1
|
Pal D, Das P, Roy S, Mukherjee P, Halder S, Ghosh D, Nandi SK. Recent trends of stem cell therapies in the management of orthopedic surgical challenges. Int J Surg 2024; 110:6330-6344. [PMID: 38716973 PMCID: PMC11487011 DOI: 10.1097/js9.0000000000001524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/14/2024] [Indexed: 10/20/2024]
Abstract
Emerged health-related problems especially with increasing population and with the wider occurrence of these issues have always put the utmost concern and led medicine to outgrow its usual mode of treatment, to achieve better outcomes. Orthopedic interventions are one of the most concerning hitches, requiring advancement in several issues, that show complications with conventional approaches. Advanced studies have been undertaken to address the issue, among which stem cell therapy emerged as a better area of growth. The capacity of the stem cells to renovate themselves and adapt into different cell types made it possible to implement its use as a regenerative slant. Harvesting the stem cells, particularly mesenchymal stem cells (MSCs) is easier and can be further grown in vitro . In this review, we have discussed orthopedic-related issues including bone defects and fractures, nonunions, ligament and tendon injuries, degenerative changes, and associated conditions, which require further approaches to execute better outcomes, and the advanced strategies that can be tagged along with various ways of application of MSCs. It aims to objectify the idea of stem cells, with a major focus on the application of MSCs from different sources in various orthopedic interventions. It also discusses the limitations, and future scopes for further approaches in the field of regenerative medicine. The involvement of MSCs may transition the procedures in orthopedic interventions from predominantly surgical substitution and reconstruction to bio-regeneration and prevention. Nevertheless, additional improvements and evaluations are required to explore the effectiveness and safety of mesenchymal stem cell treatment in orthopedic regenerative medicine.
Collapse
Affiliation(s)
| | - Pratik Das
- Department of Veterinary Surgery and Radiology
| | - Subhasis Roy
- Department of Veterinary Clinical Complex, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal
| | - Prasenjit Mukherjee
- Department of Veterinary Clinical Complex, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal
| | | | | | | |
Collapse
|
2
|
Owaidah A. Induced pluripotent stem cells in cartilage tissue engineering: a literature review. Biosci Rep 2024; 44:BSR20232102. [PMID: 38563479 PMCID: PMC11088306 DOI: 10.1042/bsr20232102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024] Open
Abstract
Osteoarthritis (OA) is a long-term, persistent joint disorder characterized by bone and cartilage degradation, resulting in tightness, pain, and restricted movement. Current attempts in cartilage regeneration are cell-based therapies using stem cells. Multipotent stem cells, such as mesenchymal stem cells (MSCs), and pluripotent stem cells, such as embryonic stem cells (ESCs), have been used to regenerate cartilage. However, since the discovery of human-induced pluripotent stem cells (hiPSCs) in 2007, it was seen as a potential source for regenerative chondrogenic therapy as it overcomes the ethical issues surrounding the use of ESCs and the immunological and differentiation limitations of MSCs. This literature review focuses on chondrogenic differentiation and 3D bioprinting technologies using hiPSCS, suggesting them as a viable source for successful tissue engineering. METHODS A literature search was conducted using scientific search engines, PubMed, MEDLINE, and Google Scholar databases with the terms 'Cartilage tissue engineering' and 'stem cells' to retrieve published literature on chondrogenic differentiation and tissue engineering using MSCs, ESCs, and hiPSCs. RESULTS hiPSCs may provide an effective and autologous treatment for focal chondral lesions, though further research is needed to explore the potential of such technologies. CONCLUSIONS This review has provided a comprehensive overview of these technologies and the potential applications for hiPSCs in regenerative medicine.
Collapse
Affiliation(s)
- Amani Y. Owaidah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
3
|
Huang B, Fu S, Hao Y, Yeung CK, Zhang X, Li E, Xu X, Shao N, Xu RH. Developmental potency of human ES cell-derived mesenchymal stem cells revealed in mouse embryos following blastocyst injection. Cell Rep 2023; 42:113459. [PMID: 37988266 DOI: 10.1016/j.celrep.2023.113459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/26/2023] [Accepted: 11/02/2023] [Indexed: 11/23/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are present in almost all the tissues in the body, critical for their homeostasis and regeneration. However, the stemness of MSCs is mainly an in vitro observation, and lacking exclusive markers for endogenous MSCs makes it difficult to study the multipotency of MSCs in vivo, especially for human MSCs. To address this hurdle, we injected GFP-tagged human embryonic stem cell (hESC)-derived MSCs (EMSCs) into mouse blastocysts. EMSCs survived well and penetrated both the inner cell mass and trophectoderm, correlating to the higher anti-apoptotic capability of EMSCs than hESCs. Injected EMSCs contributed to skeletal, dermal, and extraembryonic tissues in the resultant chimera and partially rescued skeletal defects in Sox9+/- mouse fetuses. Thus, this study provides evidence for the stemness and developmental capability of human MSCs through chimerization with the mouse blastocyst, serving as a model for studying human mesenchymal and skeletal development.
Collapse
Affiliation(s)
- Borong Huang
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Siyi Fu
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Yanan Hao
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Cheung Kwan Yeung
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Xin Zhang
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Enqin Li
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Xiaoling Xu
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Ningyi Shao
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Ren-He Xu
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China.
| |
Collapse
|
4
|
Khan NM, Diaz-Hernandez ME, Chihab S, Priyadarshani P, Bhattaram P, Mortensen LJ, Guzzo RM, Drissi H. Differential chondrogenic differentiation between iPSC derived from healthy and OA cartilage is associated with changes in epigenetic regulation and metabolic transcriptomic signatures. eLife 2023; 12:83138. [PMID: 36715686 PMCID: PMC9886280 DOI: 10.7554/elife.83138] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) are potential cell sources for regenerative medicine. The iPSCs exhibit a preference for lineage differentiation to the donor cell type indicating the existence of memory of origin. Although the intrinsic effect of the donor cell type on differentiation of iPSCs is well recognized, whether disease-specific factors of donor cells influence the differentiation capacity of iPSC remains unknown. Using viral based reprogramming, we demonstrated the generation of iPSCs from chondrocytes isolated from healthy (AC-iPSCs) and osteoarthritis cartilage (OA-iPSCs). These reprogrammed cells acquired markers of pluripotency and differentiated into uncommitted mesenchymal-like progenitors. Interestingly, AC-iPSCs exhibited enhanced chondrogenic potential as compared OA-iPSCs and showed increased expression of chondrogenic genes. Pan-transcriptome analysis showed that chondrocytes derived from AC-iPSCs were enriched in molecular pathways related to energy metabolism and epigenetic regulation, together with distinct expression signature that distinguishes them from OA-iPSCs. Our molecular tracing data demonstrated that dysregulation of epigenetic and metabolic factors seen in OA chondrocytes relative to healthy chondrocytes persisted following iPSC reprogramming and differentiation toward mesenchymal progenitors. Our results suggest that the epigenetic and metabolic memory of disease may predispose OA-iPSCs for their reduced chondrogenic differentiation and thus regulation at epigenetic and metabolic level may be an effective strategy for controlling the chondrogenic potential of iPSCs.
Collapse
Affiliation(s)
- Nazir M Khan
- Department of Orthopaedics, Emory UniversityAtlantaUnited States
- Atlanta VA Medical CenterDecaturUnited States
| | - Martha Elena Diaz-Hernandez
- Department of Orthopaedics, Emory UniversityAtlantaUnited States
- Atlanta VA Medical CenterDecaturUnited States
| | - Samir Chihab
- Department of Orthopaedics, Emory UniversityAtlantaUnited States
- Atlanta VA Medical CenterDecaturUnited States
| | - Priyanka Priyadarshani
- School of Chemical Materials and Biomedical Engineering, University of GeorgiaAthensUnited States
| | | | - Luke J Mortensen
- School of Chemical Materials and Biomedical Engineering, University of GeorgiaAthensUnited States
- Regenerative Bioscience Center, E.L. Rhodes Center for ADS, University of GeorgiaAthensUnited States
| | - Rosa M Guzzo
- Department of Neuroscience, School of Medicine, University of Connecticut HealthFarmingtonUnited States
| | - Hicham Drissi
- Department of Orthopaedics, Emory UniversityAtlantaUnited States
- Atlanta VA Medical CenterDecaturUnited States
| |
Collapse
|
5
|
De Kinderen P, Meester J, Loeys B, Peeters S, Gouze E, Woods S, Mortier G, Verstraeten A. Differentiation of Induced Pluripotent Stem Cells Into Chondrocytes: Methods and Applications for Disease Modeling and Drug Discovery. J Bone Miner Res 2022; 37:397-410. [PMID: 35124831 DOI: 10.1002/jbmr.4524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/25/2022] [Accepted: 02/01/2022] [Indexed: 11/11/2022]
Abstract
Induced pluripotent stem cell (iPSC) technology allows pathomechanistic and therapeutic investigation of human heritable disorders affecting tissue types whose collection from patients is difficult or even impossible. Among them are cartilage diseases. Over the past decade, iPSC-chondrocyte disease models have been shown to exhibit several key aspects of known disease mechanisms. Concurrently, an increasing number of protocols to differentiate iPSCs into chondrocytes have been published, each with its respective (dis)advantages. In this review we provide a comprehensive overview of the different differentiation approaches, the hitherto described iPSC-chondrocyte disease models and mechanistic and/or therapeutic insights that have been derived from their investigation, and the current model limitations. Key lessons are that the most appropriate differentiation approach is dependent upon the cartilage disease under investigation and that further optimization is still required to recapitulate the in vivo cartilage. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Pauline De Kinderen
- Centre of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Josephina Meester
- Centre of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Bart Loeys
- Centre of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium.,Department of Human Genetics, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Silke Peeters
- Centre of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Elvire Gouze
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| | - Steven Woods
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Geert Mortier
- Centre of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Aline Verstraeten
- Centre of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| |
Collapse
|
6
|
Walczak BE, Jiao H, Lee MS, Li WJ. Reprogrammed Synovial Fluid-Derived Mesenchymal Stem/Stromal Cells Acquire Enhanced Therapeutic Potential for Articular Cartilage Repair. Cartilage 2021; 13:530S-543S. [PMID: 34467773 PMCID: PMC8804808 DOI: 10.1177/19476035211040858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVES Functions of mesenchymal stem/stromal cells (MSCs) are affected by patient-dependent factors such as age and health condition. To tackle this problem, we used the cellular reprogramming technique to epigenetically alter human MSCs derived from the synovial fluid of joints with osteoarthritis (OA) to explore the potential of reprogrammed MSCs for repairing articular cartilage. MATERIALS AND METHODS MSCs isolated from the synovial fluid of three patients' OA knees (Pa-MSCs) were reprogrammed through overexpression of pluripotency factors and then induced for differentiation to establish reprogrammed MSC (Re-MSC) lines. We compared the in vitro growth characteristics, chondrogenesis for articular cartilage chondrocytes, and immunomodulatory capacity. We also evaluated the capability of Re-MSCs to repair articular cartilage damage in an animal model with spontaneous OA. RESULTS Our results showed that Re-MSCs increased the in vitro proliferative capacity and improved chondrogenic differentiation toward articular cartilage-like chondrocyte phenotypes with increased THBS4 and SIX1 and decreased ALPL and COL10A1, compared to Pa-MSCs. In addition, Re-MSC-derived chondrocytes expressing elevated COL2A and COL2B were more mature than parental cell-derived ones. The enhancement in chondrogenesis of Re-MSC involves the upregulation of sonic hedgehog signaling. Moreover, Re-MSCs improved the repair of articular cartilage in an animal model of spontaneous OA. CONCLUSIONS Epigenetic reprogramming promotes MSCs harvested from OA patients to increase phenotypic characteristics and gain robust functions. In addition, Re-MSCs acquire an enhanced potential for articular cartilage repair. Our study here demonstrates that the reprogramming strategy provides a potential solution to the challenge of variation in MSC quality.
Collapse
Affiliation(s)
- Brian E. Walczak
- Department of Orthopedics and
Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA
| | - Hongli Jiao
- Department of Orthopedics and
Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA
| | - Ming-Song Lee
- Department of Orthopedics and
Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering,
University of Wisconsin-Madison, Madison, WI, USA
| | - Wan-Ju Li
- Department of Orthopedics and
Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering,
University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
7
|
Retention of Somatic Memory Associated with Cell Identity, Age and Metabolism in Induced Pluripotent Stem (iPS) Cells Reprogramming. Stem Cell Rev Rep 2021; 16:251-261. [PMID: 32016780 DOI: 10.1007/s12015-020-09956-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The discovery of induced pluripotent stem (iPS) cells in 2006 marked a major breakthrough in regenerative medicine, enabling reversal of terminally differentiated somatic cells into pluripotent stem cells. The embryonic stem (ES) cells-like pluripotency and unlimited self-renewal capability of iPS cells have granted them enormous potential in many applications, particularly regenerative therapy. Unlike ES cells, however, iPS cells exhibit somatic memories which were carried over from the tissue of origin thus limited its translation in clinical applications. This review provides an updated overview of the retention of various somatic memories associated with the cellular identity, age and metabolism of tissue of origin in iPS cells. The influence of cell types, stage of maturation, age and various other factors on the retention of somatic memory has been discussed. Recent evidence of somatic memory in the form of epigenetic, transcriptomic, metabolic signatures and its functional manifestations in both in vitro and in vivo settings also have been reviewed. The increasing number of studies which had adopted isogenic cell lines for comparisons in recent years had facilitated the identification of genuine somatic memories. These memories functionally affect iPS cells and its derivatives and are potentially tumorigenic thus, raising concerns on their safety in clinical application. Various approaches for memory erasure had since being reported and their efficacies were highlighted in this review.
Collapse
|
8
|
Bourebaba L, Röcken M, Marycz K. Osteochondritis dissecans (OCD) in Horses - Molecular Background of its Pathogenesis and Perspectives for Progenitor Stem Cell Therapy. Stem Cell Rev Rep 2020; 15:374-390. [PMID: 30796679 PMCID: PMC6534522 DOI: 10.1007/s12015-019-09875-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Osteochondrosis (osteochondrosis dissecans; OCD) is a disease syndrome of growing cartilage related to different clinical entities such as epiphysitis, subchondral cysts and angular carpal deformities, which occurs in growing animals of all species, including horses. Nowadays, these disorders are affecting increasing numbers of young horses worldwide. As a complex multifactorial disease, OCD is initiated when failure in cartilage canals because of existing ischemia, chondrocyte biogenesis impairment as well as biochemical and genetic disruptions occur. Recently, particular attention have been accorded to the definition of possible relations between OCD and some metabolic disorders; in this way, implication of mitochondrial dysfunctions, endoplasmic reticulum disruptions, oxidative stress or endocrinological affections are among the most considered axes for future researches. As one of the most frequent cause of impaired orthopaedic potential, which may result in a sharp decrease in athletic performances of the affected animals, and lead to the occurrence of complications such as joint fragility and laminitis, OCD remains as one of the primary causes of considerable economic losses in all sections of the equine industry. It would therefore be important to provide more information on the exact pathophysiological mechanism(s) underlying early OC(D) lesions, in order to implement innovative strategies involving the use of progenitor stem cells, which are considered nowadays as a promising approach to regenerative medicine, with the potential to treat numerous orthopaedic disorders, including osteo-degenerative diseases, for prevention and reduction of incidence of the disease, not only in horses, but also in human medicine, as the equine model is already widely accepted by the scientific community and approved by the FDA, for the research and application of cellular therapies in the treatment of human conditions.
Collapse
Affiliation(s)
- Lynda Bourebaba
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375, Wrocław, Poland
| | - Michael Röcken
- Faculty of Veterinary Medicine, Equine Clinic - Equine Surgery, Justus-Liebig-University, 35392, Gießen, Germany
| | - Krzysztof Marycz
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375, Wrocław, Poland. .,Faculty of Veterinary Medicine, Equine Clinic - Equine Surgery, Justus-Liebig-University, 35392, Gießen, Germany.
| |
Collapse
|
9
|
Park JW, Fu S, Huang B, Xu RH. Alternative splicing in mesenchymal stem cell differentiation. Stem Cells 2020; 38:1229-1240. [PMID: 32627865 PMCID: PMC7586970 DOI: 10.1002/stem.3248] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/03/2020] [Accepted: 06/11/2020] [Indexed: 01/07/2023]
Abstract
The differentiation and maturation of mesenchymal stem cells (MSCs) to mesodermal and other lineages are known to be controlled by various extrinsic and intrinsic signals. The dysregulation of the MSC differentiation balance has been linked to several pathophysiological conditions, including obesity and osteoporosis. Previous research of the molecular mechanisms governing MSC differentiation has mostly focused on transcriptional regulation. However, recent findings are revealing the underrated role of alternative splicing (AS) in MSC differentiation and functions. In this review, we discuss recent progress in elucidating the regulatory roles of AS in MSC differentiation. We catalogue and highlight the key AS events that modulate MSC differentiation to major osteocytes, chondrocytes, and adipocytes, and discuss the regulatory mechanisms by which AS is regulated.
Collapse
Affiliation(s)
- Jung Woo Park
- Center for Reproduction, Development, and Aging and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, People's Republic of China
| | - Siyi Fu
- Center for Reproduction, Development, and Aging and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, People's Republic of China
| | - Borong Huang
- Center for Reproduction, Development, and Aging and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, People's Republic of China
| | - Ren-He Xu
- Center for Reproduction, Development, and Aging and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, People's Republic of China
| |
Collapse
|
10
|
Diaz-Hernandez ME, Khan NM, Trochez CM, Yoon T, Maye P, Presciutti SM, Gibson G, Drissi H. Derivation of notochordal cells from human embryonic stem cells reveals unique regulatory networks by single cell-transcriptomics. J Cell Physiol 2019; 235:5241-5255. [PMID: 31840817 DOI: 10.1002/jcp.29411] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/02/2019] [Indexed: 12/13/2022]
Abstract
Intervertebral disc degeneration (IDD) is a public health dilemma as it is associated with low back and neck pain, a frequent reason for patients to visit the physician. During IDD, nucleus pulposus (NP), the central compartment of intervertebral disc (IVD) undergo degeneration. Stem cells have been adopted as a promising biological source to regenerate the IVD and restore its function. Here, we describe a simple, two-step differentiation strategy using a cocktail of four factors (LDN, AGN, FGF, and CHIR) for efficient derivation of notochordal cells from human embryonic stem cells (hESCs). We employed a CRISPR/Cas9 based genome-editing approach to knock-in the mCherry reporter vector upstream of the 3' untranslated region of the Noto gene in H9-hESCs and monitored notochordal cell differentiation. Our data show that treatment of H9-hESCs with the above-mentioned four factors for 6 days successfully resulted in notochordal cells. These cells were characterized by morphology, immunostaining, and gene and protein expression analyses for established notochordal cell markers including FoxA2, SHH, and Brachyury. Additionally, pan-genomic high-throughput single cell RNA-sequencing revealed an efficient and robust notochordal differentiation. We further identified a key regulatory network consisting of eight candidate genes encoding transcription factors including PAX6, GDF3, FOXD3, TDGF1, and SOX5, which are considered as potential drivers of notochordal differentiation. This is the first single cell transcriptomic analysis of notochordal cells derived from hESCs. The ability to efficiently obtain notochordal cells from pluripotent stem cells provides an additional tool to develop new cell-based therapies for the treatment of IDD.
Collapse
Affiliation(s)
- Martha E Diaz-Hernandez
- Department of Orthopaedics, Emory University, Atlanta, Georgia.,Atlanta VA Medical Center, Decatur, Georgia
| | - Nazir M Khan
- Department of Orthopaedics, Emory University, Atlanta, Georgia.,Atlanta VA Medical Center, Decatur, Georgia
| | | | - Tim Yoon
- Department of Orthopaedics, Emory University, Atlanta, Georgia
| | - Peter Maye
- UConn Health Center, University of Connecticut, Farmington, Connecticut
| | - Steven M Presciutti
- Department of Orthopaedics, Emory University, Atlanta, Georgia.,Atlanta VA Medical Center, Decatur, Georgia
| | - Greg Gibson
- Center for Integrative Genomics, Georgia Tech, Atlanta, Georgia
| | - Hicham Drissi
- Department of Orthopaedics, Emory University, Atlanta, Georgia.,Atlanta VA Medical Center, Decatur, Georgia
| |
Collapse
|
11
|
Salvador Verges À, Fernández-Luque L, López Seguí F, Yildirim M, Salvador-Mata B, García Cuyàs F. Orthopedic Surgeons' Perspectives on the Decision-Making Process for the Use of Bioprinter Cartilage Grafts: Web-Based Survey. Interact J Med Res 2019; 8:e14028. [PMID: 31094326 PMCID: PMC6540724 DOI: 10.2196/14028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/16/2019] [Accepted: 05/02/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Traumatic and degenerative lesions in the cartilage are one of the most difficult and frustrating types of injuries for orthopedic surgeons and patients. Future developments in medical science, regenerative medicine, and materials science may allow the repair of human body parts using 3D bioprinting techniques and serve as a basis for new therapies for tissue and organ regeneration. One future possibility is the treatment of joint cartilage defects with in vivo 3D printing from biological/biocompatible materials to produce a suitable cell attachment and proliferation environment in the damaged site and employ the natural recovery potential of the body. This study focuses on the perspectives of orthopedic surgeons regarding the key factors/determinants and perceived clinical value of a new therapeutic option. OBJECTIVE This study aimed to determine the knowledge and expectations of orthopedic surgeons regarding the clinical use of bioprinted cartilage. METHODS The survey, conducted anonymously and self-managed, was sent to orthopedic surgeons from the Catalan Society of Orthopedic and Traumatology Surgery. In accordance with the method devised by Eysenbach, the Checklist for Reporting Results of Internet E-Surveys was used to analyze the results. The following factors were taken into consideration: the type and origin of the information received; its relevance; the level of acceptance of new technologies; and how the technology is related to age, years, and place of experience in the field. RESULTS Of the 86 orthopedic surgeons included, 36 believed the age of the patient was a restriction, 53 believed the size of the lesion should be between 1 and 2 cm to be considered for this type of technology, and 51 believed that the graft should last more than 5 years. Surgeons over 50 years of age (38/86, 44%) gave more importance to clinical evidence as compared to surgeons from the other age groups. CONCLUSIONS The perspective of orthopedic surgeons depends highly on the information they receive and whether it is specialized and consistent, as this will condition their acceptance and implementation of the bioprinted cartilage.
Collapse
Affiliation(s)
- Àngels Salvador Verges
- Digital Care Research Group, Universitat de Vic - Universitat Central de Catalunya, Barcelona, Spain
| | | | - Francesc López Seguí
- TIC Salut Social, Generalitat de Catalunya, Mataro, Barcelona, Spain
- Department of Experimental and Health Sciences, Centre for Research in Health and Economics, Universitat Pompeu Fabra, Barcelona, Spain
| | - Meltem Yildirim
- Centre for Health and Social Care Research, Faculty of Health Science and Welfare, Universitat de Vic - Universitat Central de Catalunya, Vic, Spain
- Research group on Methodology, Methods, Models and Outcomes of Health and Social Sciences, Vic, Spain
| | | | - Francesc García Cuyàs
- Hospital Sant Joan de Déu, Digital Care Research Group, Universitat de Vic - Universitat Central de Catalunya, Barcelona, Spain
| |
Collapse
|
12
|
Fisher M, Ackley T, Richard K, Oei B, Dealy CN. Osteoarthritis at the Cellular Level: Mechanisms, Clinical Perspectives, and Insights From Development. ENCYCLOPEDIA OF BIOMEDICAL ENGINEERING 2019:660-676. [DOI: 10.1016/b978-0-12-801238-3.64119-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
13
|
Rim YA, Nam Y, Ju JH. Application of Cord Blood and Cord Blood-Derived Induced Pluripotent Stem Cells for Cartilage Regeneration. Cell Transplant 2018; 28:529-537. [PMID: 30251563 PMCID: PMC7103603 DOI: 10.1177/0963689718794864] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Regeneration of articular cartilage is of great interest in cartilage tissue engineering
since articular cartilage has a low regenerative capacity. Due to the difficulty in
obtaining healthy cartilage for transplantation, there is a need to develop an alternative
and effective regeneration therapy to treat degenerative or damaged joint diseases. Stem
cells including various adult stem cells and pluripotent stem cells are now actively used
in tissue engineering. Here, we provide an overview of the current status of cord blood
cells and induced pluripotent stem cells derived from these cells in cartilage
regeneration. The abilities of these cells to undergo chondrogenic differentiation are
also described. Finally, the technical challenges of articular cartilage regeneration and
future directions are discussed.
Collapse
Affiliation(s)
- Yeri Alice Rim
- 1 CiSTEM Laboratory, Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yoojun Nam
- 1 CiSTEM Laboratory, Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji Hyeon Ju
- 1 CiSTEM Laboratory, Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,2 Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
14
|
Current Therapeutic Strategies for Stem Cell-Based Cartilage Regeneration. Stem Cells Int 2018; 2018:8490489. [PMID: 29765426 PMCID: PMC5889878 DOI: 10.1155/2018/8490489] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/14/2017] [Accepted: 01/23/2018] [Indexed: 12/13/2022] Open
Abstract
The process of cartilage destruction in the diarthrodial joint is progressive and irreversible. This destruction is extremely difficult to manage and frustrates researchers, clinicians, and patients. Patients often take medication to control their pain. Surgery is usually performed when pain becomes uncontrollable or joint function completely fails. There is an unmet clinical need for a regenerative strategy to treat cartilage defect without surgery due to the lack of a suitable regenerative strategy. Clinicians and scientists have tried to address this using stem cells, which have a regenerative potential in various tissues. Cartilage may be an ideal target for stem cell treatment because it has a notoriously poor regenerative potential. In this review, we describe past, present, and future strategies to regenerate cartilage in patients. Specifically, this review compares a surgical regenerative technique (microfracture) and cell therapy, cell therapy with and without a scaffold, and therapy with nonaggregated and aggregated cells. We also review the chondrogenic potential of cells according to their origin, including autologous chondrocytes, mesenchymal stem cells, and induced pluripotent stem cells.
Collapse
|
15
|
Stem Cells for Cartilage Repair: Preclinical Studies and Insights in Translational Animal Models and Outcome Measures. Stem Cells Int 2018. [PMID: 29535784 PMCID: PMC5832141 DOI: 10.1155/2018/9079538] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Due to the restricted intrinsic capacity of resident chondrocytes to regenerate the lost cartilage postinjury, stem cell-based therapies have been proposed as a novel therapeutic approach for cartilage repair. Moreover, stem cell-based therapies using mesenchymal stem cells (MSCs) or induced pluripotent stem cells (iPSCs) have been used successfully in preclinical and clinical settings. Despite these promising reports, the exact mechanisms underlying stem cell-mediated cartilage repair remain uncertain. Stem cells can contribute to cartilage repair via chondrogenic differentiation, via immunomodulation, or by the production of paracrine factors and extracellular vesicles. But before novel cell-based therapies for cartilage repair can be introduced into the clinic, rigorous testing in preclinical animal models is required. Preclinical models used in regenerative cartilage studies include murine, lapine, caprine, ovine, porcine, canine, and equine models, each associated with its specific advantages and limitations. This review presents a summary of recent in vitro data and from in vivo preclinical studies justifying the use of MSCs and iPSCs in cartilage tissue engineering. Moreover, the advantages and disadvantages of utilizing small and large animals will be discussed, while also describing suitable outcome measures for evaluating cartilage repair.
Collapse
|
16
|
Different Chondrogenic Potential among Human Induced Pluripotent Stem Cells from Diverse Origin Primary Cells. Stem Cells Int 2018. [PMID: 29535785 PMCID: PMC5828428 DOI: 10.1155/2018/9432616] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Scientists have tried to reprogram various origins of primary cells into human induced pluripotent stem cells (hiPSCs). Every somatic cell can theoretically become a hiPSC and give rise to targeted cells of the human body. However, there have been debates on the controversy about the differentiation propensity according to the origin of primary cells. We reprogrammed hiPSCs from four different types of primary cells such as dermal fibroblasts (DF, n = 3), peripheral blood mononuclear cells (PBMC, n = 3), cord blood mononuclear cells (CBMC, n = 3), and osteoarthritis fibroblast-like synoviocytes (OAFLS, n = 3). Established hiPSCs were differentiated into chondrogenic pellets. All told, cartilage-specific markers tended to express more by the order of CBMC > DF > PBMC > FLS. Origin of primary cells may influence the reprogramming and differentiation thereafter. In the context of chondrogenic propensity, CBMC-derived hiPSCs can be a fairly good candidate cell source for cartilage regeneration. The differentiation of hiPSCs into chondrocytes may help develop “cartilage in a dish” in the future. Also, the ideal cell source of hiPSC for chondrogenesis may contribute to future application as well.
Collapse
|
17
|
Suchorska WM, Augustyniak E, Richter M, Trzeciak T. Comparison of Four Protocols to Generate Chondrocyte-Like Cells from Human Induced Pluripotent Stem Cells (hiPSCs). Stem Cell Rev Rep 2017; 13:299-308. [PMID: 27987073 PMCID: PMC5380716 DOI: 10.1007/s12015-016-9708-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Stem cells (SCs) are a promising approach to regenerative medicine, with the potential to treat numerous orthopedic disorders, including osteo-degenerative diseases. The development of human-induced pluripotent stem cells (hiPSCs) has increased the potential of SCs for new treatments. However, current methods of differentiating hiPSCs into chondrocyte-like cells are suboptimal and better methods are needed. The aim of the present study was to assess four different chondrogenic differentiation protocols to identify the most efficient method of generating hiPSC-derived chondrocytes. For this study, hiPSCs were obtained from primary human dermal fibroblasts (PHDFs) and differentiated into chondrocyte-like cells using four different protocols: 1) monolayer culture with defined growth factors (GF); 2) embryoid bodies (EBs) in a chondrogenic medium with TGF-β3 cells; 3) EBs in chondrogenic medium conditioned with human chondrocytes (HC-402-05a cell line) and 4) EBs in chondrogenic medium conditioned with human chondrocytes and supplemented with TGF-β3. The cells obtained through these four protocols were evaluated and compared at the mRNA and protein levels. Although chondrogenic differentiation of hiPSCs was successfully achieved with all of these protocols, the two fastest and most cost-effective methods were the monolayer culture with GFs and the medium conditioned with human chondrocytes. Both of these methods are superior to other available techniques. The main advantage of the conditioned medium is that the technique is relatively simple and inexpensive while the directed method (i.e., monolayer culture with GFs) is faster than any protocol described to date because it is does not require additional steps such as EB formation.
Collapse
Affiliation(s)
- Wiktoria Maria Suchorska
- Radiobiology Lab, Greater Poland Cancer Centre, 61- 866, Poznan, Poland
- Department of Electroradiology, Poznan University of Medical Sciences, 61-866, Poznan, Poland
| | - Ewelina Augustyniak
- Radiobiology Lab, Greater Poland Cancer Centre, 61- 866, Poznan, Poland.
- The Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-091, Warsaw, Poland.
| | - Magdalena Richter
- Department of Orthopedics and Traumatology, Poznan University of Medical Sciences, 61-545, Poznan, Poland
| | - Tomasz Trzeciak
- Department of Orthopedics and Traumatology, Poznan University of Medical Sciences, 61-545, Poznan, Poland
| |
Collapse
|
18
|
Narayanan G, Bhattacharjee M, Nair LS, Laurencin CT. Musculoskeletal Tissue Regeneration: the Role of the Stem Cells. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2017. [DOI: 10.1007/s40883-017-0036-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Li Y, Hai Y, Chen J, Liu T. Differentiating Chondrocytes from Peripheral Blood-derived Human Induced Pluripotent Stem Cells. J Vis Exp 2017. [PMID: 28745632 DOI: 10.3791/55722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In this study, we used peripheral blood cells (PBCs) as seed cells to produce chondrocytes via induced pluripotent stem cells (iPSCs) in an integration-free method. Following embryoid body (EB) formation and fibroblastic cell expansion, the iPSCs are induced for chondrogenic differentiation for 21 days under serum-free and xeno-free conditions. After chondrocyte induction, the phenotypes of the cells are evaluated by morphological, immunohistochemical, and biochemical analyses, as well as by the quantitative real-time PCR examination of chondrogenic differentiation markers. The chondrogenic pellets show positive alcian blue and toluidine blue staining. The immunohistochemistry of collagen II and X staining is also positive. The sulfated glycosaminoglycan (sGAG) content and the chondrogenic differentiation markers COLLAGEN 2 (COL2), COLLAGEN 10 (COL10), SOX9, and AGGRECAN are significantly upregulated in chondrogenic pellets compared to hiPSCs and fibroblastic cells. These results suggest that PBCs can be used as seed cells to generate iPSCs for cartilage repair, which is patient-specific and cost-effective.
Collapse
Affiliation(s)
- Yueying Li
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences
| | - Yong Hai
- Department of Orthopedics, Beijing Chao-Yang Hospital, Capital Medical University
| | - Jiayu Chen
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, School of Life Sciences and Technology, Tongji University
| | - Tie Liu
- Department of Orthopedics, Beijing Chao-Yang Hospital, Capital Medical University;
| |
Collapse
|
20
|
Nam Y, Rim YA, Ju JH. Chondrogenic Pellet Formation from Cord Blood-derived Induced Pluripotent Stem Cells. J Vis Exp 2017. [PMID: 28654049 DOI: 10.3791/55988] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Human articular cartilage lacks the ability to repair itself. Cartilage degeneration is thus treated not by curative but by conservative treatments. Currently, efforts are being made to regenerate damaged cartilage with ex vivo expanded chondrocytes or bone marrow-derived mesenchymal stem cells (BMSCs). However, the restricted viability and instability of these cells limit their application in cartilage reconstruction. Human induced pluripotent stem cells (hiPSCs) have received scientific attention as a new alternative for regenerative applications. With unlimited self-renewal ability and multipotency, hiPSCs have been highlighted as a new replacement cell source for cartilage repair. However, obtaining a high quantity of high-quality chondrogenic pellets is a major challenge to their clinical application. In this study, we used embryoid body (EB)-derived outgrowth cells for chondrogenic differentiation. Successful chondrogenesis was confirmed by PCR and staining with alcian blue, toluidine blue, and antibodies against collagen types I and II (COL1A1 and COL2A1, respectively). We provide a detailed method for the differentiation of cord blood mononuclear cell-derived iPSCs (CBMC-hiPSCs) into chondrogenic pellets.
Collapse
Affiliation(s)
- Yoojun Nam
- CiSTEM Laboratory, Convergent Research Consortium for Immunologic Disease, Division of Rheumatology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea
| | - Yeri Alice Rim
- CiSTEM Laboratory, Convergent Research Consortium for Immunologic Disease, Division of Rheumatology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea
| | - Ji Hyeon Ju
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, Institute of Medical Science, College of Medicine, The Catholic University of Korea;
| |
Collapse
|
21
|
Nam Y, Rim YA, Jung SM, Ju JH. Cord blood cell-derived iPSCs as a new candidate for chondrogenic differentiation and cartilage regeneration. Stem Cell Res Ther 2017; 8:16. [PMID: 28129782 PMCID: PMC5273802 DOI: 10.1186/s13287-017-0477-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 01/03/2017] [Accepted: 01/07/2017] [Indexed: 12/12/2022] Open
Abstract
Background The native articular cartilage lacks the ability to heal. Currently, ex vivo expanded chondrocytes or bone marrow-derived mesenchymal stem cells are used to regenerate the damaged cartilage. With unlimited self-renewal ability and multipotency, human induced pluripotent stem cells (hiPSCs) have been highlighted as a new replacement cell source for cartilage repair. Still, further research is needed on cartilage regeneration using cord blood mononuclear cell-derived hiPSCs (CBMC-hiPSCs). Methods Human iPSCs were generated from CBMCs using the Sendai virus. The characterization of CBMC-hiPSCs was performed by various assays. Embryonic bodies (EBs) were obtained using CBMC-hiPSCs, and outgrowth cells were induced by plating the EBs onto a gelatin-coated plate. Expanded outgrowth cells were detached and dissociated for chondrogenic differentiation. Outgrowth cells were differentiated into chondrogenic lineage with pellet culture. Chondrogenic pellets were maintained for 30 days. The quality of chondrogenic pellets was evaluated using various staining and genetic analysis of cartilage-specific markers. Results Reprogramming was successfully done using CBMCs. CBMC-hiPSCs (n = 3) showed high pluripotency and normal karyotype. Chondrogenic pellets were generated from the outgrowth cells derived from CBMC-hiPSC EBs. The generated chondrogenic pellets showed high expression of chondrogenic genetic markers such as ACAN, COMP, COL2A1, and SOX9. The production of extracellular matrix (ECM) proteins was confirmed by safranin O, alcian blue and toluidine blue staining. Expression of collagen type II and aggrecan was detected in the accumulated ECM by immunohistological staining. Chondrogenic pellets showed low expression of fibrotic and hypertrophic cartilage marker, collagen type I and X. Conclusions This study reveals the potential of CBMC-hiPSCs as a promising candidate for cartilage regeneration. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0477-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yoojun Nam
- CiSTEM Laboratory, Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 137-701, Republic of Korea.,Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, Institute of Medical Science, College of Medicine, The Catholic University of Korea, #505, Banpo-Dong, Seocho-Gu, Seoul, 137-701, Republic of Korea
| | - Yeri Alice Rim
- CiSTEM Laboratory, Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 137-701, Republic of Korea.,Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, Institute of Medical Science, College of Medicine, The Catholic University of Korea, #505, Banpo-Dong, Seocho-Gu, Seoul, 137-701, Republic of Korea
| | - Seung Min Jung
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, Yonsei University, Seoul, 120-749, Republic of Korea
| | - Ji Hyeon Ju
- CiSTEM Laboratory, Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 137-701, Republic of Korea. .,Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, Institute of Medical Science, College of Medicine, The Catholic University of Korea, #505, Banpo-Dong, Seocho-Gu, Seoul, 137-701, Republic of Korea.
| |
Collapse
|
22
|
Wang M, Yuan Z, Ma N, Hao C, Guo W, Zou G, Zhang Y, Chen M, Gao S, Peng J, Wang A, Wang Y, Sui X, Xu W, Lu S, Liu S, Guo Q. Advances and Prospects in Stem Cells for Cartilage Regeneration. Stem Cells Int 2017; 2017:4130607. [PMID: 28246531 PMCID: PMC5299204 DOI: 10.1155/2017/4130607] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 11/24/2016] [Accepted: 12/26/2016] [Indexed: 12/16/2022] Open
Abstract
The histological features of cartilage call attention to the fact that cartilage has a little capacity to repair itself owing to the lack of a blood supply, nerves, or lymphangion. Stem cells have emerged as a promising option in the field of cartilage tissue engineering and regenerative medicine and could lead to cartilage repair. Much research has examined cartilage regeneration utilizing stem cells. However, both the potential and the limitations of this procedure remain controversial. This review presents a summary of emerging trends with regard to using stem cells in cartilage tissue engineering and regenerative medicine. In particular, it focuses on the characterization of cartilage stem cells, the chondrogenic differentiation of stem cells, and the various strategies and approaches involving stem cells that have been used in cartilage repair and clinical studies. Based on the research into chondrocyte and stem cell technologies, this review discusses the damage and repair of cartilage and the clinical application of stem cells, with a view to increasing our systematic understanding of the application of stem cells in cartilage regeneration; additionally, several advanced strategies for cartilage repair are discussed.
Collapse
Affiliation(s)
- Mingjie Wang
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Zhiguo Yuan
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Ning Ma
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Chunxiang Hao
- Anesthesiology Department, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Weimin Guo
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Gengyi Zou
- Medical College, Nankai University, Tianjin, 300071, China
| | - Yu Zhang
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Mingxue Chen
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Shuang Gao
- Center for Biomedical Material and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jiang Peng
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Aiyuan Wang
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Yu Wang
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Xiang Sui
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Wenjing Xu
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Shibi Lu
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Shuyun Liu
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Quanyi Guo
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing 100853, China
| |
Collapse
|
23
|
Lietman SA. Induced pluripotent stem cells in cartilage repair. World J Orthop 2016; 7:149-155. [PMID: 27004161 PMCID: PMC4794532 DOI: 10.5312/wjo.v7.i3.149] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 11/17/2015] [Accepted: 01/04/2016] [Indexed: 02/06/2023] Open
Abstract
Articular cartilage repair techniques are challenging. Human embryonic stem cells and induced pluripotent stem cells (iPSCs) theoretically provide an unlimited number of specialized cells which could be used in articular cartilage repair. However thus far chondrocytes from iPSCs have been created primarily by viral transfection and with the use of cocultured feeder cells. In addition chondrocytes derived from iPSCs have usually been formed in condensed cell bodies (resembling embryoid bodies) that then require dissolution with consequent substantial loss of cell viability and phenotype. All of these current techniques used to derive chondrocytes from iPSCs are problematic but solutions to these problems are on the horizon. These solutions will make iPSCs a viable alternative for articular cartilage repair in the near future.
Collapse
|
24
|
Guzzo RM, Alaee F, Paglia D, Gibson JD, Spicer D, Drissi H. Aberrant expression of Twist1 in diseased articular cartilage and a potential role in the modulation of osteoarthritis severity. Genes Dis 2016; 3:88-99. [PMID: 30258877 PMCID: PMC6146614 DOI: 10.1016/j.gendis.2015.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/29/2015] [Indexed: 12/21/2022] Open
Abstract
The bHLH transcription factor Twist1 has emerged as a negative regulator of chondrogenesis in skeletal progenitor cells and as an inhibitor of maturation in growth plate chondrocytes. However, its role in articular cartilage remains obscure. Here we examine Twist1 expression during re-differentiation of expanded human articular chondrocytes, the distribution of Twist1 proteins in normal versus OA human articular cartilage, and its role in modulating OA development in mice. High levels of Twist1 transcripts were detected by qPCR analyses of expanded de-differentiated human articular chondrocytes that had acquired mesenchymal-like features. The induction of hallmark cartilage genes by Bmp-2 mediated chondrogenic differentiation was paralleled by the dramatic suppression of Twist1 in vitro. In normal human articular cartilage, Twist1-expressing chondrocytes were most abundant in the superficial zone with little to no expression in the middle and deep zones. However, our analyses revealed a higher proportion of deep zone articular chondrocytes expressing Twist1 in human OA cartilage as compared to normal articular cartilage. Moreover, Twist1 expression was prominent within proliferative cell clusters near fissure sites in more severely affected OA samples. To assess the role of Twist1 in OA pathophysiology, we subjected wild type mice and transgenic mice with gain of Twist1 function in cartilage to surgical destabilization of the medial meniscus. At 12 weeks post-surgery, micro-CT and histological analyses revealed attenuation of the OA phenotype in Twist1 transgenic mice compared to wild type mice. Collectively, the data reveal a role for Twist in articular cartilage maintenance and the attenuation of cartilage degeneration.
Collapse
Affiliation(s)
- Rosa M Guzzo
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT, USA.,Stem Cell Institute, UConn Health, Farmington, CT, USA
| | - Farhang Alaee
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT, USA
| | - David Paglia
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT, USA
| | - Jason D Gibson
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT, USA
| | - Douglas Spicer
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA
| | - Hicham Drissi
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT, USA.,Stem Cell Institute, UConn Health, Farmington, CT, USA
| |
Collapse
|
25
|
Suppression of dedifferentiation and hypertrophy in canine chondrocytes through lentiviral vector expression of Sox9 and induced pluripotency stem cell factors. Biotechnol Lett 2015; 37:1495-504. [PMID: 25813774 DOI: 10.1007/s10529-015-1805-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 02/26/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVES Prolonged in vitro culture of primary articular chondrocytes results in dedifferentiation to a fibroblast-like cell with reduced expression of the Sox9 transcription factor and the extracellular matrix protein collagen II. The ability to genetically-modify chondrocytes to allow both proliferation and maintenance of an articular phenotype may provide increased numbers of appropriate cells for regeneration of large cartilage defects. RESULTS Canine chondrocytes were expanded in monolayer culture and transduced with a lentiviral vector expressing Sox9 or in combination with a multicistronic lentiviral vector expressing the four induced pluripotency stem (iPS) cell factors, Oct4, Klf4, Sox2 and c-Myc (OSKM). 3D pellet cultures of transduced cells in the presence of TGFβ-3 revealed increased pellet size and higher levels of total glycosaminoglycan in both Sox9 and Sox9+ OSKM co-transduced chondrocytes compared to untransduced and green fluorescent protein expressing controls. Immunohistochemical detection of Sox9 and collagen II was evident in transduced cells (Sox9, OSKM, or Sox9+ OSKM) with very low levels in untransduced chondrocytes, demonstrating a dedifferentiated state (P < 0.01). The marker for chondrocyte hypertrophy, collagen X was highly expressed in Sox9 transduced chondrocytes but lower in OSKM or Sox9+ OSKM cells (P < 0.05). CONCLUSION A combination of Sox9 and OSKM gene delivery to canine chondrocytes allows continuous proliferation in monolayer culture with a higher expression of col2a1 without an increase in the hypertrophy marker collagen X in 3D pellet cultures.
Collapse
|
26
|
Shukla S, Meeran SM. Epigenetics of cancer stem cells: Pathways and therapeutics. Biochim Biophys Acta Gen Subj 2014; 1840:3494-3502. [PMID: 25240776 DOI: 10.1016/j.bbagen.2014.09.017] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 09/10/2014] [Accepted: 09/11/2014] [Indexed: 12/30/2022]
Abstract
BACKGROUND Epigenetic alterations including DNA methylation and histone modifications are the key factors in the differentiation of stem cells into different tissue subtypes. The generation of cancer stem cells (CSCs) in the process of carcinogenesis may also involve similar kind of epigenetic reprogramming where, in contrast, it leads to the loss of expression of genes specific to the differentiated state and regaining of stem cell-specific characteristics. The most important predicament with treatment of cancers includes the non-responsive quiescent CSC. SCOPE OF REVIEW The distinctive capabilities of the CSCs make cancer treatment even more difficult as this population of cells tends to remain quiescent for longer intervals and then gets reactivated leading to tumor relapse. Therefore, the current review is aimed to focus on recent advances in understanding the relation of epigenetic reprogramming to the generation, self-renewal and proliferation of CSCs. MAJOR CONCLUSION CSC-targeted therapeutic approaches would improve the chances of patient survival by reducing the frequency of tumor relapse. Differentiation therapy is an emerging therapeutic approach in which the CSCs are induced to differentiate from their quiescent state to a mature differentiated form, through activation of differentiation-related signalling pathways, miRNA-mediated alteration and epigenetic differentiation therapy. Thus, understanding the origin of CSC and their epigenetic regulation is crucial to develop treatment strategy against not only for the heterogeneous population of cancer cells but also to CSCs. GENERAL SIGNIFICANCE Characterizing the epigenetic marks of CSCs and the associated signalling cascades might help in developing therapeutic strategies against chemo-resistant cancers.
Collapse
Affiliation(s)
- Samriddhi Shukla
- Laboratory of Cancer Epigenetics, Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Syed Musthapa Meeran
- Laboratory of Cancer Epigenetics, Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India.
| |
Collapse
|