1
|
Zhang Z, Yang Z, Wang S, Wang X, Mao J. Overview of pyroptosis mechanism and in-depth analysis of cardiomyocyte pyroptosis mediated by NF-κB pathway in heart failure. Biomed Pharmacother 2024; 179:117367. [PMID: 39214011 DOI: 10.1016/j.biopha.2024.117367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
The pyroptosis of cardiomyocytes has become an essential topic in heart failure research. The abnormal accumulation of these biological factors, including angiotensin II, advanced glycation end products, and various growth factors (such as connective tissue growth factor, vascular endothelial growth factor, transforming growth factor beta, among others), activates the nuclear factor-κB (NF-κB) signaling pathway in cardiovascular diseases, ultimately leading to pyroptosis of cardiomyocytes. Therefore, exploring the underlying molecular biological mechanisms is essential for developing novel drugs and therapeutic strategies. However, our current understanding of the precise regulatory mechanism of this complex signaling pathway in cardiomyocyte pyroptosis is still limited. Given this, this study reviews the milestone discoveries in the field of pyroptosis research since 1986, analyzes in detail the similarities, differences, and interactions between pyroptosis and other cell death modes (such as apoptosis, necroptosis, autophagy, and ferroptosis), and explores the deep connection between pyroptosis and heart failure. At the same time, it depicts in detail the complete pathway of the activation, transmission, and eventual cardiomyocyte pyroptosis of the NF-κB signaling pathway in the process of heart failure. In addition, the study also systematically summarizes various therapeutic approaches that can inhibit NF-κB to reduce cardiomyocyte pyroptosis, including drugs, natural compounds, small molecule inhibitors, gene editing, and other cutting-edge technologies, aiming to provide solid scientific support and new research perspectives for the prevention and treatment of heart failure.
Collapse
Affiliation(s)
- Zeyu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhihua Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shuai Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Xianliang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| | - Jingyuan Mao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
2
|
Ancer-Rodríguez J, Gopar-Cuevas Y, García-Aguilar K, Chávez-Briones MDL, Miranda-Maldonado I, Ancer-Arellano A, Ortega-Martínez M, Jaramillo-Rangel G. Cell Proliferation and Apoptosis-Key Players in the Lung Aging Process. Int J Mol Sci 2024; 25:7867. [PMID: 39063108 PMCID: PMC11276691 DOI: 10.3390/ijms25147867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Currently, the global lifespan has increased, resulting in a higher proportion of the population over 65 years. Changes that occur in the lung during aging increase the risk of developing acute and chronic lung diseases, such as acute respiratory distress syndrome, chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, and lung cancer. During normal tissue homeostasis, cell proliferation and apoptosis create a dynamic balance that constitutes the physiological cell turnover. In basal conditions, the lungs have a low rate of cell turnover compared to other organs. During aging, changes in the rate of cell turnover in the lung are observed. In this work, we review the literature that evaluates the role of molecules involved in cell proliferation and apoptosis in lung aging and in the development of age-related lung diseases. The list of molecules that regulate cell proliferation, apoptosis, or both processes in lung aging includes TNC, FOXM1, DNA-PKcs, MicroRNAs, BCL-W, BCL-XL, TCF21, p16, NOX4, NRF2, MDM4, RPIA, DHEA, and MMP28. However, despite the studies carried out to date, the complete signaling pathways that regulate cell turnover in lung aging are still unknown. More research is needed to understand the changes that lead to the development of age-related lung diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Gilberto Jaramillo-Rangel
- Department of Pathology, School of Medicine, Autonomous University of Nuevo León, Monterrey 64460, Mexico; (J.A.-R.); (Y.G.-C.); (M.-d.-L.C.-B.); (I.M.-M.); (A.A.-A.); (M.O.-M.)
| |
Collapse
|
3
|
Feng Y, Qin P, Wang R, Mi Y, Li Y, Feng J, Shen W, Dong H, Duo J, Ma L, Yao X, Hu X, Xiong F, Shi X, Wang H. Effects of Tibetan medicine Longdan zhike tablet on chronic obstructive pulmonary disease through MAPK pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118082. [PMID: 38522625 DOI: 10.1016/j.jep.2024.118082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/05/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Longdan zhike tablet (LDZK) is a Tibetan medicine formula commonly used in the highland region of Tibet, China, to ameliorate respiratory diseases, such as acute bronchitis and asthma. In Chinese traditional medicine, some herbal formulas with anti-inflammatory properties targeting the respiratory system are clinically adopted as supplementary therapies for chronic obstructive pulmonary disease (COPD). However, the specific anti-COPD effects of LDZK remain to be evaluated. AIM OF THE STUDY The aim of this study is to identify the principal bioactive compounds in LDZK, and elucidate the effects and mechanisms of the LDZK on COPD. METHODS High-resolution mass spectrometry was utilized for a comprehensive characterization of the chemical composition of LDZK. The therapeutic effects of LDZK were assessed on the LPS-papain-induced COPD mouse model, and LPS-induced activation model of A549 cells. The safety of LDZK was evaluated by orally administering a single dose of 30 g/kg to rats and monitoring physiological and biochemical indicators after a 14-day period. Network pharmacology and Western blot analysis were employed for mechanism prediction of LDZK. RESULTS A comprehensive analysis identified a total of 45 compounds as the major constituents of LDZK. Oral administration of LDZK resulted in notable ameliorative effects in respiratory function, accompanied by reduced inflammatory cell counts and cytokine levels in the lungs of COPD mice. Acute toxicity tests demonstrated a favorable safety profile at a dose equivalent to 292 times the clinically prescribed dose. In vitro studies revealed that LDZK exhibited protective effects on A549 cells by mitigating LPS-induced cellular damage, reducing the release of NO, and downregulating the expression of iNOS, COX2, IL-1β, IL-6, and TNF-α. Network pharmacology and Western blot analysis indicated that LDZK primarily modulated the MAPK signaling pathway and inhibited the phosphorylation of p38/ERK/JNK. CONCLUSIONS LDZK exerts significant therapeutic effects on COPD through the regulation of the MAPK pathway, suggesting its potential as a promising adjunctive therapy for the treatment of chronic inflammation in COPD.
Collapse
Affiliation(s)
- Yulin Feng
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Pengfei Qin
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Rong Wang
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Yahui Mi
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - You Li
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Jiahao Feng
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Wenbin Shen
- Instrumental Analysis Center, China Pharmaceutical University, Nanjing, China.
| | - Haijuan Dong
- Instrumental Analysis Center, China Pharmaceutical University, Nanjing, China.
| | - Jietai Duo
- Diqing Tibetan Autonomous Prefecture Tibetan Hospital, Xianggelila, China.
| | - Liming Ma
- Diqing Tibetan Autonomous Prefecture Tibetan Hospital, Xianggelila, China.
| | - Xiaowu Yao
- Diqing Tibetan Autonomous Prefecture Tibetan Hospital, Xianggelila, China.
| | - Xiaolong Hu
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Fei Xiong
- State Key Laboratory of Bioelectronics, Jiangsu Laboratory for Biomaterials and Devices, Southeast University, Nanjing, China.
| | - Xinhong Shi
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Hao Wang
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
4
|
Yang J, Jiang YH, Zhou X, Yao JQ, Wang YY, Liu JQ, Zhang PC, Tang WF, Li Z. Material basis and molecular mechanisms of Chaihuang Qingyi Huoxue Granule in the treatment of acute pancreatitis based on network pharmacology and molecular docking-based strategy. Front Immunol 2024; 15:1353695. [PMID: 38765004 PMCID: PMC11099290 DOI: 10.3389/fimmu.2024.1353695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/17/2024] [Indexed: 05/21/2024] Open
Abstract
Objectives This study aimed to analyze active compounds and signaling pathways of CH applying network pharmacology methods, and to additionally verify the molecular mechanism of CH in treating AP. Materials and methods Network pharmacology and molecular docking were firstly used to identify the active components of CH and its potential targets in the treatment of AP. The pancreaticobiliary duct was retrogradely injected with sodium taurocholate (3.5%) to create an acute pancreatitis (AP) model in rats. Histological examination, enzyme-linked immunosorbent assay, Western blot and TUNEL staining were used to determine the pathway and mechanism of action of CH in AP. Results Network pharmacological analysis identified 168 active compounds and 276 target proteins. In addition, there were 2060 targets associated with AP, and CH had 177 targets in common with AP. These shared targets, including STAT3, IL6, MYC, CDKN1A, AKT1, MAPK1, MAPK3, MAPK14, HSP90AA1, HIF1A, ESR1, TP53, FOS, and RELA, were recognized as core targets. Furthermore, we filtered out 5252 entries from the Gene Ontology(GO) and 186 signaling pathways from the Kyoto Encyclopedia of Genes and Genomes(KEGG). Enrichment and network analyses of protein-protein interactions predicted that CH significantly affected the PI3K/AKT signaling pathway, which played a critical role in programmed cell death. The core components and key targets showed strong binding activity based on molecular docking results. Subsequently, experimental validation demonstrated that CH inhibited the phosphorylation of PI3K and AKT in pancreatic tissues, promoted the apoptosis of pancreatic acinar cells, and further alleviated inflammation and histopathological damage to the pancreas in AP rats. Conclusion Apoptosis of pancreatic acinar cells can be enhanced and the inflammatory response can be reduced through the modulation of the PI3K/AKT signaling pathway, resulting in the amelioration of pancreatic disease.
Collapse
Affiliation(s)
- Jia Yang
- School of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Yu-Hong Jiang
- Department of Integrated Traditional Chinese and Western Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Zhou
- Department of Spleen and Stomach Diseases, Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, Sichuan, China
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou city, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Jia-Qi Yao
- Department of Integrated Traditional Chinese and Western Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yang-Yang Wang
- School of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Jian-Qin Liu
- Department of Spleen and Stomach Diseases, Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, Sichuan, China
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou city, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Peng-Cheng Zhang
- Department of Integrated Traditional Chinese and Western Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Wen-Fu Tang
- Department of Integrated Traditional Chinese and Western Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Zhi Li
- Department of Spleen and Stomach Diseases, Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, Sichuan, China
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou city, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
5
|
Yang C, Geng X, Wan G, Song L, Wang Y, Zhou G, Wang J, Pan Z. Transcriptomic and proteomic investigation of the ameliorative effect of total polyphenolic glycoside extract on hepatic fibrosis in Lamiophlomis rotata Kudo via the AGE/RAGE pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117720. [PMID: 38211823 DOI: 10.1016/j.jep.2024.117720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/23/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE During the regression of liver fibrosis, a decrease in hepatic stellate cells (HSCs) can occur through apoptosis or inactivation of activated HSCs (aHSCs). A new approach for antifibrotic therapy involves transforming hepatic myofibroblasts into a quiescent-like state. Lamiophlomis rotata (Benth.) Kudo (L. rotata), an orally available Tibetan herb, has traditionally been used to treat skin disease, jaundice, and rheumatism. In our previous study, we found that the total polyphenolic glycoside extract of L. rotata (TPLR) promotes apoptosis in aHSCs for the treatment of hepatic fibrosis. However, whether TPLR induces aHSCs to become inactivated HSCs (iHSCs) is unclear, and the underlying mechanism remains largely unknown. PURPOSE This study aimed to examine the impact of TPLR on the phenotypes of hepatic stellate cells (HSCs) during the regression of liver fibrosis and explore the potential mechanism of action. METHODS The effect of TPLR on the phenotypes of hepatic stellate cells (HSCs) was assessed using immunofluorescence (IF) staining, reverse transcription-polymerase chain reaction (RT-PCR), and Western blotting. Transcriptomic and proteomic methods were employed to identify the main signaling pathways involved. Based on the omics results, the likely mechanism of TPLR on the phenotypes of aHSCs was confirmed through overexpression and knockdown experiments in TGF-β1-activated LX-2 cells. Using a CCl4-induced liver fibrosis mouse model, we evaluated the anti-hepatic fibrosis effect of TPLR and explored its potential mechanism based on omics findings. RESULTS TPLR was found to induce the differentiation of aHSCs into iHSCs by significantly decreasing the protein expression of α-SMA and Desmin. Transcriptomic and proteomic analyses revealed that the AGE/RAGE signaling pathway plays a crucial role in the morphological transformation of HSCs following TPLR treatment. In vitro experiments using RAGE overexpression and knockdown demonstrated that the mechanism by which TPLR affects the phenotype of HSCs is closely associated with the RAGE/RAS/MAPK/NF-κB axis. In a model of liver fibrosis, TPLR obviously inhibited the generation of AGEs and alleviated liver tissue damage and fibrosis by downregulating RAGE and its downstream targets. CONCLUSION The AGE/RAGE axis plays a pivotal role in the transformation of activated hepatic stellate cells (aHSCs) into inactivated hepatic stellate cells (iHSCs) following TPLR treatment, indicating the potential of TPLR as a therapeutic agent for the management of liver fibrosis.
Collapse
Affiliation(s)
- Congwen Yang
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, China
| | - Xiaoyu Geng
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Guoguo Wan
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Liang Song
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, China
| | - Ying Wang
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Guoying Zhou
- Qinghai Provincial Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810008, China
| | - Jianwei Wang
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, China
| | - Zheng Pan
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, China.
| |
Collapse
|
6
|
Delrue C, Speeckaert R, Delanghe JR, Speeckaert MM. Breath of fresh air: Investigating the link between AGEs, sRAGE, and lung diseases. VITAMINS AND HORMONES 2024; 125:311-365. [PMID: 38997169 DOI: 10.1016/bs.vh.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Advanced glycation end products (AGEs) are compounds formed via non-enzymatic reactions between reducing sugars and amino acids or proteins. AGEs can accumulate in various tissues and organs and have been implicated in the development and progression of various diseases, including lung diseases. The receptor of advanced glycation end products (RAGE) is a receptor that can bind to advanced AGEs and induce several cellular processes such as inflammation and oxidative stress. Several studies have shown that both AGEs and RAGE play a role in the pathogenesis of lung diseases, such as chronic obstructive pulmonary disease, asthma, idiopathic pulmonary fibrosis, cystic fibrosis, and acute lung injury. Moreover, the soluble form of the receptor for advanced glycation end products (sRAGE) has demonstrated its ability to function as a decoy receptor, possessing beneficial characteristics such as anti-inflammatory, antioxidant, and anti-fibrotic properties. These qualities make it an encouraging focus for therapeutic intervention in managing pulmonary disorders. This review highlights the current understanding of the roles of AGEs and (s)RAGE in pulmonary diseases and their potential as biomarkers and therapeutic targets for preventing and treating these pathologies.
Collapse
Affiliation(s)
- Charlotte Delrue
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium
| | | | - Joris R Delanghe
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Marijn M Speeckaert
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium; Research Foundation-Flanders (FWO), Brussels, Belgium.
| |
Collapse
|
7
|
Chang C, Huang K, Xu X, Duan R, Yu T, Chu X, Chen C, Li B, Yang T. MiR-23a-5p alleviates chronic obstructive pulmonary disease through targeted regulation of RAGE-ROS pathway. Respir Res 2024; 25:93. [PMID: 38378600 PMCID: PMC10880325 DOI: 10.1186/s12931-024-02736-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/14/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a common respiratory disease and represents the third leading cause of death worldwide. This study aimed to investigate miRNA regulation of Receptor for Advanced Glycation End-products (RAGE), a causal receptor in the pathogenesis of cigarette smoke (CS)-related COPD, to guide development of therapeutic strategies. METHODS RAGE expression was quantified in lung tissue of COPD patients and healthy controls, and in mice with CS-induced COPD. RNA-sequencing of peripheral blood from COPD patients with binding site prediction was used to screen differentially expressed miRNAs that may interact with RAGE. Investigation of miR-23a-5p as a potential regulator of COPD progression was conducted with miR-23a-5p agomir in COPD mice in vivo using histology and SCIREQ functional assays, while miR-23a-5p mimics or RAGE inhibitor were applied in 16-HBE human bronchial epithelial cells in vitro. RNA-sequencing, ELISA, and standard molecular techniques were used to characterize downstream signaling pathways in COPD mice and 16-HBE cells treated with cigarette smoke extract (CSE). RESULTS RAGE expression is significantly increased in lung tissue of COPD patients, COPD model mice, and CSE-treated 16-HBE cells, while inhibiting RAGE expression significantly reduces COPD severity in mice. RNA-seq analysis of peripheral blood from COPD patients identified miR-23a-5p as the most significant candidate miRNA interaction partner of RAGE, and miR-23a-5p is significantly downregulated in mice and cells treated with CS or CSE, respectively. Injection of miR-23a-5p agomir leads to significantly reduced airway inflammation and alleviation of symptoms in COPD mice, while overexpressing miR-23a-5p leads to improved lung function. RNA-seq with validation confirmed that reactive oxygen species (ROS) signaling is increased under CSE-induced aberrant upregulation of RAGE, and suppressed in CSE-stimulated cells treated with miR-23a-5p mimics or overexpression. ERK phosphorylation and subsequent cytokine production was also increased under RAGE activation, but inhibited by increasing miR-23a-5p levels, implying that the miR-23a-5p/RAGE/ROS axis mediates COPD pathogenesis via ERK activation. CONCLUSIONS This study identifies a miR-23a-5p/RAGE/ROS signaling axis required for pathogenesis of COPD. MiR-23a-5p functions as a negative regulator of RAGE and downstream activation of ROS signaling, and can inhibit COPD progression in vitro and in vivo, suggesting therapeutic targets to improve COPD treatment.
Collapse
Affiliation(s)
- Chenli Chang
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Center of Respiratory Medicine, China-Japan Friendship Hospital, National Center for Respiratory Medicine, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, National Clinical Research Center for Respiratory Diseases, State Key Laboratory of Respiratory Health and Multi Morbidity, No 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China
| | - Ke Huang
- Center of Respiratory Medicine, China-Japan Friendship Hospital, National Center for Respiratory Medicine, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, National Clinical Research Center for Respiratory Diseases, State Key Laboratory of Respiratory Health and Multi Morbidity, No 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China
| | - Xia Xu
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ruirui Duan
- Center of Respiratory Medicine, China-Japan Friendship Hospital, National Center for Respiratory Medicine, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, National Clinical Research Center for Respiratory Diseases, State Key Laboratory of Respiratory Health and Multi Morbidity, No 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China
| | - Tao Yu
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Center of Respiratory Medicine, China-Japan Friendship Hospital, National Center for Respiratory Medicine, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, National Clinical Research Center for Respiratory Diseases, State Key Laboratory of Respiratory Health and Multi Morbidity, No 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China
| | - Xu Chu
- Center of Respiratory Medicine, China-Japan Friendship Hospital, National Center for Respiratory Medicine, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, National Clinical Research Center for Respiratory Diseases, State Key Laboratory of Respiratory Health and Multi Morbidity, No 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China
| | - Chen Chen
- Center of Respiratory Medicine, China-Japan Friendship Hospital, National Center for Respiratory Medicine, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, National Clinical Research Center for Respiratory Diseases, State Key Laboratory of Respiratory Health and Multi Morbidity, No 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China
| | - Baicun Li
- Center of Respiratory Medicine, China-Japan Friendship Hospital, National Center for Respiratory Medicine, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, National Clinical Research Center for Respiratory Diseases, State Key Laboratory of Respiratory Health and Multi Morbidity, No 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China.
| | - Ting Yang
- Center of Respiratory Medicine, China-Japan Friendship Hospital, National Center for Respiratory Medicine, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, National Clinical Research Center for Respiratory Diseases, State Key Laboratory of Respiratory Health and Multi Morbidity, No 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
8
|
Dhanushkodi NR, Prakash S, Quadiri A, Zayou L, Srivastava R, Shaik AM, Suzer B, Ibraim IC, Landucci G, Tifrea DF, Singer M, Jamal L, Edwards RA, Vahed H, Brown L, BenMohamed L. Antiviral and Anti-Inflammatory Therapeutic Effect of RAGE-Ig Protein against Multiple SARS-CoV-2 Variants of Concern Demonstrated in K18-hACE2 Mouse and Syrian Golden Hamster Models. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:576-585. [PMID: 38180084 DOI: 10.4049/jimmunol.2300392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024]
Abstract
SARS-CoV-2 variants of concern (VOCs) continue to evolve and reemerge with chronic inflammatory long COVID sequelae, necessitating the development of anti-inflammatory therapeutic molecules. Therapeutic effects of the receptor for advanced glycation end products (RAGE) were reported in many inflammatory diseases. However, a therapeutic effect of RAGE in COVID-19 has not been reported. In the present study, we investigated whether and how the RAGE-Ig fusion protein would have an antiviral and anti-inflammatory therapeutic effect in the COVID-19 system. The protective therapeutic effect of RAGE-Ig was determined in vivo in K18-hACE2 transgenic mice and Syrian golden hamsters infected with six VOCs of SARS-CoV-2. The underlying antiviral mechanism of RAGE-Ig was determined in vitro in SARS-CoV-2-infected human lung epithelial cells (BEAS-2B). Following treatment of K18-hACE2 mice and hamsters infected with various SARS-CoV-2 VOCs with RAGE-Ig, we demonstrated (1) significant dose-dependent protection (i.e., greater survival, less weight loss, lower virus replication in the lungs); (2) a reduction of inflammatory macrophages (F4/80+/Ly6C+) and neutrophils (CD11b+/Ly6G+) infiltrating the infected lungs; (3) a RAGE-Ig dose-dependent increase in the expression of type I IFNs (IFN-α and IFN-β) and type III IFN (IFNλ2) and a decrease in the inflammatory cytokines (IL-6 and IL-8) in SARS-CoV-2-infected human lung epithelial cells; and (4) a dose-dependent decrease in the expression of CD64 (FcgR1) on monocytes and lung epithelial cells from symptomatic COVID-19 patients. Our preclinical findings revealed type I and III IFN-mediated antiviral and anti-inflammatory therapeutic effects of RAGE-Ig protein against COVID-19 caused by multiple SARS-CoV-2 VOCs.
Collapse
Affiliation(s)
- Nisha Rajeswari Dhanushkodi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, CA
| | - Swayam Prakash
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, CA
| | - Afshana Quadiri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, CA
| | - Latifa Zayou
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, CA
| | - Ruchi Srivastava
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, CA
| | - Amin Mohammed Shaik
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, CA
| | - Berfin Suzer
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, CA
| | - Izabela Coimbra Ibraim
- High Containment Facility, University of California, Irvine, School of Medicine, Irvine, CA
| | - Gary Landucci
- High Containment Facility, University of California, Irvine, School of Medicine, Irvine, CA
| | - Delia F Tifrea
- Department of Pathology and Laboratory Medicine, University of California, Irvine School of Medicine, Irvine, CA
| | - Mahmoud Singer
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, CA
| | - Leila Jamal
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, CA
| | - Robert A Edwards
- Department of Pathology and Laboratory Medicine, University of California, Irvine School of Medicine, Irvine, CA
| | - Hawa Vahed
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA
| | | | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, CA
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA
- Department of Molecular Biology & Biochemistry, University of California, Irvine, School of Medicine, Irvine, CA
- Institute for Immunology, University of California, Irvine, School of Medicine, Irvine, CA
| |
Collapse
|
9
|
Liang J, Li H, Liu CD, Zhou XY, Fu YY, Ma XY, Liu D, Chen YL, Feng Q, Zhang Z, Wen XR, Zhu G, Wang N, Song YJ. TAT-W61 peptide attenuates neuronal injury through blocking the binding of S100b to the V-domain of Rage during ischemic stroke. J Mol Med (Berl) 2024; 102:231-245. [PMID: 38051341 DOI: 10.1007/s00109-023-02402-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 12/07/2023]
Abstract
Ischemic stroke is a devastative nervous system disease associated with high mortality and morbidity rates. Unfortunately, no clinically effective neuroprotective drugs are available now. In ischemic stroke, S100 calcium-binding protein b (S100b) binds to receptor for advanced glycation end products (Rage), leading to the neurological injury. Therefore, disruption of the interaction between S100B and Rage can rescue neuronal cells. Here, we designed a peptide, termed TAT-W61, derived from the V domain of Rage which can recognize S100b. Intriguingly, TAT-W61 can reduce the inflammatory caused by ischemic stroke through the direct binding to S100b. The further investigation demonstrated that TAT-W61 can improve pathological infarct volume and reduce the apoptotic rate. Particularly, TAT-W61 significantly improved the learning ability, memory, and motor dysfunction of the mouse in the ischemic stroke model. Our study provides a mechanistic insight into the abnormal expression of S100b and Rage in ischemic stroke and yields an invaluable candidate for the development of drugs in tackling ischemic stroke. KEY MESSAGES: S100b expression is higher in ischemic stroke, in association with a high expression of many genes, especially of Rage. S100b is directly bound to the V-domain of Rage. Blocking the binding of S100b to Rage improves the injury after ischemic stroke.
Collapse
Affiliation(s)
- Jia Liang
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, 221004, China
- Department of Pathology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Hui Li
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, 221004, China
| | - Chang-Dong Liu
- State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| | - Xiao-Yan Zhou
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yan-Yan Fu
- Department of Cell Biology and Neurobiology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xiang-Yu Ma
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, 221004, China
| | - Dan Liu
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yu-Ling Chen
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, 221004, China
| | - Qian Feng
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, 221004, China
| | - Zhen Zhang
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xiang-Ru Wen
- Department of Chemistry, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Guang Zhu
- State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| | - Nan Wang
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou 221004, Jiangsu, China.
| | - Yuan-Jian Song
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, 221004, China.
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou 221004, Jiangsu, China.
| |
Collapse
|
10
|
Shi Y, Ma L, Zhou M, He Z, Zhao Y, Hong J, Zou X, Zhang L, Shu L. Copper stress shapes the dynamic behavior of amoebae and their associated bacteria. THE ISME JOURNAL 2024; 18:wrae100. [PMID: 38848278 PMCID: PMC11197307 DOI: 10.1093/ismejo/wrae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/15/2024] [Accepted: 06/06/2024] [Indexed: 06/09/2024]
Abstract
Amoeba-bacteria interactions are prevalent in both natural ecosystems and engineered environments. Amoebae, as essential consumers, hold significant ecological importance within ecosystems. Besides, they can establish stable symbiotic associations with bacteria. Copper plays a critical role in amoeba predation by either killing or restricting the growth of ingested bacteria in phagosomes. However, certain symbiotic bacteria have evolved mechanisms to persist within the phagosomal vacuole, evading antimicrobial defenses. Despite these insights, the impact of copper on the symbiotic relationships between amoebae and bacteria remains poorly understood. In this study, we investigated the effects of copper stress on amoebae and their symbiotic relationships with bacteria. Our findings revealed that elevated copper concentration adversely affected amoeba growth and altered cellular fate. Symbiont type significantly influenced the responses of the symbiotic relationships to copper stress. Beneficial symbionts maintained stability under copper stress, but parasitic symbionts exhibited enhanced colonization of amoebae. Furthermore, copper stress favored the transition of symbiotic relationships between amoebae and beneficial symbionts toward the host's benefit. Conversely, the pathogenic effects of parasitic symbionts on hosts were exacerbated under copper stress. This study sheds light on the intricate response mechanisms of soil amoebae and amoeba-bacteria symbiotic systems to copper stress, providing new insights into symbiotic dynamics under abiotic factors. Additionally, the results underscore the potential risks of copper accumulation in the environment for pathogen transmission and biosafety.
Collapse
Affiliation(s)
- Yijing Shi
- SCNU Environmental Research Institute, School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Lu Ma
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Min Zhou
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhili He
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuanchen Zhao
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Junyue Hong
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Xinyue Zou
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Lin Zhang
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Longfei Shu
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
11
|
Curtis KL, Homer KM, Wendt RA, Stapley BM, Clark ET, Harward K, Chang A, Clarke DM, Arroyo JA, Reynolds PR. Inflammatory Cytokine Elaboration Following Secondhand Smoke (SHS) Exposure Is Mediated in Part by RAGE Signaling. Int J Mol Sci 2023; 24:15645. [PMID: 37958629 PMCID: PMC10649034 DOI: 10.3390/ijms242115645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
The receptor for advanced glycation end products (RAGE) is a key contributor to immune and inflammatory responses in myriad diseases. RAGE is a transmembrane pattern recognition receptor with a special interest in pulmonary anomalies due to its naturally abundant pulmonary expression. Our previous studies demonstrated an inflammatory role for RAGE following acute 30-day exposure to secondhand smoke (SHS), wherein immune cell diapedesis and cytokine/chemokine secretion were accentuated in part via RAGE signaling. However, the chronic inflammatory mechanisms associated with RAGE have yet to be fully elucidated. In this study, we address the impact of long-term SHS exposure on RAGE signaling. RAGE knockout (RKO) and wild-type (WT) mice were exposed to SHS using a nose-only delivery system (Scireq Scientific, Montreal, Canada) for six months. SHS-exposed animals were compared to mice exposed to room air (RA) only. Immunoblotting was used to assess the phospho-AKT and phospho-ERK activation data, and colorimetric high-throughput assays were used to measure NF-kB. Ras activation was measured via ELISAs. Bronchoalveolar lavage fluid (BALF) cellularity was quantified, and a mouse cytokine antibody array was used to screen the secreted cytokines. The phospho-AKT level was decreased, while those of phospho-ERK, NF-kB, and Ras were elevated in both groups of SHS-exposed mice, with the RKO + SHS-exposed mice demonstrating significantly decreased levels of each intermediate compared to those of the WT + SHS-exposed mice. The BALF contained increased levels of diverse pro-inflammatory cytokines in the SHS-exposed WT mice, and diminished secretion was detected in the SHS-exposed RKO mice. These results validate the role for RAGE in the mediation of chronic pulmonary inflammatory responses and suggest ERK signaling as a likely pathway that perpetuates RAGE-dependent inflammation. Additional characterization of RAGE-mediated pulmonary responses to prolonged exposure will provide a valuable insight into the cellular mechanisms of lung diseases such as chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Paul R. Reynolds
- Lung and Placenta Laboratory, Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA (R.A.W.); (E.T.C.); (A.C.)
| |
Collapse
|
12
|
Wang Y, Cheng H, Wang T, Zhang K, Zhang Y, Kang X. Oxidative stress in intervertebral disc degeneration: Molecular mechanisms, pathogenesis and treatment. Cell Prolif 2023; 56:e13448. [PMID: 36915968 PMCID: PMC10472537 DOI: 10.1111/cpr.13448] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/16/2023] Open
Abstract
Low back pain (LBP) is a leading cause of labour loss and disability worldwide, and it also imposes a severe economic burden on patients and society. Among symptomatic LBP, approximately 40% is caused by intervertebral disc degeneration (IDD). IDD is the pathological basis of many spinal degenerative diseases such as disc herniation and spinal stenosis. Currently, the therapeutic approaches for IDD mainly include conservative treatment and surgical treatment, neither of which can solve the problem from the root by terminating the degenerative process of the intervertebral disc (IVD). Therefore, further exploring the pathogenic mechanisms of IDD and adopting targeted therapeutic strategies is one of the current research hotspots. Among the complex pathophysiological processes and pathogenic mechanisms of IDD, oxidative stress is considered as the main pathogenic factor. The delicate balance between reactive oxygen species (ROS) and antioxidants is essential for maintaining the normal function and survival of IVD cells. Excessive ROS levels can cause damage to macromolecules such as nucleic acids, lipids, and proteins of cells, affect normal cellular activities and functions, and ultimately lead to cell senescence or death. This review discusses the potential role of oxidative stress in IDD to further understand the pathophysiological processes and pathogenic mechanisms of IDD and provides potential therapeutic strategies for the treatment of IDD.
Collapse
Affiliation(s)
- Yidian Wang
- Department of Joint Surgery, Honghui HospitalXi'an Jiaotong UniversityXi'anShaanxiChina
| | - Huiguang Cheng
- Department of Joint Surgery, Honghui HospitalXi'an Jiaotong UniversityXi'anShaanxiChina
| | - Tao Wang
- Department of Joint Surgery, Honghui HospitalXi'an Jiaotong UniversityXi'anShaanxiChina
| | - Kun Zhang
- Department of Joint Surgery, Honghui HospitalXi'an Jiaotong UniversityXi'anShaanxiChina
| | - Yumin Zhang
- Department of Joint Surgery, Honghui HospitalXi'an Jiaotong UniversityXi'anShaanxiChina
| | - Xin Kang
- Department of Joint Surgery, Honghui HospitalXi'an Jiaotong UniversityXi'anShaanxiChina
| |
Collapse
|
13
|
Strickson S, Houslay KF, Negri VA, Ohne Y, Ottosson T, Dodd RB, Huntington CC, Baker T, Li J, Stephenson KE, O'Connor AJ, Sagawe JS, Killick H, Moore T, Rees DG, Koch S, Sanden C, Wang Y, Gubbins E, Ghaedi M, Kolbeck R, Saumyaa S, Erjefält JS, Sims GP, Humbles AA, Scott IC, Romero Ros X, Cohen ES. Oxidised IL-33 drives COPD epithelial pathogenesis via ST2-independent RAGE/EGFR signalling complex. Eur Respir J 2023; 62:2202210. [PMID: 37442582 PMCID: PMC10533947 DOI: 10.1183/13993003.02210-2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
BACKGROUND Epithelial damage, repair and remodelling are critical features of chronic airway diseases including chronic obstructive pulmonary disease (COPD). Interleukin (IL)-33 released from damaged airway epithelia causes inflammation via its receptor, serum stimulation-2 (ST2). Oxidation of IL-33 to a non-ST2-binding form (IL-33ox) is thought to limit its activity. We investigated whether IL-33ox has functional activities that are independent of ST2 in the airway epithelium. METHODS In vitro epithelial damage assays and three-dimensional, air-liquid interface (ALI) cell culture models of healthy and COPD epithelia were used to elucidate the functional role of IL-33ox. Transcriptomic changes occurring in healthy ALI cultures treated with IL-33ox and COPD ALI cultures treated with an IL-33-neutralising antibody were assessed with bulk and single-cell RNA sequencing analysis. RESULTS We demonstrate that IL-33ox forms a complex with receptor for advanced glycation end products (RAGE) and epidermal growth factor receptor (EGFR) expressed on airway epithelium. Activation of this alternative, ST2-independent pathway impaired epithelial wound closure and induced airway epithelial remodelling in vitro. IL-33ox increased the proportion of mucus-producing cells and reduced epithelial defence functions, mimicking pathogenic traits of COPD. Neutralisation of the IL-33ox pathway reversed these deleterious traits in COPD epithelia. Gene signatures defining the pathogenic effects of IL-33ox were enriched in airway epithelia from patients with severe COPD. CONCLUSIONS Our study reveals for the first time that IL-33, RAGE and EGFR act together in an ST2-independent pathway in the airway epithelium and govern abnormal epithelial remodelling and muco-obstructive features in COPD.
Collapse
Affiliation(s)
- Sam Strickson
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
- These authors contributed equally to this work
| | - Kirsty F Houslay
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
- These authors contributed equally to this work
| | - Victor A Negri
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Yoichiro Ohne
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Tomas Ottosson
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Roger B Dodd
- Biologics Engineering, R&D, AstraZeneca, Cambridge, UK
| | | | - Tina Baker
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Jingjing Li
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Katherine E Stephenson
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Andy J O'Connor
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - J Sophie Sagawe
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Helen Killick
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Tom Moore
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - D Gareth Rees
- Biologics Engineering, R&D, AstraZeneca, Cambridge, UK
| | - Sofia Koch
- Imaging & Data Analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Caroline Sanden
- Experimental Medical Sciences, Lund University, Lund, Sweden
- Medetect AB, Lund, Sweden
| | - Yixin Wang
- Imaging & Data Analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Elise Gubbins
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Mahboobe Ghaedi
- Bioscience COPD/IPF, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Roland Kolbeck
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
- Current: Spirovant Sciences, Philadelphia, PA, USA
| | - Saumyaa Saumyaa
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Jonas S Erjefält
- Experimental Medical Sciences, Lund University, Lund, Sweden
- Allergology and Respiratory Medicine, Lund University, Skåne University Hospital, Lund, Sweden
| | - Gary P Sims
- Bioscience Immunology, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Alison A Humbles
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
- Current: Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Ian C Scott
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Xavier Romero Ros
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
- These authors contributed equally to this work
| | - E Suzanne Cohen
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
- These authors contributed equally to this work
| |
Collapse
|
14
|
Gkavogiannakis NA, Tsoporis JN, Drosatos IA, Tsirebolos G, Izhar S, Sakadakis E, Triantafyllis AS, Parker TG, Kalogiros LA, Leong-Poi H, Rallidis LS, Rizos I. Emergent Inflammatory Markers and Echocardiographic Indices in Patients with Bronchial Asthma. Biomolecules 2023; 13:955. [PMID: 37371535 DOI: 10.3390/biom13060955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Asthma is a heterogeneous disease, characterized by chronic inflammation and oxidative stress of the airways. Several inflammatory pathways including activation of the receptor for advanced glycation end products (RAGE) have been described in the course of the disease. DJ-1 is a redox-sensitive protein with multifaceted roles in mast cell homeostasis and an emerging role in the pathogenesis of asthma. Moreover, cardiac function abnormalities have been described via echocardiography in patients with asthma. The main aim of this study was to investigate the plasma levels of RAGE, its ligands and DJ-1 in asthmatic patients pre- and post-treatment along with echocardiographic indices of cardiovascular function. The study population was divided into two groups. Group A included 13 patients with newly diagnosed bronchial asthma who were free of treatment for at least two weeks and Group B included 12 patients without asthma. An echocardiography examination was performed on all patients. The plasma levels of RAGE, its ligands (AGEs, S100A12, S100B, S100A8/A9), the interleukins (IL-6, IL-1β) and DJ-1 were measured. No differences were noted among the two groups for baseline characteristics and echocardiographic indices of cardiac function. In Group A, 31% suffered from mild asthma, 54% from moderate asthma and 15% from severe asthma. Plasma levels of IL-6, AGEs and AGE/RAGE ratio were increased and those of S100A12 and DJ-1 were decreased in asthmatics. Pharmacotherapy with corticosteroids/β2-agonists decreased IL-6, and AGEs, and increased DJ-1. In search of novel approaches in diagnosing and treating patients with asthma, S100A12, ratio AGE/sRAGE, and DJ-1 in addition to IL-6 may prove to be useful tools.
Collapse
Affiliation(s)
- Nikolaos A Gkavogiannakis
- Allergy Unit "D. Kalogeromitros", Attikon University Hospital, 124 62 Athens, Greece
- Allergy & Clinical Immunology Department, 401 General Military Hospital of Athens, 115 27 Athens, Greece
| | - James N Tsoporis
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, University of Toronto, Toronto, ON M5B 1W8, Canada
| | - Ioannis-Alexandros Drosatos
- Second Department of Cardiology, Attikon University Hospital, 124 62 Athens, Greece
- Department of Cardiology, 414 Military Hospital, P. Penteli, 152 36 Athens, Greece
| | - George Tsirebolos
- Second Department of Cardiology, Attikon University Hospital, 124 62 Athens, Greece
- Department of Cardiology, 401 General Military Hospital of Athens, 115 27 Athens, Greece
| | - Shehla Izhar
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, University of Toronto, Toronto, ON M5B 1W8, Canada
| | | | | | - Thomas G Parker
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, University of Toronto, Toronto, ON M5B 1W8, Canada
| | - Lampros A Kalogiros
- Allergy & Clinical Immunology Department, 401 General Military Hospital of Athens, 115 27 Athens, Greece
| | - Howard Leong-Poi
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, University of Toronto, Toronto, ON M5B 1W8, Canada
| | - Loukianos S Rallidis
- Second Department of Cardiology, Attikon University Hospital, 124 62 Athens, Greece
| | - Ioannis Rizos
- Second Department of Cardiology, Attikon University Hospital, 124 62 Athens, Greece
| |
Collapse
|
15
|
Jin X, Zhao X. A new immune checkpoint-associated nine-gene signature for prognostic prediction of glioblastoma. Medicine (Baltimore) 2023; 102:e33150. [PMID: 36862886 PMCID: PMC9981394 DOI: 10.1097/md.0000000000033150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/10/2023] [Indexed: 03/04/2023] Open
Abstract
Glioblastoma (GBM) is a highly malignant neurological tumor that has a poor prognosis. While pyroptosis affects cancer cell proliferation, invasion and migration, function of pyroptosis-related genes (PRGs) in GBM as well as the prognostic significance of PRGs remain obscure. By analyzing the mechanisms involved in the association between pyroptosis and GBM, our study hopes to provide new insights into the treatment of GBM. Here, 32 out of 52 PRGs were identified as the differentially expressed genes between GBM tumor versus normal tissues. And all GBM cases were assigned to 2 groups according to the expression of the differentially expressed genes using comprehensive bioinformatics analysis. The least absolute shrinkage and selection operator analysis led to the construction of a 9-gene signature, and the cancer genome atlas cohort of GBM patients were categorized into high risk and low risk subgroups. A significant increase in the survival possibility was found in low risk patients in comparison with the high risk ones. Consistently, low risk patients of a gene expression omnibus cohort displayed a markedly longer overall survival than the high risk counterparts. The risk score calculated using the gene signature was found to be an independent predictor of survival of GBM cases. Besides, we observed significant differences in the expression levels of immune checkpoints between the high risk versus low risk GBM cases, providing instructive suggestions for immunotherapy of GBM. Overall, the present study developed a new multigene signature for prognostic prediction of GBM.
Collapse
Affiliation(s)
- Xiao Jin
- The Personnel Department, Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Fengtai District, Beijing, China
| | - Xiang Zhao
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
16
|
Wen J, Gu S, Wang X, Qi X. Associations of adherence to the DASH diet and the Mediterranean diet with chronic obstructive pulmonary disease among US adults. Front Nutr 2023; 10:1031071. [PMID: 36819684 PMCID: PMC9932199 DOI: 10.3389/fnut.2023.1031071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023] Open
Abstract
Background The Dietary Approaches to Stop Hypertension (DASH) and the Mediterranean diet are associated with reduced cardiovascular, tumor, and diabetes risk, but the effect on chronic obstructive pulmonary disease (COPD) is uncertain. Objective To investigate the association of the DASH diet and the Mediterranean diet with the risk of COPD in American adults. Methods This cross-sectional study included 28,605 participants from the National Health and Nutrition Examination Survey (NHANES) 1999-2018 survey cycle who had complete dietary and other questionnaire data. The scores of healthy eating patterns (the DASH diet and the Mediterranean diet) were derived from a 24-h dietary recall interview [individual food and total nutrient data from NHANES and food pattern equivalents data from the United States Department of Agriculture (USDA)]. The primary outcome was the prevalence of COPD. COPD was defined based on participants self-reported whether or not a doctor or health professional had diagnosed chronic bronchitis or emphysema. Secondary outcomes were lung function and respiratory symptoms. All analyses were adjusted for demographics and standard COPD risk factors (primary tobacco exposure, secondhand smoke exposure, and asthma). Results This study included 2,488 COPD participants and 25,607 non-COPD participants. We found that a higher DASH diet score was associated with a lower risk of COPD [odds ratio (OR): 0.83; 95% confidence interval (CI): 0.71-0.97; P = 0.021]. This association persisted in several subgroups [men (OR: 0.73; 95% CI: 0.58-0.93; P = 0.010), relatively young (OR: 0.74; 95% CI: 0.55-1.01; P = 0.050), and smoker (OR: 0.82; 95% CI: 0.67-0.99; P = 0.038)]. In contrast, the Mediterranean diet score was not significantly associated with COPD prevalence in this large cross-sectional analysis representative of the US adult population (OR: 1.03; 95% CI: 0.88-1.20; P = 0.697). In addition, we found a correlation between DASH diet adherence and lung function [β: -0.01; 95% CI: -0.01-0.00; P = 0.003 (FEV1: FVC)] or respiratory symptoms [OR: 0.80; 95% CI: 0.73-0.89; P < 0.001 (dyspnea); OR: 0.80; 95% CI: 0.70-0.91; P = 0.002 (cough); OR: 0.86; 95% CI: 0.74-0.99; P = 0.042 (expectoration)], especially in non-COPD populations. Conclusion A higher DASH diet score was associated with improved COPD prevalence, lung function and respiratory symptoms. This new finding supports the importance of diet in the pathogenesis of COPD and expands the scope of the association of the DASH diet score with major chronic diseases.
Collapse
|
17
|
Li W, Gu P, Gao B, Zou L, Zhang A, Huang H, Zhao X, Xu D, Cheng C. Characteristics and transcriptomic analysis of scar tissues on the inner uterine cavity wall in patients with intrauterine adhesions. Front Physiol 2022; 13:990009. [PMID: 36620214 PMCID: PMC9815801 DOI: 10.3389/fphys.2022.990009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction: It has been previously reported that intrauterine adhesions (IUAs) are the main cause of uterine infertility. However, the histological origin of scar tissue present on the inner wall of the uterine cavity with IUAs has not been previously studied, which is particularly necessary for follow-up research and prevention and treatment. Methods: In this study, myometrium with normal uterus were assigned to the control group and scar tissues with IUAs were assigned to the experimental group. And pathological characteristics and transcriptomic were analyzed between the two groups. Results: We founded no difference was noted in the histological morphology and the α-SMA expression between the experimental and control groups. A total of 698 differentially expressed genes were identified between the two groups. Gene Ontology (GO) analyses revealed that the DEGs were significantly enriched in cell proliferation, AP-1 complex formation, and angiogenesis. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed that the target genes were significantly enriched in the AGE-RAGE, FOXO and TNF signaling pathway. Discussion: As far as we know, this is the first study to propose that the scar tissues are mainly derived from the myometrium and the first one to report differentially expressed genes in the scar tissues of IUAs.
Collapse
Affiliation(s)
- Waixing Li
- Department of Obstetrics and Gynecology, The Third Xiangya Hospital of the Central South University, Changsha, Hunan, China
| | - Pan Gu
- Department of Obstetrics and Gynecology, The Third Xiangya Hospital of the Central South University, Changsha, Hunan, China,The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Bingsi Gao
- The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Lingxiao Zou
- Department of Obstetrics and Gynecology, The Third Xiangya Hospital of the Central South University, Changsha, Hunan, China
| | - Aiqian Zhang
- Department of Obstetrics and Gynecology, The Third Xiangya Hospital of the Central South University, Changsha, Hunan, China
| | - Huan Huang
- Department of Obstetrics and Gynecology, The Third Xiangya Hospital of the Central South University, Changsha, Hunan, China
| | - Xingping Zhao
- Department of Obstetrics and Gynecology, The Third Xiangya Hospital of the Central South University, Changsha, Hunan, China,*Correspondence: Xingping Zhao, ; Dabao Xu,
| | - Dabao Xu
- Department of Obstetrics and Gynecology, The Third Xiangya Hospital of the Central South University, Changsha, Hunan, China,*Correspondence: Xingping Zhao, ; Dabao Xu,
| | - Chunxia Cheng
- Department of Obstetrics and Gynecology, The Third Xiangya Hospital of the Central South University, Changsha, Hunan, China
| |
Collapse
|
18
|
Kamel AA, Hashem MK, AbdulKareem ES, Ali AH, Mahmoud EAR, Abd-Elkader AS, Abdellatif H, Abdelbadea A, Abdel-Rady NM, Al Anany MGE, Dahpy MA. Significant Interrelations among Serum Annexin A1, Soluble Receptor for Advanced Glycation End Products (sRAGE) and rs2070600 in Chronic Obstructive Pulmonary Disease. BIOLOGY 2022; 11:biology11121707. [PMID: 36552217 PMCID: PMC9774799 DOI: 10.3390/biology11121707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/29/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a major cause of death and morbidity; it may be accompanied by oxidative stress and inflammation with or without underlying genetic etiology. Finding circulating biomarkers for COPD that can help early diagnosis and predict exacerbation and association with respiratory functions has been challenging. There were 40 healthy participants and 60 COPD patients in this research. The rs2070600 gene variant was examined by PCR-RFLP. Circulating sRAGE and annexin A1 levels were determined by ELISA. GSH and MDA were determined by spectrophotometry. In COPD patients, sRAGE serum levels were substantially lower, but conversely, annexin A1 levels were much greater than in controls. The rs2070600 gene polymorphism's strong association with COPD was demonstrated by genotyping and allelic frequency distribution. The GA genotype was most distributed in COPD, and it was strongly linked to lower serum sRAGE levels. The interrelation between annexin A1, sRAGE, and COPD could be explained through effects on inflammatory mediators' pathways. The rs2070600 gene polymorphism was found to significantly enhance the risk of COPD. Serum sRAGE and annexin A1 may be considered potential diagnostic tools for COPD. Through impacts on GSH and MDA levels that alter the release of inflammatory factors and, therefore, lung damage, it is possible to explain the relationship between annexin A1, sRAGE, and COPD.
Collapse
Affiliation(s)
- Amira A. Kamel
- Department of Medical Biochemistry, and Molecular Biology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Maiada K. Hashem
- Chest Department, Faculty of Medicine, Assiut University, Assiut 71526, Egypt
| | | | - Amal H. Ali
- Microbiology and Immunology Department, Faculty of Medicine, Aswan University, Aswan 81528, Egypt
| | | | - Alaa S. Abd-Elkader
- Clinical Pathology Department, Faculty of Medicine, Assiut University, Assiut 71526, Egypt
| | - Hebatallah Abdellatif
- Clinical Pathology Department, Faculty of Medicine, Aswan University, Aswan 81528, Egypt
| | - Alzahra Abdelbadea
- Medical Biochemistry, and Molecular Biology, Faculty of Medicine for Girls, Al-Azhar University, Cairo 11651, Egypt
| | - Nessren M. Abdel-Rady
- Medical Physiology Department, Faculty of Medicine, Assiut University, Assiut 71526, Egypt
- Medical Physiology Department, Sphinx University, New-Assiut 71515, Egypt
| | - Mona Gamal E. Al Anany
- Physiology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo 11651, Egypt
| | - Marwa A. Dahpy
- Department of Medical Biochemistry, and Molecular Biology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
- Department of Medical Biochemistry and Molecular Biology, Armed Forces College of Medicine (AFCM), Cairo 11774, Egypt
- Correspondence:
| |
Collapse
|
19
|
Lin L, Li J, Song Q, Cheng W, Chen P. The role of HMGB1/RAGE/TLR4 signaling pathways in cigarette smoke-induced inflammation in chronic obstructive pulmonary disease. Immun Inflamm Dis 2022; 10:e711. [PMID: 36301039 PMCID: PMC9552978 DOI: 10.1002/iid3.711] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/10/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common chronic respiratory disease with irreversible and continuous progression. It has become the fifth most burdensome disease and the third most deadly disease globally. Therefore, the prevention and treatment of COPD are urgent, and it is also important to clarify the pathogenesis of it. Smoking is the main and most common risk factor for COPD. Cigarette smoke (CS) can cause lung inflammation and other pathological mechanisms in the airways and lung tissue. Airway inflammation is one of the important mechanisms leading to the pathogenesis of COPD. Recent studies have shown that high mobility group box 1 (HMGB1) is involved in the occurrence and development of respiratory diseases, including COPD. HMGB1 is a typical damage-associated molecular pattern (DAMP) protein, which mainly exerts its activity by binding to the receptor for advanced glycation end products (RAGE) and toll-like receptor 4 (TLR4) and further participate in the process of airway inflammation. Studies have shown that the abnormal expression of HMGB1, RAGE, and TLR4 are related to inflammation in COPD. Herein, we discuss the roles of HMGB1, RAGE, and TLR4 in CS/cigarette smoke extract-induced inflammation in COPD, providing a new target for the diagnosis, treatment and prevention of COPD.
Collapse
Affiliation(s)
- Ling Lin
- Department of Respiratory and Critical Care Medicine, The Second Xiangya HospitalCentral South UniversityChangshaHunanChina
- Diagnosis and Treatment Center of Respiratory DiseaseCentral South UniversityChangshaHunanChina
| | - Jing Li
- Department of Respiratory and Critical Care Medicine, The Second Xiangya HospitalCentral South UniversityChangshaHunanChina
- Research Unit of Respiratory DiseaseCentral South UniversityChangshaHunanChina
- Diagnosis and Treatment Center of Respiratory DiseaseCentral South UniversityChangshaHunanChina
| | - Qing Song
- Department of Respiratory and Critical Care Medicine, The Second Xiangya HospitalCentral South UniversityChangshaHunanChina
- Research Unit of Respiratory DiseaseCentral South UniversityChangshaHunanChina
- Diagnosis and Treatment Center of Respiratory DiseaseCentral South UniversityChangshaHunanChina
| | - Wei Cheng
- Department of Respiratory and Critical Care Medicine, The Second Xiangya HospitalCentral South UniversityChangshaHunanChina
- Research Unit of Respiratory DiseaseCentral South UniversityChangshaHunanChina
- Diagnosis and Treatment Center of Respiratory DiseaseCentral South UniversityChangshaHunanChina
| | - Ping Chen
- Department of Respiratory and Critical Care Medicine, The Second Xiangya HospitalCentral South UniversityChangshaHunanChina
- Research Unit of Respiratory DiseaseCentral South UniversityChangshaHunanChina
- Diagnosis and Treatment Center of Respiratory DiseaseCentral South UniversityChangshaHunanChina
| |
Collapse
|
20
|
Abstract
Smoking is a well-established risk factor for chronic obstructive pulmonary disease (COPD). Chronic lung inflammation continues even after smoking cessation and leads to COPD progression. To date, anti-inflammatory therapies are ineffective in improving pulmonary function and COPD symptoms, and new molecular targets are urgently needed to deal with this challenge. The receptor for advanced glycation end-products (RAGE) was shown to be relevant in COPD pathogenesis, since it is both a genetic determinant of low lung function and a determinant of COPD susceptibility. Moreover, RAGE is involved in the physiological response to cigarette smoke exposure. Since innate and acquired immunity plays an essential role in the development of chronic inflammation and emphysema in COPD, here we summarized the roles of RAGE and its ligand HMGB1 in COPD immunity.
Collapse
Affiliation(s)
- Lin Chen
- Department of Respiratory and Critical Care Medicine, Liuzhou People's Hospital, LiuZhou, Guangxi, China
| | - Xuejiao Sun
- Department of Respiratory and Critical Care Medicine, Liuzhou People's Hospital, LiuZhou, Guangxi, China
| | - Xiaoning Zhong
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
21
|
Changotra H, Kaur S, Yadav SS, Gupta GL, Parkash J, Duseja A. ATG5: A central autophagy regulator implicated in various human diseases. Cell Biochem Funct 2022; 40:650-667. [PMID: 36062813 DOI: 10.1002/cbf.3740] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/07/2022]
Abstract
Autophagy, an intracellular conserved degradative process, plays a central role in the renewal/recycling of a cell to maintain the homeostasis of nutrients and energy within the cell. ATG5, a key component of autophagy, regulates the formation of the autophagosome, a hallmark of autophagy. ATG5 binds with ATG12 and ATG16L1 resulting in E3 like ligase complex, which is necessary for autophagosome expansion. Available data suggest that ATG5 is indispensable for autophagy and has an imperative role in several essential biological processes. Moreover, ATG5 has also been demonstrated to possess autophagy-independent functions that magnify its significance and therapeutic potential. ATG5 interacts with various molecules for the execution of different processes implicated during physiological and pathological conditions. Furthermore, ATG5 genetic variants are associated with various ailments. This review discusses various autophagy-dependent and autophagy-independent roles of ATG5, highlights its various deleterious genetic variants reported until now, and various studies supporting it as a potential drug target.
Collapse
Affiliation(s)
- Harish Changotra
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Sargeet Kaur
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Suresh Singh Yadav
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Girdhari Lal Gupta
- Department of Pharmacology, School of Pharmacy and Technology Management, SVKM'S NMIMS, Shirpur, Maharashtra, India
| | - Jyoti Parkash
- Department of Zoology, School of Biological Sciences, Central University Punjab, Ghudda, Bathinda, Punjab, India
| | - Ajay Duseja
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
22
|
Bai R, Zhang T, Gao Y, Shu T, Zhou Y, Wang F, Chang X, Tang W, Zhu Y, Han X. Rab31, a receptor of advanced glycation end products (RAGE) interacting protein, inhibits AGE induced pancreatic β-cell apoptosis through the pAKT/BCL2 pathway. Endocr J 2022; 69:1015-1026. [PMID: 35314532 DOI: 10.1507/endocrj.ej21-0594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Receptor of advanced glycation end products (RAGE) mediates diverse signal transduction following ligand stimulation and plays an important role in diabetes complications and aging associated disease. We have previously verified that advanced glycation end products (AGE) bind to RAGE to cause pancreatic β-cell apoptosis through the mitochondrial pathway. However, the direct interacting protein(s) of RAGE in β cells has never been appreciated. In the present study, we utilized GST pull-down assay combined with mass spectrometry to identify the interacting proteins of the RAGE intracellular domain (C-terminal 43 amino acid of RAGE). Overall four RAGE interacting proteins, including Rab31, were identified with scores over 160. Rab31 was detected in three β-cell lines and confirmed to have interacted with RAGE via co-immunoprecipitation and immunostaining assays. This interaction was further enhanced by glycation-serum (GS) stimulation due to membrane distribution of Rab31 following treatment with GS. We further confirmed that Rab31 promoted RAGE endocytosis and inhibited GS-induced β-cell apoptosis through the pAKT/BCL2 pathway. These findings reveal a new RAGE interaction protein Rab31 that prevents AGE/RAGE-induced pancreatic β-cell apoptosis. Rab31 is therefore a promising therapeutic target for preserving functional β cells under diabetes conditions.
Collapse
Affiliation(s)
- Rongjie Bai
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China
| | - Tao Zhang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China
| | - Yan Gao
- Institute of Suzhou Biobank, Suzhou Center for Disease Prevention and Control, Suzhou 215004, China
- Suzhou Institute of Advanced Study in Public Health, Gusu School, Nanjing Medical University, Suzhou 215004, China
| | - Tingting Shu
- Department of Endocrinology, Geriatric Hospital of Nanjing Medical University, Nanjing 210024, China
| | - Yuncai Zhou
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China
| | - Fuqiang Wang
- Analysis Center, Nanjing Medical University, Nanjing 210029, China
| | - Xiaoai Chang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China
| | - Wei Tang
- Department of Endocrinology, Geriatric Hospital of Nanjing Medical University, Nanjing 210024, China
| | - Yunxia Zhu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
23
|
Salehi M, Amiri S, Ilghari D, Hasham LFA, Piri H. The Remarkable Roles of the Receptor for Advanced Glycation End Products (RAGE) and Its Soluble Isoforms in COVID-19: The Importance of RAGE Pathway in the Lung Injuries. Indian J Clin Biochem 2022; 38:159-171. [PMID: 35999871 PMCID: PMC9387879 DOI: 10.1007/s12291-022-01081-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/22/2022] [Indexed: 11/29/2022]
Abstract
The respiratory symptoms of acute respiratory distress syndrome (ARDS) in the coronavirus disease 2019 (COVID-19) patients is associated with accumulation of pre-inflammatory molecules such as advanced glycation end-products (AGES), calprotectin, high mobility group box family-1 (HMGB1), cytokines, angiotensin converting enzyme 2 (ACE2), and other molecules in the alveolar space of lungs and plasma. The receptor for advanced glycation end products (RAGEs), which is mediated by the mitogen-activated protein kinase (MAPK), plays a critical role in the severity of chronic inflammatory diseases such as diabetes mellitus (DM) and ARDS. The RAGE gene is most expressed in the alveolar epithelial cells (AECs) of the pulmonary system. Several clinical trials are now being conducted to determine the possible association between the levels of soluble isoforms of RAGE (sRAGE and esRAGE) and the severity of the disease in patients with ARDS and acute lung injury (ALI). In the current article, we reviewed the most recent studies on the RAGE/ligands axis and sRAGE/esRAGE levels in acute respiratory illness, with a focus on COVID-19–associated ARDS (CARDS) patients. According to the research conducted so far, sRAGE/esRAGE measurements in patients with CARDS can be used as a powerful chemical indicator among other biomarkers for assessment of early pulmonary involvement. Furthermore, inhibiting RAGE/MAPK and Angiotensin II receptor type 1 (ATR1) in CARDS patients can be a powerful strategy for diminishing cytokine storm and severe respiratory symptoms.
Collapse
Affiliation(s)
- Mitra Salehi
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Shahin Amiri
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Student Research Committee, Pasteur Institute of Iran, Tehran, Iran
| | - Dariush Ilghari
- Midland Memorial Hospital, 400 Rosalind Redfern Grover Pkwy, Midland, TX 79701 USA
| | | | - Hossein Piri
- Department of Biochemistry and Genetics, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
- Cellular and Molecular Research Center, Research Institute for Prevention of Non Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
24
|
Rochín-Hernández LS, Rochín-Hernández LJ, Flores-Cotera LB. Endophytes, a Potential Source of Bioactive Compounds to Curtail the Formation–Accumulation of Advanced Glycation End Products: A Review. Molecules 2022; 27:molecules27144469. [PMID: 35889349 PMCID: PMC9322667 DOI: 10.3390/molecules27144469] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/02/2022] [Accepted: 07/03/2022] [Indexed: 02/04/2023] Open
Abstract
Endophytes, microorganisms that live in the internal tissues and organs of the plants, are known to produce numerous bioactive compounds, including, at times, some phytochemicals of their host plant. For such reason, endophytes have been quoted as a potential source for discovering bioactive compounds, particularly, of medical interest. Currently, many non-communicable diseases are threatening global human health, noticeably: diabetes, neurodegenerative diseases, cancer, and other ailment related to chronic inflammation and ageing. Intriguingly, the pathogenesis and development of these diseases have been linked to an excessive formation and accumulation of advanced glycation end products (AGEs). AGEs are a heterogeneous group of compounds that can alter the conformation, function, and lifetime of proteins. Therefore, compounds that prevent the formation and consequent accumulation of AGEs (AntiAGEs compounds) could be useful to delay the progress of some chronic diseases, and/or harmful effects of undue AGEs accumulation. Despite the remarkable ability of endophytes to produce bioactive compounds, most of the natural antiAGEs compounds reported in the literature are derived from plants. Accordingly, this work covers 26 plant antiAGEs compounds and some derivatives that have been reported as endophytic metabolites, and discusses the importance, possible advantages, and challenges of using endophytes as a potential source of antiAGEs compounds.
Collapse
Affiliation(s)
- Lory Sthephany Rochín-Hernández
- Department of Biotechnology and Bioengineering, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, México City 07360, Mexico;
| | - Lory Jhenifer Rochín-Hernández
- Department of Biomedicine and Molecular Biology, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, México City 07360, Mexico;
| | - Luis Bernardo Flores-Cotera
- Department of Biotechnology and Bioengineering, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, México City 07360, Mexico;
- Correspondence: ; Tel.: +55-13499526
| |
Collapse
|
25
|
Hirschi-Budge KM, Tsai KYF, Curtis KL, Davis GS, Theurer BK, Kruyer AMM, Homer KW, Chang A, Van Ry PM, Arroyo JA, Reynolds PR. RAGE signaling during tobacco smoke-induced lung inflammation and potential therapeutic utility of SAGEs. BMC Pulm Med 2022; 22:160. [PMID: 35473605 PMCID: PMC9044720 DOI: 10.1186/s12890-022-01935-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 04/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Smoke exposure culminates as a progressive lung complication involving airway inflammation and remodeling. While primary smoke poses the greatest risk, nearly half of the US population is also at risk due to exposure to secondhand smoke (SHS). METHODS We used WT, RAGE-/- (KO), and Tet-inducible lung-specific RAGE overexpressing transgenic (TG) mice to study the role of RAGE during short-term responses to SHS. We evaluated SHS effects in mice with and without semi-synthetic glycosaminoglycan ethers (SAGEs), which are anionic, partially lipophilic sulfated polysaccharide derivatives known to inhibit RAGE signaling. TG Mice were weaned and fed doxycycline to induce RAGE at postnatal day (PN) 30. At PN40, mice from each line were exposed to room air (RA) or SHS from three Kentucky 3R4F research cigarettes via a nose-only delivery system (Scireq Scientific, Montreal, Canada) five days a week and i.p. injections of PBS or SAGE (30 mg/kg body weight) occurred three times per week from PN40-70 before mice were sacrificed on PN70. RESULTS RAGE mRNA and protein expression was elevated following SHS exposure of control and TG mice and not detected in RAGE KO mice. Bronchoalveolar lavage fluid (BALF) analysis revealed RAGE-mediated influence on inflammatory cell diapedesis, total protein, and pro-inflammatory mediators following exposure. Lung histological assessment revealed indistinguishable morphology following exposure, yet parenchymal apoptosis was increased. Inflammatory signaling intermediates such as Ras and NF-κB, as well as downstream responses were influenced by the availability of RAGE, as evidenced by RAGE KO and SAGE treatment. CONCLUSIONS These data provide fascinating insight suggesting therapeutic potential for the use of RAGE inhibitors in lungs exposed to SHS smoke.
Collapse
Affiliation(s)
- Kelsey M Hirschi-Budge
- Lung and Placenta Laboratory, Department of Cell Biology and Physiology, Brigham Young University, Provo, UT, USA
| | - Kary Y F Tsai
- Lung and Placenta Laboratory, Department of Cell Biology and Physiology, Brigham Young University, Provo, UT, USA
| | - Katrina L Curtis
- Lung and Placenta Laboratory, Department of Cell Biology and Physiology, Brigham Young University, Provo, UT, USA
| | - Gregg S Davis
- Lung and Placenta Laboratory, Department of Cell Biology and Physiology, Brigham Young University, Provo, UT, USA
| | - Benjamin K Theurer
- Lung and Placenta Laboratory, Department of Cell Biology and Physiology, Brigham Young University, Provo, UT, USA
| | - Anica M M Kruyer
- Lung and Placenta Laboratory, Department of Cell Biology and Physiology, Brigham Young University, Provo, UT, USA
| | - Kyle W Homer
- Lung and Placenta Laboratory, Department of Cell Biology and Physiology, Brigham Young University, Provo, UT, USA
| | - Ashley Chang
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Pam M Van Ry
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Juan A Arroyo
- Lung and Placenta Laboratory, Department of Cell Biology and Physiology, Brigham Young University, Provo, UT, USA
| | - Paul R Reynolds
- Lung and Placenta Laboratory, Department of Cell Biology and Physiology, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
26
|
Bronowicka-Szydełko A, Krzystek-Korpacka M, Gacka M, Pietkiewicz J, Jakobsche-Policht U, Gamian A. Association of Novel Advanced Glycation End-Product (AGE10) with Complications of Diabetes as Measured by Enzyme-Linked Immunosorbent Assay. J Clin Med 2021; 10:jcm10194499. [PMID: 34640517 PMCID: PMC8509253 DOI: 10.3390/jcm10194499] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 02/06/2023] Open
Abstract
Advanced glycation end-products (AGEs) contribute to vascular complications and organ damage in diabetes. The unique AGE epitope (AGE10) has recently been identified in human serum using synthetic melibiose-derived AGE (MAGE). We aimed at developing ELISA for AGE10 quantification, determining whether AGE10 is present in diabetic patients (n = 82), and evaluating its association with diabetic complications. In a competitive ELISA developed, the reaction of synthetic MAGE with anti-MAGE was inhibited by physiological AGE10 present in serum. In this assay, new murine IgE anti-MAGE monoclonal antibodies, which do not recognize conventional AGEs, a synthetic MAGE used to coat the plate, and LMW-MAGE (low molecular mass MAGE) necessary to plot a standard curve were used. AGE10 was significantly higher in patients with microangiopathy, in whom it depended on treatment, being lower in patients treated with aspirin. AGE10 levels were positively correlated with estimated glomerular filtration rate (eGFR) and negatively with creatinine. As a marker of stage ≥3 chronic kidney disease or microangiopathy, AGE10 displayed moderate overall accuracy (respectively, 69% and 71%) and good sensitivity (82.6% and 83.3%) but poor specificity (58.1% and 57.8%). In conclusion, newly developed immunoassay allows for AGE10 quantification. AGE10 elevation is associated with microangiopathy while its decrease accompanies stage ≥3 chronic kidney disease.
Collapse
Affiliation(s)
- Agnieszka Bronowicka-Szydełko
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.K.-K.); (J.P.)
- Correspondence:
| | - Małgorzata Krzystek-Korpacka
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.K.-K.); (J.P.)
| | - Małgorzata Gacka
- Department of Angiology, Diabetes and Hypertension, Wroclaw Medical University, 50-556 Wroclaw, Poland; (M.G.); (U.J.-P.)
| | - Jadwiga Pietkiewicz
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.K.-K.); (J.P.)
| | - Urszula Jakobsche-Policht
- Department of Angiology, Diabetes and Hypertension, Wroclaw Medical University, 50-556 Wroclaw, Poland; (M.G.); (U.J.-P.)
| | - Andrzej Gamian
- Laboratory of Medical Microbiology, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland;
| |
Collapse
|
27
|
Taniguchi A, Tsuge M, Miyahara N, Tsukahara H. Reactive Oxygen Species and Antioxidative Defense in Chronic Obstructive Pulmonary Disease. Antioxidants (Basel) 2021; 10:antiox10101537. [PMID: 34679673 PMCID: PMC8533053 DOI: 10.3390/antiox10101537] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 02/06/2023] Open
Abstract
The respiratory system is continuously exposed to endogenous and exogenous oxidants. Chronic obstructive pulmonary disease (COPD) is characterized by chronic inflammation of the airways, leading to the destruction of lung parenchyma (emphysema) and declining pulmonary function. It is increasingly obvious that reactive oxygen species (ROS) and reactive nitrogen species (RNS) contribute to the progression and amplification of the inflammatory responses related to this disease. First, we described the association between cigarette smoking, the most representative exogenous oxidant, and COPD and then presented the multiple pathophysiological aspects of ROS and antioxidative defense systems in the development and progression of COPD. Second, the relationship between nitric oxide system (endothelial) dysfunction and oxidative stress has been discussed. Third, we have provided data on the use of these biomarkers in the pathogenetic mechanisms involved in COPD and its progression and presented an overview of oxidative stress biomarkers having clinical applications in respiratory medicine, including those in exhaled breath, as per recent observations. Finally, we explained the findings of recent clinical and experimental studies evaluating the efficacy of antioxidative interventions for COPD. Future breakthroughs in antioxidative therapy may provide a promising therapeutic strategy for the prevention and treatment of COPD.
Collapse
Affiliation(s)
- Akihiko Taniguchi
- Department of Hematology, Oncology, Allergy and Respiratory Medicine, Okayama University Academic Field of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8558, Japan;
| | - Mitsuru Tsuge
- Department of Pediatrics, Okayama University Academic Field of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8558, Japan;
| | - Nobuaki Miyahara
- Department of Medical Technology, Okayama University Academic Field of Health Sciences, Okayama 700-8558, Japan;
| | - Hirokazu Tsukahara
- Department of Pediatrics, Okayama University Academic Field of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8558, Japan;
- Correspondence:
| |
Collapse
|
28
|
Cigarette Smoke Condensate Exposure Induces Receptor for Advanced Glycation End-Products (RAGE)-Dependent Sterile Inflammation in Amniotic Epithelial Cells. Int J Mol Sci 2021; 22:ijms22158345. [PMID: 34361111 PMCID: PMC8348034 DOI: 10.3390/ijms22158345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/30/2021] [Accepted: 07/31/2021] [Indexed: 12/26/2022] Open
Abstract
Maternal smoking is a risk factor of preterm prelabor rupture of the fetal membranes (pPROM), which is responsible for 30% of preterm births worldwide. Cigarettes induce oxidative stress and inflammation, mechanisms both implicated in fetal membranes (FM) weakening. We hypothesized that the receptor for advanced glycation end-products (RAGE) and its ligands can result in cigarette-dependent inflammation. FM explants and amniotic epithelial cells (AECs) were treated with cigarette smoke condensate (CSC), combined or not with RAGE antagonist peptide (RAP), an inhibitor of RAGE. Cell suffering was evaluated by measuring lactate dehydrogenase (LDH) medium-release. Extracellular HMGB1 (a RAGE ligand) release by amnion and choriodecidua explants were checked by western blot. NF-κB pathway induction was determined by a luciferase gene reporter assay, and inflammation was evaluated by cytokine RT-qPCR and protein quantification. Gelatinase activity was assessed using a specific assay. CSC induced cell suffering and HMGB1 secretion only in the amnion, which is directly associated with a RAGE-dependent response. CSC also affected AECs by inducing inflammation (cytokine release and NFκB activation) and gelatinase activity through RAGE engagement, which was linked to an increase in extracellular matrix degradation. This RAGE dependent CSC-induced inflammation associated with an increase of gelatinase activity could explain a pathological FM weakening directly linked to pPROM.
Collapse
|
29
|
CUPRAC-Reactive Advanced Glycation End Products as Prognostic Markers of Human Acute Myocardial Infarction. Antioxidants (Basel) 2021; 10:antiox10030434. [PMID: 33799852 PMCID: PMC7999086 DOI: 10.3390/antiox10030434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 01/12/2023] Open
Abstract
Cardiovascular disorders, especially acute coronary syndromes, are among the leading causes of mortality worldwide, and advanced glycation end products (AGEs) are associated with cardiovascular disease and serve as biomarkers for diagnosis and prediction. In this study, we investigated the utility of AGEs as prognostic biomarkers for acute myocardial infarction (AMI). We measured AGEs in serum samples of AMI patients (N = 27) using the cupric ion reducing antioxidant capacity (CUPRAC) method on days 0, 2, 14, 30, and 90 after AMI, and the correlation of serum AGE concentration and post-AMI duration was determined using Spearman's correlation analysis. Compared to total serum protein, the level of CUPRAC reactive AGEs was increased from 0.9 to 2.1 times between 0-90 days after AMI incident. Furthermore, the glycation pattern and Spearman's correlation analysis revealed four dominant patterns of AGE concentration changes in AMI patients: stable AGE levels (straight line with no peak), continuous increase, single peak pattern, and multimodal pattern (two or more peaks). In conclusion, CUPRAC-reactive AGEs can be developed as a potential prognostic biomarker for AMI through long-term clinical studies.
Collapse
|
30
|
Nie C, Li Y, Qian H, Ying H, Wang L. Advanced glycation end products in food and their effects on intestinal tract. Crit Rev Food Sci Nutr 2020; 62:3103-3115. [DOI: 10.1080/10408398.2020.1863904] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Chenzhipeng Nie
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Ying
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|