1
|
Bhargavi G, Subbian S. The causes and consequences of trained immunity in myeloid cells. Front Immunol 2024; 15:1365127. [PMID: 38665915 PMCID: PMC11043514 DOI: 10.3389/fimmu.2024.1365127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Conventionally, immunity in humans has been classified as innate and adaptive, with the concept that only the latter type has an immunological memory/recall response against specific antigens or pathogens. Recently, a new concept of trained immunity (a.k.a. innate memory response) has emerged. According to this concept, innate immune cells can exhibit enhanced responsiveness to subsequent challenges, after initial stimulation with antigen/pathogen. Thus, trained immunity enables the innate immune cells to respond robustly and non-specifically through exposure or re-exposure to antigens/infections or vaccines, providing enhanced resistance to unrelated pathogens or reduced infection severity. For example, individuals vaccinated with BCG to protect against tuberculosis were also protected from malaria and SARS-CoV-2 infections. Epigenetic modifications such as histone acetylation and metabolic reprogramming (e.g. shift towards glycolysis) and their inter-linked regulations are the key factors underpinning the immune activation of trained cells. The integrated metabolic and epigenetic rewiring generates sufficient metabolic intermediates, which is crucial to meet the energy demand required to produce proinflammatory and antimicrobial responses by the trained cells. These factors also determine the efficacy and durability of trained immunity. Importantly, the signaling pathways and regulatory molecules of trained immunity can be harnessed as potential targets for developing novel intervention strategies, such as better vaccines and immunotherapies against infectious (e.g., sepsis) and non-infectious (e.g., cancer) diseases. However, aberrant inflammation caused by inappropriate onset of trained immunity can lead to severe autoimmune pathological consequences, (e.g., systemic sclerosis and granulomatosis). In this review, we provide an overview of conventional innate and adaptive immunity and summarize various mechanistic factors associated with the onset and regulation of trained immunity, focusing on immunologic, metabolic, and epigenetic changes in myeloid cells. This review underscores the transformative potential of trained immunity in immunology, paving the way for developing novel therapeutic strategies for various infectious and non-infectious diseases that leverage innate immune memory.
Collapse
Affiliation(s)
| | - Selvakumar Subbian
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| |
Collapse
|
2
|
Bulut O, Temba GS, Koeken VACM, Moorlag SJCFM, de Bree LCJ, Mourits VP, Kullaya VI, Jaeger M, Qi C, Riksen NP, Domínguez-Andrés J, Xu CJ, Joosten LAB, Li Y, de Mast Q, Netea MG. Common and distinct metabolomic markers related to immune aging in Western European and East African populations. Mech Ageing Dev 2024; 218:111916. [PMID: 38364983 DOI: 10.1016/j.mad.2024.111916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/30/2024] [Accepted: 02/09/2024] [Indexed: 02/18/2024]
Abstract
In old age, impaired immunity causes high susceptibility to infections and cancer, higher morbidity and mortality, and poorer vaccination efficiency. Many factors, such as genetics, diet, and lifestyle, impact aging. This study aimed to investigate how immune responses change with age in healthy Dutch and Tanzanian individuals and identify common metabolites associated with an aged immune profile. We performed untargeted metabolomics from plasma to identify age-associated metabolites, and we correlated their concentrations with ex-vivo cytokine production by immune cells, DNA methylation-based epigenetic aging, and telomere length. Innate immune responses were impacted differently by age in Dutch and Tanzanian cohorts. Age-related decline in steroid hormone precursors common in both populations was associated with higher systemic inflammation and lower cytokine responses. Hippurate and 2-phenylacetamide, commonly more abundant in older individuals, were negatively correlated with cytokine responses and telomere length and positively correlated with epigenetic aging. Lastly, we identified several metabolites that might contribute to the stronger decline in innate immunity with age in Tanzanians. The shared metabolomic signatures of the two cohorts suggest common mechanisms of immune aging, revealing metabolites with potential contributions. These findings also reflect genetic or environmental effects on circulating metabolites that modulate immune responses.
Collapse
Affiliation(s)
- Ozlem Bulut
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen 6525GA the Netherlands.
| | - Godfrey S Temba
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen 6525GA the Netherlands; Department of Medical Biochemistry and Molecular Biology, Kilimanjaro Christian Medical University College (KCMUCo), Moshi, Tanzania
| | - Valerie A C M Koeken
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen 6525GA the Netherlands; Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine (CiiM) & TWINCORE, joint ventures between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover 30625, Germany
| | - Simone J C F M Moorlag
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen 6525GA the Netherlands
| | - L Charlotte J de Bree
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen 6525GA the Netherlands
| | - Vera P Mourits
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen 6525GA the Netherlands
| | - Vesla I Kullaya
- Department of Medical Biochemistry and Molecular Biology, Kilimanjaro Christian Medical University College (KCMUCo), Moshi, Tanzania; Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Center, Moshi, Tanzania
| | - Martin Jaeger
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen 6525GA the Netherlands
| | - Cancan Qi
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen 6525GA the Netherlands; Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine (CiiM) & TWINCORE, joint ventures between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover 30625, Germany
| | - Niels P Riksen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen 6525GA the Netherlands
| | - Jorge Domínguez-Andrés
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen 6525GA the Netherlands
| | - Cheng-Jian Xu
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen 6525GA the Netherlands; Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine (CiiM) & TWINCORE, joint ventures between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover 30625, Germany
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen 6525GA the Netherlands; Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Yang Li
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen 6525GA the Netherlands; Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine (CiiM) & TWINCORE, joint ventures between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover 30625, Germany
| | - Quirijn de Mast
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen 6525GA the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen 6525GA the Netherlands; Department of Immunology and Metabolism, Life & Medical Sciences Institute, University of Bonn, Bonn53115 Germany
| |
Collapse
|
3
|
Cardinali DP, Pandi-Perumal SR, Brown GM. Melatonin as a Chronobiotic and Cytoprotector in Non-communicable Diseases: More than an Antioxidant. Subcell Biochem 2024; 107:217-244. [PMID: 39693027 DOI: 10.1007/978-3-031-66768-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
A circadian disruption, manifested by disturbed sleep and low-grade inflammation, is commonly seen in noncommunicable diseases (NCDs). Cardiovascular, respiratory and renal disorders, diabetes and the metabolic syndrome, cancer, and neurodegenerative diseases are among the most common NCDs prevalent in today's 24-h/7 days Society. The decline in plasma melatonin, which is a conserved phylogenetic molecule across all known aerobic creatures, is a constant feature in NCDs. The daily evening melatonin surge synchronizes both the central pacemaker located in the hypothalamic suprachiasmatic nuclei (SCN) and myriads of cellular clocks in the periphery ("chronobiotic effect"). Melatonin is the prototypical endogenous chronobiotic agent. Several meta-analyses and consensus studies support the use of melatonin to treat sleep/wake cycle disturbances associated with NCDs. Melatonin also has cytoprotective properties, acting primarily not only as an antioxidant by buffering free radicals, but also by regulating inflammation, down-regulating pro-inflammatory cytokines, suppressing low-grade inflammation, and preventing insulin resistance, among other effects. Melatonin's phylogenetic conservation is explained by its versatility of effects. In animal models of NCDs, melatonin treatment prevents a wide range of low-inflammation-linked alterations. As a result, the therapeutic efficacy of melatonin as a chronobiotic/cytoprotective drug has been proposed. Sirtuins 1 and 3 are at the heart of melatonin's chronobiotic and cytoprotective function, acting as accessory components or downstream elements of circadian oscillators and exhibiting properties such as mitochondrial protection. Allometric calculations based on animal research show that melatonin's cytoprotective benefits may require high doses in humans (in the 100 mg/day range). If melatonin is expected to improve health in NCDs, the low doses currently used in clinical trials (i.e., 2-10 mg) are unlikely to be beneficial. Multicentre double-blind studies are required to determine the potential utility of melatonin in health promotion. Moreover, melatonin dosage and levels used should be re-evaluated based on preclinical research information.
Collapse
Affiliation(s)
- Daniel P Cardinali
- Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina.
| | - Seithikurippu R Pandi-Perumal
- Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Gregory M Brown
- Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Geng Y, Wang Z, Xu X, Sun X, Dong X, Luo Y, Sun X. Extensive therapeutic effects, underlying molecular mechanisms and disease treatment prediction of Metformin: a systematic review. Transl Res 2024; 263:73-92. [PMID: 37567440 DOI: 10.1016/j.trsl.2023.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023]
Abstract
Metformin (Met), a first-line management for type 2 diabetes mellitus, has been expansively employed and studied with results indicating its therapeutic potential extending beyond glycemic control. Beyond its established role, this therapeutic drug demonstrates a broad spectrum of action encompassing over 60 disorders, encompassing metabolic conditions, inflammatory disorders, carcinomas, cardiovascular diseases, and cerebrovascular pathologies. There is clear evidence of Met's action targeting specific nodes in the molecular pathways of these diseases and, intriguingly, interactions with the intestinal microbiota and epigenetic processes have been explored. Furthermore, novel Met derivatives with structural modifications tailored to diverse diseases have been synthesized and assessed. This manuscript proffers a comprehensive thematic review of the diseases amenable to Met treatment, elucidates their molecular mechanisms, and employs informatics technology to prospect future therapeutic applications of Met. These data and insights gleaned considerably contribute to enriching our understanding and appreciation of Met's far-reaching clinical potential and therapeutic applicability.
Collapse
Affiliation(s)
- Yifei Geng
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Zhen Wang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Xiaoyu Xu
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Xiao Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Xi Dong
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China.
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China.
| |
Collapse
|
5
|
Chen H, Guo Z, Sun Y, Dai X. The immunometabolic reprogramming of microglia in Alzheimer's disease. Neurochem Int 2023; 171:105614. [PMID: 37748710 DOI: 10.1016/j.neuint.2023.105614] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder (NDD). In the central nervous system (CNS), immune cells like microglia could reprogram intracellular metabolism to alter or exert cellular immune functions in response to environmental stimuli. In AD, microglia could be activated and differentiated into pro-inflammatory or anti-inflammatory phenotypes, and these differences in cellular phenotypes resulted in variance in cellular energy metabolism. Considering the enormous energy requirement of microglia for immune functions, the changes in mitochondria-centered energy metabolism and substrates of microglia are crucial for the cellular regulation of immune responses. Here we reviewed the mechanisms of microglial metabolic reprogramming by analyzing their flexible metabolic patterns and changes that occurred in their metabolism during the development of AD. Further, we summarized the role of drugs in modulating immunometabolic reprogramming to prevent neuroinflammation, which may shed light on a new research direction for AD treatment.
Collapse
Affiliation(s)
- Hongli Chen
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, Beijing, 100023, China
| | - Zichen Guo
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, Beijing, 100023, China
| | - Yaxuan Sun
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, Beijing, 100023, China
| | - Xueling Dai
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, Beijing, 100023, China.
| |
Collapse
|
6
|
Geckin B, Kilic G, Debisarun PA, Föhse K, Rodríguez-Luna A, Fernández-González P, Sánchez AL, Domínguez-Andrés J. The fungal-derived compound AM3 modulates pro-inflammatory cytokine production and skews the differentiation of human monocytes. Front Immunol 2023; 14:1165683. [PMID: 37876931 PMCID: PMC10591448 DOI: 10.3389/fimmu.2023.1165683] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 09/26/2023] [Indexed: 10/26/2023] Open
Abstract
The proper functioning of the immune system depends on an appropriate balance between pro-inflammation and anti-inflammation. When the balance is disrupted and the system is excessively biased towards inflammation, immune responses cannot return within the normal range, which favors the onset of diseases of autoimmune or inflammatory nature. In this scenario, it is fundamental to find new compounds that can help restore this balance and contribute to the normal functioning of the immune system in humans. Here, we show the properties of a fungal compound with a strong safety profile in humans, AM3, as an immunomodulatory molecule to decrease excessive cytokine production in human cells. Our results present that AM3 treatment of human peripheral blood mononuclear cells and monocytes decreased their pro-inflammatory cytokine secretion following the challenge with bacterial lipopolysaccharide. Additionally, AM3 skewed the differentiation profile of human monocytes to macrophages towards a non-inflammatory phenotype without inducing tolerance, meaning these cells kept their capacity to respond to different stimuli. These effects were similar in young and elderly individuals. Thus, the fungal compound, AM3 may help reduce excessive immune activation in inflammatory conditions and keep the immune responses within a normal homeostatic range, regardless of the age of the individual.
Collapse
Affiliation(s)
- Büsra Geckin
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Gizem Kilic
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Priya A. Debisarun
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Konstantin Föhse
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | | | | | | | - Jorge Domínguez-Andrés
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
7
|
Jin Y, Wei C, Huang X, Zhang D, Zhang L, Li X. Bioinformatics Analysis and Experimental Verification of Exercise for Aging Mice in Different Brain Regions Based on Transcriptome Sequencing. Life (Basel) 2023; 13:1988. [PMID: 37895370 PMCID: PMC10608440 DOI: 10.3390/life13101988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
PURPOSE Physical exercise mitigates the effects of aging and cognitive decline. However, the precise neurobiological mechanisms underlying this phenomenon remain unclear. The primary aim of this study was to investigate the protective effect of exercise on age-related memory deficits in the prefrontal cortex (PFC) and hippocampus using bioinformatic analysis and biochemical verification. METHODS Young and aging mice were subjected to natural feeding or treadmill exercise (12 m/min, 8 weeks). Cognitive function was accessed using the Barnes maze and novel object recognition. Bioinformatic analysis was performed to identify co-expressed genes in different groups and brain regions. The selected genes and pathways were validated using RT-qPCR. RESULTS Regular exercise significantly ameliorated age-related cognitive deficits. Four up-regulated targets (Ifi27l2a, Irf7, Oas1b, Ifit1) and one down-regulation (Septin2) were reversed by exercise, demonstrating the underlying mechanisms of cognitive functions induced by aging with exercise in the hippocampus and PFC. The Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses indicated that the NOD-like receptor signaling pathway was inhibited in the neuroinflammation effects of exercise in aging mice in both brain regions. CONCLUSION Exercise enhances age-related learning and memory deficits. This beneficial effect may be attributed to the changes in five up/down-regulated genes and the NOD-like receptor signaling pathway in both the hippocampus and PFC. These findings establish the modulation of neuroinflammation as a pivotal molecular mechanism supporting exercise intervention in the brain aging process.
Collapse
Affiliation(s)
- Yu Jin
- School of Sport Medicine and Health, Chengdu Sport University, Chengdu 610041, China; (Y.J.); (C.W.); (X.H.); (D.Z.)
| | - Changling Wei
- School of Sport Medicine and Health, Chengdu Sport University, Chengdu 610041, China; (Y.J.); (C.W.); (X.H.); (D.Z.)
| | - Xiaohan Huang
- School of Sport Medicine and Health, Chengdu Sport University, Chengdu 610041, China; (Y.J.); (C.W.); (X.H.); (D.Z.)
| | - Deman Zhang
- School of Sport Medicine and Health, Chengdu Sport University, Chengdu 610041, China; (Y.J.); (C.W.); (X.H.); (D.Z.)
| | - Li Zhang
- Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China;
| | - Xue Li
- School of Sport Medicine and Health, Chengdu Sport University, Chengdu 610041, China; (Y.J.); (C.W.); (X.H.); (D.Z.)
| |
Collapse
|
8
|
MohanKumar SMJ, Murugan A, Palaniyappan A, MohanKumar PS. Role of cytokines and reactive oxygen species in brain aging. Mech Ageing Dev 2023; 214:111855. [PMID: 37541628 PMCID: PMC10528856 DOI: 10.1016/j.mad.2023.111855] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Aging is a complex process that produces profound effects on the brain. Although a number of external factors can promote the initiation and progression of brain aging, peripheral and central changes in the immune cells with time, also play an important role. Immunosenescence, which is an age-associated decline in immune function and Inflammaging, a low-grade inflammatory state in the aging brain contribute to an elevation in cytokine and reactive oxygen species production. In this review, we focus on the pro-inflammatory state that is established in the brain as a consequence of these two phenomena and the resulting detrimental changes in brain structure, function and repair that lead to a decline in central and neuroendocrine function.
Collapse
Affiliation(s)
- Sheba M J MohanKumar
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.
| | - Abarna Murugan
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Arunkumar Palaniyappan
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Puliyur S MohanKumar
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
9
|
Capri M, Conte M, Ciurca E, Pirazzini C, Garagnani P, Santoro A, Longo F, Salvioli S, Lau P, Moeller R, Jordan J, Illig T, Villanueva MM, Gruber M, Bürkle A, Franceschi C, Rittweger J. Long-term human spaceflight and inflammaging: Does it promote aging? Ageing Res Rev 2023; 87:101909. [PMID: 36918115 DOI: 10.1016/j.arr.2023.101909] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
Spaceflight and its associated stressors, such as microgravity, radiation exposure, confinement, circadian derailment and disruptive workloads represent an unprecedented type of exposome that is entirely novel from an evolutionary stand point. Within this perspective, we aimed to review the effects of prolonged spaceflight on immune-neuroendocrine systems, brain and brain-gut axis, cardiovascular system and musculoskeletal apparatus, highlighting in particular the similarities with an accelerated aging process. In particular, spaceflight-induced muscle atrophy/sarcopenia and bone loss, vascular and metabolic changes, hyper and hypo reaction of innate and adaptive immune system appear to be modifications shared with the aging process. Most of these modifications are mediated by molecular events that include oxidative and mitochondrial stress, autophagy, DNA damage repair and telomere length alteration, among others, which directly or indirectly converge on the activation of an inflammatory response. According to the inflammaging theory of aging, such an inflammatory response could be a driver of an acceleration of the normal, physiological rate of aging and it is likely that all the systemic modifications in turn lead to an increase of inflammaging in a sort of vicious cycle. The most updated countermeasures to fight these modifications will be also discussed in the light of their possible application not only for astronauts' benefit, but also for older adults on the ground.
Collapse
Affiliation(s)
- Miriam Capri
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy; Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy
| | - Maria Conte
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy; Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy.
| | - Erika Ciurca
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy
| | - Chiara Pirazzini
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy
| | - Paolo Garagnani
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy; Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy; Clinical Chemistry Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden; CNR Institute of Molecular Genetics, Unit of Bologna, Bologna, Italy; Center for Applied Biomedical Research (CRBA), St. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Aurelia Santoro
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy; Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy
| | - Federica Longo
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy
| | - Stefano Salvioli
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Patrick Lau
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Ralf Moeller
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Jens Jordan
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany; Medical Faculty, University of Cologne, Cologne, Germany
| | - Thomas Illig
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Maria-Moreno Villanueva
- Human Performance Research Centre, Department of Sport Science, University of Konstanz, Konstanz, Germany
| | - Markus Gruber
- Human Performance Research Centre, Department of Sport Science, University of Konstanz, Konstanz, Germany
| | - Alexander Bürkle
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Claudio Franceschi
- Department of Applied Mathematics of the Institute of ITMM, National Research Lobachevsky State University of Nizhny Novgorod, the Russian Federation
| | - Jörn Rittweger
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany; Department of Pediatrics and Adolescent Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
10
|
Lajqi T, Köstlin-Gille N, Bauer R, Zarogiannis SG, Lajqi E, Ajeti V, Dietz S, Kranig SA, Rühle J, Demaj A, Hebel J, Bartosova M, Frommhold D, Hudalla H, Gille C. Training vs. Tolerance: The Yin/Yang of the Innate Immune System. Biomedicines 2023; 11:766. [PMID: 36979747 PMCID: PMC10045728 DOI: 10.3390/biomedicines11030766] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
For almost nearly a century, memory functions have been attributed only to acquired immune cells. Lately, this paradigm has been challenged by an increasing number of studies revealing that innate immune cells are capable of exhibiting memory-like features resulting in increased responsiveness to subsequent challenges, a process known as trained immunity (known also as innate memory). In contrast, the refractory state of endotoxin tolerance has been defined as an immunosuppressive state of myeloid cells portrayed by a significant reduction in the inflammatory capacity. Both training as well tolerance as adaptive features are reported to be accompanied by epigenetic and metabolic alterations occurring in cells. While training conveys proper protection against secondary infections, the induction of endotoxin tolerance promotes repairing mechanisms in the cells. Consequently, the inappropriate induction of these adaptive cues may trigger maladaptive effects, promoting an increased susceptibility to secondary infections-tolerance, or contribute to the progression of the inflammatory disorder-trained immunity. This review aims at the discussion of these opposing manners of innate immune and non-immune cells, describing the molecular, metabolic and epigenetic mechanisms involved and interpreting the clinical implications in various inflammatory pathologies.
Collapse
Affiliation(s)
- Trim Lajqi
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany
| | - Natascha Köstlin-Gille
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany
- Department of Neonatology, University of Tübingen, D-72076 Tübingen, Germany
| | - Reinhard Bauer
- Institute of Molecular Cell Biology, Jena University Hospital, D-07745 Jena, Germany
| | - Sotirios G. Zarogiannis
- Department of Physiology, School of Health Sciences, Faculty of Medicine, University of Thessaly, GR-41500 Larissa, Greece
| | - Esra Lajqi
- Department of Radiation Oncology, Heidelberg University Hospital, D-69120 Heidelberg, Germany
| | - Valdrina Ajeti
- Department of Pharmacy, Alma Mater Europaea—Campus College Rezonanca, XK-10000 Pristina, Kosovo
| | - Stefanie Dietz
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany
- Department of Neonatology, University of Tübingen, D-72076 Tübingen, Germany
| | - Simon A. Kranig
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany
| | - Jessica Rühle
- Department of Neonatology, University of Tübingen, D-72076 Tübingen, Germany
| | - Ardian Demaj
- Faculty of Medical Sciences, University of Tetovo, MK-1200 Tetova, North Macedonia
| | - Janine Hebel
- Department of Neonatology, University of Tübingen, D-72076 Tübingen, Germany
| | - Maria Bartosova
- Center for Pediatric and Adolescent Medicine Heidelberg, University of Heidelberg, D-69120 Heidelberg, Germany
| | - David Frommhold
- Klinik für Kinderheilkunde und Jugendmedizin, D-87700 Memmingen, Germany
| | - Hannes Hudalla
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany
| | - Christian Gille
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany
| |
Collapse
|
11
|
Brooks CN, Wight ME, Azeez OE, Bleich RM, Zwetsloot KA. Growing old together: What we know about the influence of diet and exercise on the aging host's gut microbiome. Front Sports Act Living 2023; 5:1168731. [PMID: 37139301 PMCID: PMC10149677 DOI: 10.3389/fspor.2023.1168731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 03/28/2023] [Indexed: 05/05/2023] Open
Abstract
The immune system is critical in defending against infection from pathogenic microorganisms. Individuals with weakened immune systems, such as the elderly, are more susceptible to infections and developing autoimmune and inflammatory diseases. The gut microbiome contains a plethora of bacteria and other microorganisms, which collectively plays a significant role in immune function and homeostasis. Gut microbiota are considered to be highly influential on host health and immune function. Therefore, dysbiosis of the microbiota could be a major contributor to the elevated incidence of multiple age-related pathologies. While there seems to be a general consensus that the composition of gut microbiota changes with age, very little is known about how diet and exercise might influence the aging microbiome. Here, we examine the current state of the literature regarding alterations to the gut microbiome as hosts age, drawing particular attention to the knowledge gaps in addressing how diet and exercise influence the aging microbiome. Further, we will demonstrate the need for more controlled studies to investigate the roles that diet and exercise play driving the composition, diversity, and function of the microbiome in an aging population.
Collapse
Affiliation(s)
- Chequita N. Brooks
- Department of Biology, Appalachian State University, Boone, NC, United States
| | - Madeline E. Wight
- Department of Biology, Appalachian State University, Boone, NC, United States
| | - Oluwatobi E. Azeez
- Department of Biology, Appalachian State University, Boone, NC, United States
| | - Rachel M. Bleich
- Department of Biology, Appalachian State University, Boone, NC, United States
- Correspondence: Kevin A. Zwetsloot Rachel M. Bleich
| | - Kevin A. Zwetsloot
- Department of Biology, Appalachian State University, Boone, NC, United States
- Department of Public Health and Exercise Science, Appalachian State University, Boone, NC, United States
- Correspondence: Kevin A. Zwetsloot Rachel M. Bleich
| |
Collapse
|
12
|
Kunizheva SS, Volobaev VP, Plotnikova MY, Kupriyanova DA, Kuznetsova IL, Tyazhelova TV, Rogaev EI. Current Trends and Approaches to the Search for Genetic Determinants of Aging and Longevity. RUSS J GENET+ 2022; 58:1427-1443. [PMID: 36590179 PMCID: PMC9794410 DOI: 10.1134/s1022795422120067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 12/29/2022]
Abstract
Aging is a natural process of extinction of the body and the main aspect that determines the life expectancy for individuals who have survived to the post-reproductive period. The process of aging is accompanied by certain physiological, immune, and metabolic changes in the body, as well as the development of age-related diseases. The contribution of genetic factors to human life expectancy is estimated at about 25-30%. Despite the success in identifying genes and metabolic pathways that may be involved in the life extension process in model organisms, the key question remains to what extent these data can be extrapolated to humans, for example, because of the complexity of its biological and sociocultural systems, as well as possible species differences in life expectancy and causes of mortality. New molecular genetic methods have significantly expanded the possibilities for searching for genetic factors of human life expectancy and identifying metabolic pathways of aging, the interaction of genes and transcription factors, the regulation of gene expression at the level of transcription, and epigenetic modifications. The review presents the latest research and current strategies for studying the genetic basis of human aging and longevity: the study of individual candidate genes in genetic population studies, variations identified by the GWAS method, immunogenetic differences in aging, and genomic studies to identify factors of "healthy aging." Understanding the mechanisms of the interaction between factors affecting the life expectancy and the possibility of their regulation can become the basis for developing comprehensive measures to achieve healthy longevity. Supplementary Information The online version contains supplementary material available at 10.1134/S1022795422120067.
Collapse
Affiliation(s)
- S. S. Kunizheva
- Center for Genetics and Life Sciences, Sirius University of Science and Technology, 354340 Sochi, Russia
- Moscow State University, 119234 Moscow, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - V. P. Volobaev
- Center for Genetics and Life Sciences, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - M. Yu. Plotnikova
- Center for Genetics and Life Sciences, Sirius University of Science and Technology, 354340 Sochi, Russia
- Moscow State University, 119234 Moscow, Russia
| | - D. A. Kupriyanova
- Center for Genetics and Life Sciences, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - I. L. Kuznetsova
- Center for Genetics and Life Sciences, Sirius University of Science and Technology, 354340 Sochi, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - T. V. Tyazhelova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - E. I. Rogaev
- Center for Genetics and Life Sciences, Sirius University of Science and Technology, 354340 Sochi, Russia
- Moscow State University, 119234 Moscow, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
- University of Massachusetts Chan Medical School, 01545 Shrewsbury, MA United States
| |
Collapse
|
13
|
Hurvitz N, Elkhateeb N, Sigawi T, Rinsky-Halivni L, Ilan Y. Improving the effectiveness of anti-aging modalities by using the constrained disorder principle-based management algorithms. FRONTIERS IN AGING 2022; 3:1044038. [PMID: 36589143 PMCID: PMC9795077 DOI: 10.3389/fragi.2022.1044038] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022]
Abstract
Aging is a complex biological process with multifactorial nature underlined by genetic, environmental, and social factors. In the present paper, we review several mechanisms of aging and the pre-clinically and clinically studied anti-aging therapies. Variability characterizes biological processes from the genome to cellular organelles, biochemical processes, and whole organs' function. Aging is associated with alterations in the degrees of variability and complexity of systems. The constrained disorder principle defines living organisms based on their inherent disorder within arbitrary boundaries and defines aging as having a lower variability or moving outside the boundaries of variability. We focus on associations between variability and hallmarks of aging and discuss the roles of disorder and variability of systems in the pathogenesis of aging. The paper presents the concept of implementing the constrained disease principle-based second-generation artificial intelligence systems for improving anti-aging modalities. The platform uses constrained noise to enhance systems' efficiency and slow the aging process. Described is the potential use of second-generation artificial intelligence systems in patients with chronic disease and its implications for the aged population.
Collapse
Affiliation(s)
- Noa Hurvitz
- Faculty of Medicine, Hebrew University and Department of Medicine, Hadassah Medical Center, Jerusalem, Israel
| | - Narmine Elkhateeb
- Faculty of Medicine, Hebrew University and Department of Medicine, Hadassah Medical Center, Jerusalem, Israel
| | - Tal Sigawi
- Faculty of Medicine, Hebrew University and Department of Medicine, Hadassah Medical Center, Jerusalem, Israel
| | - Lilah Rinsky-Halivni
- Braun School of Public Health, Hebrew University of Jerusalem, Jerusalem, Israel,Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Yaron Ilan
- Faculty of Medicine, Hebrew University and Department of Medicine, Hadassah Medical Center, Jerusalem, Israel,*Correspondence: Yaron Ilan,
| |
Collapse
|
14
|
Sharma R, Diwan B, Sharma A, Witkowski JM. Emerging cellular senescence-centric understanding of immunological aging and its potential modulation through dietary bioactive components. Biogerontology 2022; 23:699-729. [PMID: 36261747 PMCID: PMC9581456 DOI: 10.1007/s10522-022-09995-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/12/2022] [Indexed: 12/13/2022]
Abstract
Immunological aging is strongly associated with the observable deleterious effects of human aging. Our understanding of the causes, effects, and therapeutics of aging immune cells has long been considered within the sole purview of immunosenescence. However, it is being progressively realized that immunosenescence may not be the only determinant of immunological aging. The cellular senescence-centric theory of aging proposes a more fundamental and specific role of immune cells in regulating senescent cell (SC) burden in aging tissues that has augmented the notion of senescence immunotherapy. Now, in addition, several emerging studies are suggesting that cellular senescence itself may be prevalent in aging immune cells, and that senescent immune cells exhibiting characteristic markers of cellular senescence, similar to non-leucocyte cells, could be among the key drivers of various facets of physiological aging. The present review integrates the current knowledge related to immunosenescence and cellular senescence in immune cells per se, and aims at providing a cohesive overview of these two phenomena and their significance in immunity and aging. We present evidence and rationalize that understanding the extent and impact of cellular senescence in immune cells vis-à-vis immunosenescence is necessary for truly comprehending the notion of an 'aged immune cell'. In addition, we also discuss the emerging significance of dietary factors such as phytochemicals, probiotic bacteria, fatty acids, and micronutrients as possible modulators of immunosenescence and cellular senescence. Evidence and opportunities related to nutritional bioactive components and immunological aging have been deliberated to augment potential nutrition-oriented immunotherapy during aging.
Collapse
Affiliation(s)
- Rohit Sharma
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India.
| | - Bhawna Diwan
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Anamika Sharma
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, India
| | - Jacek M Witkowski
- Department of Pathophysiology, Medical University of Gdańsk, Dębinki 7, 80-211, Gdańsk, Poland.
| |
Collapse
|