1
|
Lica JJ, Jakóbkiewicz-Banecka J, Hellmann A. In Vitro models of leukemia development: the role of very small leukemic stem-like cells in the cellular transformation cascade. Front Cell Dev Biol 2025; 12:1463807. [PMID: 39830209 PMCID: PMC11740207 DOI: 10.3389/fcell.2024.1463807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/28/2024] [Indexed: 01/22/2025] Open
Abstract
Recent experimental findings indicate that cancer stem cells originate from transformed very small embryonic-like stem cells. This finding represents an essential advancement in uncovering the processes that drive the onset and progression of cancer. In continuously growing cell lines, for the first time, our team's follow-up research on leukemia, lung cancer, and healthy embryonic kidney cells revealed stages that resembles very small precursor stem cells. This review explores the origin of leukemic stem-like cells from very small leukemic stem-like cells establish from transformed very small embryonic-like stem cells. We explore theoretical model of acute myeloid leukemia initiation and progresses through various stages, as well basing the HL60 cell line, present its hierarchical stage development in vitro, highlighting the role of these very small precursor primitive stages. We also discuss the potential implications of further research into these unique cellular stages for advancing leukemia and cancer treatment and prevention.
Collapse
Affiliation(s)
- Jan Jakub Lica
- Department Medical Biology and Genetics, Faculty of Biology, University of Gdansk, Gdansk, Poland
- Department Health Science; Powiśle University, Gdańsk, Poland
| | | | - Andrzej Hellmann
- Department of Hematology and Transplantology, Faculty of Medicine, Medical University of Gdansk, Gdańsk, Poland
| |
Collapse
|
2
|
Zhong C, Chen D, Gong D, Sheng X, Lin Y, Li R, Li Y. Transcriptomic response of overexpression ZNF32 in breast cancer cells. Sci Rep 2024; 14:28407. [PMID: 39557972 PMCID: PMC11574142 DOI: 10.1038/s41598-024-80125-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024] Open
Abstract
Breast cancer is one of the deadliest malignancies in women worldwide. Zinc finger protein 32 (ZNF32) has been reported to be involved in autophagy and stem cell like properties of breast cancer cells. However, the effects, mechanisms, target genes and pathways of ZNF32 in breast cancer development have not been fully explored. In this study, stable ZNF32 overexpression breast cancer cell line was generated, and we used RNA-seq and RT-qPCR to quantify and verify the changes in transcription levels in breast cancer cells under ZNF32 overexpression. Transcriptome analysis showed that high expression of ZNF32 is accompanied by changes in downstream focal adhesion, ECM-receptor interaction, PI3K-AKT, HIPPO and TNF signaling pathways, which are critical for the occurrence and development of cancer. Multiple differentially expressed genes (DEGs) were significantly involved in cell proliferation, adhesion and migration, including 11 DEGs such as CA9, CRLF1 and ENPP2P with fundamental change of regulation modes. All the 11 DEGs were validated by RT-qPCR, and 9 of them contained potential transcriptional binding sequences of ZNF32 in their promoter region. This study provides a holistic perspective on the role and molecular mechanism of ZNF32 in breast cancer progression.
Collapse
Affiliation(s)
- Chaosong Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China
- College of Animal and Veterinary Sciences, Southwest Minzu University, No. 16, South Section 4, First Ring Road, Chengdu, 610041, Sichuan, China
| | - Dingshuang Chen
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China
- College of Animal and Veterinary Sciences, Southwest Minzu University, No. 16, South Section 4, First Ring Road, Chengdu, 610041, Sichuan, China
| | - Di Gong
- School of Basic Medical Science, Chengdu University, Chengdu, China
| | - Xueqing Sheng
- College of Animal and Veterinary Sciences, Southwest Minzu University, No. 16, South Section 4, First Ring Road, Chengdu, 610041, Sichuan, China
| | - Yaqiu Lin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China
- College of Animal and Veterinary Sciences, Southwest Minzu University, No. 16, South Section 4, First Ring Road, Chengdu, 610041, Sichuan, China
| | - Ruiwen Li
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yanyan Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China.
- College of Animal and Veterinary Sciences, Southwest Minzu University, No. 16, South Section 4, First Ring Road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
3
|
Limanówka P, Ochman B, Świętochowska E. Mechanisms Behind the Impact of PIWI Proteins on Cancer Cells: Literature Review. Int J Mol Sci 2024; 25:12217. [PMID: 39596284 PMCID: PMC11594409 DOI: 10.3390/ijms252212217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
The P-Element-induced wimpy testis (PIWI) group of proteins plays a key role in RNA interference, particularly in the regulation of small non-coding RNAs. However, in recent years, PIWIs have gained attention in several diseases, mainly cancer. Therefore, the aim of this review was to evaluate current knowledge about the impact of PIWI proteins on cancer cells. PIWIs alter a number of pathways within cells, resulting in significant changes in cell behavior. Basic processes of cancer cells have been shown to be altered by either overexpression or inhibition of PIWIs. Regulation of apoptosis, metastasis, invasion, or proliferation of cancerous cells by these proteins proves their involvement in the progression of the malignancy. It has been revealed that PIWIs are also connected with cancer stem cells (CSCs), which proves their ability to become a therapeutic target. However, research on this topic is still fairly limited, and with significant differences between cancer types, it is necessary to refrain from making any decisive conclusions.
Collapse
Affiliation(s)
| | | | - Elżbieta Świętochowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-800 Zabrze, Poland; (P.L.); (B.O.)
| |
Collapse
|
4
|
Hamdy NM, Basalious EB, El-Sisi MG, Nasr M, Kabel AM, Nossier ES, Abadi AH. Advancements in current one-size-fits-all therapies compared to future treatment innovations for better improved chemotherapeutic outcomes: a step-toward personalized medicine. Curr Med Res Opin 2024; 40:1943-1961. [PMID: 39412377 DOI: 10.1080/03007995.2024.2416985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/22/2024]
Abstract
The development of therapies followed a generalized approach for a long time, assuming that a single treatment could effectively address various patient populations. However, recent breakthroughs have revealed the limitations of this one-size-fits-all paradigm. More recently, the field of therapeutics has witnessed a shift toward other modules, including cell therapies, high molecular weight remedies, personalized medicines, and gene therapies. Such advancements in therapeutic modules have the potential to revolutionize healthcare and pave the way for medicines that are more efficient and with minimal side effects. Cell therapies have gained considerable attention in regenerative medicine. Stem cell-based therapies, for instance, hold promise for tissue repair and regeneration, with ongoing research focusing on enhancing their efficacy and safety. High molecular weight drugs like peptides and proteins emerged as promising therapeutics because of their high specificity and diverse biological functions. Engineered peptides and proteins are developed for targeted drug delivery, immunotherapy, and disease-modulation. In personalized medicine, tailored treatments to individuals based on specific genetic profiling, lifestyle, biomarkers, and disease characteristics are all implemented. Clinicians have tailored treatments to optimize outcomes and minimize adverse effects, using targeted therapies based on specific mutations, yielding remarkable results. Gene therapies have revolutionized the treatment of genetic disorders by directly targeting the underlying genetic abnormalities. Innovative techniques, such as CRISPR-Cas9 have allowed precise gene editing, opening up possibilities for curing previously incurable conditions. In conclusion, advancements in therapeutic modules have the potential to revolutionize healthcare and pave the way for medicines that are more efficient and with minimal side effects.
Collapse
Affiliation(s)
- Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo, Egypt
- The National Committee of Drugs & Medicines by Academy of Scientific Research and Technology (ASRT), Ministry of Higher Education, Cairo, Egypt
| | - Emad B Basalious
- The National Committee of Drugs & Medicines by Academy of Scientific Research and Technology (ASRT), Ministry of Higher Education, Cairo, Egypt
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mona G El-Sisi
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo, Egypt
| | - Maha Nasr
- The National Committee of Drugs & Medicines by Academy of Scientific Research and Technology (ASRT), Ministry of Higher Education, Cairo, Egypt
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ahmed M Kabel
- The National Committee of Drugs & Medicines by Academy of Scientific Research and Technology (ASRT), Ministry of Higher Education, Cairo, Egypt
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Eman S Nossier
- The National Committee of Drugs & Medicines by Academy of Scientific Research and Technology (ASRT), Ministry of Higher Education, Cairo, Egypt
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Ashraf H Abadi
- The National Committee of Drugs & Medicines by Academy of Scientific Research and Technology (ASRT), Ministry of Higher Education, Cairo, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), New Cairo, Egypt
| |
Collapse
|
5
|
Malik S, Sikander M, Wahid M, Dhasmana A, Sarwat M, Khan S, Cobos E, Yallapu MM, Jaggi M, Chauhan SC. Deciphering cellular and molecular mechanism of MUC13 mucin involved in cancer cell plasticity and drug resistance. Cancer Metastasis Rev 2024; 43:981-999. [PMID: 38498072 DOI: 10.1007/s10555-024-10177-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/26/2024] [Indexed: 03/19/2024]
Abstract
There has been a surge of interest in recent years in understanding the intricate mechanisms underlying cancer progression and treatment resistance. One molecule that has recently emerged in these mechanisms is MUC13 mucin, a transmembrane glycoprotein. Researchers have begun to unravel the molecular complexity of MUC13 and its impact on cancer biology. Studies have shown that MUC13 overexpression can disrupt normal cellular polarity, leading to the acquisition of malignant traits. Furthermore, MUC13 has been associated with increased cancer plasticity, allowing cells to undergo epithelial-mesenchymal transition (EMT) and metastasize. Notably, MUC13 has also been implicated in the development of chemoresistance, rendering cancer cells less responsive to traditional treatment options. Understanding the precise role of MUC13 in cellular plasticity, and chemoresistance could pave the way for the development of targeted therapies to combat cancer progression and enhance treatment efficacy.
Collapse
Affiliation(s)
- Shabnam Malik
- Department of Immunology and Microbiology, School of Medicine, Biomedical Research Building, University of Texas Rio Grande Valley, 5300 North L Street, McAllen, TX, 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Mohammed Sikander
- Department of Immunology and Microbiology, School of Medicine, Biomedical Research Building, University of Texas Rio Grande Valley, 5300 North L Street, McAllen, TX, 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Mohd Wahid
- Unit of Research and Scientific Studies, College of Nursing and Allied Health Sciences, University of Jazan, Jizan, Saudi Arabia
| | - Anupam Dhasmana
- Department of Immunology and Microbiology, School of Medicine, Biomedical Research Building, University of Texas Rio Grande Valley, 5300 North L Street, McAllen, TX, 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Maryam Sarwat
- Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Noida, India
| | - Sheema Khan
- Department of Immunology and Microbiology, School of Medicine, Biomedical Research Building, University of Texas Rio Grande Valley, 5300 North L Street, McAllen, TX, 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Everardo Cobos
- Department of Medicine, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, Biomedical Research Building, University of Texas Rio Grande Valley, 5300 North L Street, McAllen, TX, 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Meena Jaggi
- Department of Immunology and Microbiology, School of Medicine, Biomedical Research Building, University of Texas Rio Grande Valley, 5300 North L Street, McAllen, TX, 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Subhash C Chauhan
- Department of Immunology and Microbiology, School of Medicine, Biomedical Research Building, University of Texas Rio Grande Valley, 5300 North L Street, McAllen, TX, 78504, USA.
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA.
| |
Collapse
|
6
|
Loda A, Semeraro F, Parolini S, Ronca R, Rezzola S. Cancer stem-like cells in uveal melanoma: novel insights and therapeutic implications. Biochim Biophys Acta Rev Cancer 2024; 1879:189104. [PMID: 38701937 DOI: 10.1016/j.bbcan.2024.189104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/24/2024] [Accepted: 04/27/2024] [Indexed: 05/06/2024]
Abstract
Uveal melanoma (UM) is the most common primary ocular tumor in the adult population. Even though these primary tumors are successfully treated in 90% of cases, almost 50% of patients ultimately develop metastasis, mainly in the liver, via hematological dissemination, with a median survival spanning from 6 to 12 months after diagnosis. In this context, chemotherapy regimens and molecular targeted therapies have demonstrated poor response rates and failed to improve survival. Among the multiple reasons for therapy failure, the presence of cancer stem-like cells (CSCs) represents the main cause of resistance to anticancer therapies. In the last few years, the existence of CSCs in UM has been demonstrated both in preclinical and clinical studies, and new molecular pathways and mechanisms have been described for this subpopulation of UM cells. Here, we will discuss the state of the art of CSC biology and their potential exploitation as therapeutic target in UM.
Collapse
Affiliation(s)
- Alessandra Loda
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Francesco Semeraro
- Eye Clinic, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Silvia Parolini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; National Center for Gene Therapy and Drugs based on RNA Technology - CN3, Padova, Italy; Consorzio Interuniversitario per le Biotecnologie (CIB), Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Consorzio Interuniversitario per le Biotecnologie (CIB), Italy
| | - Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| |
Collapse
|
7
|
Eltorky H, AbdelMageed M, Ismail H, Zahran F, Guirgis A, Olsson L, Lindmark G, Hammarström ML, Hammarström S, Sitohy B. LGR6 is a prognostic biomarker for less differentiated tumors in lymph nodes of colon cancer patients. Front Oncol 2024; 14:1393075. [PMID: 38715790 PMCID: PMC11074358 DOI: 10.3389/fonc.2024.1393075] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/04/2024] [Indexed: 01/04/2025] Open
Abstract
INTRODUCTION The aim was to investigate whether the stem cell marker LGR6 has prognostic value in colon cancer, alone or in combination with the prognostic biomarkers CEA and CXCL16. METHODS LGR6 mRNA levels were determined in 370 half lymph nodes of 121 colon cancer patients. Ability to predict relapse after curative surgery was estimated by Kaplan-Meier survival model and Cox regression analyses. RESULTS Patients with high LGR6 levels [LGR6(+)] had a decreased mean survival time of 11 months at 5-year follow-up and 47 months at 12-year follow-up, respectively, with hazard ratios of 3.2 and 2.8. LGR6 mRNA analysis added prognostic value to CEA and CXCL16 mRNA analysis. In the poor prognosis groups CEA(+) and CXCL16(+), further division was achieved by LGR6 analysis. LGR6(+) patients had a very poor prognosis. LGR6 also identified a small number of CEA(-), TNM stage I patients who relapsed suggesting stem cell origin of these tumors. LGR6 and LGR5 levels correlated strongly in lymph nodes of stage I and IV patients but not in stage II patients, suggesting that these stem cell markers are differentially regulated. CONCLUSION This study highlights LGR6 as a useful prognostic biomarker independently and in combination with CEA, CXCL16 or LGR5 identifying different risk groups.
Collapse
Affiliation(s)
- Hagar Eltorky
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
- Department of Diagnostics and Intervention, Umeå University, Umeå, Sweden
- Department of Biochemistry, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Manar AbdelMageed
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
- Department of Diagnostics and Intervention, Umeå University, Umeå, Sweden
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Hager Ismail
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
- Department of Diagnostics and Intervention, Umeå University, Umeå, Sweden
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Faten Zahran
- Department of Biochemistry, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Adel Guirgis
- Department of Molecular Biology, Genetic Engineering, and Biotechnology Research Institute, University of Sadat City, Sadat, Menoufia, Egypt
| | - Lina Olsson
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Gudrun Lindmark
- Institution of Clinical Sciences, Lund University, Lund, Sweden
| | | | - Sten Hammarström
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Basel Sitohy
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
- Department of Diagnostics and Intervention, Umeå University, Umeå, Sweden
| |
Collapse
|
8
|
Sandbhor P, Palkar P, Bhat S, John G, Goda JS. Nanomedicine as a multimodal therapeutic paradigm against cancer: on the way forward in advancing precision therapy. NANOSCALE 2024. [PMID: 38470224 DOI: 10.1039/d3nr06131k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Recent years have witnessed dramatic improvements in nanotechnology-based cancer therapeutics, and it continues to evolve from the use of conventional therapies (chemotherapy, surgery, and radiotherapy) to increasingly multi-complex approaches incorporating thermal energy-based tumor ablation (e.g. magnetic hyperthermia and photothermal therapy), dynamic therapy (e.g. photodynamic therapy), gene therapy, sonodynamic therapy (e.g. ultrasound), immunotherapy, and more recently real-time treatment efficacy monitoring (e.g. theranostic MRI-sensitive nanoparticles). Unlike monotherapy, these multimodal therapies (bimodal, i.e., a combination of two therapies, and trimodal, i.e., a combination of more than two therapies) incorporating nanoplatforms have tremendous potential to improve the tumor tissue penetration and retention of therapeutic agents through selective active/passive targeting effects. These combinatorial therapies can correspondingly alleviate drug response against hypoxic/acidic and immunosuppressive tumor microenvironments and promote/induce tumor cell death through various multi-mechanisms such as apoptosis, autophagy, and reactive oxygen-based cytotoxicity, e.g., ferroptosis, etc. These multi-faced approaches such as targeting the tumor vasculature, neoangiogenic vessels, drug-resistant cancer stem cells (CSCs), preventing intra/extravasation to reduce metastatic growth, and modulation of antitumor immune responses work complementary to each other, enhancing treatment efficacy. In this review, we discuss recent advances in different nanotechnology-mediated synergistic/additive combination therapies, emphasizing their underlying mechanisms for improving cancer prognosis and survival outcomes. Additionally, significant challenges such as CSCs, hypoxia, immunosuppression, and distant/local metastasis associated with therapy resistance and tumor recurrences are reviewed. Furthermore, to improve the clinical precision of these multimodal nanoplatforms in cancer treatment, their successful bench-to-clinic translation with controlled and localized drug-release kinetics, maximizing the therapeutic window while addressing safety and regulatory concerns are discussed. As we advance further, exploiting these strategies in clinically more relevant models such as patient-derived xenografts and 3D organoids will pave the way for the application of precision therapy.
Collapse
Affiliation(s)
- Puja Sandbhor
- Institute for NanoBioTechnology, Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
| | - Pranoti Palkar
- Radiobiology, Department of Radiation Oncology & Homi Bhabha National Institute, Mumbai, 400012, India
| | - Sakshi Bhat
- Radiobiology, Department of Radiation Oncology & Homi Bhabha National Institute, Mumbai, 400012, India
| | - Geofrey John
- Radiobiology, Department of Radiation Oncology & Homi Bhabha National Institute, Mumbai, 400012, India
| | - Jayant S Goda
- Radiobiology, Department of Radiation Oncology & Homi Bhabha National Institute, Mumbai, 400012, India
| |
Collapse
|
9
|
Su C, Mo J, Dong S, Liao Z, Zhang B, Zhu P. Integrinβ-1 in disorders and cancers: molecular mechanisms and therapeutic targets. Cell Commun Signal 2024; 22:71. [PMID: 38279122 PMCID: PMC10811905 DOI: 10.1186/s12964-023-01338-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/27/2023] [Indexed: 01/28/2024] Open
Abstract
Integrinβ-1 (ITGB1) is a crucial member of the transmembrane glycoprotein signaling receptor family and is also central to the integrin family. It forms heterodimers with other ligands, participates in intracellular signaling and controls a variety of cellular processes, such as angiogenesis and the growth of neurons; because of its role in bidirectional signaling regulation both inside and outside the membrane, ITGB1 must interact with a multitude of substances, so a variety of interfering factors can affect ITGB1 and lead to changes in its function. Over the past 20 years, many studies have confirmed a clear causal relationship between ITGB1 dysregulation and cancer development and progression in a wide range of benign diseases and solid tumor types, which may imply that ITGB1 is a prognostic biomarker and a therapeutic target for cancer treatment that warrants further investigation. This review summarizes the biological roles of ITGB1 in benign diseases and cancers, and compiles the current status of ITGB1 function and therapy in various aspects of tumorigenesis and progression. Finally, future research directions and application prospects of ITGB1 are suggested. Video Abstract.
Collapse
Affiliation(s)
- Chen Su
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, People's Republic of China
| | - Jie Mo
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, People's Republic of China
| | - Shuilin Dong
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, People's Republic of China
| | - Zhibin Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, People's Republic of China.
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, People's Republic of China.
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, Hubei, People's Republic of China.
- Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, Hubei, People's Republic of China.
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, People's Republic of China.
| | - Peng Zhu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, People's Republic of China.
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, Hubei, People's Republic of China.
- Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, Hubei, People's Republic of China.
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
10
|
Yang Y, Guo J, Li M, Chu G, Jin H, Ma J, Jia Q. Cancer stem cells and angiogenesis. Pathol Res Pract 2024; 253:155064. [PMID: 38160481 DOI: 10.1016/j.prp.2023.155064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/23/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
Cancer remains the primary cause of mortality in developed nations. Although localized tumors can be effectively addressed through surgery, radiotherapy, and other targeted methods, drug efficacy often wanes in the context of metastatic diseases. As a result, significant efforts are being made to develop drugs capable of not only inhibiting tumor growth but also impeding the metastasis of malignant tumors, with a focus on hindering their migration to adjacent organs. Cancer stem cells metastasize via blood and lymphatic vessels, exhibiting a high mutation rate, significant variability, and a predisposition to drug resistance. In contrast, endothelial cells, being less prone to mutation, are less likely to give rise to drug-resistant clones. Furthermore, the direct contact of circulating anti-angiogenic drugs with vascular endothelial cells expedites their therapeutic impact. Hence, anti-angiogenesis targeted therapy assumes a pivotal role in cancer treatment. This paper provides a succinct overview of the molecular mechanisms governing the interaction between cancer stem cells and angiogenesis.
Collapse
Affiliation(s)
- Yanru Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, School of Basic Medicine and Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jingyu Guo
- Department of Anesthesiology, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Mingyang Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, School of Basic Medicine and Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Guangxin Chu
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Hai Jin
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China.
| | - Jing Ma
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, School of Basic Medicine and Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Qingge Jia
- Department of Reproductive Medicine, Xi'an International Medical Center Hospital, Northwest University, Xi'an, China.
| |
Collapse
|
11
|
Soundararajan L, Warrier S, Dharmarajan A, Bhaskaran N. Predominant factors influencing reactive oxygen species in cancer stem cells. J Cell Biochem 2024; 125:3-21. [PMID: 37997702 DOI: 10.1002/jcb.30506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/17/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023]
Abstract
Reactive oxygen species (ROS) and its related signaling pathways and regulating molecules play a major role in the growth and development of cancer stem cells. The concept of ROS and cancer stem cells (CSCs) has been gaining much attention since the past decade and the evidence show that these CSCs possess robust self-renewal and tumorigenic potential and are resistant to conventional chemo- and radiotherapy and believed to be responsible for tumor progression, metastasis, and recurrence. It seems reasonable to say that cancer can be cured only if the CSCs are eradicated. ROS are Janus-faced molecules that can regulate cellular physiology as well as induce cytotoxicity, depending on the magnitude, duration, and site of generation. Unlike normal cancer cells, CSCs expel ROS efficiently by upregulating ROS scavengers. This unique redox regulation in CSCs protects them from ROS-mediated cell death and nullifies the effect of radiation, leading to chemoresistance and radioresistance. However, how these CSCs control ROS production by scavenging free radicals and how they maintain low levels of ROS is a challenging to understand and these attributes make CSCs as prime therapeutic targets. Here, we summarize the mechanisms of redox regulation in CSCs, with a focus on therapy resistance, its various pathways and microRNAs regulation, and the potential therapeutic implications of manipulating the ROS levels to eradicate CSCs. A better understanding of these molecules, their interactions in the CSCs may help us to adopt proper control and treatment measures.
Collapse
Affiliation(s)
- Loshini Soundararajan
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, Karnataka, India
| | - Sudha Warrier
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, Karnataka, India
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Bangalore, Karnataka, India
- Cuor Stem Cellutions Pvt Ltd., Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Bangalore, Karnataka, India
- Department of Biotechnology, Sri Ramachandra Institute of Higher Education and Research, Faculty of Biomedical Sciences and Technology, Chennai, Tamil Nādu, India
| | - Arun Dharmarajan
- Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Faculty of Biomedical Sciences and Technology, Chennai, Tamil Nādu, India
- Stem Cell and Cancer Biology laboratory, Curtin University, Perth, Western Australia, Australia
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, Western Australia, Australia
- Curtin Health and Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
- School of Human Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Natarajan Bhaskaran
- Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Faculty of Biomedical Sciences and Technology, Chennai, Tamil Nādu, India
| |
Collapse
|
12
|
He H, Wang S, Zhang W, Gao S, Guan H, Zhou P. Downregulation of TAB182 promotes cancer stem-like cell properties and therapeutic resistance in triple-negative breast cancer cells. BMC Cancer 2023; 23:1101. [PMID: 37953246 PMCID: PMC10642046 DOI: 10.1186/s12885-023-11552-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 10/20/2023] [Indexed: 11/14/2023] Open
Abstract
TAB182 participates in DNA damage repair and radio-/chemosensitivity regulation in various tumors, but its role in tumorigenesis and therapeutic resistance in breast cancer remains unclear. In the current paper, we observed that triple-negative Breast Cancer (TNBC), a highly aggressive type of breast cancer, exhibits a lower expression of TAB182. TAB182 knockdown stimulates the proliferation, migration, and invasion of TNBC cells. Our study first obtained RNA-seq data to explore the cellular functions mediated by TAB182 at the genome level in TNBC cells. A transcriptome analysis and in vitro experiments enabled us to identify that TAB182 downregulation drives the enhanced properties of cancer stem-like cells (CSCs) in TNBC cells. Furthermore, TAB182 deletion contributes to the resistance of cells to olaparib or cisplatin, which can be rescued by silencing GLI2, a gene downstream of cancer stemness-related signaling pathways. Our results reveal a novel function of TAB182 as a potential negative regulator of cancer stem-like properties and drug sensitivity in TNBC cells, suggesting that TAB182 may be a tumor suppressor gene and is associated with increased therapeutic benefits for TNBC patients.
Collapse
Affiliation(s)
- Huan He
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, People's Republic of China
| | - Shaozheng Wang
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Wen Zhang
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Shanshan Gao
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Hua Guan
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China.
| | - Pingkun Zhou
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China.
| |
Collapse
|
13
|
Xu J, Zhou L, Du X, Qi Z, Chen S, Zhang J, Cao X, Xia J. Transcriptome and Lipidomic Analysis Suggests Lipid Metabolism Reprogramming and Upregulating SPHK1 Promotes Stemness in Pancreatic Ductal Adenocarcinoma Stem-like Cells. Metabolites 2023; 13:1132. [PMID: 37999228 PMCID: PMC10673379 DOI: 10.3390/metabo13111132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023] Open
Abstract
Cancer stem cells (CSCs) are considered to play a key role in the development and progression of pancreatic ductal adenocarcinoma (PDAC). However, little is known about lipid metabolism reprogramming in PDAC CSCs. Here, we assigned stemness indices, which were used to describe and quantify CSCs, to every patient from the Cancer Genome Atlas (TCGA-PAAD) database and observed differences in lipid metabolism between patients with high and low stemness indices. Then, tumor-repopulating cells (TRCs) cultured in soft 3D (three-dimensional) fibrin gels were demonstrated to be an available PDAC cancer stem-like cell (CSLCs) model. Comprehensive transcriptome and lipidomic analysis results suggested that fatty acid metabolism, glycerophospholipid metabolism, and, especially, the sphingolipid metabolism pathway were mostly associated with CSLCs properties. SPHK1 (sphingosine kinases 1), one of the genes involved in sphingolipid metabolism and encoding the key enzyme to catalyze sphingosine to generate S1P (sphingosine-1-phosphate), was identified to be the key gene in promoting the stemness of PDAC. In summary, we explored the characteristics of lipid metabolism both in patients with high stemness indices and in novel CSLCs models, and unraveled a molecular mechanism via which sphingolipid metabolism maintained tumor stemness. These findings may contribute to the development of a strategy for targeting lipid metabolism to inhibit CSCs in PDAC treatment.
Collapse
Affiliation(s)
- Jinzhi Xu
- National Medical Center and National Clinical Research Center for Interventional Medicine, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Lina Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiaojing Du
- Endoscopy Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Zhuoran Qi
- National Medical Center and National Clinical Research Center for Interventional Medicine, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Sinuo Chen
- National Medical Center and National Clinical Research Center for Interventional Medicine, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Jian Zhang
- National Medical Center and National Clinical Research Center for Interventional Medicine, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Xin Cao
- National Medical Center and National Clinical Research Center for Interventional Medicine, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jinglin Xia
- National Medical Center and National Clinical Research Center for Interventional Medicine, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
14
|
Doustmihan A, Fathi M, Mazloomi M, Salemi A, Hamblin MR, Jahanban-Esfahlan R. Molecular targets, therapeutic agents and multitasking nanoparticles to deal with cancer stem cells: A narrative review. J Control Release 2023; 363:57-83. [PMID: 37739017 DOI: 10.1016/j.jconrel.2023.09.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/08/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
There is increasing evidence that malignant tumors are initiated and maintained by a sub-population of tumor cells that have similar biological properties to normal adult stem cells. This very small population of Cancer Stem Cells (CSC) comprises tumor initiating cells responsible for cancer recurrence, drug resistance and metastasis. Conventional treatments such as chemotherapy, radiotherapy and surgery, in addition to being potentially toxic and non-specific, may paradoxically increase the population, spread and survival of CSCs. Next-generation sequencing and omics technologies are increasing our understanding of the pathways and factors involved in the development of CSCs, and can help to discover new therapeutic targets against CSCs. In addition, recent advances in nanomedicine have provided hope for the development of optimal specific therapies to eradicate CSCs. Moreover, the use of artificial intelligence and nano-informatics can elucidate new drug targets, and help to design drugs and nanoparticles (NPs) to deal with CSCs. In this review, we first summarize the properties of CSCs and describe the signaling pathways and molecular characteristics responsible for the emergence and survival of CSCs. Also, the location of CSCs within the tumor and the effect of host factors on the creation and maintenance of CSCs are discussed. Newly discovered molecular targets involved in cancer stemness and some novel therapeutic compounds to combat CSCs are highlighted. The optimum properties of anti-CSC NPs, including blood circulation and stability, tumor accumulation and penetration, cellular internalization, drug release, endosomal escape, and aptamers designed for specific targeting of CSCs are covered. Finally, some recent smart NPs designed for therapeutic and theranostic purposes to overcome CSCs are discussed.
Collapse
Affiliation(s)
- Abolfazl Doustmihan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - MirAhmad Mazloomi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aysan Salemi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
15
|
León-Fuentes IM, Salgado-Gil MG, Novoa MS, Retamal MA. Connexins in Cancer, the Possible Role of Connexin46 as a Cancer Stem Cell-Determining Protein. Biomolecules 2023; 13:1460. [PMID: 37892142 PMCID: PMC10604234 DOI: 10.3390/biom13101460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/15/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Cancer is a widespread and incurable disease caused by genetic mutations, leading to uncontrolled cell proliferation and metastasis. Connexins (Cx) are transmembrane proteins that facilitate intercellular communication via hemichannels and gap junction channels. Among them, Cx46 is found mostly in the eye lens. However, in pathological conditions, Cx46 has been observed in various types of cancers, such as glioblastoma, melanoma, and breast cancer. It has been demonstrated that elevated Cx46 levels in breast cancer contribute to cellular resistance to hypoxia, and it is an enhancer of cancer aggressiveness supporting a pro-tumoral role. Accordingly, Cx46 is associated with an increase in cancer stem cell phenotype. These cells display radio- and chemoresistance, high proliferative abilities, self-renewal, and differentiation capacities. This review aims to consolidate the knowledge of the relationship between Cx46, its role in forming hemichannels and gap junctions, and its connection with cancer and cancer stem cells.
Collapse
Affiliation(s)
| | | | | | - Mauricio A. Retamal
- Programa de Comunicación Celular en Cáncer, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, República de Honduras 12740, Las Condes, Santiago 7610496, Chile; (I.M.L.-F.); (M.G.S.-G.); (M.S.N.)
| |
Collapse
|
16
|
Araldi RP, Delvalle DA, da Costa VR, Alievi AL, Teixeira MR, Dias Pinto JR, Kerkis I. Exosomes as a Nano-Carrier for Chemotherapeutics: A New Era of Oncology. Cells 2023; 12:2144. [PMID: 37681875 PMCID: PMC10486723 DOI: 10.3390/cells12172144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023] Open
Abstract
Despite the considerable advancements in oncology, cancer remains one of the leading causes of death worldwide. Drug resistance mechanisms acquired by cancer cells and inefficient drug delivery limit the therapeutic efficacy of available chemotherapeutics drugs. However, studies have demonstrated that nano-drug carriers (NDCs) can overcome these limitations. In this sense, exosomes emerge as potential candidates for NDCs. This is because exosomes have better organotropism, homing capacity, cellular uptake, and cargo release ability than synthetic NDCs. In addition, exosomes can serve as NDCs for both hydrophilic and hydrophobic chemotherapeutic drugs. Thus, this review aimed to summarize the latest advances in cell-free therapy, describing how the exosomes can contribute to each step of the carcinogenesis process and discussing how these nanosized vesicles could be explored as nano-drug carriers for chemotherapeutics.
Collapse
Affiliation(s)
- Rodrigo Pinheiro Araldi
- Genetics Laboratory, Butantan Institute, São Paulo 05503-900, SP, Brazil; (D.A.D.); (V.R.d.C.); (A.L.A.); (M.R.T.)
- Structural and Functional Biology Post-Graduation Program, Paulista School of Medicine, São Paulo Federal University (EPM-UNIFESP), São Paulo 04023-062, SP, Brazil
- BioDecision Analytics Ltd.a., São Paulo 13271-650, SP, Brazil;
| | - Denis Adrián Delvalle
- Genetics Laboratory, Butantan Institute, São Paulo 05503-900, SP, Brazil; (D.A.D.); (V.R.d.C.); (A.L.A.); (M.R.T.)
- Structural and Functional Biology Post-Graduation Program, Paulista School of Medicine, São Paulo Federal University (EPM-UNIFESP), São Paulo 04023-062, SP, Brazil
| | - Vitor Rodrigues da Costa
- Genetics Laboratory, Butantan Institute, São Paulo 05503-900, SP, Brazil; (D.A.D.); (V.R.d.C.); (A.L.A.); (M.R.T.)
- Structural and Functional Biology Post-Graduation Program, Paulista School of Medicine, São Paulo Federal University (EPM-UNIFESP), São Paulo 04023-062, SP, Brazil
| | - Anderson Lucas Alievi
- Genetics Laboratory, Butantan Institute, São Paulo 05503-900, SP, Brazil; (D.A.D.); (V.R.d.C.); (A.L.A.); (M.R.T.)
- Endocrinology and Metabology Post-Graduation Program, Paulista School of Medicine, São Paulo Federal University (EPM-UNIFESP), São Paulo 04023-062, SP, Brazil
| | - Michelli Ramires Teixeira
- Genetics Laboratory, Butantan Institute, São Paulo 05503-900, SP, Brazil; (D.A.D.); (V.R.d.C.); (A.L.A.); (M.R.T.)
- Endocrinology and Metabology Post-Graduation Program, Paulista School of Medicine, São Paulo Federal University (EPM-UNIFESP), São Paulo 04023-062, SP, Brazil
| | | | - Irina Kerkis
- Genetics Laboratory, Butantan Institute, São Paulo 05503-900, SP, Brazil; (D.A.D.); (V.R.d.C.); (A.L.A.); (M.R.T.)
| |
Collapse
|
17
|
Garimella SV, Gampa SC, Chaturvedi P. Mitochondria in Cancer Stem Cells: From an Innocent Bystander to a Central Player in Therapy Resistance. Stem Cells Cloning 2023; 16:19-41. [PMID: 37641714 PMCID: PMC10460581 DOI: 10.2147/sccaa.s417842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023] Open
Abstract
Cancer continues to rank among the world's leading causes of mortality despite advancements in treatment. Cancer stem cells, which can self-renew, are present in low abundance and contribute significantly to tumor recurrence, tumorigenicity, and drug resistance to various therapies. The drug resistance observed in cancer stem cells is attributed to several factors, such as cellular quiescence, dormancy, elevated aldehyde dehydrogenase activity, apoptosis evasion mechanisms, high expression of drug efflux pumps, protective vascular niche, enhanced DNA damage response, scavenging of reactive oxygen species, hypoxic stability, and stemness-related signaling pathways. Multiple studies have shown that mitochondria play a pivotal role in conferring drug resistance to cancer stem cells, through mitochondrial biogenesis, metabolism, and dynamics. A better understanding of how mitochondria contribute to tumorigenesis, heterogeneity, and drug resistance could lead to the development of innovative cancer treatments.
Collapse
Affiliation(s)
- Sireesha V Garimella
- Department of Biotechnology, School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, 530045, India
| | - Siri Chandana Gampa
- Department of Biotechnology, School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, 530045, India
| | - Pankaj Chaturvedi
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
18
|
Patwardhan MV, Mahendran R. The Bladder Tumor Microenvironment Components That Modulate the Tumor and Impact Therapy. Int J Mol Sci 2023; 24:12311. [PMID: 37569686 PMCID: PMC10419109 DOI: 10.3390/ijms241512311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
The tumor microenvironment (TME) is complex and involves many different cell types that seemingly work together in helping cancer cells evade immune monitoring and survive therapy. The advent of single-cell sequencing has greatly increased our knowledge of the cell types present in the tumor microenvironment and their role in the developing cancer. This, coupled with clinical data showing that cancer development and the response to therapy may be influenced by drugs that indirectly influence the tumor environment, highlights the need to better understand how the cells present in the TME work together. This review looks at the different cell types (cancer cells, cancer stem cells, endothelial cells, pericytes, adipose cells, cancer-associated fibroblasts, and neuronal cells) in the bladder tumor microenvironment. Their impact on immune activation and on shaping the microenvironment are discussed as well as the effects of hypertensive drugs and anesthetics on bladder cancer.
Collapse
Affiliation(s)
| | - Ratha Mahendran
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| |
Collapse
|
19
|
Penas C, Arroyo-Berdugo Y, Apraiz A, Rasero J, Muñoa-Hoyos I, Andollo N, Cancho-Galán G, Izu R, Gardeazabal J, Ezkurra PA, Subiran N, Alvarez-Dominguez C, Alonso S, Bosserhoff AK, Asumendi A, Boyano MD. Pirin is a prognostic marker of human melanoma that dampens the proliferation of malignant cells by downregulating JARID1B/KDM5B expression. Sci Rep 2023; 13:9561. [PMID: 37308689 DOI: 10.1038/s41598-023-36684-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/08/2023] [Indexed: 06/14/2023] Open
Abstract
Originally considered to act as a transcriptional co-factor, Pirin has recently been reported to play a role in tumorigenesis and the malignant progression of many tumors. Here, we have analyzed the diagnostic and prognostic value of Pirin expression in the early stages of melanoma, and its role in the biology of melanocytic cells. Pirin expression was analyzed in a total of 314 melanoma biopsies, correlating this feature with the patient's clinical course. Moreover, PIR downregulated primary melanocytes were analyzed by RNA sequencing, and the data obtained were validated in human melanoma cell lines overexpressing PIR by functional assays. The immunohistochemistry multivariate analysis revealed that early melanomas with stronger Pirin expression were more than twice as likely to develop metastases during the follow-up. Transcriptome analysis of PIR downregulated melanocytes showed a dampening of genes involved in the G1/S transition, cell proliferation, and cell migration. In addition, an in silico approach predicted that JARID1B as a potential transcriptional regulator that lies between PIR and its downstream modulated genes, which was corroborated by co-transfection experiments and functional analysis. Together, the data obtained indicated that Pirin could be a useful marker for the metastatic progression of melanoma and that it participates in the proliferation of melanoma cells by regulating the slow-cycling JARID1B gene.
Collapse
Affiliation(s)
- Cristina Penas
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940, Leioa, Spain
| | - Yoana Arroyo-Berdugo
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940, Leioa, Spain
| | - Aintzane Apraiz
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940, Leioa, Spain
- Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
| | - Javier Rasero
- Department of Psychology, Carnegie Mellon University, Pittsburg, PA, 15213, USA
| | - Iraia Muñoa-Hoyos
- Department of Physiology, Faculty of Medicine and Nursing, UPV/EHU, 48940, Leioa, Spain
| | - Noelia Andollo
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940, Leioa, Spain
- Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
| | | | - Rosa Izu
- Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
- Department of Dermatology, Basurto University Hospital, 48013, Bilbo, Spain
| | - Jesús Gardeazabal
- Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
- Department of Dermatology, Cruces University Hospital, 48903, Barakaldo, Spain
| | - Pilar A Ezkurra
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940, Leioa, Spain
| | - Nerea Subiran
- Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
- Department of Physiology, Faculty of Medicine and Nursing, UPV/EHU, 48940, Leioa, Spain
| | - Carmen Alvarez-Dominguez
- MEDONLINE Multidisciplinary Research Group, Faculty of Health Sciences and Faculty of Education, International University of La Rioja, 26006, Logroño, Spain
| | - Santos Alonso
- Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, UPV/EHU, 48940, Leioa, Spain
| | - Anja K Bosserhoff
- Institute of Biochemistry, Friedrich-Alexander University of Erlangen-Nürnberg, 91054, Erlangen, Germany
- Comprehensive Cancer Center (CCC) Erlangen-EMN, 91054, Erlangen, Germany
| | - Aintzane Asumendi
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940, Leioa, Spain
- Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
| | - María D Boyano
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940, Leioa, Spain.
- Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain.
| |
Collapse
|
20
|
Loda A, Calza S, Giacomini A, Ravelli C, Krishna Chandran AM, Tobia C, Tabellini G, Parolini S, Semeraro F, Ronca R, Rezzola S. FGF-trapping hampers cancer stem-like cells in uveal melanoma. Cancer Cell Int 2023; 23:89. [PMID: 37165394 PMCID: PMC10173517 DOI: 10.1186/s12935-023-02903-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/24/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Cancer stem-like cells (CSCs) are a subpopulation of tumor cells responsible for tumor initiation, metastasis, chemoresistance, and relapse. Recently, CSCs have been identified in Uveal Melanoma (UM), which represents the most common primary tumor of the eye. UM is highly resistant to systemic chemotherapy and effective therapies aimed at improving overall survival of patients are eagerly required. METHODS Herein, taking advantage from a pan Fibroblast Growth Factor (FGF)-trap molecule, we singled out and analyzed a UM-CSC subset with marked stem-like properties. A hierarchical clustering of gene expression data publicly available on The Cancer Genome Atlas (TCGA) was performed to identify patients' clusters. RESULTS By disrupting the FGF/FGF receptor (FGFR)-mediated signaling, we unmasked an FGF-sensitive UM population characterized by increased expression of numerous stemness-related transcription factors, enhanced aldehyde dehydrogenase (ALDH) activity, and tumor-sphere formation capacity. Moreover, FGF inhibition deeply affected UM-CSC survival in vivo in a chorioallantoic membrane (CAM) tumor graft assay, resulting in the reduction of tumor growth. At clinical level, hierarchical clustering of TCGA gene expression data revealed a strong correlation between FGFs/FGFRs and stemness-related genes, allowing the identification of three distinct clusters characterized by different clinical outcomes. CONCLUSIONS Our findings support the evidence that the FGF/FGFR axis represents a master regulator of cancer stemness in primary UM tumors and point to anti-FGF treatments as a novel therapeutic strategy to hit the CSC component in UM.
Collapse
Affiliation(s)
- Alessandra Loda
- Department of Molecular and Translational Medicine, University of Brescia, viale Europa 11, 25123, Brescia, Italy
| | - Stefano Calza
- Department of Molecular and Translational Medicine, University of Brescia, viale Europa 11, 25123, Brescia, Italy
| | - Arianna Giacomini
- Department of Molecular and Translational Medicine, University of Brescia, viale Europa 11, 25123, Brescia, Italy
| | - Cosetta Ravelli
- Department of Molecular and Translational Medicine, University of Brescia, viale Europa 11, 25123, Brescia, Italy
| | - Adwaid Manu Krishna Chandran
- Department of Molecular and Translational Medicine, University of Brescia, viale Europa 11, 25123, Brescia, Italy
| | - Chiara Tobia
- Department of Molecular and Translational Medicine, University of Brescia, viale Europa 11, 25123, Brescia, Italy
| | - Giovanna Tabellini
- Department of Molecular and Translational Medicine, University of Brescia, viale Europa 11, 25123, Brescia, Italy
| | - Silvia Parolini
- Department of Molecular and Translational Medicine, University of Brescia, viale Europa 11, 25123, Brescia, Italy
| | - Francesco Semeraro
- Eye Clinic, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, viale Europa 11, 25123, Brescia, Italy.
| | - Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, viale Europa 11, 25123, Brescia, Italy.
| |
Collapse
|
21
|
Zhou Y, Li T, Jia M, Dai R, Wang R. The Molecular Biology of Prostate Cancer Stem Cells: From the Past to the Future. Int J Mol Sci 2023; 24:ijms24087482. [PMID: 37108647 PMCID: PMC10140972 DOI: 10.3390/ijms24087482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Prostate cancer (PCa) continues to rank as the second leading cause of cancer-related mortality in western countries, despite the golden treatment using androgen deprivation therapy (ADT) or anti-androgen therapy. With decades of research, scientists have gradually realized that the existence of prostate cancer stem cells (PCSCs) successfully explains tumor recurrence, metastasis and therapeutic failure of PCa. Theoretically, eradication of this small population may improve the efficacy of current therapeutic approaches and prolong PCa survival. However, several characteristics of PCSCs make their diminishment extremely challenging: inherent resistance to anti-androgen and chemotherapy treatment, over-activation of the survival pathway, adaptation to tumor micro-environments, escape from immune attack and being easier to metastasize. For this end, a better understanding of PCSC biology at the molecular level will definitely inspire us to develop PCSC targeted approaches. In this review, we comprehensively summarize signaling pathways responsible for homeostatic regulation of PCSCs and discuss how to eliminate these fractional cells in clinical practice. Overall, this study deeply pinpoints PCSC biology at the molecular level and provides us some research perspectives.
Collapse
Affiliation(s)
- Yong Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Tian Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Man Jia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Rongyang Dai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Ronghao Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
22
|
Szymczak B, Czarnecka J, Czach S, Nowak W, Roszek K. Purinergic approach to effective glioma treatment with temozolomide reveals enhanced anti-cancer effects mediated by P2X7 receptor. Cell Signal 2023; 106:110641. [PMID: 36858191 DOI: 10.1016/j.cellsig.2023.110641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023]
Abstract
The purinergic signaling pathway is the oldest evolutionary transmitter system that regulates a wide array of physiological and pathophysiological processes in central nervous system. However, the question of how the purinergic compounds interact with administrated drugs is rarely addressed. We aimed to clarify the interplay between purinergic signaling and chemotherapeutic drug temozolomide (TMZ) in human glioma cell line. We applied an initial retinoic acid-induced differentiation of A172 glioma cells and tested the P2X7 receptor expression in undifferentiated and differentiated gliomas. We compared the P2X7 receptor agonists/antagonists influence and their co-action with TMZ in both cell types through assessment of cell proliferation, viability and migrative properties. Molecular docking allowed to indicate the potential binding site for TMZ in the structure of hP2X7 receptor. Differentiated cells turned out to be more susceptible to ATP and TMZ alone but also to the concerted action of TMZ and ATP. Enhanced effects triggered by ATP and TMZ treatment include the decreased by 70% viability, and reduced migration ability of differentiated A172 glioma cells. Noteworthy, these results can be achieved already at low non-toxic ATP concentration and at reduced to 125 μM effective concentration of TMZ. Therefore, ATP molecules must be present and maintained at appropriate concentration in glioma cells microenvironment to achieve their co-action with TMZ and enhanced anti-cancer activity. All that, in turn, could shorten the therapy, increase its efficacy and limit the side effects for the patient. Our purinergic approach creates a promising perspective for developing novel combined oncological therapies.
Collapse
Affiliation(s)
- Bartosz Szymczak
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Torun, Poland
| | - Joanna Czarnecka
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Torun, Poland
| | - Sylwia Czach
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Grudziądzka 5, 87-100 Torun, Poland
| | - Wiesław Nowak
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Grudziądzka 5, 87-100 Torun, Poland
| | - Katarzyna Roszek
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Torun, Poland.
| |
Collapse
|
23
|
Hou J, Chen Q, Huang Y, Wu Z, Ma D. Caudatin blocks the proliferation, stemness and glycolysis of non-small cell lung cancer cells through the Raf/MEK/ERK pathway. PHARMACEUTICAL BIOLOGY 2022; 60:764-773. [PMID: 35387566 PMCID: PMC9004493 DOI: 10.1080/13880209.2022.2050768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
CONTEXT The antitumor effects of caudatin have been explored in multiple cancers, but the research on lung cancer has not been fully understood. OBJECTIVE We explored the effects of caudatin on non-small cell lung cancer (NSCLC) in vitro and in vivo. MATERIALS AND METHODS In the in vitro experiments, 0, 25, 50 and 100 μM of caudatin were selected to examine the effects on stemness and glycolysis. Subcutaneous tumour xenografts were constructed by injecting the nude mice (BALB/C) with 5 × 106 H1299 cells. In the in vivo experiments, all nude mice were divided into the caudatin group (50 mg/kg/day, n = 5) and the sham group (equal amount of DMSO, n = 5). RESULTS The IC50 of caudatin for H1299 and H520 cells was 44.68 μM and 69.37 μM, respectively. Compared with caudatin 0 μM group, cell apoptosis rate was increased about 10 times and cell stemness was decreased by 75-85% in caudatin 100 μM group. Glucose uptake (65-80% reduction), lactic acid production (75-80% reduction), ATP level (70-80% reduction) and the expression of HK2 and LDHA (75-85% reduction) were decreased in caudatin 100 μM group. The expression of Raf/MEK/ERK pathway related proteins was decreased to 20-25% by caudatin. Tumour weight (about 70% reduction) and the expression of stemness, glycolysis and Raf/MEK/ERK pathway related proteins (about 50-75% reduction) were suppressed by caudatin in vivo. DISCUSSION AND CONCLUSIONS We revealed that caudatin blocked stemness and glycolysis in NSCLC for the first time. More experiments about exact dosage of caudatin in vivo should be conducted.
Collapse
Affiliation(s)
- Juan Hou
- Department of Oncology, Jingjiang People’s Hospital, Taizhou, Jiangsu, China
| | - Qing Chen
- Department of Oncology, Jingjiang People’s Hospital, Taizhou, Jiangsu, China
| | - Yufeng Huang
- Department of Oncology, Jingjiang People’s Hospital, Taizhou, Jiangsu, China
| | - Zhiwei Wu
- Department of Oncology, Jingjiang People’s Hospital, Taizhou, Jiangsu, China
| | - De Ma
- Department of Oncology, Jingjiang People’s Hospital, Taizhou, Jiangsu, China
- CONTACT De Ma Department of Oncology, Jingjiang People’s Hospital, No. 28 Zhongzhou Road, Jingjiang City, Jiangsu Province214500, China
| |
Collapse
|
24
|
Lv S, Chen Z, Mi H, Yu X. Cofilin Acts as a Booster for Progression of Malignant Tumors Represented by Glioma. Cancer Manag Res 2022; 14:3245-3269. [PMID: 36452435 PMCID: PMC9703913 DOI: 10.2147/cmar.s389825] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/10/2022] [Indexed: 07/20/2023] Open
Abstract
Cofilin, as a depolymerization factor of actin filaments, has been widely studied. Evidences show that cofilin has a role in actin structural reorganization and dynamic regulation. In recent years, several studies have demonstrated a regulatory role for cofilin in the migration and invasion mediated by cell dynamics and epithelial to mesenchymal transition (EMT)/EMT-like process, apoptosis, radiotherapy resistance, immune escape, and transcriptional dysregulation of malignant tumor cells, particularly glioma cells. On this basis, it is practical to evaluate cofilin as a biomarker for predicting tumor metastasis and prognosis. Targeting cofilin regulating kinases, Lin11, Isl-1 and Mec-3 kinases (LIM kinases/LIMKs) and their major upstream molecules inhibits tumor cell migration and invasion and targeting cofilin-mediated mitochondrial pathway induces apoptosis of tumor cells represent effective options for the development of novel anti-malignant tumor drug, especially anti-glioma drugs. This review explores the structure, general biological function, and regulation of cofilin, with an emphasis on the critical functions and prospects for clinical therapeutic applications of cofilin in malignant tumors represented by glioma.
Collapse
Affiliation(s)
- Shihong Lv
- Department of Gastroenterology, The Second Affiliated Hospital of Mudanjiang Medical College, Mudanjiang Medical College, Mudanjiang, 157011, People’s Republic of China
| | - Zhiye Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
- Department of Histology and Embryology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Hailong Mi
- Department of Histology and Embryology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Xingjiang Yu
- Department of Histology and Embryology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| |
Collapse
|
25
|
Sher G, Masoodi T, Patil K, Akhtar S, Kuttikrishnan S, Ahmad A, Uddin S. Dysregulated FOXM1 signaling in the regulation of cancer stem cells. Semin Cancer Biol 2022; 86:107-121. [PMID: 35931301 DOI: 10.1016/j.semcancer.2022.07.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/20/2022] [Accepted: 07/31/2022] [Indexed: 01/27/2023]
Abstract
Since the introduction of the cancer stem cell (CSC) paradigm, significant advances have been made in understanding the functional and biological plasticity of these elusive components in malignancies. Endowed with self-renewing abilities and multilineage differentiation potential, CSCs have emerged as cellular drivers of virtually all facets of tumor biology, including metastasis, tumor recurrence/relapse, and drug resistance. The functional and biological characteristics of CSCs, such as self-renewal, cell fate decisions, survival, proliferation, and differentiation are regulated by an array of extracellular factors, signaling pathways, and pluripotent transcriptional factors. Besides the well-characterized regulatory role of transcription factors OCT4, SOX2, NANOG, KLF4, and MYC in CSCs, evidence for the central role of Forkhead box transcription factor FOXM1 in the establishment, maintenance, and functions of CSCs is accumulating. Conventionally identified as a master regulator of the cell cycle, a comprehensive understanding of this molecule has revealed its multifarious oncogenic potential and uncovered its role in angiogenesis, invasion, migration, self-renewal, and drug resistance. This review compiles the large body of literature that has accumulated in recent years that provides evidence for the mechanisms by which FOXM1 expression promotes stemness in glioblastoma, breast, colon, ovarian, lung, hepatic, and pancreatic carcinomas. We have also compiled the data showing the association of stem cell mediators with FOXM1 using TCGA mRNA expression data. Further, the prognostic importance of FOXM1 and other stem cell markers is presented. The delineation of FOXM1-mediated regulation of CSCs can aid in the development of molecularly targeted pharmacological approaches directed at the selective eradication of CSCs in several human malignancies.
Collapse
Affiliation(s)
- Gulab Sher
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Tariq Masoodi
- Laboratory of Molecular and Metabolic Imaging, Cancer Research Department, Sidra Medicine, Doha 26999, Qatar
| | - Kalyani Patil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Sabah Akhtar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Laboratory Animal Research Center, Qatar University, Doha 2713, Qatar.
| |
Collapse
|
26
|
Ren W, Yuan Y, Peng J, Mutti L, Jiang X. The function and clinical implication of circular RNAs in lung cancer. Front Oncol 2022; 12:862602. [PMID: 36338714 PMCID: PMC9629004 DOI: 10.3389/fonc.2022.862602] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 08/26/2022] [Indexed: 12/02/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Despite the recent advent of promising new targeted therapies, lung cancer diagnostic strategies still have difficulty in identifying the disease at an early stage. Therefore, the characterizations of more sensible and specific cancer biomarkers have become an important goal for clinicians. Circular RNAs are covalently close, endogenous RNAs without 5' end caps or 3'poly (A) tails and have been characterized by high stability, abundance, and conservation as well as display cell/tissue/developmental stage-specific expressions. Numerous studies have confirmed that circRNAs act as microRNA (miRNA) sponges, RNA-binding protein, and transcriptional regulators; some circRNAs even act as translation templates that participate in multiple pathophysiological processes. Growing evidence have confirmed that circRNAs are involved in the pathogenesis of lung cancers through the regulation of proliferation and invasion, cell cycle, autophagy, apoptosis, stemness, tumor microenvironment, and chemotherapy resistance. Moreover, circRNAs have emerged as potential biomarkers for lung cancer diagnosis and prognosis and targets for developing new treatments. In this review, we will summarize recent progresses in identifying the biogenesis, biological functions, potential mechanisms, and clinical applications of these molecules for lung cancer diagnosis, prognosis, and targeted therapy.
Collapse
Affiliation(s)
- Wenjun Ren
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- Department of Thoracic Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yixiao Yuan
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Peng
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Luciano Mutti
- The Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, United States
| | - Xiulin Jiang
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
27
|
Wang J, Yang B, Lv C, Chen T, Sun L, Sun L, Hao J, Ding F, Wang T, Jiang J, Qin Y. Amino porphyrin-peptide assemblies induce ribosome damage and cancer stem cell inhibition for an enhanced photodynamic therapy. Biomaterials 2022; 289:121812. [PMID: 36152516 DOI: 10.1016/j.biomaterials.2022.121812] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022]
Abstract
Cancer stem cells (CSCs) are the subpopulation of tumor cells with the properties of tumorigenesis, multilineage differentiation potential and self-renewal, which is the driving force of tumor recurrence and metastasis. However, targeting CSCs is still the main challenge in cancer therapy due to their rapid growth and fast mutation rate. Herein, we developed a simple strategy of photodynamic therapy (PDT) targeting CSCs, dependent on much more abundant ribosomes in CSCs. The interactions between positively charged nanoparticles with negatively charged nucleic acids architectures in cancer cells could lead ribosomes targeting as well as CSCs targeting. The co-assembly of simple amino porphyrin (m-TAPP) with short peptide (Fmoc-L3-OMe) formed nanoparticles (NPs) with good biocompatibility and photoactivity, became positively charged due to low pH value of tumour microenvironment, and efficiently accessed cancer cell ribosome, approached cancer cell nuclei, therefore enriched in the fast-amplifying CSCs. The inhibitive effect on CSCs by m-TAPP assemblies was verified by the significant reduction of CSCs markers CD44, CD133 and ribosome amount in cancer cells and tissues. Upon light irradiation, the NPs induced ROS generation to provoke destructive cancer cell ribosome damage and subsequent apoptosis to prevent tumor growth markedly. Based on the assemblies of small organic molecules, our study not only achieves ribosome degradation induced cancer cells apoptosis, but also indicates new possibility of performing CSCs targeting PDT.
Collapse
Affiliation(s)
- Jian Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Baochan Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Chaofan Lv
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Tiancheng Chen
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Lixin Sun
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Lei Sun
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Junfeng Hao
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Fang Ding
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China.
| | - Tianyu Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Yan Qin
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China.
| |
Collapse
|
28
|
Aberrant transcription factors in the cancers of the pancreas. Semin Cancer Biol 2022; 86:28-45. [PMID: 36058426 DOI: 10.1016/j.semcancer.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/15/2022] [Accepted: 08/29/2022] [Indexed: 11/21/2022]
Abstract
Transcription factors (TFs) are essential for proper activation of gene set during the process of organogenesis, differentiation, lineage specificity. Reactivation or dysregulation of TFs regulatory networks could lead to deformation of organs, diseases including various malignancies. Currently, understanding the mechanism of oncogenesis became necessity for the development of targeted therapeutic strategy for different cancer types. It is evident that many TFs go awry in cancers of the pancreas such as pancreatic ductal adenocarcinoma (PDAC) and pancreatic neuroendocrine neoplasms (PanNENs). These mutated or dysregulated TFs abnormally controls various signaling pathways in PDAC and PanNENs including RTK, PI3K-PTEN-AKT-mTOR, JNK, TGF-β/SMAD, WNT/β-catenin, SHH, NOTCH and VEGF which in turn regulate different hallmarks of cancer. Aberrant regulation of such pathways have been linked to the initiation, progression, metastasis, and resistance in pancreatic cancer. As of today, a number of TFs has been identified as crucial regulators of pancreatic cancer and a handful of them shown to have potential as therapeutic targets in pre-clinical and clinical settings. In this review, we have summarized the current knowledge on the role and therapeutic usefulness of TFs in PDAC and PanNENs.
Collapse
|
29
|
Gong X, Wang A, Song W. Clinicopathological significances of PLOD2, epithelial-mesenchymal transition markers, and cancer stem cells in patients with esophageal squamous cell carcinoma. Medicine (Baltimore) 2022; 101:e30112. [PMID: 36042592 PMCID: PMC9410680 DOI: 10.1097/md.0000000000030112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND To examine the expression level of procollagen-lysine2-oxoglutarate 5-dioxygenase 2 (PLOD2) in esophageal squamous cell carcinoma (ESCC) and analyze its correlation with clinicopathological parameters, in order to explore the mechanism of PLOD2 in regulating invasion and metastasis of ESCC. METHODS Immunohistochemistry was used to detect the expression level of PLOD2 in tumor tissues and paired adjacent tissues of 172 patients with ESCC, and the relationship between PLOD2 expression and clinicopathological parameters was analyzed. The deposition of collagen fibers in tumor was detected by Sirius red staining. The correlation between tumor stem cells and epithelial-mesenchymal transition (EMT) markers ZEB1 was analyzed by multivariate logistic regression. RESULTS The expression level of PLOD2 in tumor tissues of patients with ESCC (70.35%, 121/172) was significantly higher than that in paired adjacent tissues (29.65%, 51/172; P < .01). The positive expression rate of PLOD2 in ESCC was related to T classification, lymph node metastasis, and pathological tumor node metastasis of a tumor. The expression rates of ZEB1, CD44, and CD133 in ESCC were correlated with T classification, lymph node metastasis and pathological tumor node metastasis. Scarlet red staining showed that collagen fiber deposition in ESCC tissues with high expression of PLOD2 was significantly higher than that in tissues with low expression of PLOD2 (P < .01). A positive correlation was observed between the expression of PLOD2 and CD133, PLOD2 and CD44, and PLOD2 and N-cadherin (P < .01). Moreover, a negative correlation was noted between the expression of PLOD2 and E-cadherin (P < .01). The combined expression of PLOD2 and ZEB1 were independent prognostic factors for the total survival time of patients with ESCC. CONCLUSION PLOD2 is highly expressed in ESCC and is closely related to tumor invasion and metastasis. The mechanism of PLOD2 for promoting invasion and metastasis of ESCC may be related to activation of the EMT signaling pathway to promote EMT and tumor stem cell transformation.
Collapse
Affiliation(s)
- Xiaomeng Gong
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Department of Pathology, Bengbu Medical College, Bengbu, China
| | - Ailian Wang
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Department of Pathology, Bengbu Medical College, Bengbu, China
| | - Wenqing Song
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Department of Pathology, Bengbu Medical College, Bengbu, China
- *Correspondence: Wenqing Song, Department of Pathology, Bengbu Medical College, Bengbu, Anhui 233000, China (e-mail: )
| |
Collapse
|
30
|
Telang NT. Stem Cell Models for Breast and Colon Cancer: Experimental Approach for Drug Discovery. Int J Mol Sci 2022; 23:ijms23169223. [PMID: 36012489 PMCID: PMC9409032 DOI: 10.3390/ijms23169223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
The progression of the early stages of female breast and colon cancer to metastatic disease represents a major cause of mortality in women. Multi-drug chemotherapy and/or pathway selective targeted therapy are notable for their off-target effects and are associated with spontaneous and/or acquired chemotherapy resistance and the emergence of premalignant chemo-resistant cancer-initiating stem cells. The stem cell populations are responsible for the evolution of therapy-resistant metastatic disease. These limitations emphasize an unmet need to develop reliable drug-resistant cancer stem cell models as novel experimental approaches for therapeutic alternatives in drug discovery platforms. Drug-resistant stem cell models for breast and colon cancer subtypes exhibit progressive growth in the presence of cytotoxic chemo-endocrine therapeutics. The resistant cells exhibit upregulated expressions of stem cell-selective cellular and molecular markers. Dietary phytochemicals, nutritional herbs and their constituent bioactive compounds have documented growth inhibitory efficacy for cancer stem cells. The mechanistic leads for the stem cell-targeted efficacy of naturally occurring agents validates the present experimental approaches for new drug discovery as therapeutic alternatives for therapy-resistant breast and colon cancer. The present review provides a systematic discussion of published evidence on (i) conventional/targeted therapy for breast and colon cancer, (ii) cellular and molecular characterization of stem cell models and (iii) validation of the stem cell models as an experimental approach for novel drug discovery of therapeutic alternatives for therapy-resistant cancers.
Collapse
Affiliation(s)
- Nitin T Telang
- Cancer Prevention Research Program, Palindrome Liaisons Consultants, Montvale, NJ 07645-1559, USA
| |
Collapse
|
31
|
Li J, Peng L, Chen Q, Ye Z, Zhao T, Hou S, Gu J, Hang Q. Integrin β1 in Pancreatic Cancer: Expressions, Functions, and Clinical Implications. Cancers (Basel) 2022; 14:cancers14143377. [PMID: 35884437 PMCID: PMC9318555 DOI: 10.3390/cancers14143377] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/02/2022] [Accepted: 07/07/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Pancreatic cancer (PC) is a highly aggressive malignant tumor with an extremely poor prognosis. Early diagnosis and treatment are key to improving the survival rate of PC patients. Emerging studies show that integrins might contribute to the pathogenesis of PC. This review presents the various signaling pathways that are mediated by integrins in PC and emphasizes the multiple functions of integrin β1 in malignant behaviors of PC. It also discusses the clinical significance of integrin β1 as well as integrin β1-based therapy in PC patients. Abstract Pancreatic cancer (PC) is characterized by rapid progression and a high mortality rate. The current treatment is still based on surgical treatment, supplemented by radiotherapy and chemotherapy, and new methods of combining immune and molecular biological treatments are being explored. Despite this, the survival rate of PC patients is still very disappointing. Therefore, clarifying the molecular mechanism of PC pathogenesis and developing precisely targeted drugs are key to improving PC prognosis. As the most common β subunit of the integrin family, integrin β1 has been proved to be closely related to the vascular invasion, distant metastasis, and survival of PC patients, and treatment targeting integrin β1 in PC has gained initial success in animal models. In this review, we summarize the various signaling pathways by which integrins are involved in PC, focusing on the roles of integrin β1 in the malignant behaviors of PC. Additionally, recent studies regarding the feasibility of integrin β1 as a diagnostic and prognostic biomarker in PC are also discussed. Finally, we present the progress of several integrin β1-based clinical trials to highlight the potential of integrin β1 as a target for personalized therapy in PC.
Collapse
Affiliation(s)
- Jiajia Li
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou 225009, China; (J.L.); (S.H.)
| | - Liyao Peng
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210000, China;
| | - Qun Chen
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China;
| | - Ziping Ye
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China;
| | - Tiantian Zhao
- Department of Clinical Medicine, Medical College, Yangzhou University, Yangzhou 225001, China;
| | - Sicong Hou
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou 225009, China; (J.L.); (S.H.)
- Department of Clinical Medicine, Medical College, Yangzhou University, Yangzhou 225001, China;
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai 81-8558, Japan
- Correspondence: (J.G.); (Q.H.); Tel.: +86-13-8145-8885 (Q.H.)
| | - Qinglei Hang
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai 81-8558, Japan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence: (J.G.); (Q.H.); Tel.: +86-13-8145-8885 (Q.H.)
| |
Collapse
|
32
|
Long Non-Coding RNAs in Pancreatic Cancer: Biologic Functions, Mechanisms, and Clinical Significance. Cancers (Basel) 2022; 14:cancers14092115. [PMID: 35565245 PMCID: PMC9100048 DOI: 10.3390/cancers14092115] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022] Open
Abstract
Despite tremendous efforts devoted to research in pancreatic cancer (PC), the mechanism underlying the tumorigenesis and progression of PC is still not completely clear. Additionally, ideal biomarkers and satisfactory therapeutic strategies for clinical application in PC are still lacking. Accumulating evidence suggests that long non-coding RNAs (lncRNAs) might participate in the pathogenesis of diverse cancers, including PC. The abnormal expression of lncRNAs in PC is considered a vital factor during tumorigenesis that affects tumor cell proliferation, migration, invasion, apoptosis, angiogenesis, and drug resistance. With this review of relevant articles published in recent years, we aimed to summarize the biogenesis mechanism, classifications, and modes of action of lncRNAs and to review the functions and mechanisms of lncRNAs in PC. Additionally, the clinical significance of lncRNAs in PC was discussed. Finally, we pointed out the questions remaining from recent studies and anticipated that further investigations would address these gaps in knowledge in this field.
Collapse
|
33
|
Moro M, Fortunato O, Bertolini G, Mensah M, Borzi C, Centonze G, Andriani F, Di Paolo D, Perri P, Ponzoni M, Pastorino U, Sozzi G, Boeri M. MiR-486-5p Targets CD133+ Lung Cancer Stem Cells through the p85/AKT Pathway. Pharmaceuticals (Basel) 2022; 15:ph15030297. [PMID: 35337095 PMCID: PMC8951736 DOI: 10.3390/ph15030297] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 12/26/2022] Open
Abstract
Despite improvements in therapies and screening strategies, lung cancer prognosis still remains dismal, especially for metastatic tumors. Cancer stem cells (CSCs) are endowed with properties such as chemoresistance, dissemination, and stem-like features, that make them one of the main causes of the poor survival rate of lung cancer patients. MicroRNAs (miRNAs), small molecules regulating gene expression, have a role in lung cancer development and progression. In particular, miR-486-5p is an onco-suppressor miRNA found to be down-modulated in the tumor tissue of lung cancer patients. In this study, we investigate the role of this miRNA in CD133+ lung CSCs and evaluate the therapeutic efficacy of coated cationic lipid-nanoparticles entrapping the miR-486-5p miRNA mimic (CCL-486) using lung cancer patient-derived xenograft (PDX) models. In vitro, miR-486-5p overexpression impaired the PI3K/Akt pathway and decreased lung cancer cell viability. Moreover, miR-486-5p overexpression induced apoptosis also in CD133+ CSCs, thus affecting the in vivo tumor-initiating properties of these cells. Finally, we demonstrated that in vivo CCL-486 treatment decreased CD133+ percentage and inhibited tumor growth in PDX models. In conclusion, we provided insights on the efficacy of a novel miRNA-based compound to hit CD133+ lung CSCs, setting the basis for new combined therapeutic strategies.
Collapse
Affiliation(s)
- Massimo Moro
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; (M.M.); (O.F.); (G.B.); (M.M.); (C.B.); (G.C.); (F.A.)
| | - Orazio Fortunato
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; (M.M.); (O.F.); (G.B.); (M.M.); (C.B.); (G.C.); (F.A.)
| | - Giulia Bertolini
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; (M.M.); (O.F.); (G.B.); (M.M.); (C.B.); (G.C.); (F.A.)
| | - Mavis Mensah
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; (M.M.); (O.F.); (G.B.); (M.M.); (C.B.); (G.C.); (F.A.)
- Virology and Molecular Pathology Department, University Hospital Coventry and Warwickshire, Coventry CV2 2DX, UK
| | - Cristina Borzi
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; (M.M.); (O.F.); (G.B.); (M.M.); (C.B.); (G.C.); (F.A.)
| | - Giovanni Centonze
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; (M.M.); (O.F.); (G.B.); (M.M.); (C.B.); (G.C.); (F.A.)
- First Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, 20133 Milan, Italy
| | - Francesca Andriani
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; (M.M.); (O.F.); (G.B.); (M.M.); (C.B.); (G.C.); (F.A.)
- Institute de Genomique Fonctionnelle de Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, F-69364 Lyon, France
| | - Daniela Di Paolo
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (D.D.P.); (P.P.); (M.P.)
- Nuclear Medicine Unit, Santa Corona Hospital, 17027 Pietra Ligure, Italy
| | - Patrizia Perri
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (D.D.P.); (P.P.); (M.P.)
| | - Mirco Ponzoni
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (D.D.P.); (P.P.); (M.P.)
| | - Ugo Pastorino
- Thoracic Surgery Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy;
| | - Gabriella Sozzi
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; (M.M.); (O.F.); (G.B.); (M.M.); (C.B.); (G.C.); (F.A.)
- Correspondence: (G.S.); (M.B.); Tel.: +39-02-2390-2232 (G.S.); +39-02-2390-3775 (M.B.)
| | - Mattia Boeri
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; (M.M.); (O.F.); (G.B.); (M.M.); (C.B.); (G.C.); (F.A.)
- Correspondence: (G.S.); (M.B.); Tel.: +39-02-2390-2232 (G.S.); +39-02-2390-3775 (M.B.)
| |
Collapse
|
34
|
Masciale V, Banchelli F, Grisendi G, D’Amico R, Maiorana A, Stefani A, Morandi U, Stella F, Dominici M, Aramini B. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:239-247. [PMID: 35356974 PMCID: PMC8968653 DOI: 10.1093/stcltm/szab029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/26/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose Lung cancer relapse may be associated with the presence of a small population of cancer stem cells (CSCs) with unlimited proliferative potential. Our study assessed the relationship between CSCs and the relapse rate in patients harboring adenocarcinoma (ADL) and squamous cell carcinoma of the lung (SCCL). Experimental design This is an observational prospective cohort study (NCT04634630) assessing the influence of CSC frequency on relapse rate after major lung resection in 35 patients harboring early (I-II) (n = 21) and locally advanced (IIIA) (n = 14) ADL and SCCL. There was a 2-year enrollment period followed by a 1-year follow-up period. Surgical tumor specimens were processed, and CSCs were quantified by cytofluorimetric analysis. Results Cancer stem cells were expressed in all patients with a median of 3.1% of the primary cell culture. Primary analysis showed no influence of CSC frequency on the risk of relapse (hazard ratio [HR] = 1.05, 95% confidence interval [CI] = 0.85-1.30). At secondary analysis, patients with locally advanced disease with higher CSC frequency had an increased risk of relapse (HR = 1.26, 95% CI = 1.14-1.39), whereas this was not observed in early-stage patients (HR = 0.90, 95% CI = 0.65-1.25). Conclusion No association was found between CSC and relapse rates after major lung resection in patients harboring ACL and SCCL. However, in locally advanced-stage patients, a positive correlation was observed between CSC frequency and risk of relapse. These results indicate a need for further molecular investigations into the prognostic role of CSCs at different lung cancer stages. Clinical Trial Registration NCT04634630.
Collapse
Affiliation(s)
- Valentina Masciale
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Division of Oncology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Federico Banchelli
- Center of Medical Statistic, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Grisendi
- Division of Oncology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Roberto D’Amico
- Center of Medical Statistic, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Antonino Maiorana
- Institute of Pathology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandro Stefani
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Uliano Morandi
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Franco Stella
- Division of Thoracic Surgery, Department of Experimental, Diagnostic and Specialty Medicine—DIMES of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni—L. Pierantoni Hospital, Forlì, Italy
| | - Massimo Dominici
- Division of Oncology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Beatrice Aramini
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Division of Thoracic Surgery, Department of Experimental, Diagnostic and Specialty Medicine—DIMES of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni—L. Pierantoni Hospital, Forlì, Italy
- Corresponding author: Beatrice Aramini, Division of Thoracic Surgery, Department of Experimental, Diagnostic and Specialty Medicine - DIMES of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni - L. Pierantoni Hospital, 34 Carlo Forlanini Street, 47121 Forlì, Italy Forlì, Italy.
| |
Collapse
|
35
|
AbdelMageed M, Ismail HTH, Olsson L, Lindmark G, Hammarström ML, Hammarström S, Sitohy B. Clinical Significance of Stem Cell Biomarkers EpCAM, LGR5 and LGR4 mRNA Levels in Lymph Nodes of Colon Cancer Patients. Int J Mol Sci 2021; 23:403. [DOI: https:/doi.org/10.3390/ijms23010403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
Abstract
The significance of cancer stem cells (CSCs) in initiation and progression of colon cancer (CC) has been established. In this study, we investigated the utility of measuring mRNA expression levels of CSC markers EpCAM, LGR5 and LGR4 for predicting survival outcome in surgically treated CC patients. Expression levels were determined in 5 CC cell lines, 66 primary CC tumors and 382 regional lymph nodes of 121 CC patients. Prognostic relevance was determined using Kaplan-Meier survival and Cox regression analyses. CC patients with lymph nodes expressing high levels of EpCAM, LGR5 or LGR4 (higher than a clinical cutoff of 0.07, 0.06 and 2.558 mRNA copies/18S rRNA unit, respectively) had a decreased mean survival time of 32 months for EpCAM and 42 months for both LGR5 and LGR4 at a 12-year follow-up (p = 0.022, p = 0.005 and p = 0.011, respectively). Additional patients at risk for recurrence were detected when LGR5 was combined with the biomarkers CXCL17 or CEA plus CXCL16. In conclusion, the study underscores LGR5 as a particularly useful prognostic biomarker and illustrates the strength of combining biomarkers detecting different subpopulations of cancer cells and/or cells in the tumor microenvironment for predicting recurrence.
Collapse
|
36
|
Clinical Significance of Stem Cell Biomarkers EpCAM, LGR5 and LGR4 mRNA Levels in Lymph Nodes of Colon Cancer Patients. Int J Mol Sci 2021; 23:ijms23010403. [PMID: 35008827 PMCID: PMC8745090 DOI: 10.3390/ijms23010403] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 12/24/2022] Open
Abstract
The significance of cancer stem cells (CSCs) in initiation and progression of colon cancer (CC) has been established. In this study, we investigated the utility of measuring mRNA expression levels of CSC markers EpCAM, LGR5 and LGR4 for predicting survival outcome in surgically treated CC patients. Expression levels were determined in 5 CC cell lines, 66 primary CC tumors and 382 regional lymph nodes of 121 CC patients. Prognostic relevance was determined using Kaplan-Meier survival and Cox regression analyses. CC patients with lymph nodes expressing high levels of EpCAM, LGR5 or LGR4 (higher than a clinical cutoff of 0.07, 0.06 and 2.558 mRNA copies/18S rRNA unit, respectively) had a decreased mean survival time of 32 months for EpCAM and 42 months for both LGR5 and LGR4 at a 12-year follow-up (p = 0.022, p = 0.005 and p = 0.011, respectively). Additional patients at risk for recurrence were detected when LGR5 was combined with the biomarkers CXCL17 or CEA plus CXCL16. In conclusion, the study underscores LGR5 as a particularly useful prognostic biomarker and illustrates the strength of combining biomarkers detecting different subpopulations of cancer cells and/or cells in the tumor microenvironment for predicting recurrence.
Collapse
|
37
|
Understanding and improving cellular immunotherapies against cancer: From cell-manufacturing to tumor-immune models. Adv Drug Deliv Rev 2021; 179:114003. [PMID: 34653533 DOI: 10.1016/j.addr.2021.114003] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022]
Abstract
The tumor microenvironment (TME) is shaped by dynamic metabolic and immune interactions between precancerous and cancerous tumor cells and stromal cells like epithelial cells, fibroblasts, endothelial cells, and hematopoietically-derived immune cells. The metabolic states of the TME, including the hypoxic and acidic niches, influence the immunosuppressive phenotypes of the stromal and immune cells, which confers resistance to both host-mediated tumor killing and therapeutics. Numerous in vitro TME platforms for studying immunotherapies, including cell therapies, are being developed. However, we do not yet understand which immune and stromal components are most critical and how much model complexity is needed to answer specific questions. In addition, scalable sourcing and quality-control of appropriate TME cells for reproducibly manufacturing these platforms remain challenging. In this regard, lessons from the manufacturing of immunomodulatory cell therapies could provide helpful guidance. Although immune cell therapies have shown unprecedented results in hematological cancers and hold promise in solid tumors, their manufacture poses significant scale, cost, and quality control challenges. This review first provides an overview of the in vivo TME, discussing the most influential cell populations in the tumor-immune landscape. Next, we summarize current approaches for cell therapies against cancers and the relevant manufacturing platforms. We then evaluate current immune-tumor models of the TME and immunotherapies, highlighting the complexity, architecture, function, and cell sources. Finally, we present the technical and fundamental knowledge gaps in both cell manufacturing systems and immune-TME models that must be addressed to elucidate the interactions between endogenous tumor immunity and exogenous engineered immunity.
Collapse
|
38
|
Luteolin Inhibits Breast Cancer Stemness and Enhances Chemosensitivity through the Nrf2-Mediated Pathway. Molecules 2021; 26:molecules26216452. [PMID: 34770867 PMCID: PMC8587415 DOI: 10.3390/molecules26216452] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 01/04/2023] Open
Abstract
Cancer stem cells (CSCs) are subpopulations of tumor masses with unique abilities in self-renewal, stemness maintenance, drug resistance, and the promotion of cancer recurrence. Recent studies have suggested that breast CSCs play essential roles in chemoresistance. Therefore, new agents that selectively target such cells are urgently required. Reactive oxygen species (ROS)-producing enzymes are the reason for an elevated tumor oxidant status. The nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcriptional factor, which upon detecting cellular oxidative stress, binds to the promoter region of antioxidant genes. By triggering a cytoprotective response, Nrf2 maintains cellular redox status. Cripto-1 participates in the self-renewal of CSCs. Herein, luteolin, a flavonoid found in Taraxacum officinale extract, was determined to inhibit the expressions of stemness-related transcriptional factors, the ATP-binding cassette transporter G2 (ABCG2), CD44, aldehyde dehydrogenase 1 activity as well as the sphere formation properties of breast CSCs. Furthermore, luteolin suppressed the protein expressions of Nrf2, heme oxygenase 1 (HO-1), and Cripto-1 which have been determined to contribute critically to CSC features. The combination of luteolin and the chemotherapeutic drug, Taxol, resulted in enhanced cytotoxicity to breast cancer cells. These findings suggest that luteolin treatment significantly attenuated the hallmarks of breast cancer stemness by downregulating Nrf2-mediated expressions. Luteolin constitutes a potential agent for use in cancer stemness-targeted breast cancer treatments.
Collapse
|
39
|
Viana BPPB, Gomes AVP, Gimba ERP, Ferreira LB. Osteopontin Expression in Thyroid Cancer: Deciphering EMT-Related Molecular Mechanisms. Biomedicines 2021; 9:biomedicines9101372. [PMID: 34680488 PMCID: PMC8533224 DOI: 10.3390/biomedicines9101372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022] Open
Abstract
Thyroid cancer is the most common tumor arising from the endocrine system and generally presents good prognosis. However, its aggressive subtypes are related to therapeutic resistance and early metastasis. Epithelial–mesenchymal transition (EMT) and its reverse process, the mesenchymal–epithelial transition (MET), are key events mediating cancer progression, including in thyroid cancer. The matricellular protein osteopontin (OPN) has been reported as a master regulator of EMT in many tumor types. Although high OPN expression has been described and associated with important aspects of thyroid cancer progression, there is no clear evidence regarding OPN as a regulator of EMT in thyroid cancer. Thus, taking together the known roles of OPN in the modulation of EMT in cancer and the information reporting the expression of OPN in thyroid tumor progression, this review aims at summarizing and discussing data related to EMT in thyroid cancer and its putative relation to the roles of OPN in the development of thyroid cancer. These data provide new insights into the molecular mechanisms by which OPN could potentially modulate EMT in thyroid tumors, generating evidence for future studies that may contribute to new therapeutic, prognostic and/or diagnostic tools.
Collapse
Affiliation(s)
- Bruna Prunes Pena Baroni Viana
- Grupo de Hemato-Oncologia Molecular, Coordenação de Pesquisa, Instituto Nacional de Câncer, Praça da Cruz Vermelha, 23, 6° andar, Rio de Janeiro 20230-130, CEP, Brazil; (B.P.P.B.V.); (A.V.P.G.)
- Programa de Pós-Graduação Stricto Sensu em Oncologia, Instituto Nacional de Câncer, Rua André Cavalcanti, 37, 3° andar, Rio de Janeiro 20231-050, CEP, Brazil
| | - Amanda Vitória Pampolha Gomes
- Grupo de Hemato-Oncologia Molecular, Coordenação de Pesquisa, Instituto Nacional de Câncer, Praça da Cruz Vermelha, 23, 6° andar, Rio de Janeiro 20230-130, CEP, Brazil; (B.P.P.B.V.); (A.V.P.G.)
- Centro de Ciências Biológicas e da Saúde, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rua Frei Caneca, 94, Rio de Janeiro 20211-010, CEP, Brazil
| | - Etel Rodrigues Pereira Gimba
- Grupo de Hemato-Oncologia Molecular, Coordenação de Pesquisa, Instituto Nacional de Câncer, Praça da Cruz Vermelha, 23, 6° andar, Rio de Janeiro 20230-130, CEP, Brazil; (B.P.P.B.V.); (A.V.P.G.)
- Programa de Pós-Graduação Stricto Sensu em Oncologia, Instituto Nacional de Câncer, Rua André Cavalcanti, 37, 3° andar, Rio de Janeiro 20231-050, CEP, Brazil
- Departamento de Ciências da Natureza, Universidade Federal Fluminense, Rua Recife 1-7, Bela Vista, Rio das Ostras 28880-000, CEP, Brazil
- Programa de Pós-Graduação em Ciências Biomédicas, Fisiologia e Farmacologia, Instituto Biomédico, Av. Prof. Hernani Melo, 101, Niterói 24210-130, CEP, Brazil
- Correspondence: (E.R.P.G.); (L.B.F.)
| | - Luciana Bueno Ferreira
- Grupo de Hemato-Oncologia Molecular, Coordenação de Pesquisa, Instituto Nacional de Câncer, Praça da Cruz Vermelha, 23, 6° andar, Rio de Janeiro 20230-130, CEP, Brazil; (B.P.P.B.V.); (A.V.P.G.)
- Programa de Pós-Graduação Stricto Sensu em Oncologia, Instituto Nacional de Câncer, Rua André Cavalcanti, 37, 3° andar, Rio de Janeiro 20231-050, CEP, Brazil
- Correspondence: (E.R.P.G.); (L.B.F.)
| |
Collapse
|
40
|
Chen ZQ, Yuan T, Jiang H, Yang YY, Wang L, Fu RM, Luo SQ, Zhang T, Wu ZY, Wen KM. MicroRNA‑8063 targets heterogeneous nuclear ribonucleoprotein AB to inhibit the self‑renewal of colorectal cancer stem cells via the Wnt/β‑catenin pathway. Oncol Rep 2021; 46:219. [PMID: 34396427 PMCID: PMC8377466 DOI: 10.3892/or.2021.8170] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022] Open
Abstract
The presence of cancer stem cells (CSCs) is a major cause of therapeutic failure in a variety of cancer types, including colorectal cancer (CRC). However, the underlying mechanisms that regulate the self-renewal of colorectal cancer stem cells (CRCSCs) remain unclear. Our previous study utilized CRCSCs and their parent cells; through gene microarray screening and bioinformatics analysis, we hypothesized that microRNA (miR)-8063 may bind to, and regulate the expression of, heterogeneous nuclear ribonucleoprotein AB (hnRNPAB) to facilitate the regulation of CRCSC self-renewal. The aim of the present study was to confirm this conjecture through relevant experiments. The results indicated that compared with that in parent cells, miR-8063 expression was significantly downregulated in CRCSCs, while hnRNPAB expression was increased. Furthermore, hnRNPAB was identified as a direct target of miR-8063 using a dual-Luciferase assay. Overexpression of hnRNPAB promoted the acquisition of CSC characteristics in CRC cells (increased colony formation ability, enhanced tumorigenicity, and upregulated expression of CSC markers), as well as the upregulation of key proteins (Wnt3a, Wnt5a and β-catenin) in the Wnt/β-catenin signaling pathway. Similarly, after silencing miR-8063 in CRC cells, the characteristics of CSC were altered, and the expression of hnRNPAB protein was promoted. However, post overexpression of miR-8063 in CRCSCs, the self-renewal ability of CSCs was weakened with the downregulation of hnRNPAB protein, Wnt3a, Wnt5a and β-catenin. These results suggest that as a tumor suppressor, miR-8063 is involved in regulating the self-renewal of CRCSCs, where loss of miR-8063 expression weakens its inhibition on hnRNPAB, which leads to the activation of Wnt/β-catenin signaling to promote the self-renewal of CRCSCs.
Collapse
Affiliation(s)
- Zheng-Quan Chen
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Tao Yuan
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Hang Jiang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Yuan-Yuan Yang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Lin Wang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Rui-Min Fu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Sheng-Qiang Luo
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Tao Zhang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Zhen-Yu Wu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Kun-Ming Wen
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
41
|
Waeleh N, Saripan MI, Musarudin M, Mashohor S, Ahmad Saad FF. Correlation between 18F-FDG dosage and SNR on various BMI patient groups tested in NEMA IEC PET phantom. Appl Radiat Isot 2021; 176:109885. [PMID: 34385090 DOI: 10.1016/j.apradiso.2021.109885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/12/2021] [Indexed: 01/16/2023]
Abstract
The present study was conducted to determine quantitatively the correlation between injected radiotracer and signal-to-noise ratio (SNR) based on differences in physiques and stages of cancer. Eight different activities were evaluated with modelled National Electrical Manufacturers Association (NEMA) of the International Electrotechnical Commission (IEC) PET's phantom with nine different tumour-to-background ratio (TBR). The findings suggest that the optimal value of dosage is required for all categories of patients in the early stages of cancer diagnosis.
Collapse
Affiliation(s)
- Nazreen Waeleh
- Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Faculty of Electronic and Computer Engineering, Universiti Teknikal Malaysia Melaka (UTeM), 76100 Durian Tunggal, Melaka, Malaysia.
| | - M Iqbal Saripan
- Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Marianie Musarudin
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Syamsiah Mashohor
- Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | | |
Collapse
|
42
|
Phytomedicines Targeting Cancer Stem Cells: Therapeutic Opportunities and Prospects for Pharmaceutical Development. Pharmaceuticals (Basel) 2021; 14:ph14070676. [PMID: 34358102 PMCID: PMC8308767 DOI: 10.3390/ph14070676] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 12/13/2022] Open
Abstract
The presence of small subpopulations of cells within tumor cells are known as cancer stem cells (CSCs). These cells have been the reason for metastasis, resistance with chemotherapy or radiotherapy, and tumor relapse in several types of cancers. CSCs underwent to epithelial–mesenchymal transition (EMT) and resulted in the development of aggressive tumors. CSCs have potential to modulate numerous signaling pathways including Wnt, Hh, and Notch, therefore increasing the stem-like characteristics of cancer cells. The raised expression of drug efflux pump and suppression of apoptosis has shown increased resistance with anti-cancer drugs. Among many agents which were shown to modulate these, the plant-derived bioactive agents appear to modulate these key regulators and were shown to remove CSCs. This review aims to comprehensively scrutinize the preclinical and clinical studies demonstrating the effects of phytocompounds on CSCs isolated from various tumors. Based on the available convincing literature from preclinical studies, with some clinical data, it is apparent that selective targeting of CSCs with plants, plant preparations, and plant-derived bioactive compounds, termed phytochemicals, may be a promising strategy for the treatment of relapsed cancers.
Collapse
|
43
|
Han YS, Yi EY, Jegal ME, Kim YJ. Cancer Stem-Like Phenotype of Mitochondria Dysfunctional Hep3B Hepatocellular Carcinoma Cell Line. Cells 2021; 10:1608. [PMID: 34198967 PMCID: PMC8307994 DOI: 10.3390/cells10071608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/19/2021] [Accepted: 06/25/2021] [Indexed: 02/08/2023] Open
Abstract
Mitochondria are major organelles that play various roles in cells, and mitochondrial dysfunction is the main cause of numerous diseases. Mitochondrial dysfunction also occurs in many cancer cells, and these changes are known to affect malignancy. The mitochondria of normal embryonic stem cells (ESCs) exist in an undifferentiated state and do not function properly. We hypothesized that mitochondrial dysfunction in cancer cells caused by the depletion of mitochondrial DNA might be similar to the mitochondrial state of ESCs. We generated mitochondria dysfunctional (ρ0) cells from the Hep3B hepatocellular carcinoma cell line and tested whether these ρ0 cells show cancer stem-like properties, such as self-renewal, chemotherapy resistance, and angiogenesis. Compared with Hep3B cells, the characteristics of each cancer stem-like cell were increased in Hep3B/ρ0 cells. The Hep3B/ρ0 cells formed a continuous and large sphere from a single cell. Additionally, the Hep3B/ρ0 cells showed resistance to the anticancer drug doxorubicin because of the increased expression of ATP-binding cassette Subfamily B Member 1. The Hep3B/ρ0 conditioned medium induced more and thicker blood vessels and increased the mobility and invasiveness of the blood vessel cells. Therefore, our data suggest that mitochondrial dysfunction can transform cancer cells into cancer stem-like cells.
Collapse
Affiliation(s)
- Yu-Seon Han
- Department of Molecular Biology, Pusan National University, Busan 46241, Korea; (Y.-S.H.); (E.-Y.Y.); (M.-E.J.)
| | - Eui-Yeun Yi
- Department of Molecular Biology, Pusan National University, Busan 46241, Korea; (Y.-S.H.); (E.-Y.Y.); (M.-E.J.)
| | - Myeong-Eun Jegal
- Department of Molecular Biology, Pusan National University, Busan 46241, Korea; (Y.-S.H.); (E.-Y.Y.); (M.-E.J.)
| | - Yung-Jin Kim
- Department of Molecular Biology, Pusan National University, Busan 46241, Korea; (Y.-S.H.); (E.-Y.Y.); (M.-E.J.)
- Korea Nanobiotechnology Center, Pusan National University, Busan 46241, Korea
| |
Collapse
|
44
|
Natural Polyphenols as Modulators of Etoposide Anti-Cancer Activity. Int J Mol Sci 2021; 22:ijms22126602. [PMID: 34202987 PMCID: PMC8235666 DOI: 10.3390/ijms22126602] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 02/06/2023] Open
Abstract
Polyphenols are naturally occurring compounds found in abundance in fruits and vegetables. Their health-promoting properties and their use in the prevention and treatment of many human diseases, including cancer, have been known for years. Many anti-cancer drugs are derived from these natural compounds. Etoposide, which is a semi-synthetic derivative of podophyllotoxin, a non-alkaloid lignan isolated from the dried roots and rhizomes of Podophyllum peltatum or Podophyllum emodi (Berberidaceae), is an example of such a compound. In this review, we present data on the effects of polyphenols on the anti-cancer activity of etoposide in in vitro and in vivo studies.
Collapse
|
45
|
Keyvani-Ghamsari S, Khorsandi K, Rasul A, Zaman MK. Current understanding of epigenetics mechanism as a novel target in reducing cancer stem cells resistance. Clin Epigenetics 2021; 13:120. [PMID: 34051847 PMCID: PMC8164819 DOI: 10.1186/s13148-021-01107-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/19/2021] [Indexed: 12/13/2022] Open
Abstract
At present, after extensive studies in the field of cancer, cancer stem cells (CSCs) have been proposed as a major factor in tumor initiation, progression, metastasis, and recurrence. CSCs are a subpopulation of bulk tumors, with stem cell-like properties and tumorigenic capabilities, having the abilities of self-renewal and differentiation, thereby being able to generate heterogeneous lineages of cancer cells and lead to resistance toward anti-tumor treatments. Highly resistant to conventional chemo- and radiotherapy, CSCs have heterogeneity and can migrate to different organs and metastasize. Recent studies have demonstrated that the population of CSCs and the progression of cancer are increased by the deregulation of different epigenetic pathways having effects on gene expression patterns and key pathways connected with cell proliferation and survival. Further, epigenetic modifications (DNA methylation, histone modifications, and RNA methylations) have been revealed to be key drivers in the formation and maintenance of CSCs. Hence, identifying CSCs and targeting epigenetic pathways therein can offer new insights into the treatment of cancer. In the present review, recent studies are addressed in terms of the characteristics of CSCs, the resistance thereof, and the factors influencing the development thereof, with an emphasis on different types of epigenetic changes in genes and main signaling pathways involved therein. Finally, targeted therapy for CSCs by epigenetic drugs is referred to, which is a new approach in overcoming resistance and recurrence of cancer.
Collapse
Affiliation(s)
| | - Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran.
| | - Azhar Rasul
- Department of Zoology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Khatir Zaman
- Department of Biotechnology, Abdul Wali Khan University Mardan (AWKUM), Mardan, 23200, Pakistan
| |
Collapse
|
46
|
Chen Y, Zitello E, Guo R, Deng Y. The function of LncRNAs and their role in the prediction, diagnosis, and prognosis of lung cancer. Clin Transl Med 2021; 11:e367. [PMID: 33931980 PMCID: PMC8021541 DOI: 10.1002/ctm2.367] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/22/2021] [Accepted: 03/05/2021] [Indexed: 12/24/2022] Open
Abstract
Lung cancer remains a major threat to human health. Low dose CT scan (LDCT) has become the main method of early screening for lung cancer due to the low sensitivity of chest X-ray. However, LDCT not only has a high false positive rate, but also entails risks of overdiagnosis and cumulative radiation exposure. In addition, cumulative radiation by LDCT screening and subsequent follow-up can increase the risk of lung cancer. Many studies have shown that long noncoding RNAs (lncRNAs) remain stable in blood, and profiling of blood has the advantages of being noninvasive, readily accessible and inexpensive. Serum or plasma assay of lncRNAs in blood can be used as a novel detection method to assist LDCT while improving the accuracy of early lung cancer screening. LncRNAs can participate in the regulation of various biological processes. A large number of researches have reported that lncRNAs are key regulators involved in the progression of human cancers through multiple action models. Especially, some lncRNAs can affect various hallmarks of lung cancer. In addition to their diagnostic value, lncRNAs also possess promising potential in other clinical applications toward lung cancer. LncRNAs can be used as predictive markers for chemosensitivity, radiosensitivity, and sensitivity to epidermal growth factor receptor (EGFR)-targeted therapy, and as well markers of prognosis. Different lncRNAs have been implicated to regulate chemosensitivity, radiosensitivity, and sensitivity to EGFR-targeted therapy through diverse mechanisms. Although many challenges need to be addressed in the future, lncRNAs have bright prospects as an adjunct to radiographic methods in the clinical management of lung cancer.
Collapse
Affiliation(s)
- Yu Chen
- Department of Quantitative Health SciencesJohn A. Burns School of Medicine, University of Hawaii at ManoaHonoluluHawaiiUSA
- Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human ResourcesUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | - Emory Zitello
- Department of Quantitative Health SciencesJohn A. Burns School of Medicine, University of Hawaii at ManoaHonoluluHawaiiUSA
- Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human ResourcesUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | - Rui Guo
- School of Public HealthGuangxi Medical UniversityNanningChina
| | - Youping Deng
- Department of Quantitative Health SciencesJohn A. Burns School of Medicine, University of Hawaii at ManoaHonoluluHawaiiUSA
| |
Collapse
|
47
|
Keratin nanoparticles and photodynamic therapy enhance the anticancer stem cells activity of salinomycin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111899. [DOI: 10.1016/j.msec.2021.111899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/23/2020] [Accepted: 01/17/2021] [Indexed: 12/20/2022]
|
48
|
Fontana F, Carollo E, Melling GE, Carter DRF. Extracellular Vesicles: Emerging Modulators of Cancer Drug Resistance. Cancers (Basel) 2021; 13:749. [PMID: 33670185 PMCID: PMC7916933 DOI: 10.3390/cancers13040749] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) have recently emerged as crucial modulators of cancer drug resistance. Indeed, it has been shown that they can directly sequester anti-tumor drugs, decreasing their effective concentration at target sites. Moreover, they facilitate the horizontal transfer of specific bioactive cargoes able to regulate proliferative, apoptotic, and stemness programs in recipient cells, potentially conferring a resistant phenotype to drug-sensitive cancer cells. Finally, EVs can mediate the communication between the tumor and both stromal and immune cells within the microenvironment, promoting treatment escape. In this context, clarifying the EV-driven resistance mechanisms might improve not only tumor diagnosis and prognosis but also therapeutic outcomes. Detailed cellular and molecular events occurring during the development of EV-mediated cancer drug resistance are described in this review article.
Collapse
Affiliation(s)
- Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Balzaretti 9, 20133 Milan, Italy
| | - Emanuela Carollo
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford OX3 0BP, UK; (E.C.); (G.E.M.)
| | - Genevieve E. Melling
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford OX3 0BP, UK; (E.C.); (G.E.M.)
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - David R. F. Carter
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford OX3 0BP, UK; (E.C.); (G.E.M.)
| |
Collapse
|
49
|
Aramini B, Masciale V, Grisendi G, Banchelli F, D'Amico R, Maiorana A, Morandi U, Dominici M, Haider KH. Cancer stem cells and macrophages: molecular connections and future perspectives against cancer. Oncotarget 2021; 12:230-250. [PMID: 33613850 PMCID: PMC7869576 DOI: 10.18632/oncotarget.27870] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSCs) have been considered the key drivers of cancer initiation and progression due to their unlimited self-renewal capacity and their ability to induce tumor formation. Macrophages, particularly tumor-associated macrophages (TAMs), establish a tumor microenvironment to protect and induce CSCs development and dissemination. Many studies in the past decade have been performed to understand the molecular mediators of CSCs and TAMs, and several studies have elucidated the complex crosstalk that occurs between these two cell types. The aim of this review is to define the complex crosstalk between these two cell types and to highlight potential future anti-cancer strategies.
Collapse
Affiliation(s)
- Beatrice Aramini
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Valentina Masciale
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Grisendi
- Division of Oncology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Federico Banchelli
- Center of Statistic, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Roberto D'Amico
- Center of Statistic, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Antonino Maiorana
- Institute of Pathology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Uliano Morandi
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Dominici
- Division of Oncology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | |
Collapse
|
50
|
Castelli V, Catanesi M, Alfonsetti M, Laezza C, Lombardi F, Cinque B, Cifone MG, Ippoliti R, Benedetti E, Cimini A, d’Angelo M. PPARα-Selective Antagonist GW6471 Inhibits Cell Growth in Breast Cancer Stem Cells Inducing Energy Imbalance and Metabolic Stress. Biomedicines 2021; 9:biomedicines9020127. [PMID: 33525605 PMCID: PMC7912302 DOI: 10.3390/biomedicines9020127] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 12/11/2022] Open
Abstract
Breast cancer is the most frequent cancer and the second leading cause of death among women. Triple-negative breast cancer is the most aggressive subtype of breast cancer and is characterized by the absence of hormone receptors and human epithelial growth factor receptor 2. Cancer stem cells (CSCs) represent a small population of tumor cells showing a crucial role in tumor progression, metastasis, recurrence, and drug resistance. The presence of CSCs can explain the failure of conventional therapies to completely eradicate cancer. Thus, to overcome this limit, targeting CSCs may constitute a promising approach for breast cancer treatment, especially in the triple-negative form. To this purpose, we isolated and characterized breast cancer stem cells from a triple-negative breast cancer cell line, MDA-MB-231. The obtained mammospheres were then treated with the specific PPARα antagonist GW6471, after which, glucose, lipid metabolism, and invasiveness were analyzed. Notably, GW6471 reduced cancer stem cell viability, proliferation, and spheroid formation, leading to apoptosis and metabolic impairment. Overall, our findings suggest that GW6471 may be used as a potent adjuvant for gold standard therapies for triple-negative breast cancer, opening the possibility for preclinical and clinical trials for this class of compounds.
Collapse
Affiliation(s)
- Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (M.C.); (M.A.); (F.L.); (B.C.); (M.G.C.); (R.I.); (E.B.)
| | - Mariano Catanesi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (M.C.); (M.A.); (F.L.); (B.C.); (M.G.C.); (R.I.); (E.B.)
| | - Margherita Alfonsetti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (M.C.); (M.A.); (F.L.); (B.C.); (M.G.C.); (R.I.); (E.B.)
| | - Chiara Laezza
- Institute of Endocrinology and Experimental Oncology G. Salvatore, CNR, 80131 Naples, Italy;
| | - Francesca Lombardi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (M.C.); (M.A.); (F.L.); (B.C.); (M.G.C.); (R.I.); (E.B.)
| | - Benedetta Cinque
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (M.C.); (M.A.); (F.L.); (B.C.); (M.G.C.); (R.I.); (E.B.)
| | - Maria Grazia Cifone
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (M.C.); (M.A.); (F.L.); (B.C.); (M.G.C.); (R.I.); (E.B.)
| | - Rodolfo Ippoliti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (M.C.); (M.A.); (F.L.); (B.C.); (M.G.C.); (R.I.); (E.B.)
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (M.C.); (M.A.); (F.L.); (B.C.); (M.G.C.); (R.I.); (E.B.)
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (M.C.); (M.A.); (F.L.); (B.C.); (M.G.C.); (R.I.); (E.B.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Temple University, Philadelphia, PA 19122, USA
- Correspondence: (A.C.); (M.d.)
| | - Michele d’Angelo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (M.C.); (M.A.); (F.L.); (B.C.); (M.G.C.); (R.I.); (E.B.)
- Correspondence: (A.C.); (M.d.)
| |
Collapse
|