA
- Department of Surgery, David Geffen School of MedicineUniversity of CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
5
|
Abstract
Derivation of induced Pluripotent Stem Cells (iPSCs) by reprogramming somatic cells to a pluripotent state has revolutionized stem cell research. Ensuing this, various groups have used genetic and non-genetic approaches to generate iPSCs from numerous cell types. However, achieving a pluripotent state in most of the reprogramming studies is marred by serious limitations such as low reprogramming efficiency and slow kinetics. These limitations are mainly due to the presence of potent barriers that exist during reprogramming when a mature cell is coaxed to achieve a pluripotent state. Several studies have revealed that intrinsic factors such as non-optimal stoichiometry of reprogramming factors, specific signaling pathways, cellular senescence, pluripotency-inhibiting transcription factors and microRNAs act as a roadblock. In addition, the epigenetic state of somatic cells and specific epigenetic modifications that occur during reprogramming also remarkably impede the generation of iPSCs. In this review, we present a comprehensive overview of the barriers that inhibit reprogramming and the understanding of which will pave the way to develop safe strategies for efficient reprogramming.
Collapse
|
6
|
Yang P, Li C, Lee M, Marzvanyan A, Zhao Z, Ting K, Soo C, Zheng Z. Photopolymerizable Hydrogel-Encapsulated Fibromodulin-Reprogrammed Cells for Muscle Regeneration. Tissue Eng Part A 2020; 26:1112-1122. [PMID: 32323608 DOI: 10.1089/ten.tea.2020.0026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A central challenge in tissue engineering is obtaining a suitable cell type with a capable delivery vehicle to replace or repair damaged or diseased tissues with tissue mimics. Notably, for skeletal muscle tissue engineering, given the inadequate availability and regenerative capability of endogenous myogenic progenitor cells as well as the tumorigenic risks presented by the currently available pluri- and multipotent stem cells, seeking a safe regenerative cell source is urgently demanded. To conquer this problem, we previously established a novel reprogramming technology that can generate multipotent cells from dermal fibroblasts using a single protein, fibromodulin (FMOD). The yield FMOD-reprogrammed (FReP) cells exhibit exceeding myogenic capability without tumorigenic risk, making them a promising and safe cell source for skeletal muscle establishment. In addition to using the optimal cell for implantation, it is equally essential to maintain cellular localization and retention in the recipient tissue environment for critical-sized muscle tissue establishment. In this study, we demonstrate that the photopolymerizable methacrylated glycol chitosan (MeGC)/type I collagen (ColI)-hydrogel provides a desirable microenvironment for encapsulated FReP cell survival, spreading, extension, and formation of myotubes in the hydrogel three-dimensionally in vitro, without undesired osteogenic, chondrogenic, or tenogenic differentiation. Furthermore, gene profiling revealed a paired box 7 (PAX7) → myogenic factor 5 (MYF5) → myogenic determination 1 (MYOD1) → myogenin (MYOG) → myosin cassette elevation in the encapsulated FReP cells during myogenic differentiation, which is similar to that of the predominant driver of endogenous skeletal muscle regeneration, satellite cells. These findings constitute the evidence that the FReP cell-MeGC/ColI-hydrogel construct is a promising tissue engineering mimic for skeletal muscle generation in vitro, and thus possesses the extraordinary potential for further in vivo validation.
Collapse
Affiliation(s)
- Pu Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.,Division of Growth and Development, Section of Orthodontics, School of Dentistry, Dental and Craniofacial Research Institute, University of California, Los Angeles, Los Angeles, California, USA
| | - Chenshuang Li
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, Dental and Craniofacial Research Institute, University of California, Los Angeles, Los Angeles, California, USA.,Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Min Lee
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, California, USA
| | - Anna Marzvanyan
- A. T. Still University School of Osteopathic Medicine in Arizona, Mesa, Arizona, USA
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Kang Ting
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, Dental and Craniofacial Research Institute, University of California, Los Angeles, Los Angeles, California, USA
| | - Chia Soo
- UCLA Division of Plastic Surgery, Department of Orthopaedic Surgery, The Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, California, USA
| | - Zhong Zheng
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, Dental and Craniofacial Research Institute, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
7
|
Headley KM, Kedziora KM, Alejo A, Lai EZX, Purvis JE, Hathaway NA. Chemical screen for epigenetic barriers to single allele activation of Oct4. Stem Cell Res 2019; 38:101470. [PMID: 31170660 PMCID: PMC6886240 DOI: 10.1016/j.scr.2019.101470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/30/2019] [Accepted: 05/21/2019] [Indexed: 02/07/2023] Open
Abstract
Here we utilized the chromatin in vivo assay (CiA) mouse platform to directly examine the epigenetic barriers impeding the activation of the CiA:Oct4 allele in mouse embryonic fibroblasts (MEF)s when stimulated with a transcription factor. The CiA:Oct4 allele contains an engineered EGFP reporter replacing one copy of the Oct4 gene, with an upstream Gal4 array in the promoter that allows recruitment of chromatin modifying machinery. We stimulated gene activation of the CiA:Oct4 allele by binding a transcriptional activator to the Gal4 array. As with cellular reprograming, this process is inefficient with only a small percentage of the cells re-activating CiA:Oct4 after weeks. Epigenetic barriers to gene activation potentially come from heavy DNA methylation, histone deacetylation, chromatin compaction, and other posttranslational marks (PTM) at the differentiated CiA:Oct4 allele in MEFs. Using this platform, we performed a high-throughput chemical screen for compounds that increased the efficiency of activation. We found that Azacytidine and newer generation histone deacetylase (HDAC) inhibitors were the most efficient at facilitating directed transcriptional activation of this allele. We found one hit form our screen, Mocetinostat, improved iPSC generation under transcription factor reprogramming conditions. These results separate individual allele activation from whole cell reprograming and give new insights that will advance tissue engineering.
Collapse
Affiliation(s)
- Kathryn M Headley
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599, United States of America; Curriculum for Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, United States of America
| | - Katarzyna M Kedziora
- Department of Genetics, Curriculum for Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America
| | - Aidin Alejo
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599, United States of America
| | - Elianna Zhi-Xiang Lai
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599, United States of America
| | - Jeremy E Purvis
- Curriculum for Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, United States of America; Department of Genetics, Curriculum for Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America; Lineberger Comprehensive Cancer Center, University of North Carolina, 120 Mason Farm Road, Chapel Hill, NC 27599, United States of America
| | - Nathaniel A Hathaway
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599, United States of America; Curriculum for Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, United States of America; Lineberger Comprehensive Cancer Center, University of North Carolina, 120 Mason Farm Road, Chapel Hill, NC 27599, United States of America.
| |
Collapse
|
8
|
Suman S, Domingues A, Ratajczak J, Ratajczak MZ. Potential Clinical Applications of Stem Cells in Regenerative Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1201:1-22. [PMID: 31898779 DOI: 10.1007/978-3-030-31206-0_1] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The field of regenerative medicine is looking for a pluripotent/multipotent stem cell able to differentiate across germ layers and be safely employed in therapy. Unfortunately, with the exception of hematopoietic stem/progenitor cells (HSPCs) for hematological applications, the current clinical results with stem cells are somewhat disappointing. The potential clinical applications of the more primitive embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have so far been discouraging, as both have exhibited several problems, including genomic instability, a risk of teratoma formation, and the possibility of rejection. Therefore, the only safe stem cells that have so far been employed in regenerative medicine are monopotent stem cells, such as the abovementioned HSPCs or mesenchymal stem cells (MSCs) isolated from postnatal tissues. However, their monopotency, and therefore limited differentiation potential, is a barrier to their broader application in the clinic. Interestingly, results have accumulated indicating that adult tissues contain rare, early-development stem cells known as very small embryonic-like stem cells (VSELs), which can differentiate into cells from more than one germ layer. This chapter addresses different sources of stem cells for potential clinical application and their advantages and problems to be solved.
Collapse
Affiliation(s)
- Suman Suman
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Alison Domingues
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Janina Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Mariusz Z Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA. .,Department of Regenerative Medicine, Center for Preclinical Research and Technology, Warsaw Medical University, Warsaw, Poland.
| |
Collapse
|
9
|
Ahmed MF, El-Sayed AK, Chen H, Zhao R, Jin K, Zuo Q, Zhang Y, Li B. Direct conversion of mouse embryonic fibroblast to osteoblast cells using hLMP-3 with Yamanaka factors. Int J Biochem Cell Biol 2018; 106:84-95. [PMID: 30453092 DOI: 10.1016/j.biocel.2018.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/05/2018] [Accepted: 11/16/2018] [Indexed: 01/14/2023]
Abstract
Large bone defects and bone loss after fractures remain significant challenges for orthopedic surgeons. Our study aims to find an available, applicable and biological treatment for bone regeneration overcoming the limitations in ESC/iPSC technology. We directly reprogrammed the mouse embryonic fibroblast (MEF) into osteoblast cells using different combinations of Yamanaka factors with human lim mineralization protein-3 (hLMP-3). LMP is an intracellular LIM-domain protein acting as an effective positive regulator of the osteoblast differentiation. After transduction, cells were cultured in osteogenic medium, and then examined for osteoblast formation. The expression of osteogenic markers (BMP2, Runx2 and Osterix) during reprogramming and in vitro mineralization assay revealed that the best reprogramming cocktail was (c-Myc - Oct4) with hLMP-3. In addition, both immunofluorescent staining and western blot analysis confirmed that osteocalcin (OCN) expression increased in the cells treated with the c-Myc/Oct4/hLMP3 cocktail than using hLMP-3 alone. Furthermore, this reprogramming cocktail showed efficient healing in an induced femoral bone defect in rat animal model one month after transplantation. In the present study, we reported for the first time the effect of combining Yamanaka factors with hLMP-3 to induce osteoblast cells from MEF both in vitro and in vivo.
Collapse
Affiliation(s)
- Mahmoud F Ahmed
- Key Laboratory of Animal Breeding, Reproduction and Molecular Design for Jiangsu Provience, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China; College of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | | | - Hao Chen
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, 215006, China
| | - Ruifeng Zhao
- Key Laboratory of Animal Breeding, Reproduction and Molecular Design for Jiangsu Provience, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Kai Jin
- Key Laboratory of Animal Breeding, Reproduction and Molecular Design for Jiangsu Provience, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Qisheng Zuo
- Key Laboratory of Animal Breeding, Reproduction and Molecular Design for Jiangsu Provience, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yani Zhang
- Key Laboratory of Animal Breeding, Reproduction and Molecular Design for Jiangsu Provience, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Bichun Li
- Key Laboratory of Animal Breeding, Reproduction and Molecular Design for Jiangsu Provience, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
10
|
Abstract
Stem cell-based therapies have been widely used for their abilities to repair and regenerate different types of tissues and organs in cosmetic and plastic surgeries. It involves the clinical application of different types of stem cells. Different stem cells have been reported to be applicable in different areas of cosmetic surgeries like face lipoatrophy, skin rejuvenation, breast enhancement, and body contouring. However, adipose-derived stem cells remain the most widely used by cosmetic surgeons as they have the potential and capability to differentiate into mesenchymal, ectodermal, and endodermal lineages and are easily accessible to harvest. The purpose of this review is to summarize available applications of stem in cosmetic and plastic surgeries.
Collapse
Affiliation(s)
- Farshad Zarei
- a Assistant of Plastic and Reconstructive Surgery , Lorestan University of Medical Sciences , Khoramabad , Iran
| | - Abolfazl Abbaszadeh
- b Assistant Professor, Faculty of Medicine, Department of Surgery , Lorestan University of Medical Sciences , Khorramabad , Iran
| |
Collapse
|
11
|
Zarei F, Negahdari B. Recent progresses in plastic surgery using adipose-derived stem cells, biomaterials and growth factors. J Microencapsul 2017; 34:699-706. [PMID: 28826296 DOI: 10.1080/02652048.2017.1370027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Farshad Zarei
- Department of Surgery, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran, Iran
| |
Collapse
|
12
|
Collier TJ, Kanaan NM, Kordower JH. Aging and Parkinson's disease: Different sides of the same coin? Mov Disord 2017; 32:983-990. [PMID: 28520211 PMCID: PMC5844262 DOI: 10.1002/mds.27037] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/10/2017] [Accepted: 04/13/2017] [Indexed: 02/07/2023] Open
Abstract
Despite abundant epidemiological evidence in support of aging as the primary risk factor for PD, biological correlates of a connection have been elusive. In this article, we address the following question: does aging represent biology accurately characterized as pre-PD? We present evidence from our work on midbrain dopamine neurons of aging nonhuman primates that demonstrates that markers of known correlates of dopamine neuron degeneration in PD, including impaired proteasome/lysosome function, oxidative/nitrative damage, and inflammation, all increase with advancing age and are exaggerated in the ventral tier substantia nigra dopamine neurons most vulnerable to degeneration in PD. Our findings support the view that aging-related changes in the dopamine system approach the biological threshold for parkinsonism, actively producing a vulnerable pre-parkinsonian state. © 2017 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Timothy J. Collier
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, Michigan, USA
- Mercy Health Hauenstein Neuroscience Center, Grand Rapids, Michigan, USA
| | - Nicholas M. Kanaan
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, Michigan, USA
- Mercy Health Hauenstein Neuroscience Center, Grand Rapids, Michigan, USA
| | - Jeffrey H. Kordower
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, USA
| |
Collapse
|
13
|
Adlakha YK, Seth P. The expanding horizon of MicroRNAs in cellular reprogramming. Prog Neurobiol 2016; 148:21-39. [PMID: 27979736 DOI: 10.1016/j.pneurobio.2016.11.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 08/07/2016] [Accepted: 11/27/2016] [Indexed: 12/21/2022]
Abstract
Research over the last few years in cellular reprogramming has enlightened the magical potential of microRNAs (miRNAs) in changing the cell fate from somatic to pluripotent. Recent investigations on exploring the role(s) of miRNAs in somatic cell reprogramming revealed that they target a wide range of molecules and refine their protein output. This leads to fine tuning of distinct cellular processes including cell cycle, signalling pathways, transcriptional activation/silencing and epigenetic modelling. The concerted actions of miRNA on different pathways simultaneously strengthen the transition from a differentiated to de-differentiated state. Despite the well characterized transcriptional and epigenetic machinery underlying somatic cell reprogramming, the molecular circuitry for miRNA mediated cellular reprogramming is rather fragmented. This review summarizes recent findings addressing the role of miRNAs in inducing or suppressing reprogramming thus uncovering novel potentials of miRNAs as regulators of induced pluripotency maintenance, establishment and associated signalling pathways. Our bioinformatic analysis sheds light on various unexplored biological processes and pathways associated with reprogramming inducing miRNAs, thus helps in identifying roadblocks to full reprogramming. Specifically, the biological significance of highly conserved and most studied miRNA cluster, i.e. miR-302-367, in reprogramming is also highlighted. Further, roles of miRNAs in the differentiation of neurons from iPSCs are discussed. A recent approach of direct conversion or transdifferentiation of differentiated cells into neurons by miRNAs is also elaborated. This approach is now widely gaining impetus for the generation of neurological patient's brain cells directly from his/her somatic cells in an efficient and safe manner. Thus, decoding the intricate circuitry between miRNAs and other gene regulatory networks will not only uncover novel pathways in the direct reprogramming of somatic cells but will also open new avenues in stem cell biology.
Collapse
Affiliation(s)
- Yogita K Adlakha
- Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar, 122051, India.
| | - Pankaj Seth
- Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar, 122051, India
| |
Collapse
|
14
|
Jeon BJ, Kim DW, Kim MS, Park SH, Dhong ES, Yoon ES, Lee BI, Hwang NH. Protective effects of adipose-derived stem cells against UVB-induced skin pigmentation. J Plast Surg Hand Surg 2016; 50:336-342. [DOI: 10.1080/2000656x.2016.1175358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
15
|
Kawser Hossain M, Abdal Dayem A, Han J, Kumar Saha S, Yang GM, Choi HY, Cho SG. Recent Advances in Disease Modeling and Drug Discovery for Diabetes Mellitus Using Induced Pluripotent Stem Cells. Int J Mol Sci 2016; 17:256. [PMID: 26907255 PMCID: PMC4783985 DOI: 10.3390/ijms17020256] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 02/05/2016] [Accepted: 02/15/2016] [Indexed: 02/07/2023] Open
Abstract
Diabetes mellitus (DM) is a widespread metabolic disease with a progressive incidence of morbidity and mortality worldwide. Despite extensive research, treatment options for diabetic patients remains limited. Although significant challenges remain, induced pluripotent stem cells (iPSCs) have the capacity to differentiate into any cell type, including insulin-secreting pancreatic β cells, highlighting its potential as a treatment option for DM. Several iPSC lines have recently been derived from both diabetic and healthy donors. Using different reprogramming techniques, iPSCs were differentiated into insulin-secreting pancreatic βcells. Furthermore, diabetes patient-derived iPSCs (DiPSCs) are increasingly being used as a platform to perform cell-based drug screening in order to develop DiPSC-based cell therapies against DM. Toxicity and teratogenicity assays based on iPSC-derived cells can also provide additional information on safety before advancing drugs to clinical trials. In this review, we summarize recent advances in the development of techniques for differentiation of iPSCs or DiPSCs into insulin-secreting pancreatic β cells, their applications in drug screening, and their role in complementing and replacing animal testing in clinical use. Advances in iPSC technologies will provide new knowledge needed to develop patient-specific iPSC-based diabetic therapies.
Collapse
Affiliation(s)
- Mohammed Kawser Hossain
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Ahmed Abdal Dayem
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Jihae Han
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Subbroto Kumar Saha
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Gwang-Mo Yang
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Hye Yeon Choi
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Ssang-Goo Cho
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| |
Collapse
|
16
|
Nejadnik H, Diecke S, Lenkov OD, Chapelin F, Donig J, Tong X, Derugin N, Chan RCF, Gaur A, Yang F, Wu JC, Daldrup-Link HE. Improved approach for chondrogenic differentiation of human induced pluripotent stem cells. Stem Cell Rev Rep 2016; 11:242-53. [PMID: 25578634 PMCID: PMC4412587 DOI: 10.1007/s12015-014-9581-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human induced pluripotent stem cells (hiPSCs) have demonstrated great potential for hyaline cartilage regeneration. However, current approaches for chondrogenic differentiation of hiPSCs are complicated and inefficient primarily due to intermediate embryoid body formation, which is required to generate endodermal, ectodermal, and mesodermal cell lineages. We report a new, straightforward and highly efficient approach for chondrogenic differentiation of hiPSCs, which avoids embryoid body formation. We differentiated hiPSCs directly into mesenchymal stem /stromal cells (MSC) and chondrocytes. hiPSC-MSC-derived chondrocytes showed significantly increased Col2A1, GAG, and SOX9 gene expression compared to hiPSC-MSCs. Following transplantation of hiPSC-MSC and hiPSC-MSC-derived chondrocytes into osteochondral defects of arthritic joints of athymic rats, magnetic resonance imaging studies showed gradual engraftment, and histological correlations demonstrated hyaline cartilage matrix production. Results present an efficient and clinically translatable approach for cartilage tissue regeneration via patient-derived hiPSCs, which could improve cartilage regeneration outcomes in arthritic joints.
Collapse
Affiliation(s)
- Hossein Nejadnik
- Department of Radiology, and Molecular Imaging Program at Stanford (MIPS), Stanford School of Medicine, Stanford, CA, 94304, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Li CS, Yang P, Ting K, Aghaloo T, Lee S, Zhang Y, Khalilinejad K, Murphy MC, Pan HC, Zhang X, Wu B, Zhou YH, Zhao Z, Zheng Z, Soo C. Fibromodulin reprogrammed cells: A novel cell source for bone regeneration. Biomaterials 2016; 83:194-206. [PMID: 26774565 DOI: 10.1016/j.biomaterials.2016.01.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/27/2015] [Accepted: 01/01/2016] [Indexed: 02/05/2023]
Abstract
Pluripotent or multipotent cell-based therapeutics are vital for skeletal reconstruction in non-healing critical-sized defects since the local endogenous progenitor cells are not often adequate to restore tissue continuity or function. However, currently available cell-based regenerative strategies are hindered by numerous obstacles including inadequate cell availability, painful and invasive cell-harvesting procedures, and tumorigenesis. Previously, we established a novel platform technology for inducing a quiescent stem cell-like stage using only a single extracellular proteoglycan, fibromodulin (FMOD), circumventing gene transduction. In this study, we further purified and significantly increased the reprogramming rate of the yield multipotent FMOD reprogrammed (FReP) cells. We also exposed the 'molecular blueprint' of FReP cell osteogenic differentiation by gene profiling. Radiographic analysis showed that implantation of FReP cells into a critical-sized SCID mouse calvarial defect, contributed to the robust osteogenic capability of FReP cells in a challenging clinically relevant traumatic scenario in vivo. The persistence, engraftment, and osteogenesis of transplanted FReP cells without tumorigenesis in vivo were confirmed by histological and immunohistochemical staining. Taken together, we have provided an extended potency, safety, and molecular profile of FReP cell-based bone regeneration. Therefore, FReP cells present a high potential for cellular and gene therapy products for bone regeneration.
Collapse
Affiliation(s)
- Chen-Shuang Li
- Dental and Craniofacial Research Institute and Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA; Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
| | - Pu Yang
- Dental and Craniofacial Research Institute and Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Kang Ting
- Dental and Craniofacial Research Institute and Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Tara Aghaloo
- Dental and Craniofacial Research Institute and Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Soonchul Lee
- Dental and Craniofacial Research Institute and Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA; Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University, Gyeonggi-do, 463-712, South Korea
| | - Yulong Zhang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Kambiz Khalilinejad
- Dental and Craniofacial Research Institute and Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Maxwell C Murphy
- Dental and Craniofacial Research Institute and Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Hsin Chuan Pan
- Dental and Craniofacial Research Institute and Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Xinli Zhang
- Dental and Craniofacial Research Institute and Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Benjamin Wu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yan-Heng Zhou
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Zhong Zheng
- Dental and Craniofacial Research Institute and Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Chia Soo
- UCLA Division of Plastic Surgery and Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
18
|
Abstract
Regenerative medicine using patient's own stem cells (SCs) to repair dysfunctional tissues is an attractive approach to complement surgical and pharmacological treatments for aging and degenerative disorders. Recently, dental SCs have drawn much attention owing to their accessibility, plasticity and applicability for regenerative use not only for dental, but also other body tissues. In ophthalmology, there has been increasing interest to differentiate dental pulp SC and periodontal ligament SC (PDLSC) towards ocular lineage. Both can commit to retinal fate expressing eye field transcription factors and generate rhodopsin-positive photoreceptor-like cells. This proposes a novel therapeutic alternative for retinal degeneration diseases. Moreover, as PDLSC shares similar cranial neural crest origin and proteoglycan secretion with corneal stromal keratoctyes and corneal endothelial cells, this offers the possibility of differentiating PDLSC to these corneal cell types. The advance could lead to a shift in the medical management of corneal opacities and endothelial disorders from highly invasive corneal transplantation using limited donor tissue to cell therapy utilizing autologous cells. This article provides an overview of dental SC research and the perspective of utilizing dental SCs for ocular regenerative medicine.
Collapse
|
19
|
Kumar D, Talluri TR, Anand T, Kues WA. Induced pluripotent stem cells: Mechanisms, achievements and perspectives in farm animals. World J Stem Cells 2015; 7:315-328. [PMID: 25815117 PMCID: PMC4369489 DOI: 10.4252/wjsc.v7.i2.315] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/19/2014] [Accepted: 12/17/2014] [Indexed: 02/06/2023] Open
Abstract
Pluripotent stem cells are unspecialized cells with unlimited self-renewal, and they can be triggered to differentiate into desired specialized cell types. These features provide the basis for an unlimited cell source for innovative cell therapies. Pluripotent cells also allow to study developmental pathways, and to employ them or their differentiated cell derivatives in pharmaceutical testing and biotechnological applications. Via blastocyst complementation, pluripotent cells are a favoured tool for the generation of genetically modified mice. The recently established technology to generate an induced pluripotency status by ectopic co-expression of the transcription factors Oct4, Sox2, Klf4 and c-Myc allows to extending these applications to farm animal species, for which the derivation of genuine embryonic stem cells was not successful so far. Most induced pluripotent stem (iPS) cells are generated by retroviral or lentiviral transduction of reprogramming factors. Multiple viral integrations into the genome may cause insertional mutagenesis and may increase the risk of tumour formation. Non-integration methods have been reported to overcome the safety concerns associated with retro and lentiviral-derived iPS cells, such as transient expression of the reprogramming factors using episomal plasmids, and direct delivery of reprogramming mRNAs or proteins. In this review, we focus on the mechanisms of cellular reprogramming and current methods used to induce pluripotency. We also highlight problems associated with the generation of iPS cells. An increased understanding of the fundamental mechanisms underlying pluripotency and refining the methodology of iPS cell generation will have a profound impact on future development and application in regenerative medicine and reproductive biotechnology of farm animals.
Collapse
|
20
|
Asatrian G, Pham D, Hardy WR, James AW, Peault B. Stem cell technology for bone regeneration: current status and potential applications. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2015; 8:39-48. [PMID: 25709479 PMCID: PMC4334288 DOI: 10.2147/sccaa.s48423] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Continued improvements in the understanding and application of mesenchymal stem cells (MSC) have revolutionized tissue engineering. This is particularly true within the field of skeletal regenerative medicine. However, much remains unknown regarding the native origins of MSC, the relative advantages of different MSC populations for bone regeneration, and even the biologic safety of such unpurified, grossly characterized cells. This review will first summarize the initial discovery of MSC, as well as the current and future applications of MSC in bone tissue engineering. Next, the relative advantages and disadvantages of MSC isolated from distinct tissue origins are debated, including the MSC from adipose, bone marrow, and dental pulp, among others. The perivascular origin of MSC is next discussed. Finally, we briefly comment on pluripotent stem cell populations and their possible application in bone tissue engineering. While continually expanding, the field of MSC-based bone tissue engineering and regeneration shows potential to become a clinical reality in the not-so-distant future.
Collapse
Affiliation(s)
- Greg Asatrian
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, Los Angeles, CA, USA
| | - Dalton Pham
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, Los Angeles, CA, USA ; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Winters R Hardy
- UCLA/Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, CA, USA
| | - Aaron W James
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, Los Angeles, CA, USA ; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, Los Angeles, CA, USA ; UCLA/Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, CA, USA
| | - Bruno Peault
- UCLA/Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, CA, USA ; Medical Research Council Centre for Regenerative Medicine, Edinburgh, Scotland, UK
| |
Collapse
|
21
|
Banyard DA, Salibian AA, Widgerow AD, Evans GRD. Implications for human adipose-derived stem cells in plastic surgery. J Cell Mol Med 2014; 19:21-30. [PMID: 25425096 PMCID: PMC4288346 DOI: 10.1111/jcmm.12425] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 08/13/2014] [Indexed: 12/18/2022] Open
Abstract
Adipose-derived stem cells (ADSCs) are a subset of mesenchymal stem cells (MSCs) that possess many of the same regenerative properties as other MSCs. However, the ubiquitous presence of ADSCs and their ease of access in human tissue have led to a burgeoning field of research. The plastic surgeon is uniquely positioned to harness this technology because of the relative frequency in which they perform procedures such as liposuction and autologous fat grafting. This review examines the current landscape of ADSC isolation and identification, summarizes the current applications of ADSCs in the field of plastic surgery, discusses the risks associated with their use, current barriers to universal clinical translatability, and surveys the latest research which may help to overcome these obstacles.
Collapse
Affiliation(s)
- Derek A Banyard
- Department of Plastic Surgery, University of California, Irvine, Orange, CA, USA
| | | | | | | |
Collapse
|
22
|
Luo Y, Rao M, Zou J. Generation of GFP Reporter Human Induced Pluripotent Stem Cells Using AAVS1 Safe Harbor Transcription Activator-Like Effector Nuclease. ACTA ACUST UNITED AC 2014; 29:5A.7.1-18. [PMID: 24838915 DOI: 10.1002/9780470151808.sc05a07s29] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Generation of a fluorescent GFP reporter line in human induced pluripotent stem cells (hiPSCs) provides enormous potentials in both basic stem cell research and regenerative medicine. A protocol for efficiently generating such an engineered reporter line by gene targeting is highly desired. Transcription activator-like effector nucleases (TALENs) are a new class of artificial restriction enzymes that have been shown to significantly promote homologous recombination by >1000-fold. The AAVS1 (adeno-associated virus integration site 1) locus is a "safe harbor" and has an open chromatin structure that allows insertion and stable expression of transgene. Here, we describe a step-by-step protocol from determination of TALENs activity, hiPSC culture, and delivery of a donor into AAVS1 targeting site, to validation of targeted integration by PCR and Southern blot analysis using hiPSC line, and a pair of open-source AAVS1 TALENs.
Collapse
Affiliation(s)
- Yongquan Luo
- NIH Center for Regenerative Medicine, Laboratory of Stem Cell Biology, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Medicine, Bethesda, Maryland
| | | | | |
Collapse
|
23
|
Luo Y, Liu C, Cerbini T, San H, Lin Y, Chen G, Rao MS, Zou J. Stable enhanced green fluorescent protein expression after differentiation and transplantation of reporter human induced pluripotent stem cells generated by AAVS1 transcription activator-like effector nucleases. Stem Cells Transl Med 2014; 3:821-35. [PMID: 24833591 DOI: 10.5966/sctm.2013-0212] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Human induced pluripotent stem (hiPS) cell lines with tissue-specific or ubiquitous reporter genes are extremely useful for optimizing in vitro differentiation conditions as well as for monitoring transplanted cells in vivo. The adeno-associated virus integration site 1 (AAVS1) locus has been used as a "safe harbor" locus for inserting transgenes because of its open chromatin structure, which permits transgene expression without insertional mutagenesis. However, it is not clear whether targeted transgene expression at the AAVS1 locus is always protected from silencing when driven by various promoters, especially after differentiation and transplantation from hiPS cells. In this paper, we describe a pair of transcription activator-like effector nucleases (TALENs) that enable more efficient genome editing than the commercially available zinc finger nuclease at the AAVS1 site. Using these TALENs for targeted gene addition, we find that the cytomegalovirus-immediate early enhancer/chicken β-actin/rabbit β-globin (CAG) promoter is better than cytomegalovirus 7 and elongation factor 1α short promoters in driving strong expression of the transgene. The two independent AAVS1, CAG, and enhanced green fluorescent protein (EGFP) hiPS cell reporter lines that we have developed do not show silencing of EGFP either in undifferentiated hiPS cells or in randomly and lineage-specifically differentiated cells or in teratomas. Transplanting cardiomyocytes from an engineered AAVS1-CAG-EGFP hiPS cell line in a myocardial infarcted mouse model showed persistent expression of the transgene for at least 7 weeks in vivo. Our results show that high-efficiency targeting can be obtained with open-source TALENs and that careful optimization of the reporter and transgene constructs results in stable and persistent expression in vitro and in vivo.
Collapse
Affiliation(s)
- Yongquan Luo
- NIH Center for Regenerative Medicine, Laboratory of Stem Cell Biology, National Institute of Arthritis, Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA; Center for Molecular Medicine, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Chengyu Liu
- NIH Center for Regenerative Medicine, Laboratory of Stem Cell Biology, National Institute of Arthritis, Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA; Center for Molecular Medicine, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Trevor Cerbini
- NIH Center for Regenerative Medicine, Laboratory of Stem Cell Biology, National Institute of Arthritis, Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA; Center for Molecular Medicine, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Hong San
- NIH Center for Regenerative Medicine, Laboratory of Stem Cell Biology, National Institute of Arthritis, Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA; Center for Molecular Medicine, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Yongshun Lin
- NIH Center for Regenerative Medicine, Laboratory of Stem Cell Biology, National Institute of Arthritis, Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA; Center for Molecular Medicine, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Guokai Chen
- NIH Center for Regenerative Medicine, Laboratory of Stem Cell Biology, National Institute of Arthritis, Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA; Center for Molecular Medicine, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Mahendra S Rao
- NIH Center for Regenerative Medicine, Laboratory of Stem Cell Biology, National Institute of Arthritis, Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA; Center for Molecular Medicine, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Jizhong Zou
- NIH Center for Regenerative Medicine, Laboratory of Stem Cell Biology, National Institute of Arthritis, Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA; Center for Molecular Medicine, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| |
Collapse
|
24
|
Kandasamy K, Narayanan K, Ni M, Du C, Wan ACA, Zink D. Polysulfone Membranes Coated with Polymerized 3,4-Dihydroxy-l-phenylalanine are a Versatile and Cost-Effective Synthetic Substrate for Defined Long-Term Cultures of Human Pluripotent Stem Cells. Biomacromolecules 2014; 15:2067-78. [DOI: 10.1021/bm5001907] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Karthikeyan Kandasamy
- Institute of Bioengineering and Nanotechnology, 31
Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Karthikeyan Narayanan
- Institute of Bioengineering and Nanotechnology, 31
Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Ming Ni
- Institute of Bioengineering and Nanotechnology, 31
Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Chan Du
- Institute of Bioengineering and Nanotechnology, 31
Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Andrew C. A. Wan
- Institute of Bioengineering and Nanotechnology, 31
Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Daniele Zink
- Institute of Bioengineering and Nanotechnology, 31
Biopolis Way, The Nanos, Singapore 138669, Singapore
| |
Collapse
|
25
|
Stem cells in plastic surgery: a review of current clinical and translational applications. Arch Plast Surg 2013; 40:666-75. [PMID: 24286038 PMCID: PMC3840172 DOI: 10.5999/aps.2013.40.6.666] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 09/24/2013] [Accepted: 09/25/2013] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Stem cells are a unique cell population characterized by self-renewal and cellular differentiation capabilities. These characteristics, among other traits, make them an attractive option for regenerative treatments of tissues defects and for aesthetic procedures in plastic surgery. As research regarding the isolation, culture and behavior of stem cells has progressed, stem cells, particularly adult stem cells, have shown promising results in both translational and clinical applications. METHODS The purpose of this review is to evaluate the applications of stem cells in the plastic surgery literature, with particular focus on the advances and limitations of current stem cell therapies. Different key areas amenable to stem cell therapy are addressed in the literature review; these include regeneration of soft tissue, bone, cartilage, and peripheral nerves, as well as wound healing and skin aging. RESULTS The reviewed studies demonstrate promising results, with favorable outcomes and minimal complications in the cited cases. In particular, adipose tissue derived stem cell (ADSC) transplants appear to provide effective treatment options for bony and soft tissue defects, and non-healing wounds. ADSCs have also been shown to be useful in aesthetic surgery. CONCLUSIONS Further studies involving both the basic and clinical science aspects of stem cell therapies are warranted. In particular, the mechanism of action of stem cells, their interactions with the surrounding microenvironment and their long-term fate require further elucidation. Larger randomized trials are also necessary to demonstrate the continued safety of transplanted stem cells as well as the efficacy of cellular therapies in comparison to the current standards of care.
Collapse
|
26
|
Human induced pluripotent stem cells from basic research to potential clinical applications in cancer. BIOMED RESEARCH INTERNATIONAL 2013; 2013:430290. [PMID: 24288679 PMCID: PMC3830845 DOI: 10.1155/2013/430290] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 09/15/2013] [Indexed: 12/29/2022]
Abstract
The human induced pluripotent stem cells (hiPSCs) are derived from a direct reprogramming of human somatic cells to a pluripotent stage through ectopic expression of specific transcription factors. These cells have two important properties, which are the self-renewal capacity and the ability to differentiate into any cell type of the human body. So, the discovery of hiPSCs opens new opportunities in biomedical sciences, since these cells may be useful for understanding the mechanisms of diseases in the production of new diseases models, in drug development/drug toxicity tests, gene therapies, and cell replacement therapies. However, the hiPSCs technology has limitations including the potential for the development of genetic and epigenetic abnormalities leading to tumorigenicity. Nowadays, basic research in the hiPSCs field has made progress in the application of new strategies with the aim to enable an efficient production of high-quality of hiPSCs for safety and efficacy, necessary to the future application for clinical practice. In this review, we show the recent advances in hiPSCs' basic research and some potential clinical applications focusing on cancer. We also present the importance of the use of statistical methods to evaluate the possible validation for the hiPSCs for future therapeutic use toward personalized cell therapies.
Collapse
|
27
|
Abstract
mRNA has become an important alternative to DNA as a tool for cell reprogramming. To be expressed, exogenous DNA must be transmitted through the cell cytoplasm and placed into the nucleus. In contrast, exogenous mRNA simply has to be delivered into the cytoplasm. This can result in a highly uniform transfection of the whole population of cells, an advantage that has not been observed with DNA transfer. The use of mRNA, instead of DNA, in medical applications increases protocol safety by abolishing the risk of transgene insertion into host genomes. In this chapter, we review the aspects of mRNA structure and function that are important for its "transgenic" behavior, such as the composition of mRNA molecules and complexes with RNA binding proteins, localization of mRNA in cytoplasmic compartments, translation, and the duration of mRNA expression. In immunotherapy, mRNA is employed in reprogramming of antigen presenting cells (vaccination) and cytolytic lymphocytes. Other applications include generation of induced pluripotent stem (iPS) cells, and genome engineering with modularly assembled nucleases. The most investigated applications of mRNA technology are also reviewed here.
Collapse
|
28
|
Zhou S, Dou H, Zhang Z, Sun K, Jin Y, Dai T, Zhou G, Shen Z. Fluorescent dextran-based nanogels: efficient imaging nanoprobes for adipose-derived stem cells. Polym Chem 2013. [DOI: 10.1039/c3py00522d] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Bakhshandeh B, Soleimani M, Hafizi M, Ghaemi N. A comparative study on nonviral genetic modifications in cord blood and bone marrow mesenchymal stem cells. Cytotechnology 2012; 64:523-40. [PMID: 22328133 PMCID: PMC3432529 DOI: 10.1007/s10616-012-9430-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 01/12/2012] [Indexed: 01/12/2023] Open
Abstract
The focus of both clinical and basic studies on stem cells is increasing due to their potentials in regenerative medicine and cell-based therapies. Recently stem cells have been genetically modified to enhance an existing character in or to bring a new property to them. However, accomplishment of declared goals requires detailed knowledge about their molecular characteristics which could be achieved by genetic modifications mostly through nonviral transfection strategies. Capable of differentiating into multiple cells, human unrestricted somatic stem cells (hUSSCs) and human mesenchymal stem cells (hMSCs) seem to be suitable candidates for transfection approaches. Involvement of microRNAs (miRNAs) in many biological processes makes their transfection evaluation valuable. Herein we investigated the efficacy and toxicity of four typically used transfection reagents (Arrest-In, Lipofectamine 2000, Oligofectamine and HiPerfect) systematically to deliver fluorescent labeled-miRNA and Green Fluorescent Protein (GFP) expressing plasmid into hUSSCs and hMSCs. The authenticity of stem cells was verified by differentiation experiments along with flow cytometry of surface markers. Our study revealed that stemness properties of these stem cells were not affected by transient transfection. Moreover the ratios of cell viability and transfection efficiency in both analyzed stem cells were reversed. Considering cell viability, the highest fraction of GFP-expressing cells was obtained using Oligofectamine (~50%) while the highest transfection rate of miRNA was achieved by Lipofectamine 2000 (~90%). Moreover dependency of hMSCs to size of transfected nucleic acid and time-dependency of Oligofectamine and their affection on the yield of transfection were observed. Cytotoxicity assessments also showed that hUSSCs are sensitive to HiPerFect. In addition cells treated by Lipofectamine showed morphological changes. Representing the efficient nucleic acid transfection, our research facilitates comprehensive genetic modification of stem cells and demonstrates powerful approaches to understand stem cell molecular regulation mechanisms, which eventually improves nonviral cell-mediated gene therapy.
Collapse
Affiliation(s)
- Behnaz Bakhshandeh
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
- Stem Cell Biology Department, Stem Cell Technology Research Center, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-111, Tehran, Iran
| | - Maryam Hafizi
- Stem Cell Biology Department, Stem Cell Technology Research Center, Tehran, Iran
| | - Nasser Ghaemi
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
30
|
Zheng Z, Jian J, Zhang X, Zara JN, Yin W, Chiang M, Liu Y, Wang J, Pang S, Ting K, Soo C. Reprogramming of human fibroblasts into multipotent cells with a single ECM proteoglycan, fibromodulin. Biomaterials 2012; 33:5821-31. [PMID: 22622142 DOI: 10.1016/j.biomaterials.2012.04.049] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 04/21/2012] [Indexed: 01/01/2023]
Abstract
Pluripotent and/or multipotent stem cell-based therapeutics are a vital component of tissue engineering and regenerative medicine. The generation or isolation of safer and readily available stem cell sources will significantly aid clinical applications. We report here a technique using a single molecule, recombinant human fibromodulin protein (FMOD), to reprogram human fibroblasts into multipotent cells. Like virally-induced pluripotent stem (iPS) cells, FMOD reprogrammed (FReP) cells express pluripotency markers, form embryoid bodies (EBs), and differentiate into ectoderm, mesoderm, and endoderm derivatives in vitro. Notably, FReP cells regenerate muscle and bone tissues but do not generate teratomas in vivo. Unlike iPS cells, undifferentiated FReP cells proliferate slowly and express low proto-oncogene c-MYC and unexpectedly high levels of cyclin-dependent kinase inhibitors p15(Ink4B) and p21(WAF1/Cip1). Remarkably, in a fashion reminiscent of quiescent stem cells, the slow replicative phenotype of undifferentiated FReP cells reverses after differentiation induction, with differentiating FReP cells proliferating faster and expressing less p15(Ink4B) and p21(WAF1/Cip1) than differentiating iPS cells. Overall, single protein, FMOD-based, cell reprograming bypasses the risks of mutation, gene instability, and malignancy associated with genetically-modified iPS cells, and provides an alternative strategy for engineering patient-specific multipotent cells for basic research and therapeutic application.
Collapse
Affiliation(s)
- Zhong Zheng
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA 90095-1759, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|