1
|
Dimova T, Alexandrova M, Vangelov I, You Y, Mor G. The modeling of human implantation and early placentation: achievements and perspectives. Hum Reprod Update 2024:dmae033. [PMID: 39673726 DOI: 10.1093/humupd/dmae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 10/29/2024] [Indexed: 12/16/2024] Open
Abstract
BACKGROUND Successful implantation is a critical step for embryo survival. The major losses in natural and assisted human reproduction appeared to occur during the peri-implantation period. Because of ethical constraints, the fascinating maternal-fetal crosstalk during human implantation is difficult to study and thus, the possibility for clinical intervention is still limited. OBJECTIVE AND RATIONALE This review highlights some features of human implantation as a unique, ineffective and difficult-to-model process and summarizes the pros and cons of the most used in vivo, ex vivo and in vitro models. We point out the variety of cell line-derived models and how these data are corroborated by well-defined primary cells of the same nature. Important aspects related to the handling, standardization, validation, and modus operandi of the advanced 3D in vitro models are widely discussed. Special attention is paid to blastocyst-like models recapitulating the hybrid phenotype and HLA profile of extravillous trophoblasts, which are a unique yet poorly understood population with a major role in the successful implantation and immune mother-embryo recognition. Despite raising new ethical dilemmas, extended embryo cultures and synthetic embryo models are also in the scope of our review. SEARCH METHODS We searched the electronic database PubMed from inception until March 2024 by using a multi-stage search strategy of MeSH terms and keywords. In addition, we conducted a forward and backward reference search of authors mentioned in selected articles. OUTCOMES Primates and rodents are valuable in vivo models for human implantation research. However, the deep interstitial, glandular, and endovascular invasion accompanied by a range of human-specific factors responsible for the survival of the fetus determines the uniqueness of the human implantation and limits the cross-species extrapolation of the data. The ex vivo models are short-term cultures, not relevant to the period of implantation, and difficult to standardize. Moreover, the access to tissues from elective terminations of pregnancy raises ethical and legal concerns. Easy-to-culture cancer cell lines have many limitations such as being prone to spontaneous transformation and lacking decent tissue characteristics. The replacement of the original human explants, primary cells or cancer cell lines with cultures of immortalized cell lines with preserved stem cell characteristics appears to be superior for in vitro modeling of human implantation and early placentation. Remarkable advances in our understanding of the peri-implantation stages have also been made by advanced three dimensional (3D) models i.e. spheroids, organoids, and assembloids, as placental and endometrial surrogates. Much work remains to be done for the optimization and standardization of these integrated and complex models. The inclusion of immune components in these models would be an asset to delineate mechanisms of immune tolerance. Stem cell-based embryo-like models and surplus IVF embryos for research bring intriguing possibilities and are thought to be the trend for the next decade for in vitro modeling of human implantation and early embryogenesis. Along with this research, new ethical dilemmas such as the moral status of the human embryo and the potential exploitation of women consenting to donate their spare embryos have emerged. The careful appraisal and development of national legal and ethical frameworks are crucial for better regulation of studies using human embryos and embryoids to reach the potential benefits for human reproduction. WIDER IMPLICATIONS We believe that our data provide a systematization of the available information on the modeling of human implantation and early placentation and will facilitate further research in this field. A strict classification of the advanced 3D models with their pros, cons, applicability, and availability would help improve the research quality to provide reliable outputs.
Collapse
Affiliation(s)
- Tanya Dimova
- Institute of Biology and Immunology of Reproduction "Acad. Kiril Bratanov", Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Marina Alexandrova
- Institute of Biology and Immunology of Reproduction "Acad. Kiril Bratanov", Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Ivaylo Vangelov
- Institute of Biology and Immunology of Reproduction "Acad. Kiril Bratanov", Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Yuan You
- C.S. Mott Center for Human Growth and Development, Wayne State University, Detroit, MI, USA
| | - Gil Mor
- C.S. Mott Center for Human Growth and Development, Wayne State University, Detroit, MI, USA
| |
Collapse
|
2
|
Yang J, Li W, Zhang Z, Xu Z, Zhu W, Wang J, Wang W. Development and Applications of Organoids in Gynecological Diseases. Stem Cell Rev Rep 2024:10.1007/s12015-024-10833-0. [PMID: 39666266 DOI: 10.1007/s12015-024-10833-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
Organoids are rapidly self-organizing 3D in vitro cultures derived from pluripotent stem cells (PSCs) or adult stem cells (ASCs) that possess disease-like characteristics with high success rates. Due to their ability to retain tissue structure, biological phenotypes, and genetic information, they have been utilized as a novel in vitro model for disease research. In recent years, scientists have established self-organizing 3D organoids for human endometrium, fallopian tubes, ovaries, and cervix by culturing stem cells with cytokines in 3D scaffolds. The integration of organoids with animal models, organ-on-a-chip systems, and 3D printing technologies offers a novel preclinical model for exploring disease mechanisms and developing treatments. This review elaborate on the recent research progress of stem cells-formed organoids in the field of gynecology from the aspects of constructing gynecological disease organoids, drug screening and new drug development, simulation modeling, allogeneic transplantation, regenerative medicine and personalized treatment."
Collapse
Affiliation(s)
- Jian Yang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Wenwen Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zihan Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhonglei Xu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Wenjing Zhu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jing Wang
- Department of Obstetrics and Gynecology, Anhui Women and Children's Medical Center, Hefei, Anhui, China
| | - Wenyan Wang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
3
|
Zhang C, Lu X, Ni T, Wang Q, Gao X, Sun X, Li J, Mao F, Hou J, Wang Y. Developing patient-derived organoids to demonstrate JX24120 inhibits SAMe synthesis in endometrial cancer by targeting MAT2B. Pharmacol Res 2024; 209:107420. [PMID: 39293586 DOI: 10.1016/j.phrs.2024.107420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/14/2024] [Accepted: 09/15/2024] [Indexed: 09/20/2024]
Abstract
Endometrial cancer (EC) is one of the most common gynecologic malignancies, which lacking effective drugs for intractable conditions or patients unsuitable for surgeries. Recently, the patient-derived organoids (PDOs) are found feasible for cancer research and drug discoveries. Here, we have successfully established a panel of PDOs from EC and conducted drug repurposing screening and mechanism analysis for cancer treatment. We confirmed that the regulatory β subunit of methionine adenosyltransferase (MAT2B) is highly correlated with malignant progression in endometrial cancer. Through drug screening on PDOs, we identify JX24120, chlorpromazine derivative, as a specific inhibitor for MAT2B, which directly binds to MAT2B (Kd = 4.724 μM) and inhibits the viability of EC PDOs and canonical cell lines. Correspondingly, gene editing assessment demonstrates that JX24120 suppresses tumor growth depending on the presence of MAT2B in vivo and in vitro. Mechanistically, JX24120 induces inhibition of S-adenosylmethionine (SAMe) synthesis, leading to suppressed mTORC1 signaling, abnormal energy metabolism and protein synthesis, and eventually apoptosis. Taken together, our study offers a novel approach for drug discovery and efficacy assessment by using the PDOs models. These findings suggest that JX24120 may be a potent MAT2B inhibitor and will hopefully serve as a prospective compound for endometrial cancer therapy.
Collapse
Affiliation(s)
- Chunxue Zhang
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai 200030, China
| | - Xiaojing Lu
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai 200030, China
| | - Ting Ni
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai 200030, China
| | - Qi Wang
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoyan Gao
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai 200030, China
| | - Xiao Sun
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai 200030, China
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Fei Mao
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| | - Jin Hou
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai 200433, China.
| | - Yudong Wang
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai 200030, China.
| |
Collapse
|
4
|
Menon R, Richardson L, Kammala AK. New approach methods on the bench side to accelerate clinical trials during pregnancy. Expert Opin Drug Metab Toxicol 2024; 20:555-560. [PMID: 38739076 DOI: 10.1080/17425255.2024.2353944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
INTRODUCTION Pregnant women are therapeutic orphans as they are excluded from clinical drug development and therapeutic trials. We identify limitations in conducting clinical trials and propose two 'New Approach Methods'(NAMs) to overcome them. AREAS COVERED NAMs have proven invaluable tools in basic and clinical research to understand human health and disease better, elucidate mechanisms, and study the efficacy and toxicity of therapeutics that have not been possible through animal-based methodologies. The lack of humanized experimental models of FMi and drugs that can safely and effectively cross FMi to reduce the risk of adverse pregnancy has hindered progress in the field of reproductive pharmacology. This report discusses two technological advancements in perinatal research and medicine to accelerate clinical trials during pregnancy. (1) We have developed a humanized microphysiologic system, an Organ-on-a-chip (OOC) platform, to study FMi and their utility in pharmacological studies, and (2) use of extracellular vesicles (EVs) as drug delivery vehicles that are immunologically inert and can cross the fetomaternal barriers. EXPERT OPINION We provide an overview of NAMs that can accelerate preclinical trials and develop drugs to cross the feto-maternal barriers to reduce the risk of adverse pregnancy outcomes like preterm birth.
Collapse
Affiliation(s)
- Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Lauren Richardson
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Ananth Kumar Kammala
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| |
Collapse
|
5
|
Abady MM, Jeong JS, Kwon HJ, Assiri AM, Cho J, Saadeldin IM. The reprotoxic adverse side effects of neurogenic and neuroprotective drugs: current use of human organoid modeling as a potential alternative to preclinical models. Front Pharmacol 2024; 15:1412188. [PMID: 38948466 PMCID: PMC11211546 DOI: 10.3389/fphar.2024.1412188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/29/2024] [Indexed: 07/02/2024] Open
Abstract
The management of neurological disorders heavily relies on neurotherapeutic drugs, but notable concerns exist regarding their possible negative effects on reproductive health. Traditional preclinical models often fail to accurately predict reprotoxicity, highlighting the need for more physiologically relevant systems. Organoid models represent a promising approach for concurrently studying neurotoxicity and reprotoxicity, providing insights into the complex interplay between neurotherapeutic drugs and reproductive systems. Herein, we have examined the molecular mechanisms underlying neurotherapeutic drug-induced reprotoxicity and discussed experimental findings from case studies. Additionally, we explore the utility of organoid models in elucidating the reproductive complications of neurodrug exposure. Have discussed the principles of organoid models, highlighting their ability to recapitulate neurodevelopmental processes and simulate drug-induced toxicity in a controlled environment. Challenges and future perspectives in the field have been addressed with a focus on advancing organoid technologies to improve reprotoxicity assessment and enhance drug safety screening. This review underscores the importance of organoid models in unraveling the complex relationship between neurotherapeutic drugs and reproductive health.
Collapse
Affiliation(s)
- Mariam M. Abady
- Organic Metrology Group, Division of Chemical and Material Metrology, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
- Department of Bio-Analytical Science, University of Science and Technology, Daejeon, Republic of Korea
- Department of Nutrition and Food Science, National Research Centre, Cairo, Egypt
| | - Ji-Seon Jeong
- Organic Metrology Group, Division of Chemical and Material Metrology, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
- Department of Bio-Analytical Science, University of Science and Technology, Daejeon, Republic of Korea
| | - Ha-Jeong Kwon
- Organic Metrology Group, Division of Chemical and Material Metrology, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
| | - Abdullah M. Assiri
- Deperament of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Jongki Cho
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Islam M. Saadeldin
- Deperament of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Mazuryk J, Klepacka K, Kutner W, Sharma PS. Glyphosate: Hepatotoxicity, Nephrotoxicity, Hemotoxicity, Carcinogenicity, and Clinical Cases of Endocrine, Reproductive, Cardiovascular, and Pulmonary System Intoxication. ACS Pharmacol Transl Sci 2024; 7:1205-1236. [PMID: 38751624 PMCID: PMC11092036 DOI: 10.1021/acsptsci.4c00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 05/18/2024]
Abstract
Glyphosate (GLP) is an active agent of GLP-based herbicides (GBHs), i.e., broad-spectrum and postemergent weedkillers, commercialized by Monsanto as, e.g., Roundup and RangerPro formulants. The GBH crop spraying, dedicated to genetically engineered GLP-resistant crops, has revolutionized modern agriculture by increasing the production yield. However, abusively administered GBHs' ingredients, e.g., GLP, polyoxyethyleneamine, and heavy metals, have polluted environmental and industrial areas far beyond farmlands, causing global contamination and life-threatening risk, which has led to the recent local bans of GBH use. Moreover, preclinical and clinical reports have demonstrated harmful impacts of GLP and other GBH ingredients on the gut microbiome, gastrointestinal tract, liver, kidney, and endocrine, as well as reproductive, and cardiopulmonary systems, whereas carcinogenicity of these herbicides remains controversial. Occupational exposure to GBH dysregulates the hypothalamic-pituitary-adrenal axis, responsible for steroidogenesis and endocrinal secretion, thus affecting hormonal homeostasis, functions of reproductive organs, and fertility. On the other hand, acute intoxication with GBH, characterized by dehydration, oliguria, paralytic ileus, as well as hypovolemic and cardiogenic shock, pulmonary edema, hyperkalemia, and metabolic acidosis, may occur fatally. As no antidote has been developed for GBH poisoning so far, the detoxification is mainly symptomatic and supportive and requires intensive care based on gastric lavage, extracorporeal blood filtering, and intravenous lipid emulsion infusion. The current review comprehensively discusses the molecular and physiological basics of the GLP- and/or GBH-induced diseases of the endocrine and reproductive systems, and cardiopulmonary-, nephro-, and hepatotoxicities, presented in recent preclinical studies and case reports on the accidental or intentional ingestions with the most popular GBHs. Finally, they briefly describe modern and future healthcare methods and tools for GLP detection, determination, and detoxification. Future electronically powered, decision-making, and user-friendly devices targeting major GLP/GBH's modes of actions, i.e., dysbiosis and the inhibition of AChE, shall enable self-handled or point-of-care professional-assisted evaluation of the harm followed with rapid capturing GBH xenobiotics in the body and precise determining the GBH pathology-associated biomarkers levels.
Collapse
Affiliation(s)
- Jarosław Mazuryk
- Department
of Electrode Processes, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
- Bio
& Soft Matter, Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1 Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium
| | - Katarzyna Klepacka
- ENSEMBLE sp. z o. o., 01-919 Warsaw, Poland
- Faculty
of Mathematics and Natural Sciences. School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, 01-938 Warsaw, Poland
| | - Włodzimierz Kutner
- Department
of Electrode Processes, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
- Faculty
of Mathematics and Natural Sciences. School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, 01-938 Warsaw, Poland
| | - Piyush Sindhu Sharma
- Functional
Polymers Research Team, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| |
Collapse
|
7
|
Khatun M, Lundin K, Naillat F, Loog L, Saarela U, Tuuri T, Salumets A, Piltonen TT, Tapanainen JS. Induced Pluripotent Stem Cells as a Possible Approach for Exploring the Pathophysiology of Polycystic Ovary Syndrome (PCOS). Stem Cell Rev Rep 2024; 20:67-87. [PMID: 37768523 PMCID: PMC10799779 DOI: 10.1007/s12015-023-10627-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
Polycystic ovary syndrome (PCOS) is the most prevalent endocrine condition among women with pleiotropic sequelae possessing reproductive, metabolic, and psychological characteristics. Although the exact origin of PCOS is elusive, it is known to be a complex multigenic disorder with a genetic, epigenetic, and environmental background. However, the pathogenesis of PCOS, and the role of genetic variants in increasing the risk of the condition, are still unknown due to the lack of an appropriate study model. Since the debut of induced pluripotent stem cell (iPSC) technology, the ability of reprogrammed somatic cells to self-renew and their potential for multidirectional differentiation have made them excellent tools to study different disease mechanisms. Recently, researchers have succeeded in establishing human in vitro PCOS disease models utilizing iPSC lines from heterogeneous PCOS patient groups (iPSCPCOS). The current review sets out to summarize, for the first time, our current knowledge of the implications and challenges of iPSC technology in comprehending PCOS pathogenesis and tissue-specific disease mechanisms. Additionally, we suggest that the analysis of polygenic risk prediction based on genome-wide association studies (GWAS) could, theoretically, be utilized when creating iPSC lines as an additional research tool to identify women who are genetically susceptible to PCOS. Taken together, iPSCPCOS may provide a new paradigm for the exploration of PCOS tissue-specific disease mechanisms.
Collapse
Affiliation(s)
- Masuma Khatun
- Department of Obstetrics and Gynecology, University of Helsinki, Helsinki University Central Hospital, Haartmaninkatu 8, Helsinki, 00029 HUS, Finland.
| | - Karolina Lundin
- Department of Obstetrics and Gynecology, University of Helsinki, Helsinki University Central Hospital, Haartmaninkatu 8, Helsinki, 00029 HUS, Finland
| | - Florence Naillat
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Liisa Loog
- Institute of Genomics, University of Tartu, Tartu, 51010, Estonia
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
| | - Ulla Saarela
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Timo Tuuri
- Department of Obstetrics and Gynecology, University of Helsinki, Helsinki University Central Hospital, Haartmaninkatu 8, Helsinki, 00029 HUS, Finland
| | - Andres Salumets
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, 50406, Estonia
- Competence Centre of Health Technologies, Tartu, 50411, Estonia
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Huddinge, Stockholm, 14186, Sweden
| | - Terhi T Piltonen
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Juha S Tapanainen
- Department of Obstetrics and Gynecology, University of Helsinki, Helsinki University Central Hospital, Haartmaninkatu 8, Helsinki, 00029 HUS, Finland
- Department of Obstetrics and Gynecology, HFR - Cantonal Hospital of Fribourg and University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
8
|
Verma S, Khanna V, Kumar S, Kumar S. The Art of Building Living Tissues: Exploring the Frontiers of Biofabrication with 3D Bioprinting. ACS OMEGA 2023; 8:47322-47339. [PMID: 38144142 PMCID: PMC10734012 DOI: 10.1021/acsomega.3c02600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/11/2023] [Indexed: 12/26/2023]
Abstract
The scope of three-dimensional printing is expanding rapidly, with innovative approaches resulting in the evolution of state-of-the-art 3D bioprinting (3DbioP) techniques for solving issues in bioengineering and biopharmaceutical research. The methods and tools in 3DbioP emphasize the extrusion process, bioink formulation, and stability of the bioprinted scaffold. Thus, 3DbioP technology augments 3DP in the biological world by providing technical support to regenerative therapy, drug delivery, bioengineering of prosthetics, and drug kinetics research. Besides the above, drug delivery and dosage control have been achieved using 3D bioprinted microcarriers and capsules. Developing a stable, biocompatible, and versatile bioink is a primary requisite in biofabrication. The 3DbioP research is breaking the technical barriers at a breakneck speed. Numerous techniques and biomaterial advancements have helped to overcome current 3DbioP issues related to printability, stability, and bioink formulation. Therefore, this Review aims to provide an insight into the technical challenges of bioprinting, novel biomaterials for bioink formulation, and recently developed 3D bioprinting methods driving future applications in biofabrication research.
Collapse
Affiliation(s)
- Saurabh Verma
- Department
of Health Research-Multi-Disciplinary Research Unit, King George’s Medical University, Lucknow, Uttar Pradesh 226003, India
| | - Vikram Khanna
- Department
of Oral Medicine and Radiology, King George’s
Medical University, Lucknow, Uttar Pradesh 226003, India
| | - Smita Kumar
- Department
of Health Research-Multi-Disciplinary Research Unit, King George’s Medical University, Lucknow, Uttar Pradesh 226003, India
| | - Sumit Kumar
- Department
of Health Research-Multi-Disciplinary Research Unit, King George’s Medical University, Lucknow, Uttar Pradesh 226003, India
| |
Collapse
|
9
|
Menon R, Muglia LJ, Levin LH. Review on new approach methods to gain insight into the feto-maternal interface physiology. Front Med (Lausanne) 2023; 10:1304002. [PMID: 38098843 PMCID: PMC10720461 DOI: 10.3389/fmed.2023.1304002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023] Open
Abstract
Non-human animals represent a large and important feature in the history of biomedical research. The validity of their use, in terms of reproducible outcomes and translational confidence to the human situation, as well as ethical concerns surrounding that use, have been and remain controversial topics. Over the last 10 years, the communities developing microphysiological systems (MPS) have produced new approach method (NAMs) such as organoids and organs-on-a-chip. These alternative methodologies have shown indications of greater reliability and translatability than animal use in some areas, represent more humane substitutions for animals in these settings, and - with continued scientific effort - may change the conduct of basic research, clinical studies, safety testing, and drug development. Here, we present an introduction to these more human-relevant methodologies and suggest how a suite of pregnancy associated feto-maternal interface system-oriented NAMs may be integrated as reliable partial-/full animal replacements for investigators, significantly aid animal-/environmental welfare, and improve healthcare outcomes.
Collapse
Affiliation(s)
- Ramkumar Menon
- Department of Obstetrics and Gynecology, Division of Basic Science and Translational Research, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Louis J. Muglia
- The Burroughs Wellcome Fund, Research Triangle Park, NC, United States
- Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | | |
Collapse
|
10
|
Trophoblast Exosomal UCA1 Induces Endothelial Injury through the PFN1-RhoA/ROCK Pathway in Preeclampsia: A Human-Specific Adaptive Pathogenic Mechanism. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2198923. [PMID: 36160709 PMCID: PMC9499815 DOI: 10.1155/2022/2198923] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/11/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022]
Abstract
Preeclampsia is regarded as an evolution-related disease that has only been observed in humans and our closest relatives, and the important factor contributing to its pathogenesis is endothelial dysregulation secondary to a stressed placenta. Hypoxia-inducible factor 1 subunit alpha (HIF1α), a highly conserved molecule in virtually all mammals, is regarded as a crucial regulator of the hypoxia adaptation and evolution. Persistent high expression of HIF1α in the placenta is one of the pathogenic mechanisms of preeclampsia. Therefore, human-specific molecules should link increased HIF1α to preeclampsia. We reported that urothelial cancer associated 1 (UCA1) is a potential mediator because it is a human-specific long noncoding RNA (lncRNA) that is upregulated in placental tissues and maternal serum from women with preeclampsia and is regulated by HIF1α. The cellular HIF1α-UCA1 pathway promoted the adaptation of trophoblasts to hypoxia by inducing vascular endothelial growth factor (VEGF) secretion and changes in the levels of key enzymes in glycolysis. On the other hand, circulating exosomal UCA1 secreted from stressed trophoblasts induced vascular endothelial dysfunction, especially excess ROS production, as measured by exosome extraction and a coculture system. At the molecular level, UCA1 physically bound to ubiquitin-specific peptidase 14 (USP14), which is a deubiquitinating enzyme, and UCA1 functioned as a scaffold to recruit USP14 to profilin 1 (PFN1), an actin-binding protein contributing to endothelial abnormalities and vascular diseases. This ternary complex inhibited the ubiquitination-dependent degradation of PFN1 and prolonged its half-life, further activating the RhoA/Rho-kinase (ROCK) pathway to induce ROS production in endothelial cells. Taken together, these observations suggest a role for the evolution-related UCA1 in the HIF1α-induced adaptive pathogenic mechanism of preeclampsia, promoting the survival of hypoxic trophoblasts and injuring maternal endothelial cells.
Collapse
|
11
|
Sung B. In silico modeling of endocrine organ-on-a-chip systems. Math Biosci 2022; 352:108900. [PMID: 36075288 DOI: 10.1016/j.mbs.2022.108900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 10/14/2022]
Abstract
The organ-on-a-chip (OoC) is an artificially reconstructed microphysiological system that is implemented using tissue mimics integrated into miniaturized perfusion devices. OoCs emulate dynamic and physiologically relevant features of the body, which are not available in standard in vitro methods. Furthermore, OoCs provide highly sophisticated multi-organ connectivity and biomechanical cues based on microfluidic platforms. Consequently, they are often considered ideal in vitro systems for mimicking self-regulating biophysical and biochemical networks in vivo where multiple tissues and organs crosstalk through the blood flow, similar to the human endocrine system. Therefore, OoCs have been extensively applied to simulate complex hormone dynamics and endocrine signaling pathways in a mechanistic and fully controlled manner. Mathematical and computational modeling approaches are critical for quantitatively analyzing an OoC and predicting its complex responses. In this review article, recently developed in silico modeling concepts of endocrine OoC systems are summarized, including the mathematical models of tissue-level transport phenomena, microscale fluid dynamics, distant hormone signaling, and heterogeneous cell-cell communication. From this background, whole chip-level analytic approaches in pharmacokinetics and pharmacodynamics will be described with a focus on the spatial and temporal behaviors of absorption, distribution, metabolism, and excretion in endocrine biochips. Finally, quantitative design frameworks for endocrine OoCs are reviewed with respect to support parameter calibration/scaling and enable predictive in vitro-in vivo extrapolations. In particular, we highlight the analytical and numerical modeling strategies of the nonlinear phenomena in endocrine systems on-chip, which are of particular importance in drug screening and environmental health applications.
Collapse
Affiliation(s)
- Baeckkyoung Sung
- Biosensor Group, KIST Europe Forschungsgesellschaft mbH, 66123 Saarbrücken, Germany; Division of Energy & Environment Technology, University of Science & Technology, 34113 Daejeon, Republic of Korea.
| |
Collapse
|
12
|
Li X, Kodithuwakku SP, Chan RWS, Yeung WSB, Yao Y, Ng EHY, Chiu PCN, Lee CL. Three-dimensional culture models of human endometrium for studying trophoblast-endometrium interaction during implantation. Reprod Biol Endocrinol 2022; 20:120. [PMID: 35964080 PMCID: PMC9375428 DOI: 10.1186/s12958-022-00973-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
During implantation, a symphony of interaction between the trophoblast originated from the trophectoderm of the implanting blastocyst and the endometrium leads to a successful pregnancy. Defective interaction between the trophoblast and endometrium often results in implantation failure, pregnancy loss, and a number of pregnancy complications. Owing to ethical concerns of using in vivo approaches to study human embryo implantation, various in vitro culture models of endometrium were established in the past decade ranging from two-dimensional cell-based to three-dimensional extracellular matrix (ECM)/tissue-based culture systems. Advanced organoid systems have also been established for recapitulation of different cellular components of the maternal-fetal interface, including the endometrial glandular organoids, trophoblast organoids and blastoids. However, there is no single ideal model to study the whole implantation process leaving more research to be done pursuing the establishment of a comprehensive in vitro model that can recapitulate the biology of trophoblast-endometrium interaction during early pregnancy. This would allow us to have better understanding of the physiological and pathological process of trophoblast-endometrium interaction during implantation.
Collapse
Affiliation(s)
- Xintong Li
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
| | - Suranga P Kodithuwakku
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- Department of Animal Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Rachel W S Chan
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Key, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - William S B Yeung
- Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Key, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yuanqing Yao
- Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Key, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Ernest H Y Ng
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Key, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Philip C N Chiu
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China.
- Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Key, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| | - Cheuk-Lun Lee
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China.
- Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Key, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
13
|
Davenport BN, Wilson RL, Jones HN. Interventions for placental insufficiency and fetal growth restriction. Placenta 2022; 125:4-9. [PMID: 35414477 PMCID: PMC10947607 DOI: 10.1016/j.placenta.2022.03.127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/09/2022] [Accepted: 03/28/2022] [Indexed: 01/16/2023]
Abstract
Pregnancy complications adversely impact both mother and/or fetus throughout the lifespan. Fetal growth restriction (FGR) occurs when a fetus fails to reach their intrauterine potential for growth, it is the second highest leading cause of infant mortality, and leads to increased risk of developing non-communicable diseases in later life due 'fetal programming'. Abnormal placental development, growth and/or function underlies approximately 75% of FGR cases and there is currently no treatment save delivery, often prematurely. We previously demonstrated in a murine model of FGR that nanoparticle mediated, intra-placental human IGF-1 gene therapy maintains normal fetal growth. Multiple models of FGR currently exist reflecting the etiologies of human FGR and have been used by us and others to investigate the development of in utero therapeutics as discussed here. In addition to the in vivo models discussed herein, utilizing human models including in vitro (Choriocarcinoma cell lines and primary trophoblasts) and ex vivo (term villous fragments and placenta cotyledon perfusion) we have demonstrated robust nanoparticle uptake, transgene expression, nutrient transporter regulation without transfer to the fetus. For translational gene therapy application in the human placenta, there are multiple avenues that require investigation including syncytial uptake from the maternal circulation, transgene expression, functionality and longevity of treatment, impact of treatment on the mother and developing fetus. The potential impact of treating the placenta during gestation is high, wide-ranging across pregnancy complications, and may offer reduced risk of developing associated cardio-metabolic diseases in later life impacting at both an individual and societal level.
Collapse
Affiliation(s)
- Baylea N Davenport
- Center for Research in Perinatal Outcomes, University of Florida College of Medicine, United States
| | - Rebecca L Wilson
- Center for Research in Perinatal Outcomes, University of Florida College of Medicine, United States
| | - Helen N Jones
- Center for Research in Perinatal Outcomes, University of Florida College of Medicine, United States.
| |
Collapse
|
14
|
Bergmann S, Schindler M, Munger C, Penfold CA, Boroviak TE. Building a stem cell-based primate uterus. Commun Biol 2021; 4:749. [PMID: 34140619 PMCID: PMC8211708 DOI: 10.1038/s42003-021-02233-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 05/06/2021] [Indexed: 12/17/2022] Open
Abstract
The uterus is the organ for embryo implantation and fetal development. Most current models of the uterus are centred around capturing its function during later stages of pregnancy to increase the survival in pre-term births. However, in vitro models focusing on the uterine tissue itself would allow modelling of pathologies including endometriosis and uterine cancers, and open new avenues to investigate embryo implantation and human development. Motivated by these key questions, we discuss how stem cell-based uteri may be engineered from constituent cell parts, either as advanced self-organising cultures, or by controlled assembly through microfluidic and print-based technologies.
Collapse
Affiliation(s)
- Sophie Bergmann
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Magdalena Schindler
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Clara Munger
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Christopher A Penfold
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge, UK.
- Wellcome Trust - Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Cambridge, UK.
| | - Thorsten E Boroviak
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge, UK.
| |
Collapse
|
15
|
Wheeler ML, Oyen ML. Bioengineering Approaches for Placental Research. Ann Biomed Eng 2021; 49:1805-1818. [PMID: 33420547 DOI: 10.1007/s10439-020-02714-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022]
Abstract
Research into the human placenta's complex functioning is complicated by a lack of suitable physiological in vivo models. Two complementary approaches have emerged recently to address these gaps in understanding, computational in silico techniques, including multi-scale modeling of placental blood flow and oxygen transport, and cellular in vitro approaches, including organoids, tissue engineering, and organ-on-a-chip models. Following a brief introduction to the placenta's structure and function and its influence on the substantial clinical problem of preterm birth, these different bioengineering approaches are reviewed. The cellular techniques allow for investigation of early first-trimester implantation and placental development, including critical biological processes such as trophoblast invasion and trophoblast fusion, that are otherwise very difficult to study. Similarly, computational models of the placenta and the pregnant pelvis at later-term gestation allow for investigations relevant to complications that occur when the placenta has fully developed. To fully understand clinical conditions associated with the placenta, including those with roots in early processes but that only manifest clinically at full-term, a holistic approach to the study of this fascinating, temporary but critical organ is required.
Collapse
Affiliation(s)
- Mackenzie L Wheeler
- Department of Engineering, East Carolina University, Greenville, NC, 27834, USA
| | - Michelle L Oyen
- Department of Engineering, East Carolina University, Greenville, NC, 27834, USA.
| |
Collapse
|