1
|
Ai H, Li M, Fang W, Wang X, Liu X, Wu L, Zhang B, Lu W. Disruption of Cdk5-GluN2B complex by a small interfering peptide attenuates social isolation-induced escalated intermale attack behavior and hippocampal oxidative stress in mice. Free Radic Biol Med 2024; 210:54-64. [PMID: 37979890 DOI: 10.1016/j.freeradbiomed.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/04/2023] [Accepted: 11/11/2023] [Indexed: 11/20/2023]
Abstract
Social isolation has emerged as a significant issue during the COVID-19 pandemic that can adversely impact human mental health and potentially lead to pathological aggression. Given the lack of effective therapeutic interventions for aggressive behavior, alternative approaches are necessary. In this study, we utilized a genetic method combined with a pharmacological approach to identify and demonstrate the crucial role of Cdk5 in escalated intermale attack behavior induced by 2-week social isolation. Moreover, we developed a small peptide that effectively disrupts the interaction between Cdk5 and GluN2B, given the known involvement of this complex in various neuropsychiatric disorders. Administration of the peptide, either systemically or via intrahippocampal injection, significantly reduced oxidative stress in the hippocampus and attenuated intermale attack behavior induced by 2-week social isolation. These findings highlight the previously unknown role of the hippocampal Cdk5-GluN2B complex in social isolation-induced aggressive behavior in mice and propose the peptide as a promising therapeutic strategy for regulating attack behavior and oxidative stress.
Collapse
Affiliation(s)
- Heng Ai
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Minghao Li
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Weiqing Fang
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Xuemeng Wang
- Department of the First Clinical Medicine, Hainan Medical University, Haikou, China; Key Laboratory of Molecular Biology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Xinxin Liu
- Department of the First Clinical Medicine, Hainan Medical University, Haikou, China; Key Laboratory of Molecular Biology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Lihui Wu
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Bin Zhang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, China.
| | - Wen Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China; Key Laboratory of Molecular Biology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China.
| |
Collapse
|
2
|
Lee SM, Baek JC. Serum Vitamin Levels, Cardiovascular Disease Risk Factors, and Their Association with Depression in Korean Women: A Cross-Sectional Study of a Nationally Representative Sample. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:2183. [PMID: 38138286 PMCID: PMC10744936 DOI: 10.3390/medicina59122183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/23/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
Background and Objectives: Serum vitamin levels, cardiovascular disease risk factors, and their association with depression is a complex issue that has been the subject of much research. Therefore, we investigated the relationship between vitamin A, B9, and E levels, cardiovascular risk factors, and depression in premenopausal and menopausal South Korean women. Materials and Methods: This cross-sectional study used the 2016-2018 Korea National Health and Nutrition Examination Survey data. Depression was assessed using a questionnaire to check for symptoms of depression or the Patient Health Questionnaire-9. Blood samples were collected from the antecubital vein in the morning after an overnight fast. Covariates were defined as self-reported physician diagnoses. Well-trained medical staff performed the standard procedures. Statistical analysis was performed using the complex sample analysis method of SPSS, using two separate logistic regression models (model 1: adjusted for age; model 2: adjusted for age, marital status, smoking, and alcohol consumption). Results: A total of 3313 women aged over 20 years were enrolled. The association between vitamin A levels and depression was as follows: lower levels of vitamin A were associated with an increased risk of depression in premenopausal women in model 1 and model 2. The levels of serum vitamins E and B9 were not correlated with depression in premenopausal and postmenopausal women. In the premenopausal group, depression increased in the obesity (model 1: p = 0.037; model 2: p = 0.047) and diabetes mellitus (model 1: p = 0.010; model 2: p = 0.009) groups. The menopausal group with depression had higher rates of stroke (model 1: p = 0.017; model 2: p = 0.039) and myocardial infarction (model 1: p = 0.004; model 2: p = 0.008) than the group without depression. Conclusions: Depression is correlated with lower blood levels of vitamin A in premenopausal women. Vitamin B9 and E levels were not associated with depression independent of menopausal status. Depression is associated with obesity and diabetes mellitus in premenopausal women and with stroke and myocardial infarction in postmenopausal women.
Collapse
Affiliation(s)
- Seon Mi Lee
- Department of Obstetrics and Gynecology, Korea University Anam Hospital, 73 Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea;
| | - Jong Chul Baek
- Department of Obstetrics and Gynecology, Gyeongsang National University Changwon Hospital, 11 Samjeongja-ro, Seongsan-gu, Changwon-si 51472, Republic of Korea
- Department of Obstetrics and Gynecology, Gyeongsang National University School of Medicine, Jinju 52727, Republic of Korea
- Institute of Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| |
Collapse
|
3
|
Zhao Y, Zhang Y, Meng S, Chen B, Dong X, Guo X, Guo F, Zhang R, Cui H, Li S. Effects of S-Adenosylmethionine on Cognition in Animals and Humans: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J Alzheimers Dis 2023; 94:S267-S287. [PMID: 36970898 PMCID: PMC10473070 DOI: 10.3233/jad-221076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND There is increasing evidence that supplementation of S-adenosylmethionine (SAM) can improve cognitive function in animals and humans, although the outcomes are not always inconsistent. OBJECTIVE We conducted a systematic review and meta-analysis to evaluate the correlation between SAM supplementation and improved cognitive function. METHODS We searched studies in the PubMed, Cochrane Library, Embase, Web of Science, and Clinical Trials databases from January 1, 2002 to January 1, 2022. Risk of bias was assessed using the Cochrane risk of bias 2.0 (human studies) and the Systematic Review Center for Laboratory Animal Experimentation risk of bias (animal studies) tools; and evidence quality was evaluated using the Grading of Recommendations Assessment, Development, and Evaluation. STATA software was employed to perform meta-analysis, and the random-effects models was used to evaluate the standardized mean difference with 95% confidence intervals. RESULTS Out of the 2,375 studies screened, 30 studies met the inclusion criteria. Meta-analyses of animal (p = 0.213) and human (p = 0.047) studies showed that there were no significant differences between the SAM supplementation and control groups. The results of the subgroup analyses showed that the animals aged ≤8 weeks (p = 0.027) and the intervention duration >8 weeks (p = 0.009) were significantly different compared to the controls. Additionally, the Morris water maze test (p = 0.005) used to assess the cognitive level of the animals revealed that SAM could enhance spatial learning and memory in animals. CONCLUSION SAM supplementation showed no significant improvement in cognition. Therefore, further studies are needed to assess the effectiveness of SAM supplementation.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
- School of Nursing, Hebei Medical University, Shijiazhuang, China
| | - Yizhou Zhang
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China
| | - Sijia Meng
- School of Nursing, Hebei Medical University, Shijiazhuang, China
| | - Bingyu Chen
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| | - Xinyi Dong
- School of Nursing, Hebei Medical University, Shijiazhuang, China
| | - Xiaojing Guo
- School of Nursing, Hebei Medical University, Shijiazhuang, China
| | - Fangzhen Guo
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| | - Runjiao Zhang
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| | - Huixian Cui
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China
| | - Sha Li
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China
| |
Collapse
|
4
|
Bühner LM, Kapanaiah SKT, Kätzel D. Chronic N-acetylcysteine treatment improves anhedonia and cognition in a mouse model of the schizophrenia prodrome. Front Behav Neurosci 2022; 16:1002223. [PMID: 36225391 PMCID: PMC9548602 DOI: 10.3389/fnbeh.2022.1002223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
Schizophrenia is a severe psychiatric disorder whose neurodevelopmental pathogenesis includes a prodromal phase before its diagnostically decisive—namely psychotic—symptoms are present. This prodrome is characterized by cognitive and affective deficits, and it may constitute a critical time period for an early therapeutic intervention to improve or even prevent further disease development. N-acetylcysteine (NAC) is an easily repurposable compound that has recently shown promise in improving non-psychotic symptoms in patients with established schizophrenia. Its therapeutic mechanism may involve the amelioration of circuit abnormalities like a hyper-glutamatergic state and oxidative stress in cortex which have been proposed to drive the pathogenesis of this disease. However, it is currently unknown to what extent NAC can actually improve prodromal aberrations. To investigate this preclinically, we deployed the cyclin-D2 knockout mouse model (CD2-KO) that shares physiological and behavioral abnormalities with the schizophrenia prodrome, including a hyperactive CA1 region, and cognitive and affective deficits. Applying NAC chronically in drinking water (0.9 g/l) during development (∼P22–P70), we found that excessive novelty-induced hyperlocomotion was neither ameliorated during (∼P68) nor after (∼P75) treatment; similarly, T-maze working memory (tested after treatment; ∼P84) was unaffected. However, once chronic NAC treatment was resumed (at approximately P134) in those mice that had received it before, working memory, cognitive flexibility (tested under NAC), and anhedonia (sucrose-preference, tested 1 day after NAC-treatment stopped) were improved in CD2-KO mice. This suggests that chronic NAC treatment may be a therapeutic strategy to improve some cognitive and affective dysfunctions in the schizophrenia prodrome.
Collapse
|
5
|
Development and application of a fluorescence turn-on probe for the nanomolar cysteine detection in serum and milk samples. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
6
|
Soda K. Overview of Polyamines as Nutrients for Human Healthy Long Life and Effect of Increased Polyamine Intake on DNA Methylation. Cells 2022; 11:cells11010164. [PMID: 35011727 PMCID: PMC8750749 DOI: 10.3390/cells11010164] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 02/04/2023] Open
Abstract
Polyamines, spermidine and spermine, are synthesized in every living cell and are therefore contained in foods, especially in those that are thought to contribute to health and longevity. They have many physiological activities similar to those of antioxidant and anti-inflammatory substances such as polyphenols. These include antioxidant and anti-inflammatory properties, cell and gene protection, and autophagy activation. We have first reported that increased polyamine intake (spermidine much more so than spermine) over a long period increased blood spermine levels and inhibited aging-associated pathologies and pro-inflammatory status in humans and mice and extended life span of mice. However, it is unlikely that the life-extending effect of polyamines is exerted by the same bioactivity as polyphenols because most studies using polyphenols and antioxidants have failed to demonstrate their life-extending effects. Recent investigations revealed that aging-associated pathologies and lifespan are closely associated with DNA methylation, a regulatory mechanism of gene expression. There is a close relationship between polyamine metabolism and DNA methylation. We have shown that the changes in polyamine metabolism affect the concentrations of substances and enzyme activities involved in DNA methylation. I consider that the increased capability of regulation of DNA methylation by spermine is a key of healthy long life of humans.
Collapse
Affiliation(s)
- Kuniyasu Soda
- Department Cardiovascular Institute for Medical Research, Saitama Medical Center, Jichi Medical University, 1-847, Amanuma, Saitama-City 330-0834, Saitama, Japan
| |
Collapse
|
7
|
Zimmer-Bensch G, Zempel H. DNA Methylation in Genetic and Sporadic Forms of Neurodegeneration: Lessons from Alzheimer's, Related Tauopathies and Genetic Tauopathies. Cells 2021; 10:3064. [PMID: 34831288 PMCID: PMC8624300 DOI: 10.3390/cells10113064] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 12/14/2022] Open
Abstract
Genetic and sporadic forms of tauopathies, the most prevalent of which is Alzheimer's Disease, are a scourge of the aging society, and in the case of genetic forms, can also affect children and young adults. All tauopathies share ectopic expression, mislocalization, or aggregation of the microtubule associated protein TAU, encoded by the MAPT gene. As TAU is a neuronal protein widely expressed in the CNS, the overwhelming majority of tauopathies are neurological disorders. They are characterized by cognitive dysfunction often leading to dementia, and are frequently accompanied by movement abnormalities such as parkinsonism. Tauopathies can lead to severe neurological deficits and premature death. For some tauopathies there is a clear genetic cause and/or an epigenetic contribution. However, for several others the disease etiology is unclear, with few tauopathies being environmentally triggered. Here, we review current knowledge of tauopathies listing known genetic and important sporadic forms of these disease. Further, we discuss how DNA methylation as a major epigenetic mechanism emerges to be involved in the disease pathophysiology of Alzheimer's, and related genetic and non-genetic tauopathies. Finally, we debate the application of epigenetic signatures in peripheral blood samples as diagnostic tools and usages of epigenetic therapy strategies for these diseases.
Collapse
Affiliation(s)
- Geraldine Zimmer-Bensch
- Functional Epigenetics in the Animal Model, Institute for Biology II, RWTH Aachen University, 52074 Aachen, Germany
- Research Training Group 2416 MultiSenses-MultiScales, Institute for Biology II, RWTH Aachen University, 52074 Aachen, Germany
| | - Hans Zempel
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
8
|
Shea TB. Improvement of cognitive performance by a nutraceutical formulation: Underlying mechanisms revealed by laboratory studies. Free Radic Biol Med 2021; 174:281-304. [PMID: 34352370 DOI: 10.1016/j.freeradbiomed.2021.07.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/28/2022]
Abstract
Cognitive decline, decrease in neuronal function and neuronal loss that accompany normal aging and dementia are the result of multiple mechanisms, many of which involve oxidative stress. Herein, we review these various mechanisms and identify pharmacological and non-pharmacological approaches, including modification of diet, that may reduce the risk and progression of cognitive decline. The optimal degree of neuronal protection is derived by combinations of, rather than individual, compounds. Compounds that provide antioxidant protection are particularly effective at delaying or improving cognitive performance in the early stages of Mild Cognitive Impairment and Alzheimer's disease. Laboratory studies confirm alleviation of oxidative damage in brain tissue. Lifestyle modifications show a degree of efficacy and may augment pharmacological approaches. Unfortunately, oxidative damage and resultant accumulation of biomarkers of neuronal damage can precede cognitive decline by years to decades. This underscores the importance of optimization of dietary enrichment, antioxidant supplementation and other lifestyle modifications during aging even for individuals who are cognitively intact.
Collapse
Affiliation(s)
- Thomas B Shea
- Laboratory for Neuroscience, Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA.
| |
Collapse
|
9
|
Mahmoud YK, Ali AA, Abdelrazek HMA, Aldayel TS, Abdel-Daim MM, El-Menyawy MAI. Neurotoxic Effect of Fipronil in Male Wistar Rats: Ameliorative Effect of L-Arginine and L-Carnitine. BIOLOGY 2021; 10:biology10070682. [PMID: 34356537 PMCID: PMC8301478 DOI: 10.3390/biology10070682] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Insecticides are widely used in agricultural and household environments. They induce wide range of deleterious effects. Fipronil is one of the most widely used phenylpyrazoles insecticides. The neurotoxic effect of such insecticide was tested in the present study with special emphasis on cognitive deficit as well as testing the possible ameliorative impacts of L-arginine and L-carnitine. The study proposed fipronil-induced cognitive deficit as a reflection to oxidative stress and neuro-inflammation. Moreover, L-arginine and L-carnitine exerted ameliorative influence on fipronil induced oxidative stress and neuro-inflammation. Therefore, L-arginine and L-carnitine can be considered as prospective candidates for mitigation of pesticide induced neurotoxicity especially in people with high-risk exposure to pesticide. Abstract The ameliorative effect of L-arginine (LA) and L-carnitine (LC) against fipronil (FPN)-induced neurotoxicity was explored. In this case, 36 adult male rats were randomly divided into six groups: group I received distilled water, group II received 500 mg/kg LA, group III received 100 mg/kg LC, group IV received 4.85 mg/kg FPN, group V received 4.85 mg/kg FPN and 500 mg/kg LA and group VI received 4.85 mg/kg FPN and 100 mg/kg LC for 6 weeks. Cognitive performance was assessed using Barnes maze (BM). Serum corticosterone, brain total antioxidant capacity (TAC), malondialdehyde (MDA) and dopamine were measured. Histopathology and immunohistochemistry of ionized calcium-binding adaptor (Iba-1), doublecortin (DCX) and serotonin (S-2A) receptors were performed. Fipronil induced noticeable deterioration in spatial learning and memory performance. In addition, FPN significantly (p < 0.05) diminished brain antioxidant defense system and dopamine coincide with elevated serum corticosterone level. Histopathological examination revealed degenerative and necrotic changes. Furthermore, Iba-1 and DCX were significantly expressed in cortex and hippocampus whereas S-2A receptors were significantly lowered in FPN group. However, administration of LA or LC alleviated FPN-induced deteriorations. In conclusion, LA and LC could be prospective candidates for mitigation of FPN-induced neurotoxicity via their antioxidant, anti-inflammatory and neuropotentiating effects.
Collapse
Affiliation(s)
- Yasmina K. Mahmoud
- Department of Biochemistry, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt;
| | - Ahmed A. Ali
- Hygiene, Zoonosis and Animal Behavior Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt;
| | - Heba M. A. Abdelrazek
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
- Correspondence: ; Tel.: +2-012-23399477; Fax: +2-064-3207052
| | - Tahany Saleh Aldayel
- Nutrition and Food Science, Department of Physical Sport Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Mohamed M. Abdel-Daim
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt;
| | | |
Collapse
|
10
|
Coppedè F. Epigenetic regulation in Alzheimer's disease: is it a potential therapeutic target? Expert Opin Ther Targets 2021; 25:283-298. [PMID: 33843425 DOI: 10.1080/14728222.2021.1916469] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Introduction: Alzheimer's disease (AD) is the most common neurodegenerative disorder and the primary form of dementia in the elderly. Changes in DNA methylation and post-translational modifications of histone tails are increasingly observed in AD tissues, and likely contribute to disease onset and progression. The reversibility of these epigenetic marks offers the potential for therapeutic interventions.Areas covered: After a concise and updated overview of DNA methylation and post-translational modifications of histone tails in AD tissues, this review provides an overview of the animal and cell culture studies investigating the potential of targeting these modifications to attenuate AD-like features. PubMed was searched for relevant literature between 2003 and 2021.Expert opinion: Methyl donor compounds and drugs acting on histone tail modifications attenuated the AD-like features and improved cognition in several transgenic AD mice; however, there are concerns about safety and tolerability for long-term treatment in humans. The challenges will be to take advantage of recent epigenome-wide investigations to identify the principal targets for future interventions, and to design novel, selective and safer agents. Natural compounds exerting epigenetic properties could represent a promising opportunity to delay disease onset in middle-aged individuals at increased AD risk.
Collapse
Affiliation(s)
- Fabio Coppedè
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy.,Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| |
Collapse
|
11
|
Basaure P, Guardia-Escote L, Biosca-Brull J, Blanco J, Cabré M, Peris-Sampedro F, Sánchez-Santed F, Domingo JL, Colomina MT. Exposure to chlorpyrifos at different ages triggers APOE genotype-specific responses in social behavior, body weight and hypothalamic gene expression. ENVIRONMENTAL RESEARCH 2019; 178:108684. [PMID: 31472362 DOI: 10.1016/j.envres.2019.108684] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/20/2019] [Accepted: 08/20/2019] [Indexed: 06/10/2023]
Abstract
To date, we have shown that apolipoprotein E (APOE) polymorphisms differentially modulate the neurobehavioral and metabolic effects of chlorpyrifos (CPF), a widely used pesticide, which is detected as residue in food. We previously reported that, after being exposed to CPF, APOE3 subjects exhibit metabolic dysfunctions while APOE4 subjects undergo changes in behavior. In the current study, we investigated the effects of a double exposure to CPF on social behavior and hypothalamic gene expression in apoE-targeted replacement (TR) mice. Male apoE3-and apoE4-TR mice were exposed to CPF at 0 or 1 mg/kg/day on postnatal days 10-15 and then, during adulthood (5 months of age), fed a CPF-supplemented diet (0 or 2 mg/kg/day) for 15 days. During adult exposure to CPF, body weight gain and food intake were monitored. At the end of the adult exposure period, we evaluated social behavior in a three-chamber test, as well as mRNA levels of hypothalamic neuropeptides and receptors related to social behavior and feeding control. Adult CPF exposure increased food intake in general, but only apoE4 mice increased their body weight. Postnatal CPF exposure improved preference for the social contexts in apoE4 mice while adult CPF exposure did the same in apoE3 mice. Anorexigenic-peptide and social-related behavior gene expression decreased as a result of adult CPF exposure in apoE4 mice, and neuropeptide Y was more expressed in apoE4 mice. These results indicate that CPF exposure produces orexigenic and metabolic effects and enlarges individual differences in social behavior, especially in apoE3 mice.
Collapse
Affiliation(s)
- Pia Basaure
- Research in Neurobehavior and Health (NEUROLAB), Universitat Rovira i Virgili, Tarragona, Spain; Department of Psychology and Research Center for Behavior Assessment (CRAMC), Universitat Rovira i Virgili, Tarragona, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Laia Guardia-Escote
- Research in Neurobehavior and Health (NEUROLAB), Universitat Rovira i Virgili, Tarragona, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Reus, Spain; Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Judit Biosca-Brull
- Research in Neurobehavior and Health (NEUROLAB), Universitat Rovira i Virgili, Tarragona, Spain; Department of Psychology and Research Center for Behavior Assessment (CRAMC), Universitat Rovira i Virgili, Tarragona, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Jordi Blanco
- Research in Neurobehavior and Health (NEUROLAB), Universitat Rovira i Virgili, Tarragona, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Maria Cabré
- Research in Neurobehavior and Health (NEUROLAB), Universitat Rovira i Virgili, Tarragona, Spain; Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Fiona Peris-Sampedro
- Research in Neurobehavior and Health (NEUROLAB), Universitat Rovira i Virgili, Tarragona, Spain; Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | | | - José L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Maria Teresa Colomina
- Research in Neurobehavior and Health (NEUROLAB), Universitat Rovira i Virgili, Tarragona, Spain; Department of Psychology and Research Center for Behavior Assessment (CRAMC), Universitat Rovira i Virgili, Tarragona, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Reus, Spain.
| |
Collapse
|
12
|
Solfrizzi V, Agosti P, Lozupone M, Custodero C, Schilardi A, Valiani V, Santamato A, Sardone R, Dibello V, Di Lena L, Stallone R, Ranieri M, Bellomo A, Greco A, Daniele A, Seripa D, Sabbà C, Logroscino G, Panza F. Nutritional interventions and cognitive-related outcomes in patients with late-life cognitive disorders: A systematic review. Neurosci Biobehav Rev 2018; 95:480-498. [PMID: 30395922 DOI: 10.1016/j.neubiorev.2018.10.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/27/2018] [Accepted: 10/29/2018] [Indexed: 12/30/2022]
Abstract
There have been a large number of observational studies on the impact of nutrition on neuroprotection, however, there was a lack of evidence from randomized clinical trials (RCTs). In the present systematic review, from the 32 included RCTs published in the last four years (2014-2017) in patients aged 60 years and older with different late-life cognitive disorders, nutritional intervention through medical food/nutraceutical supplementation and multidomain approach improved magnetic resonance imaging findings and other cognitive-related biomarkers, but without clear effect on cognition in mild Alzheimer's disease (AD) and mild cognitive impairment (MCI). Antioxidant-rich foods (nuts, grapes, cherries) and fatty acid supplementation, mainly n-3 polyunsaturated fatty acids (PUFA), improved specific cognitive domains and cognitive-related outcomes in MCI, mild-to-moderate dementia, and AD. Antioxidant vitamin and trace element supplementations improved only cognitive-related outcomes and biomarkers, high-dose B vitamin supplementation in AD and MCI patients improved cognitive outcomes in the subjects with a high baseline plasma n-3 PUFA, while folic acid supplementation had positive impact on specific cognitive domains in those with high homocysteine.
Collapse
Affiliation(s)
- Vincenzo Solfrizzi
- Geriatric Medicine-Memory Unit and Rare Disease Centre, University of Bari 'Aldo Moro', Bari, Italy.
| | - Pasquale Agosti
- Geriatric Medicine-Memory Unit and Rare Disease Centre, University of Bari 'Aldo Moro', Bari, Italy
| | - Madia Lozupone
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Carlo Custodero
- Geriatric Medicine-Memory Unit and Rare Disease Centre, University of Bari 'Aldo Moro', Bari, Italy
| | - Andrea Schilardi
- Geriatric Medicine-Memory Unit and Rare Disease Centre, University of Bari 'Aldo Moro', Bari, Italy
| | - Vincenzo Valiani
- Geriatric Medicine-Memory Unit and Rare Disease Centre, University of Bari 'Aldo Moro', Bari, Italy
| | - Andrea Santamato
- Physical Medicine and Rehabilitation Section, "OORR Hospital", University of Foggia, Foggia, Italy
| | - Rodolfo Sardone
- National Institute of Gastroenterology "Saverio de Bellis", Research Hospital, Castellana Grotte, Bari, Italy; Interdisciplinary Department of Medicine (DIM), Section of Dentistry, University of Bari AldoMoro, Bari, Italy
| | - Vittorio Dibello
- Psychiatric Unit, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Luca Di Lena
- National Institute of Gastroenterology "Saverio de Bellis", Research Hospital, Castellana Grotte, Bari, Italy; Interdisciplinary Department of Medicine (DIM), Section of Dentistry, University of Bari AldoMoro, Bari, Italy
| | - Roberta Stallone
- National Institute of Gastroenterology "Saverio de Bellis", Research Hospital, Castellana Grotte, Bari, Italy; Interdisciplinary Department of Medicine (DIM), Section of Dentistry, University of Bari AldoMoro, Bari, Italy
| | - Maurizio Ranieri
- Physical Medicine and Rehabilitation Section, "OORR Hospital", University of Foggia, Foggia, Italy
| | - Antonello Bellomo
- Psychiatric Unit, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Antonio Greco
- Geriatric Unit, Fondazione IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Foggia, Italy
| | - Antonio Daniele
- Institute of Neurology, Catholic University of Sacred Heart, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Davide Seripa
- Geriatric Unit, Fondazione IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Foggia, Italy
| | - Carlo Sabbà
- Geriatric Medicine-Memory Unit and Rare Disease Centre, University of Bari 'Aldo Moro', Bari, Italy
| | - Giancarlo Logroscino
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy; Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro", "Pia Fondazione Cardinale G. Panico", Tricase, Lecce, Italy
| | - Francesco Panza
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy; Geriatric Unit, Fondazione IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Foggia, Italy; Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro", "Pia Fondazione Cardinale G. Panico", Tricase, Lecce, Italy.
| |
Collapse
|
13
|
Huang X, Fan Y, Han X, Huang Z, Yu M, Zhang Y, Xu Q, Li X, Wang X, Lu C, Xia Y. Association between Serum Vitamin Levels and Depression in U.S. Adults 20 Years or Older Based on National Health and Nutrition Examination Survey 2005⁻2006. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:1215. [PMID: 29890739 PMCID: PMC6025280 DOI: 10.3390/ijerph15061215] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/07/2018] [Accepted: 06/07/2018] [Indexed: 12/14/2022]
Abstract
Depression is one of the leading causes of disability around the world. Although several studies have been conducted to analyze the association between vitamins and depression, the results have been inconsistent. Based on the database of National Health and Nutrition Examination Survey (NHANES) (2005⁻2006), a cross-sectional analysis was conducted to uncover the correlations between serum vitamin concentrations and depression in 2791 participants over 20 years of age. Vitamin concentrations in serum were measured by high performance liquid chromatography (HPLC), a standardized liquid chromatography-tandem mass spectrometry (LC-MS/MS) or radioassay kit method. A nine-item Patient Health Questionnaire (PHQ-9) was used to assess depression symptoms. The binary logistic regression model was applied to analyze the association between vitamins and depression. In the whole population, negative associations were discovered between folate concentrations (p for trend = 0.02), trans-β-carotene (p for trend = 0.01) and depression, while positive associations were found among vitamin B12 concentrations (p for trend = 0.008), vitamin A concentrations (p for trend = 0.01) and depression. In order to evaluate the influence of gender on the pathogenesis of depression of vitamins exposure, we performed gender-stratified analysis. In females, folate concentrations (p for trend = 0.03) and vitamin B12 concentrations (p for trend = 0.02) were correlated with depression. In males, no significant association was found between depression and serum vitamin concentrations. The correlation of vitamins with depression deserves further investigation in larger and diverse populations, especially in females.
Collapse
Affiliation(s)
- Xiaomin Huang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Road, Nanjing 211166, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Road, Nanjing 211166, China.
| | - Yun Fan
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Road, Nanjing 211166, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Road, Nanjing 211166, China.
| | - Xiumei Han
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Road, Nanjing 211166, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Road, Nanjing 211166, China.
| | - Zhenyao Huang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Road, Nanjing 211166, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Road, Nanjing 211166, China.
| | - Mingming Yu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Road, Nanjing 211166, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Road, Nanjing 211166, China.
| | - Yan Zhang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Road, Nanjing 211166, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Road, Nanjing 211166, China.
| | - Qiaoqiao Xu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Road, Nanjing 211166, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Road, Nanjing 211166, China.
| | - Xiuzhu Li
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Road, Nanjing 211166, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Road, Nanjing 211166, China.
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Road, Nanjing 211166, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Road, Nanjing 211166, China.
| | - Chuncheng Lu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Road, Nanjing 211166, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Road, Nanjing 211166, China.
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Road, Nanjing 211166, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Road, Nanjing 211166, China.
| |
Collapse
|
14
|
Bodaghi-Namileh V, Sepand MR, Omidi A, Aghsami M, Seyednejad SA, Kasirzadeh S, Sabzevari O. Acetyl-l-carnitine attenuates arsenic-induced liver injury by abrogation of mitochondrial dysfunction, inflammation, and apoptosis in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 58:11-20. [PMID: 29278859 DOI: 10.1016/j.etap.2017.12.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 12/10/2017] [Accepted: 12/11/2017] [Indexed: 06/07/2023]
Abstract
Industrial and agricultural developments in recent years have resulted in the excessive discharge of arsenic into the environment, making arsenic toxicity a major worldwide concern. Oxidative stress is considered the primary mechanism for arsenic toxicity. The main objective of this study was to evaluate acetyl-l-carnitine's (ALC) protective ability against the arsenic-induced hepatotoxicity. For this purpose, male Wistar rats were distributed randomly into 5 groups of 8 rats each: control, arsenic (5 mg/kg) and arsenic plus ALC (5 mg/kg; 100, 200, 300 mg/kg). The animals were gavaged for 21 consecutive days. Liver tissue samples were extracted 24 h after the last treatment and were later analyzed for biochemical and histological alterations. The arsenic-induced oxidative damage was confirmed by elevation of malondialdehyde (MDA), a lipid peroxidation byproduct, as well as depletion in physiological antioxidant content such as superoxide dismutase (SOD) and catalase (CAT). Furthermore, alterations in mitochondrial functions including a significant decrease of mitochondrial outer membrane potential and reactive oxygen species (ROS) generation increase, mitochondrial swelling, release of cytochrome c and consequent activation of caspase-3 and caspase-9 and initiation of apoptosis, was observed following arsenic administration. Moreover, the inflammation was confirmed by the overexpression of inflammatory mediators such as NF-ĸB and IL-1 and IL-6. The present study demonstrated that ALC ameliorates arsenic-induced oxidative damage, mitochondrial dysfunction, apoptosis, inflammation and histological damage. ALC's protective features against arsenic hepatotoxicity may be due to this agent's antioxidant and anti-inflammatory properties as well as its stabilizing effects on mitochondrial function.
Collapse
Affiliation(s)
- Vida Bodaghi-Namileh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Sepand
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ameneh Omidi
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehdi Aghsami
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Afshin Seyednejad
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Kasirzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Omid Sabzevari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Toxicology and Poisoning Research Centre, Tehran University of Medical Sciences, Tehran, Iran; Drug Design and Development Research Centre, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Sharma A, Gerbarg P, Bottiglieri T, Massoumi L, Carpenter LL, Lavretsky H, Muskin PR, Brown RP, Mischoulon D. S-Adenosylmethionine (SAMe) for Neuropsychiatric Disorders: A Clinician-Oriented Review of Research. J Clin Psychiatry 2017; 78:e656-e667. [PMID: 28682528 PMCID: PMC5501081 DOI: 10.4088/jcp.16r11113] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/12/2016] [Indexed: 12/19/2022]
Abstract
OBJECTIVE A systematic review on S-adenosylmethionine (SAMe) for treatment of neuropsychiatric conditions and comorbid medical conditions. DATA SOURCES Searches were conducted in PubMed, EMBASE, PsycINFO, Cochrane Library, CINAHL, and Google Scholar databases between July 15, 2015, and September 28, 2016, by combining search terms for SAMe (s-adenosyl methionine or s-adenosyl-l-methionine) with terms for relevant disease states (major depressive disorder, MDD, depression, perinatal depression, human immunodeficiency virus, HIV, Parkinson's, Alzheimer's, dementia, anxiety, schizophrenia, psychotic, 22q11.2, substance abuse, fibromyalgia, osteoarthritis, hepatitis, or cirrhosis). Additional studies were identified from prior literature. Ongoing clinical trials were identified through clinical trial registries. STUDY SELECTION Of the 174 records retrieved, 21 were excluded, as they were not original investigations. An additional 21 records were excluded for falling outside the scope of this review. Of the 132 studies included in this review, 115 were clinical trials and 17 were preclinical studies. DATA EXTRACTION A wide range of studies was included in this review to capture information that would be of interest to psychiatrists in clinical practice. RESULTS This review of SAMe in the treatment of major depressive disorder found promising but limited evidence of efficacy and safety to support its use as a monotherapy and as an augmentation for other antidepressants. Additionally, preliminary evidence suggests that SAMe may ameliorate symptoms in certain neurocognitive, substance use, and psychotic disorders and comorbid medical conditions. CONCLUSIONS S-adenosylmethionine holds promise as a treatment for multiple neuropsychiatric conditions, but the body of evidence has limitations. The encouraging findings support further study of SAMe in both psychiatric and comorbid medical illnesses.
Collapse
Affiliation(s)
- Anup Sharma
- Department of Psychiatry, University of Pennsylvania School of Medicine, 10th Floor Gates Bldg, 3400 Spruce St, Philadelphia, PA 19104.
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Patricia Gerbarg
- Department of Psychiatry, New York Medical College, Vahalla, New York, USA
| | - Teodoro Bottiglieri
- Institute of Metabolic Disease, Baylor Research Institute, Dallas, Texas, USA
| | - Lila Massoumi
- Department of Psychiatry, Michigan State University, East Lansing, Michigan, USA
| | - Linda L Carpenter
- Butler Hospital, Brown Department of Psychiatry and Human Behavior, Providence, Rhode Island, USA
| | - Helen Lavretsky
- Department of Psychiatry, UCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, California, USA
| | | | | | - David Mischoulon
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
16
|
L-Carnitine and Acetyl-L-carnitine Roles and Neuroprotection in Developing Brain. Neurochem Res 2017; 42:1661-1675. [PMID: 28508995 DOI: 10.1007/s11064-017-2288-7] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 12/30/2022]
Abstract
L-Carnitine functions to transport long chain fatty acyl-CoAs into the mitochondria for degradation by β-oxidation. Treatment with L-carnitine can ameliorate metabolic imbalances in many inborn errors of metabolism. In recent years there has been considerable interest in the therapeutic potential of L-carnitine and its acetylated derivative acetyl-L-carnitine (ALCAR) for neuroprotection in a number of disorders including hypoxia-ischemia, traumatic brain injury, Alzheimer's disease and in conditions leading to central or peripheral nervous system injury. There is compelling evidence from preclinical studies that L-carnitine and ALCAR can improve energy status, decrease oxidative stress and prevent subsequent cell death in models of adult, neonatal and pediatric brain injury. ALCAR can provide an acetyl moiety that can be oxidized for energy, used as a precursor for acetylcholine, or incorporated into glutamate, glutamine and GABA, or into lipids for myelination and cell growth. Administration of ALCAR after brain injury in rat pups improved long-term functional outcomes, including memory. Additional studies are needed to better explore the potential of L-carnitine and ALCAR for protection of developing brain as there is an urgent need for therapies that can improve outcome after neonatal and pediatric brain injury.
Collapse
|
17
|
Ischemic optic neuropathy as a model of neurodegenerative disorder: A review of pathogenic mechanism of axonal degeneration and the role of neuroprotection. J Neurol Sci 2016; 375:430-441. [PMID: 28320183 DOI: 10.1016/j.jns.2016.12.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 12/20/2016] [Accepted: 12/22/2016] [Indexed: 02/07/2023]
Abstract
Optic neuropathy is a neurodegenerative disease which involves optic nerve injury. It is caused by acute or intermittent insults leading to visual dysfunction. There are number of factors, responsible for optic neuropathy, and the optic nerve axon is affected in all type which causes the loss of retinal ganglion cells. In this review we will highlight various mechanisms involved in the cell loss cascades during axonal degeneration as well as ischemic optic neuropathy. These mechanisms include oxidative stress, excitotoxicity, angiogenesis, neuroinflammation and apoptosis following retinal ischemia. We will also discuss the effect of neuroprotective agents in attenuation of the negative effect of factors involve in the disease occurrence and progression.
Collapse
|
18
|
Hao X, Huang Y, Qiu M, Yin C, Ren H, Gan H, Li H, Zhou Y, Xia J, Li W, Guo L, Angres IA. Immunoassay of S-adenosylmethionine and S-adenosylhomocysteine: the methylation index as a biomarker for disease and health status. BMC Res Notes 2016; 9:498. [PMID: 27894352 PMCID: PMC5127003 DOI: 10.1186/s13104-016-2296-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 11/15/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND S-Adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) are relevant to a variety of diseases. Previous reports that quantified SAM and SAH were based on HPLC or LC-MS/MS. No antibody against SAM has been generated, and the antibody against SAH cannot be used with blood samples. Immunoassays have not been used to measure SAM and SAH. In this study, ELISA was used to measure blood SAM and SAH levels. RESULTS Specific antibodies against SAM were produced for the first time using a stable analog as the antigen. The monoclonal antibodies against SAM and SAH were characterized. No cross-reactivity was detected for the analyzed analogs. For the anti-SAM antibodies, the ELISA sensitivity was ~2 nM, and the affinity was 7.29 × 1010 L/mol. For the anti-SAH antibodies, the sensitivity was ~15 nM, and the affinity was 2.79 × 108 L/mol. Using high-quality antibodies against SAM and SAH, immunoassays for the detection of SAM and SAH levels in blood and tissue samples were developed. Clinical investigations using immunoassays to measure SAM, SAH and the methylation index (MI) in normal and diseased samples indicated that (1) the SAM level is age and gender dependent; (2) the SAM level is associated with the severity of liver diseases, inflammatory reactions and other diseases; and (3) the methylation index (MI) is significantly reduced in many diseases and may serve as a screening biomarker to identify potentially unfavorable health conditions. CONCLUSION It is possible to generate antibodies against active small biomolecules with weak immunogenicity, such as SAM and SAH, using traditional hybridoma technology. The antigens and antibodies described here will contribute to the development of immunoassays to measure SAM, SAH and related molecules. These assays enable the MI to be measured specifically, accurately, easily and quickly without costly equipment. This preliminary study indicates that the MI could be an effective indicator of general health, except under conditions that may alter the value of the MI, such as special diets and medications.
Collapse
Affiliation(s)
- Xiujuan Hao
- Arthus Biosystems, 2600 Hilltop Dr., Richmond, CA 94806 USA
| | - Yan Huang
- Department of Infectious Diseases, Xiangya Hospital, Central South University Hospital, Changsha, China
| | - Ming Qiu
- Changsha Blood Center, Changsha, 410000 China
- Lanwei Clinical Laboratories Co. Ltd., 268 Xinxing Rd. International Enterprise Center Building 9, Suite 301, Yuhua District, Changsha, 410000 China
| | - Chunlin Yin
- Department of Cardiology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China
| | - Huiming Ren
- Hunan SkyWorld Biotechnologies Co. Ltd, 9 Panpan Rd. Changsha Economic and Technological Development Zone, Changsha, Hunan 410100 China
| | - Hongjie Gan
- Hunan SkyWorld Biotechnologies Co. Ltd, 9 Panpan Rd. Changsha Economic and Technological Development Zone, Changsha, Hunan 410100 China
| | - Huijun Li
- Hunan SkyWorld Biotechnologies Co. Ltd, 9 Panpan Rd. Changsha Economic and Technological Development Zone, Changsha, Hunan 410100 China
| | - Yaxia Zhou
- Hunan SkyWorld Biotechnologies Co. Ltd, 9 Panpan Rd. Changsha Economic and Technological Development Zone, Changsha, Hunan 410100 China
| | - Jiazhi Xia
- Hunan SkyWorld Biotechnologies Co. Ltd, 9 Panpan Rd. Changsha Economic and Technological Development Zone, Changsha, Hunan 410100 China
| | - Wenting Li
- Department of Infectious Diseases, Xiangya Hospital, Central South University Hospital, Changsha, China
| | - Lijuan Guo
- Department of Cardiology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China
| | | |
Collapse
|
19
|
Perry CJ, Lawrence AJ. Addiction, cognitive decline and therapy: seeking ways to escape a vicious cycle. GENES BRAIN AND BEHAVIOR 2016; 16:205-218. [DOI: 10.1111/gbb.12325] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/14/2016] [Accepted: 08/25/2016] [Indexed: 12/31/2022]
Affiliation(s)
- C. J. Perry
- Behavioural Neuroscience Division; The Florey Institute of Neuroscience and Mental Health; Melbourne VIC Australia
- Florey Department of Neuroscience and Mental Health; University of Melbourne; Melbourne VIC Australia
| | - A. J. Lawrence
- Behavioural Neuroscience Division; The Florey Institute of Neuroscience and Mental Health; Melbourne VIC Australia
- Florey Department of Neuroscience and Mental Health; University of Melbourne; Melbourne VIC Australia
| |
Collapse
|
20
|
Rescue of Early bace-1 and Global DNA Demethylation by S-Adenosylmethionine Reduces Amyloid Pathology and Improves Cognition in an Alzheimer's Model. Sci Rep 2016; 6:34051. [PMID: 27681803 PMCID: PMC5041108 DOI: 10.1038/srep34051] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 09/05/2016] [Indexed: 02/04/2023] Open
Abstract
General DNA hypomethylation is associated with Alzheimer's disease (AD), but it is unclear when DNA hypomethylation starts or plays a role in AD pathology or whether DNA re-methylation would rescue early amyloid-related cognitive impairments. In an APP transgenic mouse model of AD-like amyloid pathology we found that early intraneuronal amyloid beta build-up is sufficient to unleash a global and beta-site amyloid precursor protein cleaving enzyme 1 (bace-1) DNA demethylation in AD-vulnerable brain regions. S-adenosylmethionine administration at these early stages abolished this hypomethylation, diminished the amyloid pathology and restored cognitive capabilities. To assess a possible human significance of findings, we examined the methylation at 12 CpGs sites in the bace-1 promoter, using genome-wide DNA methylation data from 740 postmortem human brains. Thus, we found significant associations of bace-1 promoter methylation with β-amyloid load among persons with AD dementia, and PHFtau tangle density. Our results support a plausible causal role for the earliest amyloid beta accumulation to provoke DNA hypomethylation, influencing AD pathological outcomes.
Collapse
|
21
|
Sepand MR, Razavi-Azarkhiavi K, Omidi A, Zirak MR, Sabzevari S, Kazemi AR, Sabzevari O. Effect of Acetyl-L-Carnitine on Antioxidant Status, Lipid Peroxidation, and Oxidative Damage of Arsenic in Rat. Biol Trace Elem Res 2016; 171:107-15. [PMID: 26349760 DOI: 10.1007/s12011-015-0436-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 07/02/2015] [Indexed: 12/18/2022]
Abstract
Arsenic (As) is a widespread environmental contaminant present around the world in both organic and inorganic forms. Oxidative stress is postulated as the main mechanism for As-induced toxicity. This study was planned to examine the protective effect of acetyl-L-carnitine (ALC) on As-induced oxidative damage in male rats. Animals were randomly divided into four groups of control (saline), sodium arsenite (NaAsO2, 20 mg/kg), ALC (300 mg/kg), and NaAsO2 plus ALC. Animals were dosed orally for 28 successive days. Blood and tissue samples including kidney, brain, liver, heart, and lung were collected on the 28th day and evaluated for oxidative damage and histological changes. NaAsO2 exposure caused a significant lipid peroxidation as evidenced by elevation in thiobarbituric acid-reactive substances (TBARS). The activity of antioxidant enzymes such as glutathione-S-transferase (GST), catalase (CAT), superoxide dismutase (SOD), as well as sulfhydryl group content (SH group) was significantly suppressed in various organs following NaAsO2 treatment (P < 0.05). Furthermore, NaAsO2 administration increased serum values of alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), and bilirubin. Our findings revealed that co-administration of ALC and NaAsO2 significantly suppressed the oxidative damage induced by NaAsO2. Tissue histological studies have confirmed the biochemical findings and provided evidence for the beneficial role of ALC. The results concluded that ALC attenuated NaAsO2-induced toxicity, and this protective effect may result from the ability of ALC in maintaining oxidant-antioxidant balance.
Collapse
Affiliation(s)
- Mohammad Reza Sepand
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Kamal Razavi-Azarkhiavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ameneh Omidi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zirak
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samin Sabzevari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
- Toxicology and Poisoning Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Reza Kazemi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Omid Sabzevari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran.
- Toxicology and Poisoning Research Centre, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Shukla PK, Gangwar R, Manda B, Meena AS, Yadav N, Szabo E, Balogh A, Lee SC, Tigyi G, Rao R. Rapid disruption of intestinal epithelial tight junction and barrier dysfunction by ionizing radiation in mouse colon in vivo: protection by N-acetyl-l-cysteine. Am J Physiol Gastrointest Liver Physiol 2016; 310:G705-15. [PMID: 26822914 PMCID: PMC4867328 DOI: 10.1152/ajpgi.00314.2015] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 01/12/2016] [Indexed: 01/31/2023]
Abstract
The goals of this study were to evaluate the effects of ionizing radiation on apical junctions in colonic epithelium and mucosal barrier function in mice in vivo. Adult mice were subjected to total body irradiation (4 Gy) with or without N-acetyl-l-cysteine (NAC) feeding for 5 days before irradiation. At 2-24 h postirradiation, the integrity of colonic epithelial tight junctions (TJ), adherens junctions (AJ), and the actin cytoskeleton was assessed by immunofluorescence microscopy and immunoblot analysis of detergent-insoluble fractions for TJ and AJ proteins. The barrier function was evaluated by measuring vascular-to-luminal flux of fluorescein isothiocyanate (FITC)-inulin in vivo and luminal-to-mucosal flux in vitro. Oxidative stress was evaluated by measuring protein thiol oxidation. Confocal microscopy showed that radiation caused redistribution of occludin, zona occludens-1, claudin-3, E-cadherin, and β-catenin, as well as the actin cytoskeleton as early as 2 h postirradiation, and this effect was sustained for at least 24 h. Feeding NAC before irradiation blocked radiation-induced disruption of TJ, AJ, and the actin cytoskeleton. Radiation increased mucosal permeability to inulin in colon, which was blocked by NAC feeding. The level of reduced-protein thiols in colon was depleted by radiation with a concomitant increase in the level of oxidized-protein thiol. NAC feeding blocked the radiation-induced protein thiol oxidation. These data demonstrate that radiation rapidly disrupts TJ, AJ, and the actin cytoskeleton by an oxidative stress-dependent mechanism that can be prevented by NAC feeding.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - RadhaKrishna Rao
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW Evidence for the benefit of nutrition in Alzheimer's disease continues to accumulate. Many studies with individual vitamins or supplements show marginal, if any, benefit. However, new findings with combinatorial formulations demonstrate improvement in cognitive performance and behavioral difficulties that accompany Alzheimer's disease. Herein, we review some of the most recent clinical advances and summarize supportive preclinical studies. RECENT FINDINGS We present novel positive effects on Alzheimer's disease derived from diet, trace elements, vitamins and supplements. We discuss the inherent difficulty in conducting nutritional studies because of the variance in participants' nutritional history, versus pharmacological interventions in which participants are naive to the intervention. We examine the evidence that epigenetics play a role in Alzheimer's disease and how nutritional intervention can modify the key epigenetic events to maintain or improve cognitive performance. SUMMARY Overall consideration of the most recent collective evidence suggests that the optimal approach for Alzheimer's disease would seem to combine early, multicomponent nutritional approaches (a Mediterranean-style diet, multivitamins and key combinatorial supplements), along with lifestyle modifications such as social activity and mental and physical exercise, with ultimate addition of pharmacological agents when warranted.
Collapse
|
24
|
Traina G, Scuri R. Transcription and protein synthesis inhibitors influence long-term effects of acetyl-l-carnitine on non-associative learning in the leech. Neurochem Int 2015; 80:72-8. [DOI: 10.1016/j.neuint.2014.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 11/13/2014] [Accepted: 11/20/2014] [Indexed: 11/15/2022]
|
25
|
Chen M, Nguyen HT. Our "energy-Ca(2+) signaling deficits" hypothesis and its explanatory potential for key features of Alzheimer's disease. Front Aging Neurosci 2014; 6:329. [PMID: 25489296 PMCID: PMC4253736 DOI: 10.3389/fnagi.2014.00329] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 11/10/2014] [Indexed: 12/15/2022] Open
Abstract
Sporadic Alzheimer's disease (sAD) has not been explained by any current theories, so new hypotheses are urgently needed. We proposed that "energy and Ca(2+) signaling deficits" are perhaps the earliest modifiable defects in brain aging underlying memory decline and tau deposits (by means of inactivating Ca(2+)-dependent protease calpain). Consistent with this hypothesis, we now notice that at least eight other known calpain substrates have also been reported to accumulate in aging and AD. Thus, protein accumulation or aggregation is not a "pathogenic" event, but occurs naturally and selectively to a peculiar family of proteins, and is best explained by calpain inactivation. Why are only calpain substrates accumulated and how can they stay for decades in the brain without being attacked by many other non-specific proteases there? We believe that these long-lasting puzzles can be explained by calpain's unique properties, especially its unusual specificity and exclusivity in substrate recognition, which can protect the substrates from other proteases' attacks after calpain inactivation. Interestingly, our model, in essence, may also explain tau phosphorylation and the formation of amyloid plaques. Our studies suggest that α-secretase is an energy-/Ca(2+)-dual dependent protease and is also the primary determinant for Aβ levels. Therefore, β- and γ-secretases can only play secondary roles and, by biological laws, they are unlikely to be "positively identified". This study thus raises serious questions for policymakers and researchers and these questions may help explain why sAD can remain an enigma today.
Collapse
Affiliation(s)
- Ming Chen
- Aging Research Laboratory, Research and Development Service, Bay Pines Veterans Affairs Healthcare System Bay Pines, FL, USA ; Department of Molecular Pharmacology and Physiology, University of South Florida Tampa, FL, USA
| | - Huey T Nguyen
- Aging Research Laboratory, Research and Development Service, Bay Pines Veterans Affairs Healthcare System Bay Pines, FL, USA
| |
Collapse
|
26
|
The effect of S-adenosylmethionine on cognitive performance in mice: an animal model meta-analysis. PLoS One 2014; 9:e107756. [PMID: 25347725 PMCID: PMC4210123 DOI: 10.1371/journal.pone.0107756] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 08/15/2014] [Indexed: 11/19/2022] Open
Abstract
Background Alzheimer's disease (AD) is the most frequently diagnosed form of dementia resulting in cognitive impairment. Many AD mouse studies, using the methyl donor S-adenosylmethionine (SAM), report improved cognitive ability, but conflicting results between and within studies currently exist. To address this, we conducted a meta-analysis to evaluate the effect of SAM on cognitive ability as measured by Y maze performance. As supporting evidence, we include further discussion of improvements in cognitive ability, by SAM, as measured by the Morris water maze (MWM). Methods We conducted a comprehensive literature review up to April 2014 based on searches querying MEDLINE, EMBASE, Web of Science, the Cochrane Library and Proquest Theses and Dissertation databases. We identified three studies containing a total of 12 experiments that met our inclusion criteria and one study for qualitative review. The data from these studies were used to evaluate the effect of SAM on cognitive performance according to two scenarios: 1. SAM supplemented folate deficient (SFD) diet compared to a folate deficient (FD) diet and 2. SFD diet compared to a nutrient complete (NC) diet. Hedge's g was used to calculate effect sizes and mixed effects model meta-regression was used to evaluate moderating factors. Results Our findings showed that the SFD diet was associated with improvements in cognitive performance. SFD diet mice also had superior cognitive performance compared to mice on an NC diet. Further to this, meta-regression analyses indicated a significant positive effect of study quality score and treatment duration on the effect size estimate for both the FD vs SFD analysis and the SFD vs NC analysis. Conclusion The findings of this meta-analysis demonstrate efficacy of SAM in acting as a cognitive performance-enhancing agent. As a corollary, SAM may be useful in improving spatial memory in patients suffering from many dementia forms including AD.
Collapse
|
27
|
Doulames V, Lee S, Shea TB. Environmental enrichment and social interaction improve cognitive function and decrease reactive oxidative species in normal adult mice. Int J Neurosci 2013; 124:369-76. [DOI: 10.3109/00207454.2013.848441] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
28
|
Liu S, Paule MG, Zhang X, Newport GD, Apana SM, Berridge MS, Patterson TA, Ali SF, Slikker W, Wang C. The Evaluation of Sevoflurane-Induced Apoptotic Neurodegeneration with MicroPET Using [18F]-DFNSH in the Developing Rat Brain. ACTA ACUST UNITED AC 2013. [DOI: 10.4303/jdar/235679] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
29
|
Nierenberg AA, Kansky C, Brennan BP, Shelton RC, Perlis R, Iosifescu DV. Mitochondrial modulators for bipolar disorder: a pathophysiologically informed paradigm for new drug development. Aust N Z J Psychiatry 2013; 47:26-42. [PMID: 22711881 DOI: 10.1177/0004867412449303] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Bipolar patients frequently relapse within 12 months of their previous mood episode, even in the context of adequate treatment, suggesting that better continuation and maintenance treatments are needed. Based on recent research of the pathophysiology of bipolar disorder, we review the evidence for mitochondrial dysregulation and selected mitochondrial modulators (MM) as potential treatments. METHODS We reviewed the literature about mitochondrial dysfunction and potential MMs worthy of study that could improve the course of bipolar disorder, reduce subsyndromal symptoms, and prevent subsequent mood episodes. RESULTS MM treatment targets mitochondrial dysfunction, oxidative stress, altered brain energy metabolism and the dysregulation of multiple mitochondrial genes in patients with bipolar disorder. Several tolerable and readily available candidates include N-acetyl-cysteine (NAC), acetyl-L-carnitine (ALCAR), S-adenosylmethionine (SAMe), coenzyme Q(10) (CoQ10), alpha-lipoic acid (ALA), creatine monohydrate (CM), and melatonin. The specific metabolic pathways by which these MMs may improve the symptoms of bipolar disorder are discussed and combinations of selected MMs could be of interest as well. CONCLUSIONS Convergent data implicate mitochondrial dysfunction as an important component of the pathophysiology of bipolar disorder. Clinical trials of individual MMs as well as combinations are warranted.
Collapse
|
30
|
Franklin JM, Carrasco GA, Moskovitz J. Induction of methionine sulfoxide reductase activity by pergolide, pergolide sulfoxide, and S-adenosyl-methionine in neuronal cells. Neurosci Lett 2012. [PMID: 23178192 DOI: 10.1016/j.neulet.2012.11.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The reduction of methionine sulfoxide in proteins is facilitated by the methionine sulfoxide reductase (Msr) system. The Msr reduction activity is important for protecting cells from oxidative stress related damages. Indeed, we have recently shown that treatment of cells with N-acetyl-methionine sulfoxide can increase Msr activity and protect neuronal cells from amyloid beta toxicity. Thus, in search of other similar Msr-inducing molecules, we examined the effects of pergolide, pergolide sulfoxide, and S-adenosyl-methionine on Msr activity in neuronal cells. Treatment of neuronal cells with a physiological range of pergolide and pergolide sulfoxide (0.5-1.0 μM) caused an increase of about 40% in total Msr activity compared with non-treated control cells. This increase in activity correlated with similar increases in methionine sulfoxide reductase A protein expression levels. Similarly, treatment of cells with S-adenosyl methionine also increased cellular Msr activity, which was milder compared to increases induced by pergolide and pergolide sulfoxide. We found that all the examined compounds are able to increase cellular Msr activity to levels comparable to N-acetyl-methionine sulfoxide treatment. Pergolide, pergolide sulfoxide, and S-adenosyl methionine can cross the blood-brain barrier. Therefore, we hypothesize that they can be useful in the treatment of symptoms/pathologies that are associated with reduced Msr activity.
Collapse
Affiliation(s)
- Jade M Franklin
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | | | | |
Collapse
|
31
|
Vincristine-induced peripheral neuropathy in a neonate with congenital acute lymphoblastic leukemia. J Pediatr Hematol Oncol 2010; 32:e114-7. [PMID: 20216233 DOI: 10.1097/mph.0b013e3181d419ad] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We report the case of a 46-day-old boy with a fulminant vincristine-induced peripheral neuropathy after treatment for congenital acute lymphoblastic leukemia. Flaccid paralysis developed at the end of the first phase of induction, requiring intubation and ventilation for 51 days. Treatment was initiated with levocarnitine, N-acetylcysteine, and pyridoxine and progressive reversal of the neuropathy occurred over the next 4 months. Potential differences in pathogenesis and presentation of vincristine neurotoxicity and Guillian-Barre syndrome in the neonate are discussed.
Collapse
|
32
|
El Fangour S, Marini M, Good J, McQuaker SJ, Shiels PG, Hartley RC. Nitrones for understanding and ameliorating the oxidative stress associated with aging. AGE (DORDRECHT, NETHERLANDS) 2009; 31:269-76. [PMID: 19479343 PMCID: PMC2813050 DOI: 10.1007/s11357-009-9098-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Accepted: 05/07/2009] [Indexed: 05/04/2023]
Abstract
Oxidative damage from reactive oxygen species (ROS) and the carbon-centred radicals arising from them is important to the process of aging, and age-related diseases are generally caused, exacerbated or mediated by oxidative stress. Nitrones can act as spin traps to detect, identify, quantify and locate the radicals responsible using electron paramagnetic resonance (EPR or ESR) spectroscopy, and a new carnitine-derived nitrone, CarnDOD-7C, designed to accumulate in mitochondria is reported. Nitrones also have potential as therapeutic antioxidants, e.g. for slowing cellular aging, and as tools for chemical biology. Two low-molecular weight nitrones, DIPEGN-2 and DIPEGN-3, are reported, which combine high water-solubility with high lipophilicity and obey Lipinski's rule of five.
Collapse
Affiliation(s)
- Siham El Fangour
- Centre for the Chemical Research of Ageing, WestCHEM Department of Chemistry, University of Glasgow, Joseph Black Building, Glasgow, G12 8QQ UK
| | - Milvia Marini
- Dipartimento di Scienze e Chimiche, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - James Good
- Centre for the Chemical Research of Ageing, WestCHEM Department of Chemistry, University of Glasgow, Joseph Black Building, Glasgow, G12 8QQ UK
| | - Stephen J. McQuaker
- Centre for the Chemical Research of Ageing, WestCHEM Department of Chemistry, University of Glasgow, Joseph Black Building, Glasgow, G12 8QQ UK
| | - Paul G. Shiels
- Department of Surgery, University of Glasgow, Level 2 Queen Elizabeth Building, Glasgow Royal Infirmary, 10 Alexandra Parade, Glasgow, G31 2ER UK
| | - Richard C. Hartley
- Centre for the Chemical Research of Ageing, WestCHEM Department of Chemistry, University of Glasgow, Joseph Black Building, Glasgow, G12 8QQ UK
| |
Collapse
|
33
|
Suchy J, Lee S, Ahmed A, Shea TB. Dietary supplementation with S-adenosyl methionine delays the onset of motor neuron pathology in a murine model of amyotrophic lateral sclerosis. Neuromolecular Med 2009; 12:86-97. [PMID: 19757209 DOI: 10.1007/s12017-009-8089-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Accepted: 08/25/2009] [Indexed: 12/12/2022]
Abstract
The full range of causative factors in Amyotrophic lateral sclerosis (ALS) remains elusive, but oxidative stress is recognized as a contributing factor. Mutations in Cu/Zn superoxide dismutase 1 (SOD-1), associated with familial ALS, promote widespread oxidative damage. Mice-expressing G93A mutant human SOD-1 mice display multiple pathological changes characteristic of ALS and are therefore useful for therapeutic development. Dietary supplementation with S-adenosyl methionine (SAM) has provided multiple neuroprotective effects in mouse models of age-related cognitive pathology. We examined herein whether SAM supplementation could affect the course of motor neuron pathology in mice-expressing mutant human SOD-1. SAM delayed disease onset by 2-3 weeks. SAM also delayed hallmarks of neurodegeneration in these mice and in ALS, including preventing loss of motor neurons, and reducing gliosis, SOD-1 aggregation, protein carbonylation, and induction of antioxidant activity. SAM did not increase survival time. These preliminary findings, using a single concentration of SAM, suggest that SAM supplementation maybe useful as part of a comprehensive therapeutic approach for ALS.
Collapse
Affiliation(s)
- James Suchy
- Center for Cellular Neurobiology and Neurodegeneration Research, Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | | | | | | |
Collapse
|
34
|
Chan A, Tchantchou F, Rogers EJ, Shea TB. Dietary deficiency increases presenilin expression, gamma-secretase activity, and Abeta levels: potentiation by ApoE genotype and alleviation by S-adenosyl methionine. J Neurochem 2009; 110:831-6. [PMID: 19457069 DOI: 10.1111/j.1471-4159.2009.06177.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Apolipoprotein E4 (ApoE4) is a risk factor for Alzheimer's disease (AD). Whether this risk arises from a deficient function of E4 or the lack of protection provided by E2 or E3 is unclear. Previous studies demonstrate that deprivation of folate and vitamin E, coupled with dietary iron as a pro-oxidant, for 1 month displayed increased presenilin 1 (PS-1) expression, gamma-secretase, and Abeta generation in mice lacking ApoE (ApoE-/- mice). While ApoE-/- mice are a model for ApoE deficiency, they may not reflect the entire range of consequences of E4 expression. We therefore compared herein the impact of the above deficient diet on mice expressing human E2, E3, or E4. As folate deficiency is accompanied by a decrease in the major methyl donor, S-adenosyl methionine (SAM), additional mice received the deficient diet plus SAM. E2 was more protective than murine ApoE or E3 and E4. Surprisingly, PS-1 and gamma-secretase were over-expressed in E3 to the same extent as in E4 even under a complete diet, and were not alleviated by SAM supplementation. Abeta increased only in E4 mice maintained under the complete diet, and was alleviated by SAM supplementation. These findings suggest dietary compromise can potentiate latent risk factors for AD.
Collapse
Affiliation(s)
- Amy Chan
- Department of Biological Sciences and Health and Clinical Sciences, Center for Cellular Neurobiology and Neurodegeneration Research, University of Massachusetts, Lowell, Massachusets 01854, USA
| | | | | | | |
Collapse
|
35
|
Traina G, Federighi G, Brunelli M, Scuri R. Cytoprotective Effect of Acetyl-l-Carnitine Evidenced by Analysis of Gene Expression in the Rat Brain. Mol Neurobiol 2009; 39:101-6. [DOI: 10.1007/s12035-009-8056-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Accepted: 01/22/2009] [Indexed: 11/24/2022]
|
36
|
Remington R, Chan A, Paskavitz J, Shea TB. Efficacy of a vitamin/nutriceutical formulation for moderate-stage to later-stage Alzheimer's disease: a placebo-controlled pilot study. Am J Alzheimers Dis Other Demen 2009; 24:27-33. [PMID: 19056706 PMCID: PMC10846219 DOI: 10.1177/1533317508325094] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2024]
Abstract
Recent studies demonstrated efficacy of a vitamin/ nutriceutical formulation (folate, vitamin B12, alpha-tocopherol, S-adenosyl methionine, N-acetyl cysteine, and acetyl-L-carnitine) for mild to moderate Alzheimer's disease. Herein, we tested the efficacy of this formulation in a small cohort of 12 institutionalized patients diagnosed with moderate-stage to later-stage Alzheimer's disease. Participants were randomly separated into treatment of placebo groups. Participants receiving the formulation demonstrated a clinically significant delay in decline in the Dementia Rating Scale and clock-drawing test as compared to those receiving placebo. Institutional caregivers reported approximately 30% improvement in the Neuropyschiatric Inventory and maintenance of performance in the Alzheimer's Disease Cooperative Study-Activities of Daily Living for more than 9 months. This formulation holds promise for delaying the decline in cognition, mood, and daily function that accompanies the progression of Alzheimer's disease, and may be particularly useful as a supplement for pharmacological approaches during later stages of this disorder. A larger trial is warranted.
Collapse
Affiliation(s)
- Ruth Remington
- Department of Nursing, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | | | | | | |
Collapse
|
37
|
Dietary supplementation with a combination of α-lipoic acid, acetyl-l-carnitine, glycerophosphocoline, docosahexaenoic acid, and phosphatidylserine reduces oxidative damage to murine brain and improves cognitive performance. Nutr Res 2009; 29:70-4. [DOI: 10.1016/j.nutres.2008.11.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 11/26/2008] [Accepted: 11/26/2008] [Indexed: 11/22/2022]
|
38
|
Chan A, Paskavitz J, Remington R, Rasmussen S, Shea TB. Efficacy of a vitamin/nutriceutical formulation for early-stage Alzheimer's disease: a 1-year, open-label pilot study with an 16-month caregiver extension. Am J Alzheimers Dis Other Demen 2008; 23:571-85. [PMID: 19047474 PMCID: PMC10846284 DOI: 10.1177/1533317508325093] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2024]
Abstract
We examined the efficacy of a vitamin/nutriceutical formulation (folate, vitamin B6, alpha-tocopherol, S-adenosyl methionine, N-acetyl cysteine, and acetyl-L-carnitine) in a 12-month, open-label trial with 14 community-dwelling individuals with early-stage Alzheimer's disease. Participants improved in the Dementia Rating Scale and Clock-drawing tests (Clox 1 and 2). Family caregivers reported improvement in multiple domains of the Neuropsychiatric Inventory (NPI) and maintenance of performance in the Alzheimer's Disease Cooperative Study-Activities of Daily Living (ADL). Sustained performance was reported by caregivers for those participants who continued in an 16-month extension. Performance on the NPI was equivalent to published findings at 3 to 6 months for donepezil and exceeded that of galantamine and their historical placebos. Participants demonstrated superior performance for more than 12 months in NPI and ADL versus those receiving naproxen and rofecoxib or their placebo group. This formulation holds promise for treatment of early-stage Alzheimer's disease prior to and/or as a supplement for pharmacological approaches. A larger, placebo-controlled trial is warranted.
Collapse
Affiliation(s)
- Amy Chan
- Center for Cell Neurobiology and Neurodegeneration Research, University of Massachusetts Lowell, MA, USA
| | | | | | | | | |
Collapse
|
39
|
Soczynska JK, Kennedy SH, Chow CSM, Woldeyohannes HO, Konarski JZ, McIntyre RS. Acetyl-L-carnitine and α-lipoic acid: possible neurotherapeutic agents for mood disorders? Expert Opin Investig Drugs 2008; 17:827-43. [DOI: 10.1517/13543784.17.6.827] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
40
|
Chan AY, Alsaraby A, Shea TB. Folate deprivation increases tau phosphorylation by homocysteine-induced calcium influx and by inhibition of phosphatase activity: Alleviation by S-adenosyl methionine. Brain Res 2008; 1199:133-7. [PMID: 18279842 DOI: 10.1016/j.brainres.2008.01.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 12/28/2007] [Accepted: 01/03/2008] [Indexed: 12/22/2022]
Abstract
Several recent studies have indicated that increased levels of homocysteine (HC), including that resulting from deficiency in folate, increases tau phosphorylation. Some studies indicate that this is accomplished via HC-dependent activation of NMDA channels and resultant activation of calcium-dependent kinase pathways, while others suggest that the increase in tau phosphorylation is derived via HC-dependent inhibition of methylation of phosphatases and resultant inhibition of phosphatase activity. We demonstrate herein in SH-SY-5Y human neuroblastoma that both of these phenomena contribute to the increase in phospho-tau immunoreactivity following folate deprivation, and that supplementation with S-adenosyl methionine (SAM) prevents both the increase in kinase activity and the decrease in phosphatase activity. These findings demonstrate that the divergent neuropathological consequences of folate deprivation includes multiple pathways that converge upon tau phosphorylation, and further support the notion that dietary supplementation with SAM may reduce or delay neurodegeneration.
Collapse
Affiliation(s)
- Amy Y Chan
- Center for Cellular Neurobiology and Neurodegeneration Research, Department of Biological Sciences, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA
| | | | | |
Collapse
|