1
|
Mahroum N, Habra M, Alrifaai MA, Shoenfeld Y. Antiphospholipid syndrome in the era of COVID-19 - Two sides of a coin. Autoimmun Rev 2024; 23:103543. [PMID: 38604461 DOI: 10.1016/j.autrev.2024.103543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
In addition to the respiratory symptoms associated with COVID-19, the disease has consistently been linked to many autoimmune diseases such as systemic lupus erythematous and antiphospholipid syndrome (APS). APS in particular was of paramount significance due to its devastating clinical sequela. In fact, the hypercoagulable state seen in patients with acute COVID-19 and the critical role of anticoagulant treatment in affected individuals shed light on the possible relatedness between APS and COVID-19. Moreover, the role of autoimmunity in the assumed association is not less important especially with the accumulated data available regarding the autoimmunity-triggering effect of SARS-CoV-2 infection. This is furtherly strengthened at the time patients with COVID-19 manifested antiphospholipid antibodies of different types following infection. Additionally, the severe form of the APS spectrum, catastrophic APS (CAPS), was shown to have overlapping characteristics with severe COVID-19 such as cytokine storm and multi-organ failure. Interestingly, COVID vaccine-induced autoimmune phenomena described in the medical literature have pointed to an association with APS. Whether the antiphospholipid antibodies were present or de novo, COVID vaccine-induced vascular thrombosis in certain individuals necessitates further investigations regarding the possible mechanisms involved. In our current paper, we aimed to focus on the associations mentioned, their implications, importance, and consequences.
Collapse
Affiliation(s)
- Naim Mahroum
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey.
| | - Mona Habra
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | | | - Yehuda Shoenfeld
- Zabludowicz Center for autoimmune diseases, Sheba Medical Center, Ramat-Gan, Israel; Reichman University, Herzliya, Israel
| |
Collapse
|
2
|
Niu S, Dong R, Jiang G, Zhang Y. Identification of diagnostic signature and immune microenvironment subtypes of venous thromboembolism. Cytokine 2024; 181:156685. [PMID: 38945040 DOI: 10.1016/j.cyto.2024.156685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024]
Abstract
The close link between immune and pathogenesis of venous thromboembolism (VTE) has been recognized, but not fully elucidated. The current study was designed to identify immune microenvironment related signature and subtypes using explainable machine learning in VTE. We first observed an alteration of immune microenvironment in VTE patients and identified eight key immune cells involved in VTE. Then PTPN6, ITGB2, CR2, FPR2, MMP9 and ISG15 were determined as key immune microenvironment-related genes, which could divide VTE patients into two subtypes with different immune and metabolic characteristics. Also, we found that prunetin and torin-2 may be most promising to treat VTE patients in Cluster 1 and 2, respectively. By comparing six machine learning models in both training and external validation sets, XGboost was identified as the best one to predict the risk of VTE, followed by the interpretation of each immune microenvironment-related gene contributing to the model. Moreover, CR2 and FPR2 had high accuracy in distinguishing VTE and control, which may act as diagnostic biomarkers of VTE, and their expressions were validated by qPCR. Collectively, immune microenvironment related PTPN6, ITGB2, CR2, FPR2, MMP9 and ISG15 are key genes involved in the pathogenesis of VTE. The VTE risk prediction model and immune microenvironment subtypes based on those genes might benefit prevention, diagnosis, and the individualized treatment strategy in clinical practice of VTE.
Collapse
Affiliation(s)
- Shuai Niu
- Department of Vascular Surgery, the Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; Department of Vascular Surgery, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Ruoyu Dong
- Department of Vascular Surgery, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Guangwei Jiang
- Department of Vascular Surgery, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Yanrong Zhang
- Department of Vascular Surgery, the Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
3
|
B-Cells and BAFF in Primary Antiphospholipid Syndrome, Targets for Therapy? J Clin Med 2022; 12:jcm12010018. [PMID: 36614819 PMCID: PMC9821657 DOI: 10.3390/jcm12010018] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/04/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Primary antiphospholipid syndrome (PAPS) is a systemic autoimmune disease characterized by thrombosis, pregnancy morbidity, and the presence of antiphospholipid antibodies (aPL). Anticoagulants form the mainstay of treatment in PAPS. A growing number of studies suggest a previously underappreciated role of the immune system in the pathophysiology of PAPS. Although B-cells are strongly implicated in the pathophysiology of other autoimmune diseases such as systemic lupus erythematosus (SLE), little is known about the role of B-cells in PAPS. Shifts in B-cell subsets including increases in plasmablasts and higher levels of BAFF are present in patients with PAPS. However, while treatment with rituximab and belimumab may ameliorate thrombotic and non-thrombotic manifestations of PAPS, these treatments do not reduce aPL serum levels, suggesting that B-cells contribute to the pathophysiology of APS beyond the production of autoantibodies.
Collapse
|
4
|
Nayak L, Sweet DR, Thomas A, Lapping SD, Kalikasingh K, Madera A, Vinayachandran V, Padmanabhan R, Vasudevan NT, Myers JT, Huang AY, Schmaier A, Mackman N, Liao X, Maiseyeu A, Jain MK. A targetable pathway in neutrophils mitigates both arterial and venous thrombosis. Sci Transl Med 2022; 14:eabj7465. [PMID: 36044595 DOI: 10.1126/scitranslmed.abj7465] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Arterial and venous thrombosis constitutes a major source of morbidity and mortality worldwide. Long considered as distinct entities, accumulating evidence indicates that arterial and venous thrombosis can occur in the same populations, suggesting that common mechanisms are likely operative. Although hyperactivation of the immune system is a common forerunner to the genesis of thrombotic events in both vascular systems, the key molecular control points remain poorly understood. Consequently, antithrombotic therapies targeting the immune system for therapeutics gain are lacking. Here, we show that neutrophils are key effectors of both arterial and venous thrombosis and can be targeted through immunoregulatory nanoparticles. Using antiphospholipid antibody syndrome (APS) as a model for arterial and venous thrombosis, we identified the transcription factor Krüppel-like factor 2 (KLF2) as a key regulator of neutrophil activation. Upon activation through genetic loss of KLF2 or administration of antiphospholipid antibodies, neutrophils clustered P-selectin glycoprotein ligand 1 (PSGL-1) by cortical actin remodeling, thereby increasing adhesion potential at sites of thrombosis. Targeting clustered PSGL-1 using nanoparticles attenuated neutrophil-mediated thrombosis in APS and KLF2 knockout models, illustrating the importance and feasibility of targeting activated neutrophils to prevent pathological thrombosis. Together, our results demonstrate a role for activated neutrophils in both arterial and venous thrombosis and identify key molecular events that serve as potential targets for therapeutics against diverse causes of immunothrombosis.
Collapse
Affiliation(s)
- Lalitha Nayak
- Division of Hematology and Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - David R Sweet
- Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH 44106, USA.,Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA.,Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Asha Thomas
- Division of Hematology and Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Stephanie D Lapping
- Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH 44106, USA.,Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Kenneth Kalikasingh
- Division of Hematology and Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Annmarie Madera
- Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH 44106, USA.,Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Vinesh Vinayachandran
- Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH 44106, USA.,Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Roshan Padmanabhan
- Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH 44106, USA.,Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Neelakantan T Vasudevan
- Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH 44106, USA.,Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Jay T Myers
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Alex Y Huang
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Alvin Schmaier
- Division of Hematology and Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Nigel Mackman
- Division of Hematology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Xudong Liao
- Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Andrei Maiseyeu
- Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH 44106, USA.,Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Mukesh K Jain
- Warren Alpert Medical School of Brown University, Providence, R1 02903
| |
Collapse
|
5
|
Yan H, Li B, Su R, Gao C, Li X, Wang C. Preliminary Study on the Imbalance Between Th17 and Regulatory T Cells in Antiphospholipid Syndrome. Front Immunol 2022; 13:873644. [PMID: 35603166 PMCID: PMC9121099 DOI: 10.3389/fimmu.2022.873644] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectivePatients with antiphospholipid syndrome (APS) have immune cell abnormalities that remain poorly understood. This study compared primary APS (PAPS) and secondary APS (SAPS) patients with healthy controls with respect to peripheral blood lymphocytes, CD4+T cell subsets, and cytokine levels. The correlation between antiphospholipid antibody titres and T helper 17 (Th17) and T regulatory (Treg) cell subsets was also analyzed, together with the correlations between cytokine profiles and the clinical characteristics of APS patients.MethodsThe retrospective study population consisted of 67 APS patients (12 with PAPS, 55 with SAPS) and 40 healthy controls. Absolute numbers of peripheral blood lymphocyte subsets and CD4+ T cell subsets were detected by flow cytometry, and serum cytokine levels by flow cytometry bead array.ResultsPatients with SAPS had lower absolute values of T, B and CD4+T cells than the healthy control group, while only natural killer (NK) cell levels were decreased in patients with PAPS. Absolute numbers of T, B, NK, and CD4+T cells were significantly higher in the PAPS than SAPS group. The trends in CD4+T cell subsets were the same in PAPS and SAPS patients as in healthy controls, with increased Th1, decreased Th2, and decreased Treg levels, and thus an increased Th17/Treg ratio. Th2, Th17, and Treg cell counts were higher in the PAPS than SAPS group. Cytokine analysis showed that only IL-10 levels differed between the two APS groups. However, the levels of all of the studied cytokines were higher in APS patients than healthy controls, and correlated with the clinical characteristics of the patients. In the PAPS group, the titres of two autoantibodies correlated positively with the Th17/Treg ratio and negatively with the levels of D-dimer and Treg subsets.ConclusionsOur study clearly showed that APS patients have immune disturbances, the most prominent of which is an increase in the Th17/Treg ratio, due to a decrease in the number of Treg cells. These abnormalities may be involved in the occurrence and progression of APS. An additional finding was a higher level of peripheral blood lymphocytes in PAPS than SAPS patients, which may be related to the immunosuppressive treatment of SAPS patients.
Collapse
Affiliation(s)
- Huanhuan Yan
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Baochen Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Rui Su
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Chong Gao
- Pathology, Joint Program in Transfusion Medicine, Brigham and Women’s Hospital/Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Xiaofeng Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Caihong Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- *Correspondence: Caihong Wang,
| |
Collapse
|
6
|
Maria Gambino C, Agnello L, Lo Sasso B, Vincenza Giglio R, Di Stefano V, Candore G, Maria Pappalardo E, Maria Ciaccio A, Brighina F, Vidali M, Ciaccio M. The role of Serum Free Light Chain as Biomarker of Myasthenia Gravis. Clin Chim Acta 2022; 528:29-33. [DOI: 10.1016/j.cca.2022.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/14/2021] [Accepted: 01/05/2022] [Indexed: 11/25/2022]
|
7
|
Long Y, Li W, Feng J, Ma Y, Sun Y, Xu L, Song Y, Liu C. Follicular helper and follicular regulatory T cell subset imbalance is associated with higher activated B cells and abnormal autoantibody production in primary anti-phospholipid syndrome patients. Clin Exp Immunol 2021; 206:141-152. [PMID: 34309827 PMCID: PMC8506124 DOI: 10.1111/cei.13647] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/07/2021] [Accepted: 07/16/2021] [Indexed: 12/11/2022] Open
Abstract
Primary anti-phospholipid antibody syndrome (pAPS) is a multi-organ autoimmune disease, and autoantibodies are involved in its pathogenesis. Follicular helper T cells (Tfh) and follicular regulatory T cells (Tfr) are critical for B cell maturation and antibody production, but their roles in pAPS remain unknown. We enrolled 32 pAPS patients and 23 healthy controls (HCs) and comprehensively analyzed circulating Tfh and Tfr, as well as their subsets, using flow cytometry. Clinical data including autoantibody levels were collected and their correlations with Tfh and Tfr subsets were analyzed. In addition, correlation analyses between B cell functional subsets and Tfh and Tfr were performed. Changes and potential effects of serum cytokines on Tfr and Tfh were further explored. We found the circulating Tfr was significantly decreased while Tfh and Tfh/Tfr ratios were increased in pAPS patients. Tfh2, inducible T cell co-stimulator (ICOS)+ programmed cell death 1 (PD-1)+ Tfh and Ki-67+ Tfh percentages were elevated, while CD45RA- forkhead box protein 3 (FoxP3)hi , Helios+ , T cell immunoglobulin and ITIM (TIGIT)+ and Ki-67+ Tfr percentages were decreased in pAPS patients. New memory B cells and plasmablasts were increased and altered B cell subsets and serum autoantibodies were positively correlated with Tfh, Tfh2, ICOS+ PD-1+ Tfh cells and negatively associated with Tfr, CD45RA- FoxP3hi Tfr and Helios+ Tfr cells. In addition, pAPS with LA/aCL/β2GPI autoantibodies showed lower functional Tfr subsets and higher activated Tfh subsets. Serum interleukin (IL)-4, IL-21, IL-12 and transforming growth factor (TGF)-β1 were up-regulated and associated with Tfh and Tfr subset changes. Our study demonstrates that imbalance of circulating Tfr and Tfh, as well as their functional subsets, is associated with abnormal autoantibody levels in pAPS, which may contribute to the pathogenesis of pAPS.
Collapse
Affiliation(s)
- Yan Long
- Department of Clinical LaboratoryPeking University People’s HospitalBeijingChina
| | - Wenyi Li
- Department of Clinical LaboratoryPeking University People’s HospitalBeijingChina
| | - Jinghong Feng
- Department of Clinical LaboratoryPeking University People’s HospitalBeijingChina
| | - Yinting Ma
- Department of Clinical LaboratoryPeking University People’s HospitalBeijingChina
| | - Yuanyuan Sun
- Department of Clinical LaboratoryPeking University People’s HospitalBeijingChina
| | - Lijuan Xu
- Department of ImmunologySchool of Basic Medical SciencesPeking University Health Science CentreBeijingChina
| | - Ying Song
- Department of Clinical LaboratoryPeking University People’s HospitalBeijingChina
| | - Chen Liu
- Department of Clinical LaboratoryPeking University People’s HospitalBeijingChina
| |
Collapse
|
8
|
Dieudonné Y, Guffroy A, Poindron V, Sprauel PS, Martin T, Korganow AS, Gies V. B cells in primary antiphospholipid syndrome: Review and remaining challenges. Autoimmun Rev 2021; 20:102798. [PMID: 33722752 DOI: 10.1016/j.autrev.2021.102798] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 01/03/2021] [Indexed: 02/03/2023]
Abstract
It is now widely accepted that antiphospholipid antibodies (aPL) have direct pathogenic effects and that B cells, notably through aPL production, play a key role in the development of antiphospholipid syndrome (APS). Recent findings strengthened the implication of B cells with the description of specific B cell phenotype abnormalities and inborn errors of immunity involving B cell signaling in APS patients. In addition, it has been shown in preclinical models that cross-reactivity between APS autoantigens and mimotopes expressed by human gut commensals can lead to B cell tolerance breakdown and are sufficient for APS development. However, B cell targeting therapies are surprisingly not as effective as expected in APS compared to other autoimmune diseases. Elucidation of the B cell tolerance breakdown mechanisms in APS patients may help to develop and guide the use of novel therapeutic agents that target B cells or specific immune pathway.
Collapse
Affiliation(s)
- Yannick Dieudonné
- Université de Strasbourg, INSERM UMR - S1109, F-67000 Strasbourg, France; Hôpitaux Universitaires de Strasbourg, Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiencies, F-67000 Strasbourg, France; Université de Strasbourg, Faculty of Medicine, F-67000 Strasbourg, France.
| | - Aurélien Guffroy
- Université de Strasbourg, INSERM UMR - S1109, F-67000 Strasbourg, France; Hôpitaux Universitaires de Strasbourg, Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiencies, F-67000 Strasbourg, France; Université de Strasbourg, Faculty of Medicine, F-67000 Strasbourg, France
| | - Vincent Poindron
- Université de Strasbourg, INSERM UMR - S1109, F-67000 Strasbourg, France; Hôpitaux Universitaires de Strasbourg, Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiencies, F-67000 Strasbourg, France; Université de Strasbourg, Faculty of Medicine, F-67000 Strasbourg, France
| | - Pauline Soulas Sprauel
- Université de Strasbourg, INSERM UMR - S1109, F-67000 Strasbourg, France; Hôpitaux Universitaires de Strasbourg, Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiencies, F-67000 Strasbourg, France; Université de Strasbourg, Faculty of Pharmacy, F-67400 Illkirch, France
| | - Thierry Martin
- Université de Strasbourg, INSERM UMR - S1109, F-67000 Strasbourg, France; Hôpitaux Universitaires de Strasbourg, Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiencies, F-67000 Strasbourg, France; Université de Strasbourg, Faculty of Medicine, F-67000 Strasbourg, France
| | - Anne-Sophie Korganow
- Université de Strasbourg, INSERM UMR - S1109, F-67000 Strasbourg, France; Hôpitaux Universitaires de Strasbourg, Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiencies, F-67000 Strasbourg, France; Université de Strasbourg, Faculty of Medicine, F-67000 Strasbourg, France
| | - Vincent Gies
- Université de Strasbourg, INSERM UMR - S1109, F-67000 Strasbourg, France; Hôpitaux Universitaires de Strasbourg, Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiencies, F-67000 Strasbourg, France; Université de Strasbourg, Faculty of Pharmacy, F-67400 Illkirch, France
| |
Collapse
|
9
|
Bettacchioli E, Le Gaffric C, Mazeas M, Borghi MO, Frostegard J, Barturen G, Makowska Z, Babei S, Lesche R, Meroni PL, Alarcon-Riquelme ME, Renaudineau Y. An elevated polyclonal free light chain level reflects a strong interferon signature in patients with systemic autoimmune diseases. J Transl Autoimmun 2021; 4:100090. [PMID: 33817614 PMCID: PMC8010703 DOI: 10.1016/j.jtauto.2021.100090] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 02/21/2021] [Indexed: 12/17/2022] Open
Abstract
High amount of polyclonal free light chains (FLC) are reported in systemic autoimmune diseases (SAD) and we took advantage of the PRECISESADS study to better characterize them. Serum FLC levels were explored in 1979 patients with SAD (RA, SLE, SjS, Scl, APS, UCTD, MCTD) and 614 healthy controls. Information regarding clinical parameters, disease activity, medications, autoantibodies (Ab) and the interferon α and/or γ scores were recorded. Among SAD patients, 28.4% had raised total FLC (from 12% in RA to 30% in SLE and APS) with a normal kappa/lambda ratio. Total FLC levels were significantly higher in SAD with inflammation, active disease in SLE and SjS, and an impaired pulmonary functional capacity in SSc, while independent from kidney impairment, infection, cancer and treatment. Total FLC concentrations were positively correlated among the 10/17 (58.8%) autoantibodies (Ab) tested with anti-RNA binding protein Ab (SSB, SSA-52/60 kDa, Sm, U1-RNP), anti-dsDNA/nucleosome Ab, rheumatoid factor and negatively correlated with complement fractions C3/C4. Finally, examination of interferon (IFN) expression as a potential driver of FLC overexpression was tested showing an elevated level of total FLC among patients with a high IFNα and IFNγ Kirou's score, a strong IFN modular score, and the detection in the sera of B-cell IFN dependent factors, such as TNF-R1/TNFRSF1A and CXCL10/IP10. In conclusion, an elevated level of FLC, in association with a strong IFN signature, defines a subgroup of SAD patients, including those without renal affectation, characterized by increased disease activity, autoreactivity, and complement reduction.
Collapse
Key Words
- APS, primary antiphospholipid syndrome
- AUC, area under the curve
- Ab, autoantibody
- Autoantibodies
- Autoimmune diseases
- CCP, cyclic citrulinated peptide
- CXCL10, C-X-C motif chemokine 10
- F, female
- FLC, free light chains
- Free light chains
- HC, healthy controls
- IFN, interferon
- Interferon signature
- M, male
- MCTD, mixed connective tissue disease
- MDA, malondialdehyde
- NK, natural killer
- PC, phosphorylcholine
- RA, rheumatoid arthritis
- RF, rheumatoid factor
- RNP, ribonucleoprotein
- ROC, Receiver Operating Characteristics
- SAD, systemic autoimmune diseases
- SD, standard deviation
- SLE, systemic lupus erythematosus
- Scl, systemic sclerosis
- SjS, Sjögren's syndrome
- TH1, T helper type 1
- TNF-R1, tumor necrosis factor receptor 1
- UCTD, undetermined connective tissue disease
- VAS, visual analogical scale
- κ, kappa
- λ, lambda
Collapse
Affiliation(s)
| | | | - Margaux Mazeas
- Laboratory of Immunology and Immunotherapy, CHRU Morvan, Brest, France
| | - Maria Orietta Borghi
- Immunorheumatology Research Laboratory, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Johan Frostegard
- Section of Immunology and Chronic Disease, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Guillermo Barturen
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada, 18016, Spain
| | | | | | | | | | - Pier Luigi Meroni
- Immunorheumatology Research Laboratory, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Marta E. Alarcon-Riquelme
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada, 18016, Spain
| | - Yves Renaudineau
- Laboratory of Immunology and Immunotherapy, CHRU Morvan, Brest, France
- Univ Brest, INSERM, LBAI, 29238, Brest Cedex 3, France
- Corresponding author. Laboratory of Immunology and Immunotherapy, CHRU Morvan, Brest, France.
| |
Collapse
|
10
|
Tung ML, Tan B, Cherian R, Chandra B. Anti-phospholipid syndrome and COVID-19 thrombosis: connecting the dots. Rheumatol Adv Pract 2021; 5:rkaa081. [PMID: 33615129 PMCID: PMC7882149 DOI: 10.1093/rap/rkaa081] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/02/2020] [Indexed: 02/06/2023] Open
Abstract
As the coronavirus disease 2019 (COVID-19) pandemic, which is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is spreading rapidly worldwide, it has emerged as a leading cause of mortality, resulting in >1 million deaths over the past 10 months. The pathophysiology of COVID-19 remains unclear, posing a great challenge to the medical management of patients. Recent studies have reported an unusually high prevalence of thromboembolic events in COVID-19 patients, although the mechanism remains elusive. Several studies have reported the presence of aPLs in COVID-19 patients. We have noticed similarities between COVID-19 and APS, which is an autoimmune prothrombotic disease that is often associated with an infective aetiology. Molecular mimicry and endothelial dysfunction could plausibly explain the mechanism of thrombogenesis in acquired APS. In this review, we discuss the clinicopathological similarities between COVID-19 and APS, and the potential role of therapeutic targets based on the anti-phospholipid model for COVID-19 disease.
Collapse
Affiliation(s)
- Moon Ley Tung
- Department of Hematology and Oncology, National University Cancer Institute
- Yong Loo Lin School of Medicine, National University of Singapore
| | - Bryce Tan
- Department of Medicine, National University Hospital
| | - Robin Cherian
- Yong Loo Lin School of Medicine, National University of Singapore
- Department of Cardiology, National University Heart Centre Singapore
| | - Bharatendu Chandra
- Yong Loo Lin School of Medicine, National University of Singapore
- Division of Neurology, Department of Medicine, National University Hospital, Singapore, Singapore
| |
Collapse
|
11
|
Grasseau A, Boudigou M, Le Pottier L, Chriti N, Cornec D, Pers JO, Renaudineau Y, Hillion S. Innate B Cells: the Archetype of Protective Immune Cells. Clin Rev Allergy Immunol 2020; 58:92-106. [PMID: 31183788 DOI: 10.1007/s12016-019-08748-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The innate B cell (IBC) population is heterogeneous and involved in the primary immune response. IBC functions include a high ability to produce natural antibodies with IgM isotype, the elimination of apoptotic cells, and a capacity to be cognate help to T cells. Among IBC subsets, B-1 cells and marginal zone B cells are the main producers of IgM, act as rapid immune responders that may relocate to follicular lymphoid and differentiate to cytokine and antibody-secreting cells shortly after infection. IBCs functions are highly dependent on their localization site and the nature of their B cell receptor repertoire, suggesting a high plasticity range of different immune responses. In this review, we will describe the nature and functions of the different innate-like B cell subsets, first in mice and then in humans. Besides this, we will emphasize the strong ability of these cells to undertake different protective functions from the first line of defense against pathogens to the regulatory role of the broader immune response.
Collapse
Affiliation(s)
- Alexis Grasseau
- UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, INSERM, CHU de Brest, BP824, F29609, Brest, France
| | - Marina Boudigou
- UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, INSERM, CHU de Brest, BP824, F29609, Brest, France
| | - Laëtitia Le Pottier
- UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, INSERM, CHU de Brest, BP824, F29609, Brest, France
| | - Nedra Chriti
- UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, INSERM, CHU de Brest, BP824, F29609, Brest, France
| | - Divi Cornec
- UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, INSERM, CHU de Brest, BP824, F29609, Brest, France
| | - Jacques-Olivier Pers
- UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, INSERM, CHU de Brest, BP824, F29609, Brest, France
| | - Yves Renaudineau
- UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, INSERM, CHU de Brest, BP824, F29609, Brest, France.,Laboratory of Immunology and Immunotherapy, CHU Brest, Brest, France
| | - Sophie Hillion
- UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, INSERM, CHU de Brest, BP824, F29609, Brest, France. .,Laboratory of Immunology and Immunotherapy, CHU Brest, Brest, France.
| |
Collapse
|
12
|
Sevim E, Willis R, Erkan D. Is there a role for immunosuppression in antiphospholipid syndrome? HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2019; 2019:426-432. [PMID: 31808842 PMCID: PMC6913487 DOI: 10.1182/hematology.2019000073] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Antiphospholipid syndrome (APS) is a systemic autoimmune disorder characterized by thrombosis, pregnancy morbidity, or nonthrombotic manifestations in patients with persistently positive antiphospholipid antibodies (aPL). Conventional APS treatment focuses on antithrombotic strategies, which are usually ineffective for the microvascular and nonthrombotic manifestations of aPL. Using a case-based presentation, this review focuses on the role of immunosuppression in nonobstetric APS, including B-cell inhibition (rituximab, belimumab, and bortezomib), complement inhibition (eculizumab), mechanistic target of rapamycin inhibition (sirolimus), vascular endothelial cell modulation (defibrotide), statins, and traditional rheumatologic disease-modifying agents (hydroxychloroquine, mycophenolate mofetil, azathioprine, and cyclophosphamide).
Collapse
Affiliation(s)
- Ecem Sevim
- Division of Rheumatology, Hospital for Special Surgery, New York, NY
| | - Rohan Willis
- Division of Rheumatology, University of Texas Medical Branch, Galveston, TX; and
| | - Doruk Erkan
- Barbara Volcker Center for Women and Rheumatic Diseases, Division of Rheumatology, Hospital for Special Surgery, Weill Cornell Medicine, New York, NY
| |
Collapse
|
13
|
News and meta-analysis regarding anti-Beta 2 glycoprotein I antibodies and their determination. Clin Immunol 2019; 205:106-115. [DOI: 10.1016/j.clim.2019.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 11/18/2022]
|
14
|
Álvarez-Rodríguez L, Martínez-Taboada V, Calvo-Alén J, Beares I, Villa I, López-Hoyos M. Altered Th17/Treg Ratio in Peripheral Blood of Systemic Lupus Erythematosus but Not Primary Antiphospholipid Syndrome. Front Immunol 2019; 10:391. [PMID: 30894863 PMCID: PMC6414457 DOI: 10.3389/fimmu.2019.00391] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/14/2019] [Indexed: 12/14/2022] Open
Abstract
Introduction: The role of the immune response in the pathogenesis of antiphospholipid syndrome (APS) remains elusive. It is possible that differences in the frequencies of Th17 cells and/or defects in the immunoregulatory mechanisms are involved in the pathogenesis of APS. Our aim was to determine the peripheral blood Th cells phenotype and the circulating cytokine profile in patients with primary APS (pAPS) and compare it with systemic lupus erythemathosus (SLE) as disease control group. Methods: The frequencies of circulating regulatory T cells (Tregs) were determined in PBMCs from 36 patients with pAPS by flow cytometry. As control groups we included 21 age- and gender-matched healthy controls (HC) and 11 patients with SLE. The suppressive capacity of Tregs was evaluated in vitro by coculture assay. On the other hand, intracellular cytokine production was assessed in Th1, Th2, and Th17 cells and circulating IL-6, IL-10, and IL-35 were measured by Cytometric Bead Array and ELISA. The quantification of Th master gene expression levels was performed by real time quantitative PCR. Results: pAPS patients and SLE patients did not show differences in the percentage or number of Tregs compared to HC. The suppressive capacity of Tregs was also similar in the three study group. Instead, we found higher FoxP3·mRNA expression levels in pAPS patients and HC than SLE patients. Regarding the Th17 response, patients with pAPS and HC showed a significantly lower frequency of circulating Th17 cells than SLE. However, no differences were observed in the Th1 response between patients and controls. Thus, increased Th17/Th1 and Th17/Treg ratios were found in SLE patients but not in pAPS patients. pAPS and SLE patients had higher serum IL-6 levels than HC but there was not difference between both disease groups. Besides, a significant increase in the immunosuppressive cytokine levels was observed only in pAPS as compared to HC. Conclusions: Our data demonstrate an increased inflammatory profile of peripheral blood CD4+ T cells from SLE as compared with pAPS mostly due to an increased Th17 response. In conclusion, there seems not to be a direct pathogenic role for Th cells in pAPS but in SLE.
Collapse
Affiliation(s)
- Lorena Álvarez-Rodríguez
- Transplantation and Autoimmunity Laboratory, Rheumatology Department, University Hospital Marqués de Valdecilla-IDIVAL, Santander, Spain
| | - Víctor Martínez-Taboada
- Faculty of Medicine, Rheumatology Department, University Hospital Marqués de Valdecilla-IDIVAL, Cantabria University, Santander, Spain
| | - Jaime Calvo-Alén
- Rheumatology Department, University Hospital Araba, Vitoria-Gasteiz, Spain
| | - Iñaki Beares
- Transplantation and Autoimmunity Laboratory, Rheumatology Department, University Hospital Marqués de Valdecilla-IDIVAL, Santander, Spain
| | - Ignacio Villa
- Rheumatology Department, Hospital Sierrallana, Torrelavega, Spain
| | - Marcos López-Hoyos
- Immunology Department, University Hospital Marqués de Valdecilla-IDIVAL, Cantabria University, Santander, Spain
| |
Collapse
|
15
|
Salma N, Julie L, Boutahar B, Sylvie LN, Eleonore B, Fabien LN, Elisabeth P, Sandrine JJ, Francis C, Sophie H, Yves R. Thrombotic risk assessment and analytical performance of the chemiluminescent analyzer IDS-iSYS for the detection of anti-cardiolipin and anti-beta 2 glycoprotein I autoantibodies. Clin Immunol 2018; 194:92-99. [PMID: 30017909 DOI: 10.1016/j.clim.2018.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 07/10/2018] [Indexed: 12/20/2022]
Abstract
Patients with antiphospholipid antibodies (APLA) are predisposed to develop thrombosis, however the standardization of anti-cardiolipin (aCL) and anti-beta 2 glycoprotein I (β2-GPI) Ab assays are challenging. Therefore we decided to test the performance of a new chemiluminescent assay (CLIA), and assayed aCL and aβ2-GPI IgG/M in serum from 120 healthy individuals, 108 patients with idiopathic venous thrombosis, 78 patients with antiphospholipid syndrome (APS), and 64 non-thrombotic APLA-carriers using CLIA IDS-iSYS. Very good (aCL/aβ2-GPI IgG) to moderate (aCL/aβ2-GPI IgM) agreement with a commercial and an in house ELISA assay were observed and, in particular, CLIA demonstrated the highest sensitivity in aβ2-GPI IgG detection. Finally, aCL/aβ2-GPI Ab capacity to predict the thrombotic risk was tested showing for CLIA a significant odds ratio (OR) when considering double positivity for aCL/aβ2-GPI IgG, aCL IgG at high levels, and aβ2-GPI IgG at high levels. In conclusion, CLIA improves aβ2-GPI IgG detection and thrombotic risk assessment.
Collapse
Affiliation(s)
- Nafai Salma
- Laboratory of Immunology and Immunotherapy, CHU, Brest, France.
| | - Lemerle Julie
- Laboratory of Immunology and Immunotherapy, CHU, Brest, France.
| | - Bendaoud Boutahar
- Laboratory of Immunology and Immunotherapy, CHU, Brest, France; UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, INSERM, CHU de Brest, Brest, France.
| | - Le Nuz Sylvie
- Laboratory of Immunology and Immunotherapy, CHU, Brest, France.
| | | | - Le Ny Fabien
- Laboratory of Immunology and Immunotherapy, CHU, Brest, France.
| | - Pasquier Elisabeth
- Brest University Medical School, Dept of Internal Medicine and Chest Diseases, Brest, France; EA3878, GETBO, CHU de Brest, Brest, France.
| | - Jousse-Joulin Sandrine
- UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, INSERM, CHU de Brest, Brest, France; Brest University Medical School, Department of Rheumatology, Brest, France.
| | - Couturaud Francis
- Brest University Medical School, Dept of Internal Medicine and Chest Diseases, Brest, France; EA3878, GETBO, CHU de Brest, Brest, France.
| | - Hillion Sophie
- Laboratory of Immunology and Immunotherapy, CHU, Brest, France; UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, INSERM, CHU de Brest, Brest, France.
| | - Renaudineau Yves
- Laboratory of Immunology and Immunotherapy, CHU, Brest, France; UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, INSERM, CHU de Brest, Brest, France.
| |
Collapse
|
16
|
Carvajal Alegria G, Gazeau P, Hillion S, Daïen CI, Cornec DYK. Could Lymphocyte Profiling be Useful to Diagnose Systemic Autoimmune Diseases? Clin Rev Allergy Immunol 2018; 53:219-236. [PMID: 28474288 DOI: 10.1007/s12016-017-8608-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Considering the implications of B, T, and natural killer (NK) cells in the pathophysiology of systemic autoimmune diseases, the assessment of their distribution in the blood could be helpful for physicians in the complex process of determining a precise diagnosis. In primary Sjögren's syndrome, transitional and active naive B cells are increased and memory B cells are decreased compared to healthy controls and other systemic diseases. However, their utility to improve the accuracy of classification criteria has not been proven. In early untreated rheumatoid arthritis, proportions of regulatory T cells are constantly reduced, but other patterns are difficult to determine given the heterogeneity of published studies. In systemic lupus erythematosus, the lack of studies using large cohorts of patients and the diversity of the possible pathological mechanisms involved are also important impediments. Nevertheless, transitional B cell and plasma cell proportions are increased in most of the studies, the CD4/CD8 ratio is decreased, and the number of NK cells is reduced. Despite the low number of studies, anomalies of lymphocyte subset distribution was also described in ANCA-associated vasculitis, systemic scleroderma, and myositis. For now, flow cytometric analysis of lymphocyte subsets has focused mainly on specific subpopulations and is more useful for basic and translational research than for diagnostics in clinical practice. However, new modern methods such as mass cytometry and bioinformatics analyses may offer the possibility to simultaneously account for the relative proportions of multiple lymphocyte subsets and define a global profile in homogeneous groups of patients. The years to come will certainly incorporate such global lymphocyte profiling in reclassification of systemic autoimmune diseases.
Collapse
Affiliation(s)
- Guillermo Carvajal Alegria
- Service de Rhumatologie, Hôpital de la Cavale Blanche, CHRU Brest, BP 824, 29609, Brest cedex, France.,INSERM U1227, European University of Brest, Brest, France
| | - Pierre Gazeau
- Service de Rhumatologie, Hôpital de la Cavale Blanche, CHRU Brest, BP 824, 29609, Brest cedex, France
| | - Sophie Hillion
- INSERM U1227, European University of Brest, Brest, France.,Laboratoire d'Immunologie et Immunothérapie, CHRU Morvan, Brest, France
| | - Claire I Daïen
- Rheumatology Department, Lapeyronie Hospital and Montpellier I University, Montpellier, France.,UMR5535, CNRS, Institute of molecular genetic, Montpellier, France
| | - Divi Y K Cornec
- Service de Rhumatologie, Hôpital de la Cavale Blanche, CHRU Brest, BP 824, 29609, Brest cedex, France. .,INSERM U1227, European University of Brest, Brest, France.
| |
Collapse
|
17
|
Abstract
The number of peer-reviewed articles published during the 2016 solar year and retrieved using the "autoimmunity" key word remained stable while gaining a minimal edge among the immunology articles. Nonetheless, the quality of the publications has been rising significantly and, importantly, acquisitions have become available through scientific journals dedicated to immunology or autoimmunity. Major discoveries have been made in the fields of systemic lupus erythematosus, rheumatoid arthritis, autoimmunity of the central nervous system, vasculitis, and seronegative spondyloarthrithritides. Selected examples include the role of IL17-related genes and long noncoding RNAs in systemic lupus erythematosus or the effects of anti-pentraxin 3 (PTX3) in the treatment of this paradigmatic autoimmune condition. In the case of rheumatoid arthritis, there have been reports of the role of induced regulatory T cells (iTregs) or fibrocytes and T cell interactions with exciting implications. The large number of studies dealing with neuroimmunology pointed to Th17 cells, CD56(bright) NK cells, and low-level TLR2 ligands as involved in multiple sclerosis, along with a high salt intake or the micriobiome-derived Lipid 654. Lastly, we focused on the rare vasculitides to which numerous studies were devoted and suggested that unsuspected cell populations, including monocytes, mucosal-associated invariant T cells, and innate lymphoid cells, may be crucial to ANCA-associated manifestations. This brief and arbitrary discussion of the findings published in 2016 is representative of a promising background for developments that will enormously impact the work of laboratory scientists and physicians at an exponential rate.
Collapse
Affiliation(s)
- Carlo Selmi
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital, via A. Manzoni 56, 20089, Rozzano, Milan, Italy.
- Department of Medical Biotechnologies and Translational Medicine (BIOMETRA), University of Milan, Milan, Italy.
| |
Collapse
|
18
|
Peripheral B-Cell Subset Distribution in Primary Antiphospholipid Syndrome. Int J Mol Sci 2018; 19:ijms19020589. [PMID: 29462939 PMCID: PMC5855811 DOI: 10.3390/ijms19020589] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/09/2018] [Accepted: 02/14/2018] [Indexed: 12/29/2022] Open
Abstract
Background: B-cell differentiation and B-cell tolerance checkpoints may be different in antiphospholipid syndrome (APS) from systemic lupus erythematosus (SLE) and can help to understand differences between them. Our aim was to define alterations of B-cell subsets in patients with primary APS (pAPS) and to compare them with SLE patients and healthy controls (HC). Methods: Cross-sectional study including three study groups: 37 patients with pAPS, 11 SLE patients, and 21 age- and gender-matched HC. We determined the frequencies of different B-cell subsets in peripheral blood naïve and memory compartments. In addition, we measured serum B cell-activating factor (BAFF) levels and circulating pro-inflammatory cytokines, such as IL-6, by commercial ELISA and CBA, respectively. Results: Patients with pAPS showed a lower percentage of immature and naïve B cells than patients with SLE (p = 0.013 and p = 0.010, respectively) and a higher percentage of non-switched memory B cells than patients with SLE (p = 0.001). No differences either in the percentage of switched memory cells or plasma cells were found among the different groups. Serum BAFF levels were higher in SLE patients than in healthy controls and pAPS patients (p = 0.001 and p = 0.017, respectively). A significant increase in the serum BAFF levels was also observed in pAPS patients compared to HC (p = 0.047). Circulating IL-6 levels were higher in SLE and pAPS patients than HC (p = 0.036 and p = 0.048, respectively). A positive correlation was found between serum BAFF and IL-6 levels in patients with SLE but not in pAPS (p = 0.011). Conclusions: Our characterization of peripheral blood B-cell phenotypes in pAPS demonstrates different frequencies of circulating B cells at different stages of differentiation. These differences in the naïve B-cell repertoire could explain the higher number and variety of autoantibodies in SLE patients in comparison to pAPS patients, especially in those with obstetric complications.
Collapse
|
19
|
Dysregulated Lymphoid Cell Populations in Mouse Models of Systemic Lupus Erythematosus. Clin Rev Allergy Immunol 2017; 53:181-197. [DOI: 10.1007/s12016-017-8605-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Immunophenotyping As a New Tool for Classification and Monitoring of Systemic Autoimmune Diseases. Clin Rev Allergy Immunol 2017; 53:177-180. [DOI: 10.1007/s12016-017-8604-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|