1
|
Zhang Y, He Y, Deng R, Jiang Z, Zhang L, Zeng Y, Zou L. Multifaceted Characterization of Human Embryonic Stem Cell-Derived Mesenchymal Stem/Stromal Cells Revealed Amelioration of Acute Liver Injury in NOD-SCID Mice. Cell Transplant 2024; 33:9636897231218383. [PMID: 38173232 PMCID: PMC10768578 DOI: 10.1177/09636897231218383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/15/2023] [Accepted: 11/18/2023] [Indexed: 01/05/2024] Open
Abstract
Human embryonic stem cells (hESCs) are advantaged sources for large-scale and homogeneous mesenchymal stem/stromal cells (MSCs) generation. However, due to the limitations in high-efficiency procedures for hESC-MSCs induction, the systematic and detailed information of mesengenesis and early MSC development are largely obscure. In this study, we took advantage of the well-established twist-related protein 1 (TWIST1)-overexpressing hESCs and two small molecular cocktails (CHIR99021, decitabine) for high-efficient MSC induction. To assess the multidimensional biological and transcriptomic characteristics, we turned to cellular and molecular methods, such as flow cytometry (FCM), quantitative reverse transcription-polymerase chain reaction (qRT-PCR), in vitro tri-lineage differentiation, cytokine secretion analysis, in vivo transplantation for acute liver injury (ALI) management, and bioinformatics analyses (eg, gene ontology-biological processes [GO-BP], Kyoto Encyclopedia of Genes and Genomes [KEGG], HeatMap, and principal component analysis [PCA]). By combining TWIST1 overexpression (denoted as T) and the indicated small molecular cocktails (denoted as S), hESCs high-efficiently differentiated into MSCs (denoted as TS-MSCs, induced by T and S combination) within 2 weeks. TS-MSCs satisfied the criteria for MSC definition and revealed comparable tri-lineage differentiation potential and ameliorative efficacy upon ALI mice. According to RNA-sequencing (SEQ) analysis, we originally illuminated the gradual variations in gene expression pattern and the concomitant biofunctions of the programmed hESC-MSCs. Overall, our data indicated the feasibility of high-efficient generation of hESC-MSCs by TWIST1 and cocktail-based programming. The generated hESC-MSCs revealed multifaceted in vivo and in vitro biofunctions as adult BM-MSCs, which collectively suggested promising prospects in ALI management in future.
Collapse
Affiliation(s)
- Youlai Zhang
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ying He
- Department of Infectious Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Rufei Deng
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhenyu Jiang
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Leisheng Zhang
- National Health Commission Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China
- Central Laboratory, The Fourth People’s Hospital of Jinan, The Teaching Hospital of Shandong First Medical University, Jinan, China
| | - Yuanlin Zeng
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lijin Zou
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
2
|
Ning J, Zhang L, Xie H, Chai L, Yao J. Decoding the multifaceted signatures and transcriptomic characteristics of stem cells derived from apical papilla and dental pulp of human supernumerary teeth. Cell Biol Int 2023; 47:1976-1986. [PMID: 37641425 DOI: 10.1002/cbin.12088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/07/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023]
Abstract
Supernumerary teeth are advantaged sources for high-quality stem cell preparation from both apical papilla (SCAP-Ss) and dental pulp (DPSCs). However, the deficiency of the systematic and detailed comparison of the biological and transcriptomic characteristics of the aforementioned stem cells largely hinders their application in regenerative medicine. Herein, we collected supernumerary teeth for SCAP-S and DPSC isolation and identification by utilizing multiple biological tests (e.g., growth curve, cell cycle and apoptosis, adipogenic and osteogenic differentiation, and quantitative real-time polymerase chain reaction). Furthermore, we took advantage of transcriptome sequencing and multifaceted bioinformatic analyses to dissect the similarities and diversities between them. In this study, we found that SCAP-Ss and DPSCs showed indistinctive signatures in morphology and immunophenotypes, whereas with diversity in cell vitality and multi-lineage differentiation as well as gene expression profiling and differentially expressed genes-associated gene ontology and signaling pathways. Collectively, our data indicated the diversity of the multifaceted signatures of human supernumerary teeth-derived stem cells both at the cellular and molecular levels, which also supplied new references for SCAP-Ss serving as splendid alternative stem cell sources for regenerative medicine purposes.
Collapse
Affiliation(s)
- Juan Ning
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Leisheng Zhang
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor & Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou, China
- Key Laboratory of Radiation Technology and Biophysics, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, China
- Jiangxi Health-Biotech Stem Cell Technology Co., Ltd., Jiangxi Research Center of Stem Cell Engineering, Shangrao, China
| | - Hanjing Xie
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Lian Chai
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Jun Yao
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
3
|
Zhang X, Sang X, Chen Y, Yu H, Sun Y, Liang X, Zheng X, Wang X, Yang H, Bi J, Zhang L, Wang P. VCAM-1 + hUC-MSCs Exert Considerable Neuroprotection Against Cerebral Infarction in Rats by Suppression of NLRP3-Induced Pyroptosis. Neurochem Res 2023; 48:3084-3098. [PMID: 37336824 DOI: 10.1007/s11064-023-03968-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
Mesenchymal stem/stromal cells (MSCs) are spindle-like heterogeneous cell populations with advantageous bidirectional immunomodulatory and hematopoietic support effects. Vascular cellular adhesion molecule-1 (VCAM-1)+ MSCs have been reported to exhibit immunoregulatory and proangiogenic capacities. Here, we studied the effects of VCAM-1+ human umbilical cord (hUC)-MSCs on neuroprotection against cerebral infarction. Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO), and VCAM-1- and VCAM-1+ hUC-MSCs were intravenously injected into the rat 4 h post-MCAO surgery. Thereafter, modified neurological severity scores (mNSS) were determined, and the Morris water maze test, 2,3,5-triphenyltetrazolium chloride (TTC), hematoxylin and eosin (H&E), Nissl, TUNEL staining, and qRT-PCR were conducted. Following induction of oxygen-glucose deprivation/reoxygenation (OGD/R), SH-SY5Y cells were co-cultured with VCAM-1- and VCAM-1+ hUC-MSCs. CCK-8, flow cytometry, ELISA, and western blot analyses were performed in vitro. Compared with VCAM-1- hUC-MSCs, administration of VCAM-1+ hUC-MSCs revealed improved therapeutic efficacy against cerebral infarction in rats, as confirmed by lower mNSS scores and infarct volumes, as well as improved learning and memory capacities. In addition, VCAM-1+ hUC-MSCs exhibited improved efficacy against neurological defects in rats with cerebral infarction, accompanied by inhibition of the NLRP3-mediated inflammatory response. VCAM-1+ hUC-MSC co-culture improved the viability and diminished NLRP3-mediated inflammatory response in OGD/R-treated SH-SY5Y cells. Moreover, NLRP3 overexpression in SH-SY5Y cells prevented the beneficial effects of VCAM-1+ hUC-MSC co-culture. Overall, our findings demonstrated the relevance of VCAM-1+ hUC-MSC-based cytotherapy for preclinical neuroprotection against cerebral infarction.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Neurology, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Xiaoyu Sang
- Department of Neurology, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Yanting Chen
- Department of Neurology, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Hao Yu
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yuan Sun
- The Second Hospital of Shandong University, Jinan, 250033, China
| | - Xilong Liang
- Department of Biostatistics, School of Public Health, Yale University, 38 Crown Street, APT 203, New Haven, CT, 06510, USA
| | - Xiaolei Zheng
- Department of Neurology, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Xiao Wang
- Department of Neurology, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Hui Yang
- Department of Neurology, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Jianzhong Bi
- Department of Neurology, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Leisheng Zhang
- Department of Neurosurgery, Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China.
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province and NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China.
- Key Laboratory of Radiation Technology and Biophysics, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
| | - Ping Wang
- Department of Neurology, The Second Hospital of Shandong University, Jinan, 250033, China.
| |
Collapse
|
4
|
Pu X, Zhang L, Zhang P, Xu Y, Wang J, Zhao X, Dai Z, Zhou H, Zhao S, Fan A. Human UC-MSC-derived exosomes facilitate ovarian renovation in rats with chemotherapy-induced premature ovarian insufficiency. Front Endocrinol (Lausanne) 2023; 14:1205901. [PMID: 37564988 PMCID: PMC10411896 DOI: 10.3389/fendo.2023.1205901] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/05/2023] [Indexed: 08/12/2023] Open
Abstract
Premature ovarian insufficiency (POI) induced by chemotherapy is an intractable disorder with a considerable incidence that commonly results in insufficient fertility and concomitant complications in female patients. Due to limitations in the current progress in POI diagnosis and treatment, there is an urgent need to develop novel remedies to improve ovarian function and protect fertility. The ameliorative effect of human umbilical cord mesenchymal stem cells (hUCMSCs) and exosomes derived from them in POI treatment could be a new hope for patients. Herein, we identified exosomes from hUCMSCs (hUCMSC-Exos). Then, systematic infusion of hUCMSC-Exos was accomplished via tail intravenous injection to investigate the feasibility of the treatment of rats with chemotherapy-induced POI by intraperitoneal injection of cyclophosphamide (CTX) and busulfan (BUS). Ovarian functions in the indicated group were evaluated, including oestrous cycle, serum sex hormone levels, follicle counts, ovarian pathological changes, proliferation and apoptosis of granulosa cells (GCs), and reproductive ability testing. Furthermore, the potential influence of hUCMSC-Exos on ovarian tissues was illuminated by conducting RNA-seq and multifaceted bioinformatics analyses. POI rats with hUCMSC-Exos transplantation exhibited a decrease in follicle-stimulating hormone (FSH) and apoptosis of GCs but an increase in oestradiol (E2), anti-Müllerian hormone (AMH), and the number of ovarian follicles and foetuses in the uterus. And the immunomodulation- and cellular vitality-associated gene sets in rats had also undergone moderate changes. Our data indicated the feasibility of hUCMSC-Exos in improving ovarian function and protecting fertility in chemotherapy-induced POI rats. HUCMSC-Exos can improve the local microenvironment of ovarian tissue in POI rats by participating in immune regulation, cellular viability, inflammation regulation, fibrosis and metabolism, and other related signal pathways.
Collapse
Affiliation(s)
- Xiaodi Pu
- Department of Obstetrics and Gynecology, Guizhou Medical University, Guiyang, China
| | - Leisheng Zhang
- Stem Cell Bank of Guizhou Province, Guizhou Health-Biotech Biotechnology Co., Ltd., Guiyang, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou, China
- National Health Commission (NHC) Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China
- Key Laboratory of Radiation Technology and Biophysics, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Peiyu Zhang
- Department of Obstetrics and Gynecology, Guizhou Medical University, Guiyang, China
| | - Yaqiong Xu
- Department of Obstetrics and Gynecology, Guizhou Medical University, Guiyang, China
| | - Jun Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology of the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xiaomei Zhao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology of the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zhihua Dai
- Stem Cell Bank of Guizhou Province, Guizhou Health-Biotech Biotechnology Co., Ltd., Guiyang, China
| | - Hua Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology of the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shuyun Zhao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology of the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Anran Fan
- Key Laboratory of Reproductive Medicine, Stem Cell and Tissue Engineering Research Center in Guizhou Province, Guizhou Medical University, Guiyang, China
| |
Collapse
|
5
|
Du J, Zhang J, Wang L, Wang X, Zhao Y, Lu J, Fan T, Niu M, Zhang J, Cheng F, Li J, Zhu Q, Zhang D, Pei H, Li G, Liang X, Huang H, Cao X, Liu X, Shao W, Sheng J. Selective oxidative protection leads to tissue topological changes orchestrated by macrophage during ulcerative colitis. Nat Commun 2023; 14:3675. [PMID: 37344477 PMCID: PMC10284839 DOI: 10.1038/s41467-023-39173-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 06/01/2023] [Indexed: 06/23/2023] Open
Abstract
Ulcerative colitis is a chronic inflammatory bowel disorder with cellular heterogeneity. To understand the composition and spatial changes of the ulcerative colitis ecosystem, here we use imaging mass cytometry and single-cell RNA sequencing to depict the single-cell landscape of the human colon ecosystem. We find tissue topological changes featured with macrophage disappearance reaction in the ulcerative colitis region, occurring only for tissue-resident macrophages. Reactive oxygen species levels are higher in the ulcerative colitis region, but reactive oxygen species scavenging enzyme SOD2 is barely detected in resident macrophages, resulting in distinct reactive oxygen species vulnerability for inflammatory macrophages and resident macrophages. Inflammatory macrophages replace resident macrophages and cause a spatial shift of TNF production during ulcerative colitis via a cytokine production network formed with T and B cells. Our study suggests components of a mechanism for the observed macrophage disappearance reaction of resident macrophages, providing mechanistic hints for macrophage disappearance reaction in other inflammation or infection situations.
Collapse
Affiliation(s)
- Juan Du
- Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China.
| | - Junlei Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China
- Zhejiang University Cancer Centre, Zhejiang University, Hangzhou, 310002, China
| | - Lin Wang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China
- Zhejiang University Cancer Centre, Zhejiang University, Hangzhou, 310002, China
| | - Xun Wang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China
- Zhejiang University Cancer Centre, Zhejiang University, Hangzhou, 310002, China
| | - Yaxing Zhao
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China
- Zhejiang University Cancer Centre, Zhejiang University, Hangzhou, 310002, China
| | - Jiaoying Lu
- Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China
| | - Tingmin Fan
- Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China
- Central Laboratory, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310002, China
| | - Meng Niu
- Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China
| | - Jie Zhang
- Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China
| | - Fei Cheng
- Pathology Department, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China
| | - Jun Li
- Pathology Department, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China
| | - Qi Zhu
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, No. 29 JiangJun Road, Jiang Ning District, Nanjing, Jiangsu, 211106, China
| | - Daoqiang Zhang
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, No. 29 JiangJun Road, Jiang Ning District, Nanjing, Jiangsu, 211106, China
| | - Hao Pei
- MobiDrop (Zhejiang), No. 455 Heshun Road, Tongxiang, Zhejiang, 314500, China
| | - Guang Li
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Chaoyang District, Beijing, 100024, China
| | - Xingguang Liang
- Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China
- Central Laboratory, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310002, China
| | - He Huang
- Frontiers Science Center for Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xiaocang Cao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Department of Hepato-Gastroenterology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300000, China.
| | - Xinjuan Liu
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Chaoyang District, Beijing, 100024, China.
| | - Wei Shao
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, No. 29 JiangJun Road, Jiang Ning District, Nanjing, Jiangsu, 211106, China.
| | - Jianpeng Sheng
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China.
- Zhejiang University Cancer Centre, Zhejiang University, Hangzhou, 310002, China.
| |
Collapse
|
6
|
Zhang L, Zhuo Y, Yu H. Spatio-temporal metabolokinetics and therapeutic effect of CD106 + mesenchymal stem/stromal cells upon mice with acute lung injury. Cell Biol Int 2023; 47:720-730. [PMID: 36490221 DOI: 10.1002/cbin.11976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 09/12/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
Longitudinal investigations have revealed the unique attributes of mesenchymal stem/stromal cells (MSCs) in regenerative medicine. However, the spatio-temporal metabolokinetics and efficacy of MSCs with vascular cell adhesion molecule 1 (also known as CD106) expression in phenotypes and therapeutic effect upon acute lung injury (ALI) mice are largely obscure. For the purpose, we took advantage of the "3IL"-based strategy and Lentivirus-mediated green fluorescent protein (GFP) delivery for the generation of the CD106+ subset (denote as CD106+ -MSCs) from umbilical cord-derived MSCs (denote as NT-MSCs). Therewith, the cellular phenotypes of CD106+ -MSCs including immunophenotypes, multilineage differentiation potential towards adipocytes and osteoblasts were confirmed by flow cytometry and qRT-PCR assay. Meanwhile, multifaceted characteristics of transcriptomic features were analyzed by utilizing the RNA-SEQ and bioinformatics. Furthermore, to compare the therapeutic effects and spatio-temporal dynamics of CD106+ -MSCs, we conducted in vivo fluorescent tracer, hematoxylin and eosin staining, blood smear, blood routine and cytokine detection in mice. Herein, we generated CD106+ -MSCs with GFP expression and confirmed the conservative property of phenotypes. Compared to NT-MSCs with minimal CD106 expression, CD106+ -MSCs manifested consistent distribution and metabolokinetics in vivo but with preferable ameliorative effect upon the pathological appearance and proinflammatory cytokine secretion in ALI mice. Collectively, our data indicated the preferable therapeutic effects of CD106+ -MSCs upon ALI mice, which would benefit the further exploration of the CD106+ subset for pulmonary diseases and investigational new drug application purposes.
Collapse
Affiliation(s)
- Leisheng Zhang
- School of Medicine, Nankai University, Tianjin, China.,Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province & NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China.,Center for Cellular Therapies, The First Affiliated Hospital of Shandong First Medical University, Ji-nan, China.,Key Laboratory of Radiation Technology and Biophysics, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Yi Zhuo
- Department of Thoracic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Hao Yu
- School of Medicine, Nankai University, Tianjin, China.,National Engineering Research Center of Cell Products, AmCellGene Engineering Co., Ltd, Tianjin, China.,Tianjin Key Laboratory of Engineering Technologies for Cell Pharmaceutical, Tianjin, China
| |
Collapse
|
7
|
Chen H, Zhang L, Zhang W, Dai Z, Chen T, Wei Y, Chen M. Clinical characteristics and remission of nine cases with coronavirus disease 2019 infection in Zunyi, Southwest of China: A retrospective study. Medicine (Baltimore) 2022; 101:e31494. [PMID: 36595797 PMCID: PMC9794302 DOI: 10.1097/md.0000000000031494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) has become a rock-ribbed public pandemic and caused substantial health concerns worldwide. In addition to therapeutic strategies, the epidemiologic features and clinical characteristics of patients responded to COVID-19 infection are of equal importance. The study aims to systematically evaluate the clinical presentations and remission of cases with COVID-19 infection in Zunyi, Southwest of China, and to determine the similarities and variations for further clinical classification and comprehensive treatment. Herein, we conducted a retrospective study upon 9 patients in Zunyi, southwest of China, including 1 mild (LPA), 5 severe (SPA) and 3 critical (CPA) types of COVID-19 infection. In details, the demographic data, historical epidemiology, previous medical history, clinical symptoms and complications, laboratory examination, chest imaging, treatment and outcomes of the patients were throughout explored. The non-normal distribution of the data was conducted by utilizing the SPSS software, and significant statistical differences were identified when P < .05. By retrospective analysis of the 9 cases, we found there were multifaceted similarities and differences among them in clinical representation. The patients collectively showed negative for nucleic acid test (NAT) and favorable prognosis after receiving comprehensive therapy such as hormonotherapy, hemopruification, and antiviral administration as well as respiratory support. On the basis of the information, we systematically dissected the clinical features and outcomes of the enrolled patients with COVID-19 and the accompanied multiple syndromes, which would serve as new references for clinical classification and comprehensive treatment. Analysis of clinical characteristics and therapeutic effect of 9 cases of novel coronavirus pneumonia (COVID-19), ChiCTR2000031930. Registered April 15, 2020 (retrospective registration).
Collapse
Affiliation(s)
- Hongjun Chen
- Department of Intensive Care Unit, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Cerebrovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Leisheng Zhang
- Stem Cell Bank of Guizhou Province, Guizhou Health-Biotech Biotechnology Co., Ltd., Guiyang, China
- Jiangxi Research Center of Stem Cell Engineering, Jiangxi Health-Biotech Stem Cell Technology Co., Ltd., Shangrao, China
- Shandong Provincial Key Laboratory of Translational Medicine for Rheumatic and Immune Diseases, Qianfoshan Hospital & The First Affiliated Hospital of Shandong First Medical University, Ji-nan, China
| | - Wei Zhang
- Department of Intensive Care Unit, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Cerebrovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhihua Dai
- Stem Cell Bank of Guizhou Province, Guizhou Health-Biotech Biotechnology Co., Ltd., Guiyang, China
| | - Tao Chen
- Department of Intensive Care Unit, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Cerebrovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yiyong Wei
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Miao Chen
- Department of Intensive Care Unit, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- * Correspondence: Miao Chen, Department of Intensive Care Unit, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China (e-mail: )
| |
Collapse
|
8
|
Off-the-shelf GMP-grade UC-MSCs as therapeutic drugs for the amelioration of CCl4-induced acute-on-chronic liver failure in NOD-SCID mice. Int Immunopharmacol 2022; 113:109408. [DOI: 10.1016/j.intimp.2022.109408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/16/2022] [Accepted: 10/28/2022] [Indexed: 11/10/2022]
|
9
|
Sun Y, Wang TE, Hu Q, Zhang W, Zeng Y, Lai X, Zhang L, Shi M. Systematic comparation of the biological and transcriptomic landscapes of human amniotic mesenchymal stem cells under serum-containing and serum-free conditions. Stem Cell Res Ther 2022; 13:490. [PMID: 36195964 PMCID: PMC9530421 DOI: 10.1186/s13287-022-03179-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Background Human amniotic mesenchymal stem cells (hAMSCs) are splendid cell sources for clinical application in the administration of numerous refractory and relapse diseases. Despite the preferable prospect of serum-free (SF) condition for cell product standardization and pathogenic contamination remission, yet the systematic and detailed impact upon hAMSCs at both cellular and transcriptomic levels is largely obscure. Methods For the purpose, we preconditioned hAMSCs under serum-containing (SC) and SF medium for 48 h and compared the biological signatures and biofunctions from the view of cell morphology, immunophenotypes, multi-lineage differentiation in vitro, cell vitality, cytokine expression, and immunosuppressive effect upon the subpopulations of T lymphocytes, together with the PI3K-AKT-mTOR signaling reactivation upon cell vitality. Meanwhile, we took advantage of RNA-SEQ and bioinformatic analyses to verify the gene expression profiling and genetic variation spectrum in the indicated hAMSCs. Results Compared with those maintained in SC medium, hAMSCs pretreated in SF conditions manifested conservation in cell morphology, immunophenotypes, adipogenic differentiation, and immunosuppressive effect upon the proliferation and activation of most of the T cell subpopulations, but with evaluated cytokine expression (e.g., TGF-β1, IDO1, NOS2) and declined osteogenic differentiation and cell proliferation as well as proapoptotic and apoptotic cells. The declined proliferation in the SF group was efficiently rescued by PI3K-AKT-mTOR signaling reactivation. Notably, hAMSCs cultured in SF and SC conditions revealed similarities in gene expression profiling and variations in genetic mutation at the transcriptome level. Instead, based on the differentially expressed genes and variable shear event analyses, we found those genes were mainly involved in DNA synthesis-, protein metabolism-, and cell vitality-associated biological processes and signaling pathways (e.g., P53, KRAS, PI3K-Akt-mTOR). Conclusions Collectively, our data revealed the multifaceted cellular and molecular properties of hAMSCs under SC and SF conditions, which suggested the feasibility of serum-free culture for the preferable preparation of standardized cell products for hAMSC drug development and clinical application. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03179-2.
Collapse
Affiliation(s)
- Yunyan Sun
- Department of Hematology, The First Affiliated Hospital of Kunming Medical University, Hematology Research Center of Yunnan Province, Kunming, 650032, China.,Department of Hematology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, Kunming, 650118, China
| | - Ti-Er Wang
- Department of Hematology, The First Affiliated Hospital of Kunming Medical University, Hematology Research Center of Yunnan Province, Kunming, 650032, China
| | - Qianwen Hu
- Department of Hematology, The First Affiliated Hospital of Kunming Medical University, Hematology Research Center of Yunnan Province, Kunming, 650032, China
| | - Wenxia Zhang
- Department of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Yun Zeng
- Department of Hematology, The First Affiliated Hospital of Kunming Medical University, Hematology Research Center of Yunnan Province, Kunming, 650032, China.
| | - Xun Lai
- Department of Hematology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, Kunming, 650118, China.
| | - Leisheng Zhang
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province & NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China. .,Key Laboratory of Radiation Technology and Biophysics, Hefei Institute of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Shushan District, Hefei, 230031, Anhui, China. .,Center for Cellular Therapies, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China.
| | - Mingxia Shi
- Department of Hematology, The First Affiliated Hospital of Kunming Medical University, Hematology Research Center of Yunnan Province, Kunming, 650032, China.
| |
Collapse
|
10
|
Lederer CW, Koniali L, Buerki-Thurnherr T, Papasavva PL, La Grutta S, Licari A, Staud F, Bonifazi D, Kleanthous M. Catching Them Early: Framework Parameters and Progress for Prenatal and Childhood Application of Advanced Therapies. Pharmaceutics 2022; 14:pharmaceutics14040793. [PMID: 35456627 PMCID: PMC9031205 DOI: 10.3390/pharmaceutics14040793] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 01/19/2023] Open
Abstract
Advanced therapy medicinal products (ATMPs) are medicines for human use based on genes, cells or tissue engineering. After clear successes in adults, the nascent technology now sees increasing pediatric application. For many still untreatable disorders with pre- or perinatal onset, timely intervention is simply indispensable; thus, prenatal and pediatric applications of ATMPs hold great promise for curative treatments. Moreover, for most inherited disorders, early ATMP application may substantially improve efficiency, economy and accessibility compared with application in adults. Vindicating this notion, initial data for cell-based ATMPs show better cell yields, success rates and corrections of disease parameters for younger patients, in addition to reduced overall cell and vector requirements, illustrating that early application may resolve key obstacles to the widespread application of ATMPs for inherited disorders. Here, we provide a selective review of the latest ATMP developments for prenatal, perinatal and pediatric use, with special emphasis on its comparison with ATMPs for adults. Taken together, we provide a perspective on the enormous potential and key framework parameters of clinical prenatal and pediatric ATMP application.
Collapse
Affiliation(s)
- Carsten W. Lederer
- The Molecular Genetics Thalassemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (L.K.); (P.L.P.); (M.K.)
- Correspondence: ; Tel.: +357-22-392764
| | - Lola Koniali
- The Molecular Genetics Thalassemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (L.K.); (P.L.P.); (M.K.)
| | - Tina Buerki-Thurnherr
- Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland;
| | - Panayiota L. Papasavva
- The Molecular Genetics Thalassemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (L.K.); (P.L.P.); (M.K.)
| | - Stefania La Grutta
- Institute of Translational Pharmacology, IFT National Research Council, 90146 Palermo, Italy;
| | - Amelia Licari
- Pediatric Clinic, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, Fondazione IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy;
| | - Frantisek Staud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, 50005 Hradec Králové, Czech Republic;
| | - Donato Bonifazi
- Consorzio per Valutazioni Biologiche e Farmacologiche (CVBF) and European Paediatric Translational Research Infrastructure (EPTRI), 70122 Bari, Italy;
| | - Marina Kleanthous
- The Molecular Genetics Thalassemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (L.K.); (P.L.P.); (M.K.)
| |
Collapse
|
11
|
Huang F, Thokerunga E, He F, Zhu X, Wang Z, Tu J. Research progress of the application of mesenchymal stem cells in chronic inflammatory systemic diseases. Stem Cell Res Ther 2022; 13:1. [PMID: 34998430 PMCID: PMC8742935 DOI: 10.1186/s13287-021-02613-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/04/2021] [Indexed: 02/08/2023] Open
Abstract
Chronic inflammatory systemic diseases are the result of the body's immune imbalance, with a long course and recurring episodes. Immunosuppressants are the main treatment, but not all patients respond well to it. Being capable of both self-renewal and differentiation into multiple tissue cells and low immunogenicity, mesenchymal stem cell is a promising treatment for chronic inflammatory systemic diseases. In this article, we describe the research progress and clinical application of mesenchymal stem cells in chronic inflammatory systemic diseases and look for influencing factors and biomarkers that can predict the outcome of patient with mesenchymal stem cell transplantation.
Collapse
Affiliation(s)
- Fangfang Huang
- Program and Department of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Erick Thokerunga
- Program and Department of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Fajian He
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Xinyu Zhu
- Program and Department of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zi Wang
- Program and Department of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jiancheng Tu
- Program and Department of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
12
|
Huang Y, Cheng J, Zhou Y, Zhang Y, Zhou S, Li Q, Peng L, Wang M, Song W, Wu G. Sulfuretted hydrogen ameliorates high dose glucose-induced podocyte apoptosis via orchestrating AMPK/mTOR cascade-mediated anti-apoptotic effects. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1586. [PMID: 34790792 PMCID: PMC8576736 DOI: 10.21037/atm-21-5152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/20/2021] [Indexed: 12/04/2022]
Abstract
Background Podocytes play a pivotal role in the glomerular filtration barrier and contribute to proteinuria and glomerulosclerosis through abnormal apoptosis. Longitudinal studies have indicated the protective properties of hydrogen sulfide (H2S) against neuronal cell apoptosis, whereas the biological function and the underlying molecular mechanism on glucose-induced podocyte apoptosis are largely unknown. Methods Herein, we conducted multifaceted biological analyses to verify the potential function of H2S in glucose-induced podocyte apoptosis by examining apoptotic proteins and markers (e.g., caspase 3, Hoechst) and antioxidative effects [e.g., reactive oxygen species (ROS), lipid peroxidation, superoxide dismutase (SOD), catalase (CAT)]. Then, we took advantage of transcriptome sequencing and biological analyses to further determine the potential influence of H2S as well as the accompanying molecular mechanism. Results In this study, we found that glucose-induced podocyte apoptosis could be largely rescued by H2S via antioxidative responses, which was further confirmed by transcriptome sequencing and bioinformatics analyses. According to apoptotic signaling analysis, the over-activated AMPK/mTOR signaling cascade in glucose-treated podocytes was effectively restrained. Conclusions For the first time, we indicated the protective effect and mechanism of H2S in podocytes by restricting glucose-induced apoptosis and suppressing the abnormally activated AMPK/mTOR signaling cascade. Our findings provide new references for podocyte apoptosis-associated diseases and also indicate the potential of H2S administration in clinical trials.
Collapse
Affiliation(s)
- Yong Huang
- Department of Nephrology, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Jie Cheng
- Department of Nephrology, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yehua Zhou
- Department of Nephrology, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yanhui Zhang
- Department of Nephrology, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Shuhui Zhou
- Department of Nephrology, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Qingzhen Li
- Department of Nephrology, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Lin Peng
- Department of Nephrology, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Maohong Wang
- Department of Nephrology, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Weiguo Song
- Department of Nephrology, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Guoqing Wu
- Department of Nephrology, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|
13
|
Zhang LS, Yu Y, Yu H, Han ZC. Therapeutic prospects of mesenchymal stem/stromal cells in COVID-19 associated pulmonary diseases: From bench to bedside. World J Stem Cells 2021; 13:1058-1071. [PMID: 34567425 PMCID: PMC8422925 DOI: 10.4252/wjsc.v13.i8.1058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/10/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
The ongoing outbreak of coronavirus disease 2019 (COVID-19) caused by the novel severe acute respiratory syndrome coronavirus 2 has become a sudden public emergency of international concern and seriously threatens millions of people’s life health. Two current studies have indicated a favorable role for mesenchymal stem/stromal cells (MSCs) in clinical remission of COVID-19 associated pulmonary diseases, yet the systematical elaboration of the therapeutics and underlying mechanism is far from satisfaction. In the present review, we summarize the therapeutic potential of MSCs in COVID-19 associated pulmonary diseases such as pneumonia induced acute lung injury, acute respiratory distress syndrome, and pulmonary fibrosis. Furthermore, we review the underlying mechanism of MSCs including direct- and trans-differentiation, autocrine and paracrine anti-inflammatory effects, homing, and neovascularization, as well as constitutive microenvironment. Finally, we discuss the prospects and supervision of MSC-based cytotherapy for COVID-19 management before large-scale application in clinical practice. Collectively, this review supplies overwhelming new references for understanding the landscapes of MSCs in the remission of COVID-19 associated pulmonary diseases.
Collapse
Affiliation(s)
- Lei-Sheng Zhang
- Qianfoshan Hospital & The First Affiliated Hospital, Shandong First Medical University, Jinan 250014, Shandong Province, China
- State Key Laboratory of Experimental Hematology & National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- School of Medicine, Nankai University, Tianjin 300071, China
- Precision Medicine Division, Health-Biotech (Tianjin) Stem Cell Research Institute Co., Ltd., Tianjin 301700, China
| | - Yi Yu
- State Key Laboratory of Experimental Hematology & National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- The First Affiliated Hospital, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Hao Yu
- School of Medicine, Nankai University, Tianjin 300071, China
- Cell Products of National Engineering Center & National Stem Cell Engineering Research Center, Tianjin IMCELL Stem Cell and Gene Technology Co., Ltd., Tianjin 300457, China
| | - Zhong-Chao Han
- State Key Laboratory of Experimental Hematology & National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Precision Medicine Division, Health-Biotech (Tianjin) Stem Cell Research Institute Co., Ltd., Tianjin 301700, China
- Cell Products of National Engineering Center & National Stem Cell Engineering Research Center, Tianjin IMCELL Stem Cell and Gene Technology Co., Ltd., Tianjin 300457, China
| |
Collapse
|
14
|
Zhang L, Chi Y, Wei Y, Zhang W, Wang F, Zhang L, Zou L, Song B, Zhao X, Han Z. Bone marrow-derived mesenchymal stem/stromal cells in patients with acute myeloid leukemia reveal transcriptome alterations and deficiency in cellular vitality. Stem Cell Res Ther 2021; 12:365. [PMID: 34174939 PMCID: PMC8233618 DOI: 10.1186/s13287-021-02444-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 06/09/2021] [Indexed: 12/23/2022] Open
Abstract
Background State-of-the-art advances have indicated the pivotal characteristics of bone marrow-derived mesenchymal stem/stromal cells (BM-MSCs) in hematopoietic microenvironment as well as coordinate contribution to hematological malignancies. However, the panoramic view and detailed dissection of BM-MSCs in patients with acute myeloid leukemia (AML-MSCs) remain obscure. Methods For the purpose, we isolated and identified AML-MSCs together with healthy donor-derived HD-MSCs from the bone marrow mononuclear cells (BM-MNCs) by using the standard density gradient centrifugation based on clinical diagnosis and cellular phenotypic analysis. Subsequently, we systematically compared the potential similarities and discrepancy both at the cellular and molecular levels via flow cytometry, multilineage differentiation, chromosome karyotyping, cytokine quantification, and transcriptome sequencing and bioinformatic analysis including single-nucleotide polymorphism (SNP), gene ontology (GO), HeatMap, principal component analysis (PCA), Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set enrichment analysis (GSEA). Results On the one hand, AML-MSCs exhibited undistinguishable signatures in cytomorphology, surface biomarker expression pattern, stemness, chromosome karyotype, and chondrogenesis as HD-MSCs, whereas with impaired adipogenesis, enhanced osteogenesis, and variations in cytokine expression pattern. On the other hand, with the aid of genomic and bioinformatic analyses, we verified that AML-MSCs displayed multidimensional discrepancy with HD-MSCs both in genome-wide gene expression profiling and genetic variation spectrum. Simultaneously, the deficiency of cellular vitality including proliferation and apoptosis in AML-MSCs was largely rescued by JAK-STAT signaling inhibition. Conclusions Overall, our findings elucidated that AML-MSCs manifested multifaceted alterations in biological signatures and molecular genetics, and in particular, the deficiency of cellular vitality ascribed to over-activation of JAK-STAT signal, which collectively provided systematic and overwhelming new evidence for decoding the pathogenesis of AML and exploring therapeutic strategies in future. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02444-0.
Collapse
Affiliation(s)
- Leisheng Zhang
- State Key Laboratory of Experimental Hematology & National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China. .,National Joint Local Engineering Laboratory for Cell Engineering and Biomedicine Technique, Guizhou Province Key Laboratory of Regenerative Medicine, Key Laboratory of Adult Stem Cell Translational Research (Chinese Academy of Medical Sciences), Guizhou Medical University, Guiyang, 550004, China. .,Precision Medicine Division, Health-Biotech (Tianjin) Stem Cell Research Institute Co., Ltd., Tianjin, 301700, China. .,Department of Neurosurgery, The First Affiliated Hospital & Qianfoshan Hospital of Shandong First Medical University, Ji-nan, 250014, China.
| | - Ying Chi
- State Key Laboratory of Experimental Hematology & National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Yimeng Wei
- State Key Laboratory of Experimental Hematology & National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Wenxia Zhang
- Department of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Fuxu Wang
- Department of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Lei Zhang
- State Key Laboratory of Experimental Hematology & National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Linglin Zou
- Department of oncology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| | - Baoquan Song
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Xing Zhao
- National Joint Local Engineering Laboratory for Cell Engineering and Biomedicine Technique, Guizhou Province Key Laboratory of Regenerative Medicine, Key Laboratory of Adult Stem Cell Translational Research (Chinese Academy of Medical Sciences), Guizhou Medical University, Guiyang, 550004, China.
| | - Zhongchao Han
- State Key Laboratory of Experimental Hematology & National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China. .,Precision Medicine Division, Health-Biotech (Tianjin) Stem Cell Research Institute Co., Ltd., Tianjin, 301700, China.
| |
Collapse
|
15
|
Sun Y, Wang Y, Li Z, Guo Z. Isolation and Multiple Differentiation of Rat Pericardial Fluid Cells. Front Cell Dev Biol 2021; 9:614826. [PMID: 33644050 PMCID: PMC7905039 DOI: 10.3389/fcell.2021.614826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/21/2021] [Indexed: 12/11/2022] Open
Abstract
Objective The aim of the present study is to isolate and analyze the characterization of pericardial fluid cells (PFCs) from rat and provides a morphological basis for the basic research and clinical application of PFCs. Methods After aseptic thoracotomy was performed, normal saline was injected into the pericardial cavity of 50 adult Sprague–Dawley rats. The mixture of diluted pericardial fluid was extracted, centrifuged, and cultured. The cell morphology of different generations in the pericardial fluid was observed on an inverted microscope. The expression levels of CD44, CD29, CD90, and pan-hematopoietic marker CD45 were analyzed via flow cytometry. The third-generation cells were used for osteogenic, adipogenic, and cardiac differentiation. Results PFCs were successfully isolated and subcultured. PFCs were predominantly circular in shape after 24 h of culture. Following subculture for 3 days, the cells demonstrated a spindle shape. The rat pericardial fluid contains cell populations with uniform morphology, good growth state, and strong proliferation ability. Flow cytometry results showed that CD29 (100%) and CD90 (99.3%) were positively expressed, whereas CD45 (0.30%) and CD44 (0.48%) were negatively expressed. The PFCs could differentiate into osteoblasts and adipocytes after being induced. Cardiac differentiation was also confirmed by cardiac troponin T (cTnT) and α-sarcomeric actin (α-SA) staining. Conclusion This study revealed that a subpopulation of cells was isolated from pericardial fluid, which exhibited progenitor cell features and multiple differentiation potency. PFCs could serve as an alternative cell source for myocardial tissue repair, engineering, and reconstruction.
Collapse
Affiliation(s)
- Ying Sun
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China.,Department of Cardiology, Zhengzhou Seventh People's Hospital, Zhengzhou, China
| | - Yan Wang
- Department of Cardiology, Zhengzhou Seventh People's Hospital, Zhengzhou, China
| | - Zongjin Li
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Zhikun Guo
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China.,Department of Cardiology, Zhengzhou Seventh People's Hospital, Zhengzhou, China
| |
Collapse
|
16
|
Zhang L, Wei Y, Chi Y, Liu D, Yang S, Han Z, Li Z. Two-step generation of mesenchymal stem/stromal cells from human pluripotent stem cells with reinforced efficacy upon osteoarthritis rabbits by HA hydrogel. Cell Biosci 2021; 11:6. [PMID: 33407870 PMCID: PMC7787598 DOI: 10.1186/s13578-020-00516-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023] Open
Abstract
Background Current studies have enlightened the rosy prospects of human pluripotent stem cell (hPSC)-derived mesenchymal stem/stromal cells (MSCs) in regenerative medicine. However, systematic investigation of their signatures and applications with alternative biomaterials in osteoarthritis (OA) remains indistinct. Methods Herein, we initially took advantage of a small molecule library-mediated programming strategy for hPSC-MSC induction. Then, with the aid of multifaceted analyses such as flow cytometry (FCM), chromosome karyocyte and cell vitality, wound healing and microtubule formation assay and coculturing with T lymphocytes, we systematically evaluated the characterizations of signatures in vitro and the in vivo efficacy of hPSC-MSCs and HA hydrogel composite on rabbit osteoarthritis model. Results We found the combination of LLY-507 and AZD5153 was sufficient for high-efficiency CD73+CD90+CD105+CD31−CD34−CD45−HLA-DR− MSC induction from both hESCs and hiPSCs with stemness (POU5F1/SOX2/NANOG). The programmed hPSC-MSCs revealed conservative transcriptome variations and went through a heterogeneous intermediate-stage with mesenchymal-associated gene expression (NT5E, ENG, VIM and FN1) as well as displayed typical cytomorphology, immunophenotypes and normal karyotyping, multilineage differentiation potential, favorable cell vitality, proangiogenic and immunoregulatory properties in vitro. Meanwhile, the cell population exhibited preferable restorative and ameliorative function on OA rabbits with HA hydrogel in vivo. Conclusions Collectively, we established a rapid and convenient procedure for hPSC-MSC generation without redundant manipulations. The fundamental and clinical studies upon osteoarthritis (OA) treatment would benefit tremendously from the combination of the inexhaustible hPSC-MSCs and advantageous biomaterials.
Collapse
Affiliation(s)
- Leisheng Zhang
- The Postdoctoral Research Station, School of Medicine, Nankai University, 94 Weijin Road, Tianjin, 300071, China. .,The Enterprise Postdoctoral Working Station, Tianjin Chase Sun Pharmaceutical Co., Ltd, Tianjin, 301700, China. .,Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University, Ji-nan, 250014, China. .,Precision Medicine Division, Health-Biotech (Tianjin) Stem Cell Research Institute Co., Ltd, Tianjin, 301700, China. .,State Key Laboratory of Experimental Hematology & National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China. .,Jiangxi Research Center of Stem Cell Engineering, Jiangxi Health-Biotech Stem Cell Technology Co., Ltd, Shangrao, 334000, China.
| | - Yimeng Wei
- State Key Laboratory of Experimental Hematology & National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Ying Chi
- State Key Laboratory of Experimental Hematology & National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Dengke Liu
- The Enterprise Postdoctoral Working Station, Tianjin Chase Sun Pharmaceutical Co., Ltd, Tianjin, 301700, China
| | - Sijun Yang
- The Postdoctoral Research Station, School of Medicine, Nankai University, 94 Weijin Road, Tianjin, 300071, China.,Jiangxi Research Center of Stem Cell Engineering, Jiangxi Health-Biotech Stem Cell Technology Co., Ltd, Shangrao, 334000, China
| | - Zhongchao Han
- Precision Medicine Division, Health-Biotech (Tianjin) Stem Cell Research Institute Co., Ltd, Tianjin, 301700, China.,State Key Laboratory of Experimental Hematology & National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.,Jiangxi Research Center of Stem Cell Engineering, Jiangxi Health-Biotech Stem Cell Technology Co., Ltd, Shangrao, 334000, China
| | - Zongjin Li
- The Postdoctoral Research Station, School of Medicine, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| |
Collapse
|
17
|
Hu Y, Li Q, Zhang L, Zhong L, Gu M, He B, Qu Q, Lao Y, Gu K, Zheng B, Yang H. Serum miR-195-5p Exhibits Clinical Significance in the Diagnosis of Essential Hypertension with Type 2 Diabetes Mellitus by Targeting DRD1. Clinics (Sao Paulo) 2021; 76:e2502. [PMID: 34495077 PMCID: PMC8382152 DOI: 10.6061/clinics/2021/e2502] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 05/21/2021] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVES Diagnosis and management of essential hypertension (EH) or type 2 diabetes mellitus (T2DM) by combining comprehensive treatment and classificatory diagnosis have been continuously improved. However, understanding the pathogenesis of EH patients with concomitant T2DM and subsequent treatment remain the major challenges owing to the lack of non-invasive biomarkers and information regarding the underlying mechanisms. METHODS Herein, we collected 200 serum samples from EH and/or T2DM patients and healthy donors (N). Gene-expression profiling was conducted to identify candidate microRNAs with clinical significance. Then, a larger cohort of the aforementioned patients and 50 N were used to identify the correlation between the tumor suppressor miR-195-5p and EH and/or T2DM. The dual-luciferase reporter assay was used to explore the target genes of miR-195-5p. The suppressive effects of miR-195-5p on the 3'-UTR of the dopamine receptor D1 (DRD1) transcript in EH patients with concomitant T2DM were verified as well. RESULTS Compared with that in other groups, serum miR-195-5p was highly downregulated in EH patients with concomitant T2DM. miR-195-5p overexpression efficiently suppressed DRD1 expression by binding to the two 3'-UTRs. Additionally, two single nucleotide polymorphisms, including 231T-A and 233C-G, in the miR-195-5p binding sites of the DRD1 3'-UTR were further identified. Collectively, we identified the potential clinical significance of DRD1 regulation by miR-195-5p in EH patients with concomitant T2DM. CONCLUSIONS Our data suggested that miR-195-5p circulating in the peripheral blood served as a novel biomarker and therapeutic target for EH and T2DM, which could eventually help address major challenges during the diagnosis and treatment of EH and T2DM.
Collapse
Affiliation(s)
- Yueyan Hu
- Division of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Qian Li
- Transfusion Medicine Research Department, Yunnan Kunming Blood Center, Kunming, 650500, China
| | - Leisheng Zhang
- School of Medicine, Nankai University, Tianjin, 300071, China
- Joint laboratory of Tianjin University and Health-Biotech, Health-Biotech (Tianjin) Stem Cell Research Institute Co., Ltd., Tianjin, 301700, China
| | - Lianmei Zhong
- Division of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Man Gu
- Division of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Bo He
- Division of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Qiu Qu
- Division of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Yaling Lao
- Division of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Kunli Gu
- Division of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Bingrong Zheng
- School of Medicine, Yunnan University, Kunming, 650091, China
- Corresponding authors. E-mails: /
| | - Hongju Yang
- Division of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
- Corresponding authors. E-mails: /
| |
Collapse
|
18
|
Zhang L, Zou L, Ma Y, Feng C, Zhan R, Yang H, Song B, Han Z. Multifaceted modifications for a cell size-based circulating tumor cell scope technique hold the prospect for large-scale application in general populations. Cell Biol Int 2020; 45:345-357. [PMID: 33085139 DOI: 10.1002/cbin.11491] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 10/11/2020] [Accepted: 10/18/2020] [Indexed: 12/11/2022]
Abstract
Circulating tumor cells (CTCs) indicate the diagnosis and prognosis of cancer patients, together with benefiting individual treatment and anticancer drug development. However, their large-scale application in general population still requires systematically multifaceted modifications for currently proprietary new technologies based on filtration. We primitively utilized a cell size-based platform to evaluate the recovery efficiency of spiked abnormal cell lines and analyzed circulating abnormal cells (CACs). To dissect the subpopulations of CACs, we conducted immunofluorescent (IF) staining with a combination of unique biomarkers of CTCs and circulating endothelial cells (CECs). Furthermore, we improved the CTC screening system by assessing the feasibility of transferring CTCs for automatic IF analysis, together with simulating and optimizing the circumstances for long-term CTC storage and transportation. We detected CACs in 15 HD candidates with CTC characteristics such as abnormally large cytomorphology, high nuclear-cytoplasmic ratio, and positive for panCK or VIM staining. Thereafter, we improved accuracy of the platform by distinguishing CTCs from CECs, which satisfied the elementary requirement for small-scale CTC screening in HD candidates. Finally, large-scale CTC screening in general population was available after multifaceted modifications including automatic analysis by transferring CTCs on slides, choosing the appropriate blood-collecting tube, optimizing the conditions for long-term CTC storage and transportation, and evaluating the potential effect on the CTC phenotype. Hence, we systematically modified the scope of technique parameters, improved the accuracy of early cancer detection, and made it realizable for large-scale CTC or CEC screening in general population.
Collapse
Affiliation(s)
- Leisheng Zhang
- School of Medicine, Nankai University, Tianjin, China.,Precision Medicine Division, Health-Biotech (Tianjin) Stem Cell Research Institute Co., Ltd., Tianjin, China.,Department of Neurosurgery, the First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Linglin Zou
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yue Ma
- Precision Medicine Division, Health-Biotech (Tianjin) Stem Cell Research Institute Co., Ltd., Tianjin, China
| | - Chunjing Feng
- Precision Medicine Division, Health-Biotech (Tianjin) Stem Cell Research Institute Co., Ltd., Tianjin, China
| | - Rucai Zhan
- Department of Neurosurgery, the First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Hongju Yang
- Division of Gastroenterology, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Baoquan Song
- Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhongchao Han
- Precision Medicine Division, Health-Biotech (Tianjin) Stem Cell Research Institute Co., Ltd., Tianjin, China.,State Key Laboratory of Experimental Hematology & National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| |
Collapse
|