1
|
Sandoval KE, Witt KA. Somatostatin: Linking Cognition and Alzheimer Disease to Therapeutic Targeting. Pharmacol Rev 2024; 76:1291-1325. [PMID: 39013601 PMCID: PMC11549939 DOI: 10.1124/pharmrev.124.001117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024] Open
Abstract
Over 4 decades of research support the link between Alzheimer disease (AD) and somatostatin [somatotropin-releasing inhibitory factor (SRIF)]. SRIF and SRIF-expressing neurons play an essential role in brain function, modulating hippocampal activity and memory formation. Loss of SRIF and SRIF-expressing neurons in the brain rests at the center of a series of interdependent pathological events driven by amyloid-β peptide (Aβ), culminating in cognitive decline and dementia. The connection between the SRIF and AD further extends to the neuropsychiatric symptoms, seizure activity, and inflammation, whereas preclinical AD investigations show SRIF or SRIF receptor agonist administration capable of enhancing cognition. SRIF receptor subtype-4 activation in particular presents unique attributes, with the potential to mitigate learning and memory decline, reduce comorbid symptoms, and enhance enzymatic degradation of Aβ in the brain. Here, we review the links between SRIF and AD along with the therapeutic implications. SIGNIFICANCE STATEMENT: Somatostatin and somatostatin-expressing neurons in the brain are extensively involved in cognition. Loss of somatostatin and somatostatin-expressing neurons in Alzheimer disease rests at the center of a series of interdependent pathological events contributing to cognitive decline and dementia. Targeting somatostatin-mediated processes has significant therapeutic potential for the treatment of Alzheimer disease.
Collapse
Affiliation(s)
- Karin E Sandoval
- Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, Illinois
| | - Ken A Witt
- Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, Illinois
| |
Collapse
|
2
|
Heuer SE, Bloss EB, Howell GR. Strategies to dissect microglia-synaptic interactions during aging and in Alzheimer's disease. Neuropharmacology 2024; 254:109987. [PMID: 38705570 DOI: 10.1016/j.neuropharm.2024.109987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Age is the largest risk factor for developing Alzheimer's disease (AD), a neurodegenerative disorder that causes a progressive and severe dementia. The underlying cause of cognitive deficits seen in AD is thought to be the disconnection of neural circuits that control memory and executive functions. Insight into the mechanisms by which AD diverges from normal aging will require identifying precisely which cellular events are driven by aging and which are impacted by AD-related pathologies. Since microglia, the brain-resident macrophages, are known to have critical roles in the formation and maintenance of neural circuits through synaptic pruning, they are well-positioned to modulate synaptic connectivity in circuits sensitive to aging or AD. In this review, we provide an overview of the current state of the field and on emerging technologies being employed to elucidate microglia-synaptic interactions in aging and AD. We also discuss the importance of leveraging genetic diversity to study how these interactions are shaped across more realistic contexts. We propose that these approaches will be essential to define specific aging- and disease-relevant trajectories for more personalized therapeutics aimed at reducing the effects of age or AD pathologies on the brain. This article is part of the Special Issue on "Microglia".
Collapse
Affiliation(s)
- Sarah E Heuer
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA; Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Erik B Bloss
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA; Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, 02111, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, 04469, USA.
| | - Gareth R Howell
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA; Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, 02111, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, 04469, USA.
| |
Collapse
|
3
|
Chen L, Yang W, Yang F, Yu Y, Xu T, Wang D, Zhao Q, Wu Q, Han Y. The crosstalk between epilepsy and dementia: A systematic review and meta-analysis. Epilepsy Behav 2024; 152:109640. [PMID: 38301455 DOI: 10.1016/j.yebeh.2024.109640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/06/2024] [Accepted: 01/10/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND Epilepsy and dementia are bidirectional. The purpose of this review was to investigate the epidemiological characteristics of and to identify the risk factors for epilepsy in patients with dementia and dementia in patients with epilepsy. METHODS We retrieved the PubMed, Embase, Cochrane and Web of Science databases through January 2023. Two individuals screened the articles, extracted the data, and used a random effects model to pool the estimates and 95% confidence intervals (CIs). RESULTS From 3475 citations, 25 articles were included. The prevalence of seizures/epilepsy was 4% among dementia patients and 3% among Alzheimer's disease (AD) patients. For vascular dementia, Lewy body dementia, and frontotemporal dementia, the pooled period prevalence of seizures/epilepsy was 6%, 3%, and 2%, respectively. Baseline early-onset AD was associated with the highest risk of 5-year epilepsy (pooled hazard ratios: 4.06; 95% CI: 3.25-5.08). Dementia patients had a 2.29-fold greater risk of seizures/epilepsy than non-dementia patients (95% CI: 1.37-3.83). Moreover, for baseline epilepsy, the pooled prevalence of dementia was 17% (95% CI: 10-25%), and that of AD was 15% (95% CI: 9-21%). The pooled results suggested that epilepsy is associated with a greater risk of dementia (risk ratio: 2.83, 95% CI: 1.64-4.88). CONCLUSIONS There are still gaps in epidemiology regarding the correlation between dementia types and epilepsy, vascular risk factors, and the impact of antiseizure medication or cognitive improvement drugs on epilepsy and AD comorbidity.
Collapse
Affiliation(s)
- Lu Chen
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Wenqian Yang
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Fei Yang
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Yanying Yu
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Tingwan Xu
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Dan Wang
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Qingqing Zhao
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Qian Wu
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Yanbing Han
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China.
| |
Collapse
|
4
|
Fu CH, You JC, Mohila C, Rissman RA, Yoshor D, Viaene AN, Chin J. Hippocampal ΔFosB expression is associated with cognitive impairment in a subgroup of patients with childhood epilepsies. Front Neurol 2024; 14:1331194. [PMID: 38274865 PMCID: PMC10808715 DOI: 10.3389/fneur.2023.1331194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/27/2023] [Indexed: 01/27/2024] Open
Abstract
Epilepsy is a chronic neurological disorder characterized by recurrent seizures, and is often comorbid with other neurological and neurodegenerative diseases, such as Alzheimer's disease (AD). Patients with recurrent seizures often present with cognitive impairment. However, it is unclear how seizures, even when infrequent, produce long-lasting deficits in cognition. One mechanism may be seizure-induced expression of ΔFosB, a long-lived transcription factor that persistently regulates expression of plasticity-related genes and drives cognitive dysfunction. We previously found that, compared with cognitively-intact subjects, the activity-dependent expression of ΔFosB in the hippocampal dentate gyrus (DG) was increased in individuals with mild cognitive impairment (MCI) and in individuals with AD. In MCI patients, higher ΔFosB expression corresponded to lower Mini-Mental State Examination scores. Surgically resected DG tissue from patients with temporal lobe epilepsy also showed robust ΔFosB expression; however, it is unclear whether ΔFosB expression also corresponds to cognitive dysfunction in non-AD-related epilepsy. To test whether DG ΔFosB expression is indicative of cognitive impairment in epilepsies with different etiologies, we assessed ΔFosB expression in surgically-resected hippocampal tissue from 33 patients with childhood epilepsies who had undergone Wechsler Intelligence Scale for Children (WISC) testing prior to surgery. We found that ΔFosB expression is inversely correlated with Full-Scale Intelligence Quotient (FSIQ) in patients with mild to severe intellectual disability (FSIQ < 85). Our data indicate that ΔFosB expression corresponds to cognitive impairment in epilepsies with different etiologies, supporting the hypothesis that ΔFosB may epigenetically regulate gene expression and impair cognition across a wide range of epilepsy syndromes.
Collapse
Affiliation(s)
- Chia-Hsuan Fu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Jason C. You
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Carrie Mohila
- Department of Pathology, Texas Children's Hospital and Baylor College of Medicine, Houston, TX, United States
| | - Robert A. Rissman
- Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA, United States
- Veteran's Affairs (VA) San Diego Healthcare System, San Diego, CA, United States
| | - Daniel Yoshor
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Angela N. Viaene
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jeannie Chin
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
5
|
Negi D, Granak S, Shorter S, O'Leary VB, Rektor I, Ovsepian SV. Molecular Biomarkers of Neuronal Injury in Epilepsy Shared with Neurodegenerative Diseases. Neurotherapeutics 2023; 20:767-778. [PMID: 36884195 PMCID: PMC10275849 DOI: 10.1007/s13311-023-01355-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2023] [Indexed: 03/09/2023] Open
Abstract
In neurodegenerative diseases, changes in neuronal proteins in the cerebrospinal fluid and blood are viewed as potential biomarkers of the primary pathology in the central nervous system (CNS). Recent reports suggest, however, that level of neuronal proteins in fluids also alters in several types of epilepsy in various age groups, including children. With increasing evidence supporting clinical and sub-clinical seizures in Alzheimer's disease, Lewy body dementia, Parkinson's disease, and in other less common neurodegenerative conditions, these findings call into question the specificity of neuronal protein response to neurodegenerative process and urge analysis of the effects of concomitant epilepsy and other comorbidities. In this article, we revisit the evidence for alterations in neuronal proteins in the blood and cerebrospinal fluid associated with epilepsy with and without neurodegenerative diseases. We discuss shared and distinctive characteristics of changes in neuronal markers, review their neurobiological mechanisms, and consider the emerging opportunities and challenges for their future research and diagnostic use.
Collapse
Affiliation(s)
- Deepika Negi
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, ME4 4TB, UK
| | - Simon Granak
- National Institute of Mental Health, Topolova 748, Klecany, 25067, Czech Republic
| | - Susan Shorter
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, ME4 4TB, UK
| | - Valerie B O'Leary
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruská 87, Prague, 10000, Czech Republic
| | - Ivan Rektor
- First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Multimodal and Functional Neuroimaging Research Group, CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Saak V Ovsepian
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, ME4 4TB, UK.
| |
Collapse
|
6
|
Yang F, Chen L, Yu Y, Xu T, Chen L, Yang W, Wu Q, Han Y. Alzheimer's disease and epilepsy: An increasingly recognized comorbidity. Front Aging Neurosci 2022; 14:940515. [PMID: 36438002 PMCID: PMC9685172 DOI: 10.3389/fnagi.2022.940515] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/24/2022] [Indexed: 08/27/2023] Open
Abstract
Both Alzheimer's disease (AD) and epilepsy are common chronic diseases in older people. Seizures and epileptiform discharges are very prevalent in AD and can occur since any stage of AD. Increasing evidence indicates that AD and epilepsy may be comorbid. Several factors may be related to the underlying mechanism of the comorbidity. Identifying seizures in patients with AD is a challenge because seizures are often clinically non-motor and may overlap with some AD symptoms. Not only seizures but also epileptiform discharges may exacerbate the cognitive decline in AD patients, highlighting the importance of early recognition and treatment. This review provides a comprehensive overview of seizures in AD from multiple aspects to provide more insight.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yanbing Han
- Department of Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
7
|
Fernandes M, Manfredi N, Aluisantonio L, Franchini F, Chiaravalloti A, Izzi F, Di Santo S, Schillaci O, Mercuri NB, Placidi F, Liguori C. Cognitive functioning, cerebrospinal fluid Alzheimer's disease biomarkers and cerebral glucose metabolism in late-onset epilepsy of unknown aetiology: A prospective study. Eur J Neurosci 2022; 56:5384-5396. [PMID: 35678770 DOI: 10.1111/ejn.15734] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 05/16/2022] [Accepted: 06/04/2022] [Indexed: 12/14/2022]
Abstract
Epilepsy is increasing, being more common in older adults, with more than 20% of late-onset cases with unknown aetiology (LOEU). Although epilepsy was associated with cognitive impairment, few studies evaluated the trajectories of cognitive decline in patients with LOEU. The present study aimed at assessing biomarkers of Alzheimer's disease (AD) in patients with LOEU and evaluating their cognitive performance for 12 months. For this study, 55 patients diagnosed with LOEU and 21 controls were included. Participants underwent cognitive evaluation and cerebrospinal fluid (CSF) biomarker analysis (ß-amyloid42 , tau proteins) before starting anti-seizure medication and then repeated the cognitive evaluation at the 12-month follow-up. A subgroup of LOEU patients and controls also performed 18 F-fluoro-2-deoxy-D-glucose positron emission tomography (18 F-FDG PET) before starting anti-seizure medication. At baseline, LOEU patients showed lower Mini-Mental State Examination (MMSE) score, worse cognitive performance in several domains, lower β-amyloid42 and higher tau proteins CSF levels than controls. Significantly reduced glucose consumption was observed in the right posterior cingulate cortex and left praecuneus areas in LOEU patients than controls, and this finding correlated with memory impairment. In the longitudinal analysis, a significant decrease in MMSE and an increase in verbal fluency scores were found in LOEU patients. These findings evidence that LOEU patients have a significant cognitive impairment, and alteration of cerebral glucose consumption and CSF AD biomarkers than controls. Moreover, they showed a progressive global cognitive decline at follow-up, although verbal fluency was preserved. Further studies are needed to better understand the pathophysiological aspects of LOEU and its association with AD.
Collapse
Affiliation(s)
- Mariana Fernandes
- Epilepsy Centre, Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Natalia Manfredi
- Epilepsy Centre, Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Lavinia Aluisantonio
- Epilepsy Centre, Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | | | - Agostino Chiaravalloti
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | - Francesca Izzi
- Epilepsy Centre, Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | | | - Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | - Nicola Biagio Mercuri
- Epilepsy Centre, Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Fabio Placidi
- Epilepsy Centre, Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Claudio Liguori
- Epilepsy Centre, Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
8
|
Baker J, Schott J. AD and its comorbidities: An obstacle to develop a clinically efficient treatment? Rev Neurol (Paris) 2022; 178:450-459. [DOI: 10.1016/j.neurol.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/08/2022] [Indexed: 10/18/2022]
|
9
|
Mechanisms Involved in Epileptogenesis in Alzheimer's Disease and Their Therapeutic Implications. Int J Mol Sci 2022; 23:ijms23084307. [PMID: 35457126 PMCID: PMC9030029 DOI: 10.3390/ijms23084307] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 12/22/2022] Open
Abstract
Epilepsy and Alzheimer's disease (AD) incidence increases with age. There are reciprocal relationships between epilepsy and AD. Epilepsy is a risk factor for AD and, in turn, AD is an independent risk factor for developing epilepsy in old age, and abnormal AD biomarkers in PET and/or CSF are frequently found in late-onset epilepsies of unknown etiology. Accordingly, epilepsy and AD share pathophysiological processes, including neuronal hyperexcitability and an early excitatory-inhibitory dysregulation, leading to dysfunction in the inhibitory GABAergic and excitatory glutamatergic systems. Moreover, both β-amyloid and tau protein aggregates, the anatomopathological hallmarks of AD, have proepileptic effects. Finally, these aggregates have been found in the resection material of refractory temporal lobe epilepsies, suggesting that epilepsy leads to amyloid and tau aggregates. Some epileptic syndromes, such as medial temporal lobe epilepsy, share structural and functional neuroimaging findings with AD, leading to overlapping symptomatology, such as episodic memory deficits and toxic synergistic effects. In this respect, the existence of epileptiform activity and electroclinical seizures in AD appears to accelerate the progression of cognitive decline, and the presence of cognitive decline is much more prevalent in epileptic patients than in elderly patients without epilepsy. Notwithstanding their clinical significance, the diagnosis of clinical seizures in AD is a challenge. Most are focal and manifest with an altered level of consciousness without motor symptoms, and are often interpreted as cognitive fluctuations. Finally, despite the frequent association of epilepsy and AD dementia, there is a lack of clinical trials to guide the use of antiseizure medications (ASMs). There is also a potential role for ASMs to be used as disease-modifying drugs in AD.
Collapse
|
10
|
Suárez-Méndez I, Bruña R, López-Sanz D, Montejo P, Montenegro-Peña M, Delgado-Losada ML, Marcos Dolado A, López-Higes R, Maestú F. Cognitive Training Modulates Brain Hypersynchrony in a Population at Risk for Alzheimer's Disease. J Alzheimers Dis 2022; 86:1185-1199. [PMID: 35180120 DOI: 10.3233/jad-215406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Recent studies demonstrated that brain hypersynchrony is an early sign of dysfunction in Alzheimer's disease (AD) that can represent a proxy for clinical progression. Conversely, non-pharmacological interventions, such as cognitive training (COGTR), are associated with cognitive gains that may be underpinned by a neuroprotective effect on brain synchrony. OBJECTIVE To study the potential of COGTR to modulate brain synchrony and to eventually revert the hypersynchrony phenomenon that characterizes preclinical AD. METHODS The effect of COGTR was examined in a sample of healthy controls (HC, n = 41, 22 trained) and individuals with subjective cognitive decline (SCD, n = 49, 24 trained). Magnetoencephalographic (MEG) activity and neuropsychological scores were acquired before and after a ten-week COGTR intervention aimed at improving cognitive function and daily living performance. Functional connectivity (FC) was analyzed using the phase-locking value. A mixed-effects ANOVA model with factors time (pre-intervention/post-intervention), training (trained/non-trained), and diagnosis (HC/SCD) was used to investigate significant changes in FC. RESULTS We found an average increase in alpha-band FC over time, but the effect was different in each group (trained and non-trained). In the trained group (HC and SCD), we report a reduction in the increase in FC within temporo-parietal and temporo-occipital connections. In the trained SCD group, this reduction was stronger and showed a tentative correlation with improved performance in different cognitive tests. CONCLUSION COGTR interventions could mitigate aberrant increases in FC in preclinical AD, promoting brain synchrony normalization in groups at a higher risk of developing dementia.
Collapse
Affiliation(s)
- Isabel Suárez-Méndez
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), Madrid, Spain.,Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid (UCM), Facultad de Ciencias Físicas, Madrid, Spain.,Department of Experimental Psychology, Faculty of Psychology, Complutense University of Madrid (UCM), Madrid, Spain
| | - Ricardo Bruña
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), Madrid, Spain.,Department of Experimental Psychology, Faculty of Psychology, Complutense University of Madrid (UCM), Madrid, Spain.,Networking Research Center on Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - David López-Sanz
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), Madrid, Spain.,Department of Psychobiology, Faculty of Psychology, Complutense University of Madrid (UCM), Madrid, Spain
| | - Pedro Montejo
- Center for the Prevention of Cognitive Impairment (Madrid Salud), Madrid City Council, Spain
| | - Mercedes Montenegro-Peña
- Department of Experimental Psychology, Faculty of Psychology, Complutense University of Madrid (UCM), Madrid, Spain.,Center for the Prevention of Cognitive Impairment (Madrid Salud), Madrid City Council, Spain
| | - María Luisa Delgado-Losada
- Department of Experimental Psychology, Faculty of Psychology, Complutense University of Madrid (UCM), Madrid, Spain
| | | | - Ramón López-Higes
- Department of Experimental Psychology, Faculty of Psychology, Complutense University of Madrid (UCM), Madrid, Spain
| | - Fernando Maestú
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), Madrid, Spain.,Department of Experimental Psychology, Faculty of Psychology, Complutense University of Madrid (UCM), Madrid, Spain.,Networking Research Center on Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|
11
|
Nandini HS, Krishna KL, Apattira C. Combination of Ocimum sanctum extract and Levetiracetam ameliorates cognitive dysfunction and hippocampal architecture in rat model of Alzheimer's disease. J Chem Neuroanat 2021; 120:102069. [PMID: 34973350 DOI: 10.1016/j.jchemneu.2021.102069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/25/2021] [Accepted: 12/26/2021] [Indexed: 11/17/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease which affects more than 40 million people worldwide with progressive loss of memory and cognitive functions. It is reported, persistent AD is also one of the main causes of epilepsy in elders and comorbidity of both these will contribute to worsening the health status of AD patients. Recently, herbal plants with potent neuroprotective and antioxidant properties were used for increasing the quality of life in neurodegenerative disease patients. The present study was conceptualized to access the protective effect of Ocimum sanctum extract (OSE) and Levetiracetam (LEV) and their combination (OSE+LEV) against AD and epilepsy associated with AD in the rat AD model. AD was induced in aged male Wistar albino rats with Amyloid-β (Aβ) by intracerebroventricular administration. The results reveal, treatment with OSE, LEV and OSE+LEV significantly reversed the memory impairment, increases the BDNF expressions and decreases AChE activity in Aβ induced AD animals. Expression of A-β and p-tau in the hippocampus was significantly reduced in treatment group when compared to the control animals. Treatment with OSE and OSE+LEV also restored the hippocampal architecture by ameliorating the neuronal count in CA1, CA3 and DG regions. It also observed that treatment has decreased the excitoneurotoxicity evidenced by decreased glutamate and increased GABA levels and thus provided protection against epilepsy. Treatment groups also exhibited a potent antioxidant activity when tested endogenous antioxidant enzymes SOD, GSH and LPO in the brain hippocampus. Our findings provide evidence for use of OSE, LEV and OSE+LEV against AD and epilepsy associated with AD in Aβ induced AD animal model. However, further clinical studies are required to prove the use of OSE, LEV and OSE+LEV in the management of AD and AD-associated epilepsy in human volunteers.
Collapse
Affiliation(s)
- H S Nandini
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagara, Mysuru 570015, Karnataka, India.
| | - K L Krishna
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagara, Mysuru 570015, Karnataka, India.
| | - Chinnappa Apattira
- Centre for Excellence in Molecular Biology and Regenerative Medicine (CEMR, DST-FIST Supported Center), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research, Mysuru 570015, India.
| |
Collapse
|
12
|
Teplyshova AM, Datieva VK. [Alzheimer disease and epilepsy]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:23-29. [PMID: 34870910 DOI: 10.17116/jnevro202112110223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Alzheimer Disease (AD) is a progressive neurodegenerative disorder characterized by loss of memory, difficulty in thinking, changes in behavior and personality disorders. The risk of developing epileptic seizures (ES) in patients with AD increases significantly. Animal and human studies have shown a close relationship between the pathogenesis of ES and AD. The exact prevalence of ES in AD remains unclear due to methodological difficulties, in particular, detection of ES in patients with cognitive impairment. EP types differ in sporadic and hereditary forms of AD. Antiepileptic therapy in AD has its own characteristics. Certain antiepileptic drugs can have a positive effect on cognitive function.
Collapse
Affiliation(s)
| | - V K Datieva
- State Outpatient Clinic No 62, Moscow, Russia
| |
Collapse
|
13
|
Romoli M, Sen A, Parnetti L, Calabresi P, Costa C. Amyloid-β: a potential link between epilepsy and cognitive decline. Nat Rev Neurol 2021; 17:469-485. [PMID: 34117482 DOI: 10.1038/s41582-021-00505-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2021] [Indexed: 02/05/2023]
Abstract
People with epilepsy - in particular, late-onset epilepsy of unknown aetiology - have an elevated risk of dementia, and seizures have been detected in the early stages of Alzheimer disease (AD), supporting the concept of an epileptic AD prodrome. However, the relationship between epilepsy and cognitive decline remains controversial, with substantial uncertainties about whether epilepsy drives cognitive decline or vice versa, and whether shared pathways underlie both conditions. Here, we review evidence that amyloid-β (Aβ) forms part of a shared pathway between epilepsy and cognitive decline, particularly in the context of AD. People with epilepsy show an increased burden of Aβ pathology in the brain, and Aβ-mediated epileptogenic alterations have been demonstrated in experimental studies, with evidence suggesting that Aβ pathology might already be pro-epileptogenic at the soluble stage, long before plaque deposition. We discuss the hypothesis that Aβ mediates - or is at least a major determinant of - a continuum spanning epilepsy and cognitive decline. Serial cognitive testing and assessment of Aβ levels might be worthwhile to stratify the risk of developing dementia in people with late-onset epilepsy. If seizures are a clinical harbinger of dementia, people with late-onset epilepsy could be an ideal group in which to implement preventive or therapeutic strategies to slow cognitive decline.
Collapse
Affiliation(s)
- Michele Romoli
- Neurology Clinic, Department of Medicine and Surgery, University of Perugia - S. Maria della Misericordia Hospital, Perugia, Italy.,Oxford Epilepsy Research Group, NIHR Biomedical Research Centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK.,Neurology and Stroke Unit, "Maurizio Bufalini" Hospital, Cesena, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Neurologia e Rete Stroke Metropolitana, Ospedale Maggiore, Bologna, Italy
| | - Arjune Sen
- Oxford Epilepsy Research Group, NIHR Biomedical Research Centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | - Lucilla Parnetti
- Neurology Clinic, Department of Medicine and Surgery, University of Perugia - S. Maria della Misericordia Hospital, Perugia, Italy
| | - Paolo Calabresi
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli, IRCCS, UOC Neurologia, Dipartimento di Scienze dell'Invecchiamento, Neurologiche, Ortopediche e della Testa-Collo, Rome, Italy
| | - Cinzia Costa
- Neurology Clinic, Department of Medicine and Surgery, University of Perugia - S. Maria della Misericordia Hospital, Perugia, Italy.
| |
Collapse
|
14
|
Sciaccaluga M, Megaro A, Bellomo G, Ruffolo G, Romoli M, Palma E, Costa C. An Unbalanced Synaptic Transmission: Cause or Consequence of the Amyloid Oligomers Neurotoxicity? Int J Mol Sci 2021; 22:ijms22115991. [PMID: 34206089 PMCID: PMC8199544 DOI: 10.3390/ijms22115991] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/18/2022] Open
Abstract
Amyloid-β (Aβ) 1-40 and 1-42 peptides are key mediators of synaptic and cognitive dysfunction in Alzheimer's disease (AD). Whereas in AD, Aβ is found to act as a pro-epileptogenic factor even before plaque formation, amyloid pathology has been detected among patients with epilepsy with increased risk of developing AD. Among Aβ aggregated species, soluble oligomers are suggested to be responsible for most of Aβ's toxic effects. Aβ oligomers exert extracellular and intracellular toxicity through different mechanisms, including interaction with membrane receptors and the formation of ion-permeable channels in cellular membranes. These damages, linked to an unbalance between excitatory and inhibitory neurotransmission, often result in neuronal hyperexcitability and neural circuit dysfunction, which in turn increase Aβ deposition and facilitate neurodegeneration, resulting in an Aβ-driven vicious loop. In this review, we summarize the most representative literature on the effects that oligomeric Aβ induces on synaptic dysfunction and network disorganization.
Collapse
Affiliation(s)
- Miriam Sciaccaluga
- Neurology Clinic, Department of Medicine and Surgery, University of Perugia, Santa Maria della Misericordia Hospital, 06132 Perugia, Italy; (A.M.); (G.B.)
- Correspondence: (M.S.); (C.C.); Tel.: +39-0755858180 (M.S.); +39-0755784233 (C.C.)
| | - Alfredo Megaro
- Neurology Clinic, Department of Medicine and Surgery, University of Perugia, Santa Maria della Misericordia Hospital, 06132 Perugia, Italy; (A.M.); (G.B.)
| | - Giovanni Bellomo
- Neurology Clinic, Department of Medicine and Surgery, University of Perugia, Santa Maria della Misericordia Hospital, 06132 Perugia, Italy; (A.M.); (G.B.)
| | - Gabriele Ruffolo
- Department of Physiology and Pharmacology, Istituto Pasteur—Fondazione Cenci Bolognetti, University of Rome Sapienza, 00185 Rome, Italy; (G.R.); (E.P.)
- IRCCS San Raffaele Pisana, 00166 Rome, Italy
| | - Michele Romoli
- Neurology Unit, Rimini “Infermi” Hospital—AUSL Romagna, 47923 Rimini, Italy;
| | - Eleonora Palma
- Department of Physiology and Pharmacology, Istituto Pasteur—Fondazione Cenci Bolognetti, University of Rome Sapienza, 00185 Rome, Italy; (G.R.); (E.P.)
| | - Cinzia Costa
- Neurology Clinic, Department of Medicine and Surgery, University of Perugia, Santa Maria della Misericordia Hospital, 06132 Perugia, Italy; (A.M.); (G.B.)
- Correspondence: (M.S.); (C.C.); Tel.: +39-0755858180 (M.S.); +39-0755784233 (C.C.)
| |
Collapse
|
15
|
Tesfaye BA, Hailu HG, Zewdie KA, Ayza MA, Berhe DF. Montelukast: The New Therapeutic Option for the Treatment of Epilepsy. J Exp Pharmacol 2021; 13:23-31. [PMID: 33505173 PMCID: PMC7829127 DOI: 10.2147/jep.s277720] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022] Open
Abstract
Currently, there is no definitive cure for epilepsy. The available medications relieve symptoms and reduce seizure attacks. The major challenge with the available antiepileptic medication is safety and affordability. The repurposing of montelukast for epilepsy can be an alternative medication with a better safety profile. Montelukast is a leukotriene receptor antagonist that binds to the cysteinyl leukotrienes (CysLT) receptors used in the treatment of bronchial asthma and seasonal allergies. Emerging evidence suggests that montelukast's anti-inflammatory effect can help to maintain BBB integrity. The drug has also neuroprotective and anti-oxidative activities to reduce seizure incidence and epilepsy. The present review summarizes the neuropharmacological actions of montelukast in epilepsy with an emphasis on the recent findings associated with CysLT and cell-specific effects.
Collapse
Affiliation(s)
- Bekalu Amare Tesfaye
- Department of Pharmacology and Toxicology, School of Pharmacy, Mekelle University, Mekelle, Ethiopia
| | - Haftom Gebregergs Hailu
- Department of Pharmacology and Toxicology, School of Pharmacy, Mekelle University, Mekelle, Ethiopia
| | - Kaleab Alemayehu Zewdie
- Department of Pharmacology and Toxicology, School of Pharmacy, Mekelle University, Mekelle, Ethiopia
| | - Muluken Altaye Ayza
- Department of Pharmacology and Toxicology, School of Pharmacy, Mekelle University, Mekelle, Ethiopia
| | - Derbew Fikadu Berhe
- Department of Pharmacology and Toxicology, School of Pharmacy, Mekelle University, Mekelle, Ethiopia
| |
Collapse
|
16
|
Tsai ZR, Zhang HW, Tseng CH, Peng HC, Kok VC, Li GP, Hsiung CA, Hsu CY. Late-onset epilepsy and subsequent increased risk of dementia. Aging (Albany NY) 2021; 13:3573-3587. [PMID: 33429365 PMCID: PMC7906153 DOI: 10.18632/aging.202299] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023]
Abstract
Inflammation is considered as a key pathogenesis factor of dementia and epilepsy. However, epilepsy's association with dementia, particularly its role in the development of dementia, remains unclear. To evaluate the association between epilepsy and the risk of dementia, in Taiwan, we have now conducted a retrospective cohort study comprising 675 individuals (age, ≥50 years) with epilepsy and 2,025 matched control subjects without epilepsy. In order to match individuals diagnosed with epilepsy with those with no diagnosis of epilepsy (comparison cohort), we utilized exact matching at a ratio of 1:3. Compared with those in the comparison cohort, individuals in the epilepsy cohort had a significantly increased risk of developing dementia (adjusted hazard ratio = 2.87, p < 0.001). A similar result has been observed after stratifying for sex (adjusted hazard ratio in males = 2.95, p < 0.001; adjusted hazard ratio in females = 2.66, p < 0.001). To conclude, based on these data, epileptic individuals ≥50 years were at a greater risk of developing dementia than people who do not have epilepsy, which indicates that a diagnosis of epilepsy presents a greater risk for the development of dementia.
Collapse
Affiliation(s)
- Zhi-Ren Tsai
- Department of Computer Science and Information Engineering, Asia University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Taichung City Smart Transportation Big Data Research Center, Taichung, Taiwan
- Pervasive Artificial Intelligence Research (PAIR) Labs, Hsinchu, Taiwan
- Biomdcare Corporation, New Taipei, Taiwan
| | - Han-Wei Zhang
- Biomdcare Corporation, New Taipei, Taiwan
- Program for Aging, China Medical University, Taichung, Taiwan
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
- Institute of Electrical Control Engineering, Department of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Chun-Hung Tseng
- Department of Neurology, China Medical University Hospital, and School of Medicine, China Medical University, Taichung, Taiwan
| | | | - Victor C. Kok
- Disease Informatics Research Group, Asia University, Taichung, Taiwan
- Department of Internal Medicine, Kuang Tien General Hospital, Taichung, Taiwan
| | - Gao Ping Li
- Zhongshan Hospital, Affiliated Hospital of Fudan University, Shanghai, China
| | - Chao A. Hsiung
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Chun-Yi. Hsu
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
| |
Collapse
|
17
|
Jia JN, Yin XX, Li Q, Guan QW, Yang N, Chen KN, Zhou HH, Mao XY. Neuroprotective Effects of the Anti-cancer Drug Lapatinib Against Epileptic Seizures via Suppressing Glutathione Peroxidase 4-Dependent Ferroptosis. Front Pharmacol 2020; 11:601572. [PMID: 33362556 PMCID: PMC7758233 DOI: 10.3389/fphar.2020.601572] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022] Open
Abstract
Epilepsy is a complex neurological disorder characterized by recurrent and unprovoked seizures. Neuronal death process is implicated in the development of repetitive epileptic seizures. Therefore, cell death can be harnessed for ceasing seizures and epileptogenesis. Oxidative stress is regarded as a contributing factor of neuronal death activation and there is compelling evidence supporting antioxidants hold promise in abrogating seizure-related cell modality. Lapatinib, a well-known anti-cancer drug, has been traditionally reported to exert anti-tumor effect via modulating oxidative stress and a recent work illustrates the improvement of encephalomyelitis in rodent models after lapatinib treatment. However, whether lapatinib is beneficial for inhibiting neuronal death and epileptic seizure remains unknown. Here, we found that lapatinib remarkably prevented kainic acid (KA)-epileptic seizures in mice and ferroptosis, a newly defined cell death which is associated with oxidative stress, was involved in the neuroprotection of lapatinib. In the ferroptotic cell death model, lapatinib exerted neuroprotection via restoring glutathione peroxidase 4 (GPX4). Treatment with GPX4 inhibitor ras-selective lethal small molecule 3 (RSL3) abrogated its anti-ferroptotic potential. In a mouse model of KA-triggered seizure, it was also validated that lapatinib blocked GPX4-dependent ferroptosis. It is concluded that lapatinib has neuroprotective potential against epileptic seizures via suppressing GPX4-mediated ferroptosis.
Collapse
Affiliation(s)
- Ji-Ning Jia
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Xi-Xi Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Qin Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Qi-Wen Guan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Nan Yang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Kang-Ni Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Xiao-Yuan Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| |
Collapse
|
18
|
Forthoffer N, Brissart H, Tyvaert L, Maillard L. Long-term cognitive outcomes in patient with epilepsy. Rev Neurol (Paris) 2020; 176:448-455. [PMID: 32414533 DOI: 10.1016/j.neurol.2020.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 11/28/2022]
Abstract
In contrast to short-term cognitive outcomes, long-term cognitive outcomes (over 5 years) has been scarcely assessed so far. Yet, predicting long-term outcomes at any time point of the epilepsy, from initial diagnosis, to medically intractability is very important for therapeutic decision-making, patient information, and orientation. Assessing long-term cognitive outcomes in patients with epilepsy would ideally require longitudinal studies and a comparison with a healthy controls group. This issue has been addressed extensively, but with controversial results. However, there is a general consensus about the fact that cognitive outcome is not the same in all groups of patients with epilepsy. Possible prognostic factors include age at onset, duration of epilepsy, syndrome and etiology, seizure outcome and therapeutics. The multiplicity of factors makes it very difficult to assess their relative weight in individuals. Although long-term cognitive outcome studies are scarce, this issue has been specifically studied in newly diagnosed epilepsies and in focal drug-resistant epilepsies. In the first clinical setting, i.e. newly diagnosed epilepsy, it appears that cognitive deficits are already present at epilepsy onset in a significant proportion of patients but seem to remain stable over time. In focal drug-resistant epilepsies, cognitive deficits (mainly verbal memory) were generally shown to remain stable provided that seizures were controlled either by medication or by surgery. Beyond the possible correlation between seizure and cognitive outcome, no causal link however has been demonstrated between these two important outcomes.
Collapse
Affiliation(s)
- N Forthoffer
- Service de Neurologie, Centre Hospitalier Universitaire de Nancy, Nancy, France; LNCA, UMR 7364, CNRS, Université de Strasbourg, 67000 Strasbourg, France.
| | - H Brissart
- Service de Neurologie, Centre Hospitalier Universitaire de Nancy, Nancy, France; CRAN, UMR 7039, CNRS, université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - L Tyvaert
- Service de Neurologie, Centre Hospitalier Universitaire de Nancy, Nancy, France; CRAN, UMR 7039, CNRS, université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - L Maillard
- Service de Neurologie, Centre Hospitalier Universitaire de Nancy, Nancy, France; CRAN, UMR 7039, CNRS, université de Lorraine, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
19
|
Park K, Lee J, Jang HJ, Richards BA, Kohl MM, Kwag J. Optogenetic activation of parvalbumin and somatostatin interneurons selectively restores theta-nested gamma oscillations and oscillation-induced spike timing-dependent long-term potentiation impaired by amyloid β oligomers. BMC Biol 2020; 18:7. [PMID: 31937327 PMCID: PMC6961381 DOI: 10.1186/s12915-019-0732-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
Background Abnormal accumulation of amyloid β1–42 oligomers (AβO1–42), a hallmark of Alzheimer’s disease, impairs hippocampal theta-nested gamma oscillations and long-term potentiation (LTP) that are believed to underlie learning and memory. Parvalbumin-positive (PV) and somatostatin-positive (SST) interneurons are critically involved in theta-nested gamma oscillogenesis and LTP induction. However, how AβO1–42 affects PV and SST interneuron circuits is unclear. Through optogenetic manipulation of PV and SST interneurons and computational modeling of the hippocampal neural circuits, we dissected the contributions of PV and SST interneuron circuit dysfunctions on AβO1–42-induced impairments of hippocampal theta-nested gamma oscillations and oscillation-induced LTP. Results Targeted whole-cell patch-clamp recordings and optogenetic manipulations of PV and SST interneurons during in vivo-like, optogenetically induced theta-nested gamma oscillations in vitro revealed that AβO1–42 causes synapse-specific dysfunction in PV and SST interneurons. AβO1–42 selectively disrupted CA1 pyramidal cells (PC)-to-PV interneuron and PV-to-PC synapses to impair theta-nested gamma oscillogenesis. In contrast, while having no effect on PC-to-SST or SST-to-PC synapses, AβO1–42 selectively disrupted SST interneuron-mediated disinhibition to CA1 PC to impair theta-nested gamma oscillation-induced spike timing-dependent LTP (tLTP). Such AβO1–42-induced impairments of gamma oscillogenesis and oscillation-induced tLTP were fully restored by optogenetic activation of PV and SST interneurons, respectively, further supporting synapse-specific dysfunctions in PV and SST interneurons. Finally, computational modeling of hippocampal neural circuits including CA1 PC, PV, and SST interneurons confirmed the experimental observations and further revealed distinct functional roles of PV and SST interneurons in theta-nested gamma oscillations and tLTP induction. Conclusions Our results reveal that AβO1–42 causes synapse-specific dysfunctions in PV and SST interneurons and that optogenetic modulations of these interneurons present potential therapeutic targets for restoring hippocampal network oscillations and synaptic plasticity impairments in Alzheimer’s disease.
Collapse
Affiliation(s)
- Kyerl Park
- Department of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jaedong Lee
- Department of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hyun Jae Jang
- Department of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Blake A Richards
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, M1C 1A4, Canada
| | - Michael M Kohl
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Jeehyun Kwag
- Department of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
20
|
Abstract
Neuroinflammation is implicated in contributing to a variety of neurologic and somatic illnesses including Alzheimer's disease (AD), Parkinson's disease (PD), and depression. In this chapter, we focus on the role of neuroinflammation in mediating these three illnesses and portray interactions between the immune response and the central nervous system in the context of sex differences in disease progression. The majority of this chapter is supported by clinical findings; however, we occasionally utilize preclinical models where human studies are currently lacking. We begin by detailing the pathology of neuroinflammation, distinguishing between acute and chronic inflammation, and examining contributions from the innate and adaptive immune systems. Next, we summarize potential mechanisms of immune cell mediators including interleukin-1 beta (IL-1β), tumor necrosis factor α, and IL-6 in AD, PD, and depression development. Given the strong sex bias seen in these illnesses, we additionally examine the role of sex hormones, e.g., estrogen and testosterone in mediating neuroinflammation at the cellular level. Systematically, we detail how sex hormones may contribute to distinct behavioral and clinical symptoms and prognosis between males and females with AD, PD, or depression. Finally, we highlight the possible role of exercise in alleviating neuroinflammation, as well as evidence that antiinflammatory drug therapies improve cognitive symptoms observed in brain-related diseases.
Collapse
Affiliation(s)
- Deepika Mukhara
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
| | - Unsong Oh
- Department of Neurology, Virginia Commonwealth University, Richmond, VA, United States
| | - Gretchen N Neigh
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
21
|
Liguori C, Costa C, Franchini F, Izzi F, Spanetta M, Cesarini EN, Di Santo S, Manfredi N, Farotti L, Romoli M, Lanari A, Salvadori N, Parnetti L, Calabresi P, Mercuri NB, Placidi F. Cognitive performances in patients affected by late-onset epilepsy with unknown etiology: A 12-month follow-up study. Epilepsy Behav 2019; 101:106592. [PMID: 31726425 DOI: 10.1016/j.yebeh.2019.106592] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/18/2019] [Accepted: 09/23/2019] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Epilepsy has a growing frequency, particularly in the elderly. Several triggers may cause late-onset epilepsy; however, more than 20% of epilepsies, manifesting in the elderly, has an unknown etiology. Although cognition is frequently altered in patients affected by epilepsy, there is a paucity of studies specifically evaluating cognition in patients affected by late-onset epilepsy. The aim of the present study was to assess the cognitive profile of patients affected by late-onset epilepsy with an unknown etiology and followed for 12 months. METHODS Patients affected by diagnosed late-onset epilepsy with unknown etiology were included in this observation. All patients were evaluated at the time of diagnosis (baseline) and at follow-up (12 months later). We distributed patients in subgroups based on seizure type (focal seizures [FS], secondarily generalized seizures [SGS], primarily generalized seizures [GS]) and antiepileptic drug (AED) regimen (mono- vs. polytherapy). Cognition was evaluated through standardized neuropsychological testing. RESULTS Fifty-eight patients were included in this observation and distributed in three groups: 29 affected by FS, 14 affected by SGS, 15 affected by GS. Forty-five patients were in monotherapy, and 13 in polytherapy. The most frequent treatments were levetiracetam (n = 12), valproic acid (VPA) (n = 9), carbamazepine (n = 9), and oxcarbazepine (n = 7). We documented a significant decrease of Mini-Mental State Examination (MMSE) and memory scores at follow-up in the whole group. Verbal learning decreased exclusively in VPA users. CONCLUSION Patients affected by late-onset epilepsy with unknown etiology showed a significant decline of cognition at follow-up, independently from number and efficacy of AEDs received. These results deserve verification in larger longitudinal cohorts.
Collapse
Affiliation(s)
- Claudio Liguori
- Epilepsy Centre, Neurophysiopathology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy.
| | - Cinzia Costa
- Neurology Clinic, University of Perugia - S. Maria della Misericordia Hospital, Perugia, Italy
| | | | - Francesca Izzi
- Epilepsy Centre, Neurophysiopathology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Matteo Spanetta
- Epilepsy Centre, Neurophysiopathology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Elena Nardi Cesarini
- Neurology Clinic, University of Perugia - S. Maria della Misericordia Hospital, Perugia, Italy
| | - Simona Di Santo
- Neurology Unit, Department of Medicine, Rimini "Infermi" Hospital - AUSL Romagna, Italy
| | - Natalia Manfredi
- Epilepsy Centre, Neurophysiopathology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Lucia Farotti
- Neurology Clinic, University of Perugia - S. Maria della Misericordia Hospital, Perugia, Italy
| | - Michele Romoli
- Neurology Clinic, University of Perugia - S. Maria della Misericordia Hospital, Perugia, Italy; Neurology Unit, Department of Medicine, Rimini "Infermi" Hospital - AUSL Romagna, Italy
| | - Alessandro Lanari
- Neurology Clinic, University of Perugia - S. Maria della Misericordia Hospital, Perugia, Italy
| | - Nicola Salvadori
- Neurology Clinic, University of Perugia - S. Maria della Misericordia Hospital, Perugia, Italy
| | - Lucilla Parnetti
- Neurology Clinic, University of Perugia - S. Maria della Misericordia Hospital, Perugia, Italy
| | - Paolo Calabresi
- Neurology Clinic, University of Perugia - S. Maria della Misericordia Hospital, Perugia, Italy; IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Nicola Biagio Mercuri
- Epilepsy Centre, Neurophysiopathology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy; IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Fabio Placidi
- Epilepsy Centre, Neurophysiopathology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
22
|
von Rüden EL, Zellinger C, Gedon J, Walker A, Bierling V, Deeg CA, Hauck SM, Potschka H. Regulation of Alzheimer's disease-associated proteins during epileptogenesis. Neuroscience 2019; 424:102-120. [PMID: 31705965 DOI: 10.1016/j.neuroscience.2019.08.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 07/26/2019] [Accepted: 08/20/2019] [Indexed: 12/12/2022]
Abstract
Clinical evidence and pathological studies suggest a bidirectional link between temporal lobe epilepsy and Alzheimer's disease (AD). Data analysis from omic studies offers an excellent opportunity to identify the overlap in molecular alterations between the two pathologies. We have subjected proteomic data sets from a rat model of epileptogenesis to a bioinformatics analysis focused on proteins functionally linked with AD. The data sets have been obtained for hippocampus (HC) and parahippocampal cortex samples collected during the course of epileptogenesis. Our study confirmed a relevant dysregulation of proteins linked with Alzheimer pathogenesis. When comparing the two brain areas, a more prominent regulation was evident in parahippocampal cortex samples as compared to the HC. Dysregulated protein groups comprised those affecting mitochondrial function and calcium homeostasis. Differentially expressed mitochondrial proteins included proteins of the mitochondrial complexes I, III, IV, and V as well as of the accessory subunit of complex I. The analysis also revealed a regulation of the microtubule associated protein Tau in parahippocampal cortex tissue during the latency phase. This was further confirmed by immunohistochemistry. Moreover, we demonstrated a complex epileptogenesis-associated dysregulation of proteins involved in amyloid β processing and its regulation. Among others, the amyloid precursor protein and the α-secretase alpha disintegrin metalloproteinase 17 were included. Our analysis revealed a relevant regulation of key proteins known to be associated with AD pathogenesis. The analysis provides a comprehensive overview of shared molecular alterations characterizing epilepsy development and manifestation as well as AD development and progression.
Collapse
Affiliation(s)
- Eva-Lotta von Rüden
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Christina Zellinger
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Julia Gedon
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Andreas Walker
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Vera Bierling
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Cornelia A Deeg
- Institute of Animal Physiology, Department of Veterinary Sciences, Ludwig-Maximilians-University (LMU), Munich, Germany; Experimental Ophthalmology, Philipps University of Marburg, Marburg, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Center Munich, Neuherberg, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany.
| |
Collapse
|
23
|
Powell G, Ziso B, Larner AJ. The overlap between epilepsy and Alzheimer's disease and the consequences for treatment. Expert Rev Neurother 2019; 19:653-661. [PMID: 31238746 DOI: 10.1080/14737175.2019.1629289] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Introduction: Alzheimer's disease may be associated with both clinical and subclinical epileptic seizure activity. Once regarded as an epiphenomenon, epileptiform activity may, in fact, be an integral part of the Alzheimer's phenotype, and may be not only a symptomatic therapeutic target but also a possible mechanism to retard or prevent disease progression. Areas covered: The authors review clinical research articles with a focus on the semiology, epidemiology, and treatment of seizures in Alzheimer's disease, and also look at some experimental animal model studies which have informed clinical thinking on seizure aetiopathogenesis. The evidence base for treatment decisions is sparse. A brief overview of the clinical assessment of Alzheimer's disease patients considering relevant differential diagnoses and diagnostic pitfalls is presented. Expert opinion: Studies of epileptic seizures in Alzheimer's disease have become more frequent over the last 5-10 years. Understanding of seizure semiology, epidemiology, and possible pathogenesis has increased. However, the optimal management of seizures in this context remains unknown, largely due to the paucity of studies sufficient to examine this question. Clearly, such studies will be required, not only to inform clinicians about symptomatic control of seizures in Alzheimer's disease but also to investigate whether this might impact on disease progression.
Collapse
Affiliation(s)
- Graham Powell
- a Mersey Regional Epilepsy Clinic , Walton Centre for Neurology and Neurosurgery , Liverpool , UK
| | - Besa Ziso
- a Mersey Regional Epilepsy Clinic , Walton Centre for Neurology and Neurosurgery , Liverpool , UK
| | - A J Larner
- b Cognitive Function Clinic , Walton Centre for Neurology and Neurosurgery , Liverpool , UK
| |
Collapse
|
24
|
Baker J, Libretto T, Henley W, Zeman A. The prevalence and clinical features of epileptic seizures in a memory clinic population. Seizure 2019; 71:83-92. [PMID: 31226566 DOI: 10.1016/j.seizure.2019.06.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/10/2019] [Accepted: 06/12/2019] [Indexed: 12/13/2022] Open
Abstract
PURPOSE To determine the prevalence and clinical features of epileptic seizures occurring in a memory clinic population. METHOD We recruited patients receiving a diagnosis of dementia or mild cognitive impairment (MCI) at a regional memory clinic. We interviewed patients and informants using a proforma designed to elicit symptoms suggestive of epilepsy. Informants also completed the Clinical Dementia Rating Scale (CDR) and the Cambridge Behavioural Inventory- Revised (CBI-R). Patients underwent cognitive testing using the Addenbrooke's Cognitive Examination - III (ACE-III). We also recruited an age- and gender- matched control group with no history of cognitive impairment. Diagnoses of dementia/MCI were checked against current diagnostic criteria. RESULTS We recruited 144 patients (mean age 77.98, mean ACE-III 74.16, 124 with dementia, 20 with MCI). We diagnosed epilepsy in 25.7%: probable in 12.5% (17 with dementia, 1 with MCI), possible 13.2% (18 with dementia, 1 with MCI). Seizure features included altered responsiveness, speech/behavioural arrest, oral/pharyngeal automatism, olfactory/gustatory aura, focal motor seizure, other sensory phenomena (including hallucination), and amnesia on waking. Epilepsy prevalence was significantly increased in the dementia and MCI group vs controls (p = 0.004). Cognitive performance in the patient groups did not distinguish those in whom epilepsy was suspected from those in whom it was not. Patients in whom epilepsy was suspected were more impaired on informant completed measures of daily function. CONCLUSIONS The prevalence of epilepsy is increased in dementia. The seizures are often subtle and easily missed. The presence of epilepsy predicts more severe impairment in the activities of daily living.
Collapse
Affiliation(s)
- John Baker
- Cognitive and Behavioural Neurology, University of Exeter, College of Medicine and Health, UK.
| | - Tina Libretto
- NIHR Exeter Clinical Research Facility, RD&E NHS FT, UK; University of Exeter, College of Medicine and Health, Exeter, UK
| | - William Henley
- University of Exeter, College of Medicine and Health, Exeter, UK
| | - Adam Zeman
- Cognitive and Behavioural Neurology, University of Exeter, College of Medicine and Health, UK
| |
Collapse
|
25
|
Albrecht JS, Hanna M, Kim D, Perfetto EM. Predicting Diagnosis of Alzheimer's Disease and Related Dementias Using Administrative Claims. J Manag Care Spec Pharm 2019; 24:1138-1145. [PMID: 30362918 PMCID: PMC10397649 DOI: 10.18553/jmcp.2018.24.11.1138] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Predictive models for earlier diagnosis of Alzheimer's disease and related dementias (ADRD) that rely on variables requiring assessment during an office visit, such as cognitive function, body mass index, or lifestyle factors, may not be broadly applicable, since that level of data may be inaccessible or inefficient. OBJECTIVE To build a predictive model for earlier diagnosis of ADRD using only administrative claims data to enhance applicability at the health care-system level. Building on the strength of this approach and knowledge that health care utilization (HCU) is increased before dementia diagnosis, it was hypothesized that previous HCU history would improve predictive ability of the model. METHODS We conducted a case-control study using data from the OptumLabs Data Warehouse. ADRD was defined using ICD-9-CM codes and prescription fills for antidementia medications. We included individuals with mild cognitive impairment. Cases aged ≥ 18 years with a diagnosis between 2011-2014 were matched to controls without ADRD. HCU variables were incorporated into regression models along with comorbidities and symptoms. RESULTS The derivation cohort comprised 24,521 cases and 95,464 controls. Final adjusted models were stratified by age. We obtained moderate accuracy (c-statistic = 0.76) for the model among younger (aged < 65 years) adults and poor discriminatory ability (c-statistic = 0.63) for the model among older adults (aged ≥ 65 years). Neurological and psychological disorders had the largest effect estimates. CONCLUSIONS We created age-stratified predictive models for earlier diagnosis of dementia using information available in administrative claims. These models could be used in decision support systems to promote targeted cognitive screening and earlier dementia recognition for individuals aged < 65 years. These models should be validated in other cohorts. DISCLOSURES This research was supported by AstraZeneca, Global CEO Initiative, Janssen, OptumLabs, and Roche. Albrecht was supported by Agency for Healthcare Quality and Research grant K01HS024560. Perfetto is employed by the National Health Council, which accepts membership dues and sponsorships from a variety of organizations and companies. The authors declare no other potential conflicts of interest.
Collapse
Affiliation(s)
| | - Maya Hanna
- 2 University of Maryland School of Pharmacy, Baltimore
| | - Dure Kim
- 2 University of Maryland School of Pharmacy, Baltimore
| | - Eleanor M Perfetto
- 3 University of Maryland School of Pharmacy, Baltimore; National Health Council, Washington, DC; and OptumLabs, Cambridge, Massachusetts
| |
Collapse
|
26
|
Ourdev D, Schmaus A, Kar S. Kainate Receptor Activation Enhances Amyloidogenic Processing of APP in Astrocytes. Mol Neurobiol 2018; 56:5095-5110. [PMID: 30484111 DOI: 10.1007/s12035-018-1427-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/13/2018] [Indexed: 12/21/2022]
Abstract
Kainic acid (KA) is an analogue of the excitatory neurotransmitter glutamate that, when injected systemically into adult rats, can trigger seizures and progressive neuronal loss in a manner that mirrors the neuropathology of human mesial temporal lobe epilepsy. However, biomolecular mechanisms responsible for the neuronal loss that occurs as a consequence of this treatment remains elusive. We have recently reported that toxicity induced by KA can partly be mediated by astrocyte-derived amyloid β (Aβ) peptides, which are critical in the development of Alzheimer's disease (AD). Nonetheless, little is known how KA can influence amyloid precursor protein (APP) levels and processing in astrocytes. Thus, in the present study using human U-373 astrocytoma and rat primary astrocytes, we evaluated the role of KA on APP metabolism. Our results revealed that KA treatment increased the levels of APP and its cleaved products (α-/β-CTFs) in cultured U-373 astrocytoma and primary astrocytes, without altering the cell viability. The cellular and secretory levels of Aβ1-40/Aβ1-42 were markedly increased in KA-treated astrocytes. We also demonstrated that the steady-state levels of APP-secretases were not altered but the activity of γ-secretase is enhanced in KA-treated U-373 astrocytoma. Furthermore, using selective receptor antagonists, we showed that the effects of KA is mediated by activation of kainate receptors and not NMDA or AMPA receptors. These results suggest that KA can enhance amyloidogenic processing of APP by activating its own receptor leading to increased production/secretion of Aβ-related peptides from activated astrocytes which may contribute to the pathogenesis of temporal lobe epilepsy.
Collapse
Affiliation(s)
- D Ourdev
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada
| | - A Schmaus
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Satyabrata Kar
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada. .,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada. .,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada. .,Department of Medicine, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
27
|
Garg N, Joshi R, Medhi B. Cracking novel shared targets between epilepsy and Alzheimer's disease: need of the hour. Rev Neurosci 2018; 29:425-442. [PMID: 29329108 DOI: 10.1515/revneuro-2017-0064] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/12/2017] [Indexed: 12/14/2022]
Abstract
Epilepsy and Alzheimer's disease (AD) are interconnected. It is well known that seizures are linked with cognitive impairment, and there are various shared etiologies between epilepsy and AD. The connection between hyperexcitability of neurons and cognitive dysfunction in the progression of AD or epileptogenesis plays a vital role for improving selection of treatment for both diseases. Traditionally, seizures occur less frequently and in later stages of age in patients with AD which in turn implies that neurodegeneration causes seizures. The role of seizures in early stages of pathogenesis of AD is still an issue to be resolved. So, it is well timed to analyze the common pathways involved in pathophysiology of AD and epilepsy. The present review focuses on similar potential underlying mechanisms which may be related to the causes of seizures in epilepsy and cognitive impairment in AD. The proposed review will focus on many possible newer targets like abnormal expression of various enzymes like GSK-3β, PP2A, PKC, tau hyperphosphorylation, MMPs, caspases, neuroinflammation and oxidative stress associated with number of neurodegenerative diseases linked with epilepsy. The brief about the prospective line of treatment of both diseases will also be discussed in the present review.
Collapse
Affiliation(s)
- Nitika Garg
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh 1600142, Punjab, India
| | - Rupa Joshi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh 1600142, Punjab, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh 1600142, Punjab, India, e-mail:
| |
Collapse
|
28
|
Costa C, Romoli M, Liguori C, Farotti L, Eusebi P, Bedetti C, Siliquini S, Cesarini EN, Romigi A, Mercuri NB, Parnetti L, Calabresi P. Alzheimer's disease and late-onset epilepsy of unknown origin: two faces of beta amyloid pathology. Neurobiol Aging 2018; 73:61-67. [PMID: 30317034 DOI: 10.1016/j.neurobiolaging.2018.09.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/10/2018] [Accepted: 09/06/2018] [Indexed: 12/20/2022]
Abstract
Although amyloid pathology plays a role in epilepsy, little is known about the relationship between beta amyloid and progression to Alzheimer's disease (AD) among patients with late-onset epilepsy of unknown origin (LOEU). This multicenter, observational, prospective study enrolled 40 consecutive nondemented adults diagnosed with LOEU, together with 43 age- and sex-matched healthy controls. All patients completed neuropsychological tests, core CSF AD biomarkers assessment (Aβ1-42, total tau, and phosphorylated tau), and follow-up for a mean of 3 years to verify cognitive decline. Despite age and baseline cognitive performance were similar to healthy controls, patients with LOEU had significant prevalence of CSF pathological Aβ1-42 (<500 pg/mL; 37.5%), 7.5% displaying an AD-like CSF pattern. Moreover, 17.5% of patients with LOEU converted to AD dementia, versus none among healthy controls (p < 0.005). Patients with LOEU with pathological Aβ1-42 had a hazard ratio 3.4 (CI 0.665-17.73) for progression to AD dementia at follow-up. Patients with LOEU have a high prevalence of abnormal CSF Aβ1-42 and progression to AD dementia compared with healthy controls, and therefore should be monitored for cognitive decline.
Collapse
Affiliation(s)
- Cinzia Costa
- Department of Medicine, Neurology Clinic, University Hospital of Perugia, Italy.
| | - Michele Romoli
- Department of Medicine, Neurology Clinic, University Hospital of Perugia, Italy
| | | | - Lucia Farotti
- Department of Medicine, Neurology Clinic, University Hospital of Perugia, Italy
| | - Paolo Eusebi
- Department of Medicine, Neurology Clinic, University Hospital of Perugia, Italy
| | - Chiara Bedetti
- Department of Medicine, Neurology Clinic, University Hospital of Perugia, Italy
| | - Sabrina Siliquini
- Department of Medicine, Neurology Clinic, University Hospital of Perugia, Italy
| | | | - Andrea Romigi
- Neurophysiopathology Unit, Department of Systems Medicine, Sleep and Epilepsy Medicine Centre, Tor Vergata University and Hospital, Rome, Italy
| | - Nicola B Mercuri
- IRCCS "Santa Lucia", Rome, Italy; Neurophysiopathology Unit, Department of Systems Medicine, Sleep and Epilepsy Medicine Centre, Tor Vergata University and Hospital, Rome, Italy
| | - Lucilla Parnetti
- Department of Medicine, Neurology Clinic, University Hospital of Perugia, Italy
| | - Paolo Calabresi
- Department of Medicine, Neurology Clinic, University Hospital of Perugia, Italy; IRCCS "Santa Lucia", Rome, Italy
| |
Collapse
|
29
|
Cortini F, Cantoni C, Villa C. Epileptic seizures in autosomal dominant forms of Alzheimer's disease. Seizure 2018; 61:4-7. [PMID: 30041064 DOI: 10.1016/j.seizure.2018.07.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 12/25/2022] Open
Abstract
Alzheimer's disease (AD) is a heterogeneous neurodegenerative disorder and represents the most common form of dementia in the elderly. Mutations in genes encoding presenilin 1 (PSEN1), presenilin 2 (PSEN2) and amyloid precursor protein (APP) are responsible for early-onset familial AD (EOFAD). Several pieces of evidence report that patients with rare autosomal dominant forms of AD carry a significant risk to develop seizures. However, the molecular mechanisms linking epilepsy and AD are needed to be clarified: the pathophysiology of seizures in AD may be related to an increased production of amyloid-β (Aβ) peptide or structural alterations in neurons probably due to cerebrovascular changes, neurotransmitter or cytoskeletal dysfunctions. Seizures have traditionally been related to neuronal loss in the late stages of AD as a consequence of neurodegeneration, however, recent studies indicated that seizures may contribute to the emergence of AD symptoms in early stages of the disease, mainly in familial AD. So, a better understanding of possible common neural mechanisms might help to improve the clinical management of both conditions. This review aims to give a comprehensive overview and to analyze the association between epilepsy and EOFAD, focusing on possible overlapping pathological mechanisms.
Collapse
Affiliation(s)
- Francesca Cortini
- Department of Clinical Sciences and Community Health, University of Milan, IRCCS Ca' Granda Foundation, Milano, Italy; Genetics Laboratory, IRCCS Ca' Granda Foundation, Milan, Italy
| | - Claudia Cantoni
- Department of Neurology, Washington University School of Medicine, St Louis, USA
| | - Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
| |
Collapse
|
30
|
Kodam A, Ourdev D, Maulik M, Hariharakrishnan J, Banerjee M, Wang Y, Kar S. A role for astrocyte-derived amyloid β peptides in the degeneration of neurons in an animal model of temporal lobe epilepsy. Brain Pathol 2018; 29:28-44. [PMID: 29665128 DOI: 10.1111/bpa.12617] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 04/11/2018] [Indexed: 12/13/2022] Open
Abstract
Kainic acid, an analogue of the excitatory neurotransmitter glutamate, can trigger seizures and neurotoxicity in the hippocampus and other limbic structures in a manner that mirrors the neuropathology of human temporal lobe epilepsy (TLE). However, the underlying mechanisms associated with the neurotoxicity remain unclear. Since amyloid-β (Aβ) peptides, which are critical in the development of Alzheimer's disease, can mediate toxicity by activating glutamatergic NMDA receptors, it is likely that the enhanced glutamatergic transmission that renders hippocampal neurons vulnerable to kainic acid treatment may involve Aβ peptides. Thus, we seek to establish what role Aβ plays in kainic acid-induced toxicity using in vivo and in vitro paradigms. Our results show that systemic injection of kainic acid to adult rats triggers seizures, gliosis and loss of hippocampal neurons, along with increased levels/processing of amyloid precursor protein (APP), resulting in the enhanced production of Aβ-related peptides. The changes in APP levels/processing were evident primarily in activated astrocytes, implying a role for astrocytic Aβ in kainic acid-induced toxicity. Accordingly, we showed that treating rat primary cultured astrocytes with kainic acid can lead to increased Aβ production/secretion without any compromise in cell viability. Additionally, we revealed that kainic acid reduces neuronal viability more in neuronal/astrocyte co-cultures than in pure neuronal culture, and this is attenuated by precluding Aβ production. Collectively, these results indicate that increased production/secretion of Aβ-related peptides from activated astrocytes can contribute to neurotoxicity in kainic acid-treated rats. Since kainic acid administration can lead to neuropathological changes resembling TLE, it is likely that APP/Aβ peptides derived from astrocytes may have a role in TLE pathogenesis.
Collapse
Affiliation(s)
- A Kodam
- Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada, T6G 2M8
| | - D Ourdev
- Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada, T6G 2M8
| | - M Maulik
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada, T6G 2M8
| | - J Hariharakrishnan
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada, T6G 2M8
| | - M Banerjee
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada, T6G 2M8
| | - Y Wang
- Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada, T6G 2M8
| | - S Kar
- Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada, T6G 2M8.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada, T6G 2M8.,Department of Medicine, University of Alberta, Edmonton, Alberta, Canada, T6G 2M8
| |
Collapse
|
31
|
Sánchez MP, García-Cabrero AM, Sánchez-Elexpuru G, Burgos DF, Serratosa JM. Tau-Induced Pathology in Epilepsy and Dementia: Notions from Patients and Animal Models. Int J Mol Sci 2018; 19:ijms19041092. [PMID: 29621183 PMCID: PMC5979593 DOI: 10.3390/ijms19041092] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/23/2018] [Accepted: 04/03/2018] [Indexed: 12/24/2022] Open
Abstract
Patients with dementia present epilepsy more frequently than the general population. Seizures are more common in patients with Alzheimer’s disease (AD), dementia with Lewy bodies (LBD), frontotemporal dementia (FTD) and progressive supranuclear palsy (PSP) than in other dementias. Missense mutations in the microtubule associated protein tau (MAPT) gene have been found to cause familial FTD and PSP, while the P301S mutation in MAPT has been associated with early-onset fast progressive dementia and the presence of seizures. Brains of patients with AD, LBD, FTD and PSP show hyperphosphorylated tau aggregates, amyloid-β plaques and neuropil threads. Increasing evidence suggests the existence of overlapping mechanisms related to the generation of network hyperexcitability and cognitive decline. Neuronal overexpression of tau with various mutations found in FTD with parkinsonism-linked to chromosome 17 (FTDP-17) in mice produces epileptic activity. On the other hand, the use of certain antiepileptic drugs in animal models with AD prevents cognitive impairment. Further efforts should be made to search for plausible common targets for both conditions. Moreover, attempts should also be made to evaluate the use of drugs targeting tau and amyloid-β as suitable pharmacological interventions in epileptic disorders. The diagnosis of dementia and epilepsy in early stages of those diseases may be helpful for the initiation of treatments that could prevent the generation of epileptic activity and cognitive deterioration.
Collapse
Affiliation(s)
- Marina P Sánchez
- Laboratory of Neurology, IIS (Instituto Investigación Sanitaria/Health Research Institute)-Jiménez Díaz Foundation, UAM (Universidad Autonoma de Madrid/Autonomous University of Madrid) and Biomedical Research Network Center on Rare Diseases (CIBERER), 28045 Madrid, Spain.
| | - Ana M García-Cabrero
- Laboratory of Neurology, IIS (Instituto Investigación Sanitaria/Health Research Institute)-Jiménez Díaz Foundation, UAM (Universidad Autonoma de Madrid/Autonomous University of Madrid) and Biomedical Research Network Center on Rare Diseases (CIBERER), 28045 Madrid, Spain.
- Department of Immunology and Oncology and Protein Tools Unit, Biotechnology National Center (CNB/CSIC), 28049 Madrid, Spain.
| | - Gentzane Sánchez-Elexpuru
- Laboratory of Neurology, IIS (Instituto Investigación Sanitaria/Health Research Institute)-Jiménez Díaz Foundation, UAM (Universidad Autonoma de Madrid/Autonomous University of Madrid) and Biomedical Research Network Center on Rare Diseases (CIBERER), 28045 Madrid, Spain.
| | - Daniel F Burgos
- Laboratory of Neurology, IIS (Instituto Investigación Sanitaria/Health Research Institute)-Jiménez Díaz Foundation, UAM (Universidad Autonoma de Madrid/Autonomous University of Madrid) and Biomedical Research Network Center on Rare Diseases (CIBERER), 28045 Madrid, Spain.
| | - José M Serratosa
- Laboratory of Neurology, IIS (Instituto Investigación Sanitaria/Health Research Institute)-Jiménez Díaz Foundation, UAM (Universidad Autonoma de Madrid/Autonomous University of Madrid) and Biomedical Research Network Center on Rare Diseases (CIBERER), 28045 Madrid, Spain.
| |
Collapse
|
32
|
Corbett BF, You JC, Zhang X, Pyfer MS, Tosi U, Iascone DM, Petrof I, Hazra A, Fu CH, Stephens GS, Ashok AA, Aschmies S, Zhao L, Nestler EJ, Chin J. ΔFosB Regulates Gene Expression and Cognitive Dysfunction in a Mouse Model of Alzheimer's Disease. Cell Rep 2018; 20:344-355. [PMID: 28700937 DOI: 10.1016/j.celrep.2017.06.040] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 03/15/2017] [Accepted: 06/15/2017] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by cognitive decline and 5- to 10-fold increased seizure incidence. How seizures contribute to cognitive decline in AD or other disorders is unclear. We show that spontaneous seizures increase expression of ΔFosB, a highly stable Fos-family transcription factor, in the hippocampus of an AD mouse model. ΔFosB suppressed expression of the immediate early gene c-Fos, which is critical for plasticity and cognition, by binding its promoter and triggering histone deacetylation. Acute histone deacetylase (HDAC) inhibition or inhibition of ΔFosB activity restored c-Fos induction and improved cognition in AD mice. Administration of seizure-inducing agents to nontransgenic mice also resulted in ΔFosB-mediated suppression of c-Fos, suggesting that this mechanism is not confined to AD mice. These results explain observations that c-Fos expression increases after acute neuronal activity but decreases with chronic activity. Moreover, these results indicate a general mechanism by which seizures contribute to persistent cognitive deficits, even during seizure-free periods.
Collapse
Affiliation(s)
- Brian F Corbett
- Department of Neuroscience and Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jason C You
- Department of Neuroscience and Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Xiaohong Zhang
- Department of Neuroscience and Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Mark S Pyfer
- Department of Neuroscience and Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Umberto Tosi
- Department of Neuroscience and Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Daniel M Iascone
- Department of Neuroscience and Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Iraklis Petrof
- Department of Neuroscience and Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Anupam Hazra
- Department of Neuroscience and Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Chia-Hsuan Fu
- Department of Neuroscience and Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gabriel S Stephens
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Annie A Ashok
- Department of Neuroscience and Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Suzan Aschmies
- Department of Neuroscience and Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Lijuan Zhao
- Department of Neuroscience and Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Eric J Nestler
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jeannie Chin
- Department of Neuroscience and Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
33
|
André EA, Forcelli PA, Pak DT. What goes up must come down: homeostatic synaptic plasticity strategies in neurological disease. FUTURE NEUROLOGY 2018; 13:13-21. [PMID: 29379396 DOI: 10.2217/fnl-2017-0028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/07/2017] [Indexed: 11/21/2022]
Abstract
Brain activity levels are tightly regulated to minimize imbalances in activity state. Deviations from the normal range of activity are deleterious and often associated with neurological disorders. To maintain optimal levels of activity, regulatory mechanisms termed homeostatic synaptic plasticity establish desired 'set points' for neural activity, monitor the network for deviations from the set point and initiate compensatory responses to return activity to the appropriate level that permits physiological function [1,2]. We speculate that impaired homeostatic control may contribute to the etiology of various neurological disorders including epilepsy and Alzheimer's disease, two disorders that exhibit hyperexcitability as a key feature during pathogenesis. Here, we will focus on recent progress in developing homeostatic regulation of neural activity as a therapeutic tool.
Collapse
Affiliation(s)
- Emily A André
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington DC 20057, USA
| | - Patrick A Forcelli
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington DC 20057, USA
| | - Daniel Ts Pak
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington DC 20057, USA
| |
Collapse
|
34
|
Emergence of early alterations in network oscillations and functional connectivity in a tau seeding mouse model of Alzheimer's disease pathology. Sci Rep 2017; 7:14189. [PMID: 29079799 PMCID: PMC5660172 DOI: 10.1038/s41598-017-13839-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 10/02/2017] [Indexed: 12/14/2022] Open
Abstract
Synaptic dysfunction and disconnectivity are core deficits in Alzheimer’s disease (AD), preceding clear changes in histopathology and cognitive functioning. Here, the early and late effects of tau pathology induction on functional network connectivity were investigated in P301L mice. Multichannel EEG oscillations were used to compute (1) coherent activity between the prefrontal cortex (PFC) and hippocampus (HPC) CA1-CA3 networks; (2) phase-amplitude cross frequency coupling (PAC) between theta and gamma oscillations, which is instrumental in adequate cognitive functioning; (3) information processing as assessed by auditory evoked potentials and oscillations in the passive oddball mismatch negativity-like (MMN) paradigm. At the end, the density of tau aggregation and GABA parvalbumin (PV+) interneurons were quantified by immunohistochemistry. Early weakening of EEG theta oscillations and coherent activity were revealed between the PFC and HPC CA1 and drastic impairments in theta–gamma oscillations PAC from week 2 onwards, while PV+ interneurons count was not altered. Moreover, the tau pathology disrupted the MMN complex amplitude and evoked gamma oscillations to standard and deviant stimuli suggesting altered memory formation and recall. The induction of intracellular tau aggregation by tau seed injection results in early altered connectivity and strong theta–gamma oscillations uncoupling, which may be exploited as an early electrophysiological signature of dysfunctional neuronal networks.
Collapse
|
35
|
Corticothalamic network dysfunction and Alzheimer's disease. Brain Res 2017; 1702:38-45. [PMID: 28919464 DOI: 10.1016/j.brainres.2017.09.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/11/2017] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disease that is characterized by progressive cognitive decline and a prominent loss of hippocampal-dependent memory. Therefore, much focus has been placed on understanding the function and dysfunction of the hippocampus in AD. However, AD is also accompanied by a number of other debilitating cognitive and behavioral alterations including deficits in attention, cognitive processing, and sleep maintenance. The underlying mechanisms that give rise to impairments in such diverse behavioral domains are unknown, and identifying them would shed insight into the multifactorial nature of AD as well as reveal potential new therapeutic targets to improve overall function in AD. We present here several lines of evidence that suggest that dysregulation of the corticothalamic network may be a common denominator that contributes to the diverse cognitive and behavioral alterations in AD. First, we will review the mechanisms by which this network regulates processes that include attention, cognitive processing, learning and memory, and sleep maintenance. Then we will review how these behavioral and cognitive domains are altered in AD. We will also discuss how dysregulation of tightly regulated activity in the corticothalamic network can give rise to non-convulsive seizures and other forms of epileptiform activity that have also been documented in both AD patients and transgenic mouse models of AD. In summary, the corticothalamic network has the potential to be a master regulator of diverse cognitive and behavioral domains that are affected in AD.
Collapse
|
36
|
de Haan W, van Straaten ECW, Gouw AA, Stam CJ. Altering neuronal excitability to preserve network connectivity in a computational model of Alzheimer's disease. PLoS Comput Biol 2017; 13:e1005707. [PMID: 28938009 PMCID: PMC5627940 DOI: 10.1371/journal.pcbi.1005707] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/04/2017] [Accepted: 07/17/2017] [Indexed: 01/03/2023] Open
Abstract
Neuronal hyperactivity and hyperexcitability of the cerebral cortex and hippocampal region is an increasingly observed phenomenon in preclinical Alzheimer's disease (AD). In later stages, oscillatory slowing and loss of functional connectivity are ubiquitous. Recent evidence suggests that neuronal dynamics have a prominent role in AD pathophysiology, making it a potentially interesting therapeutic target. However, although neuronal activity can be manipulated by various (non-)pharmacological means, intervening in a highly integrated system that depends on complex dynamics can produce counterintuitive and adverse effects. Computational dynamic network modeling may serve as a virtual test ground for developing effective interventions. To explore this approach, a previously introduced large-scale neural mass network with human brain topology was used to simulate the temporal evolution of AD-like, activity-dependent network degeneration. In addition, six defense strategies that either enhanced or diminished neuronal excitability were tested against the degeneration process, targeting excitatory and inhibitory neurons combined or separately. Outcome measures described oscillatory, connectivity and topological features of the damaged networks. Over time, the various interventions produced diverse large-scale network effects. Contrary to our hypothesis, the most successful strategy was a selective stimulation of all excitatory neurons in the network; it substantially prolonged the preservation of network integrity. The results of this study imply that functional network damage due to pathological neuronal activity can be opposed by targeted adjustment of neuronal excitability levels. The present approach may help to explore therapeutic effects aimed at preserving or restoring neuronal network integrity and contribute to better-informed intervention choices in future clinical trials in AD.
Collapse
Affiliation(s)
- Willem de Haan
- Department of Clinical Neurophysiology and MEG, VUmc, Amsterdam, The Netherlands
- Alzheimer Center and Department of Neurology, VUmc, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
| | | | - Alida A. Gouw
- Department of Clinical Neurophysiology and MEG, VUmc, Amsterdam, The Netherlands
- Alzheimer Center and Department of Neurology, VUmc, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
| | - Cornelis J. Stam
- Department of Clinical Neurophysiology and MEG, VUmc, Amsterdam, The Netherlands
| |
Collapse
|
37
|
Joutsa J, Rinne JO, Hermann B, Karrasch M, Anttinen A, Shinnar S, Sillanpää M. Association Between Childhood-Onset Epilepsy and Amyloid Burden 5 Decades Later. JAMA Neurol 2017; 74:583-590. [PMID: 28346588 DOI: 10.1001/jamaneurol.2016.6091] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Importance The effect of childhood epilepsy on later-life cognitive and brain health is an unclear and little-explored issue. Objective To determine whether adults with a history of childhood-onset epilepsy exhibit increased brain amyloid accumulation, possibly predisposing to accelerated cognitive impairment or even frank cognitive disorders in later life. Design, Setting, and Participants Forty-one adults from a population-based cohort of individuals with childhood-onset epilepsy in southwestern Finland, together with 46 matched population-based controls, underwent amyloid ligand carbon 11-labeled Pittsburgh Compound B (PiB) positron emission tomography after long-term prospective follow-up. The PiB uptake was quantified as a region to cerebellar cortex ratio. Tracer uptake was evaluated visually and analyzed voxel by voxel over the entire brain to investigate the spatial distribution of amyloid deposition. The study was conducted from May 2011 to October 2013; data analysis was performed from January 2014 to October 2016. Main Outcomes and Measures Brain amyloid accumulation. Results The 41 individuals with epilepsy were originally enrolled in the Turku Adult Childhood Onset Epilepsy study at the mean (SD) age of 5.1 (4.5) years (range, 0-14 years). After a mean 52.5 (4.0) years of follow-up, the participants were evaluated (26 [63%] were women; the mean [SD] age was 56.0 [4.3] years). Nine individuals with childhood-onset epilepsy (22%) and 3 control participants (7%) had a visually abnormal PiB scan showing high cortical uptake in at least 1 of the evaluated brain regions (P = .04). In semiquantitative analyses, there was a significant interaction effect indicating higher prefrontal cortex uptake in apolipoprotein E (APOE) ε4 allele carriers than in noncarriers in participants (mean [SD], 1.66 [0.41] vs 1.43 [0.15]) compared with controls (1.40 [0.26) vs 1.41 [0.12]) (group × APOE interaction, F = 6.8; P = .01). In addition, there was a significant group effect showing higher tracer uptake in participants compared with controls (group effect, F = 8.0; P = .006). Conclusions and Relevance Adults with childhood-onset epilepsy, particularly APOE ε4 carriers, have an increased brain amyloid load at late middle age. Thus, epilepsy is linked with a biomarker that might be related to accelerated brain aging and can be considered a neurobiological predisposition to later-life cognitive disorders.
Collapse
Affiliation(s)
- Juho Joutsa
- Turku PET Centre, Turku University Hospital, Turku, Finland 2Division of Clinical Neurosciences, Turku University Hospital, Turku, Finland3Department of Clinical Neurophysiology, Turku University Hospital, Turku, Finland4now with the Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown
| | - Juha O Rinne
- Turku PET Centre, Turku University Hospital, Turku, Finland 2Division of Clinical Neurosciences, Turku University Hospital, Turku, Finland
| | - Bruce Hermann
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison
| | - Mira Karrasch
- Department of Psychology, Åbo Akademi University, Turku, Finland
| | - Anu Anttinen
- Division of Clinical Neurosciences, Turku University Hospital, Turku, Finland
| | - Shlomo Shinnar
- Department of Neurology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York8Department of Pediatrics, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York9Department of Epidemiology and Population Health, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Matti Sillanpää
- Department of Public Health, University of Turku, Turku, Finland11Department of Child Neurology, University of Turku, Turku, Finland
| |
Collapse
|
38
|
Cretin B, Philippi N, Bousiges O, Dibitonto L, Sellal F, Martin-Hunyadi C, Blanc F. Do we know how to diagnose epilepsy early in Alzheimer's disease? Rev Neurol (Paris) 2017; 173:374-380. [DOI: 10.1016/j.neurol.2017.03.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 01/04/2017] [Accepted: 03/31/2017] [Indexed: 10/19/2022]
|
39
|
Costa C, Parnetti L, D'Amelio M, Tozzi A, Tantucci M, Romigi A, Siliquini S, Cavallucci V, Di Filippo M, Mazzocchetti P, Liguori C, Nobili A, Eusebi P, Mercuri NB, Calabresi P. Epilepsy, amyloid-β, and D1 dopamine receptors: a possible pathogenetic link? Neurobiol Aging 2016; 48:161-171. [PMID: 27701029 DOI: 10.1016/j.neurobiolaging.2016.08.025] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 08/05/2016] [Accepted: 08/26/2016] [Indexed: 11/30/2022]
Abstract
Experimental and clinical observations indicate that amyloid-β1-42 (Aβ1-42) peptide not only represents a major actor in neurodegenerative mechanisms but also induce hyperexcitation in individual neurons and neural circuits. In this abnormal excitability, possibly leading to seizures, the D1 dopamine (DA) receptors may play a role. Cerebrospinal fluid levels of Aβ1-42 were measured in patients with late-onset epilepsy of unknown etiology. Moreover, the effect of amyloid peptide on the hippocampal epileptic threshold and synaptic plasticity and its link to D1 receptor function were tested in experimental mouse model of cerebral amyloidosis and in acute model of Aβ1-42-induced neurotoxicity. Among 272 evaluated epileptic patients, aged >55 years, 35 suffered from late-onset epilepsy of unknown etiology. In these subjects, cerebrospinal fluid Aβ1-42 levels were measured. The effects of Aβ1-42, amyloid oligomers, and D1 receptor modulation on epileptic threshold were analyzed by electrophysiological recordings in the dentate gyrus of mice hippocampal slices. We found that Aβ1-42 levels were significantly decreased in cerebrospinal fluid of patients with late-onset epilepsy of unknown etiology with respect to controls suggesting the cerebral deposition of this peptide in these patients. Aβ1-42 enhanced epileptic activity in mice through a mechanism involving increased surface expression of D1 receptor, and this effect was mimicked by D1 receptor stimulation and blocked by SCH 23390, a D1 receptor antagonist. Aβ1-42 may contribute to the pathophysiology of late-onset epilepsy of unknown origin. Our preclinical findings indicate that the D1 receptor is involved in mediating the epileptic effects of Aβ1-42. This novel link between Aβ1-42 and D1 receptor signaling might represent a potential therapeutic target.
Collapse
Affiliation(s)
- Cinzia Costa
- Clinica Neurologica, Department of Medicine, University of Perugia, Ospedale S. Maria della Misericordia, Perugia, Italy.
| | - Lucilla Parnetti
- Clinica Neurologica, Department of Medicine, University of Perugia, Ospedale S. Maria della Misericordia, Perugia, Italy
| | - Marcello D'Amelio
- Laboratory of Molecular Neuroscience, Department of Medicine, Campus Bio-Medico University, Rome, Italy; Department of Experimental Neurosciences, "Istituto di Ricovero e Cura a Carattere Scientifico", IRCCS Santa Lucia Foundation, Rome, Italy
| | - Alessandro Tozzi
- Department of Experimental Neurosciences, "Istituto di Ricovero e Cura a Carattere Scientifico", IRCCS Santa Lucia Foundation, Rome, Italy; Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Michela Tantucci
- Clinica Neurologica, Department of Medicine, University of Perugia, Ospedale S. Maria della Misericordia, Perugia, Italy
| | - Andrea Romigi
- Neurophysiopathology Unit, Department of Systems Medicine, Sleep and Epilepsy Medicine Centre, Tor Vergata University and Hospital, Rome, Italy
| | - Sabrina Siliquini
- Clinica Neurologica, Department of Medicine, University of Perugia, Ospedale S. Maria della Misericordia, Perugia, Italy
| | - Virve Cavallucci
- Department of Experimental Neurosciences, "Istituto di Ricovero e Cura a Carattere Scientifico", IRCCS Santa Lucia Foundation, Rome, Italy
| | - Massimiliano Di Filippo
- Clinica Neurologica, Department of Medicine, University of Perugia, Ospedale S. Maria della Misericordia, Perugia, Italy
| | - Petra Mazzocchetti
- Clinica Neurologica, Department of Medicine, University of Perugia, Ospedale S. Maria della Misericordia, Perugia, Italy
| | - Claudio Liguori
- Department of Experimental Neurosciences, "Istituto di Ricovero e Cura a Carattere Scientifico", IRCCS Santa Lucia Foundation, Rome, Italy
| | - Annalisa Nobili
- Laboratory of Molecular Neuroscience, Department of Medicine, Campus Bio-Medico University, Rome, Italy; Department of Experimental Neurosciences, "Istituto di Ricovero e Cura a Carattere Scientifico", IRCCS Santa Lucia Foundation, Rome, Italy
| | - Paolo Eusebi
- Clinica Neurologica, Department of Medicine, University of Perugia, Ospedale S. Maria della Misericordia, Perugia, Italy
| | - Nicola B Mercuri
- Department of Experimental Neurosciences, "Istituto di Ricovero e Cura a Carattere Scientifico", IRCCS Santa Lucia Foundation, Rome, Italy; Neurophysiopathology Unit, Department of Systems Medicine, Sleep and Epilepsy Medicine Centre, Tor Vergata University and Hospital, Rome, Italy
| | - Paolo Calabresi
- Clinica Neurologica, Department of Medicine, University of Perugia, Ospedale S. Maria della Misericordia, Perugia, Italy; Department of Experimental Neurosciences, "Istituto di Ricovero e Cura a Carattere Scientifico", IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
40
|
Liao Y, Huang Y, Liu X, Luo C, Zou D, Wei X, Huang Q, Wu Y. MicroRNA-328a regulates water maze performance in PTZ-kindled rats. Brain Res Bull 2016; 125:205-10. [PMID: 27444122 DOI: 10.1016/j.brainresbull.2016.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 07/16/2016] [Accepted: 07/18/2016] [Indexed: 11/15/2022]
Abstract
The down-regulation of microRNA-328a (miR-328a) in pentylenetetrazole (PTZ)-kindled rats with memory impairment was demonstrated in our previous study, while any contribution of miR-328a to cognitive dysfunction of PTZ-kindled rats remains unknown. In this study we have investigated the effect and the underlying mechanism of miR-328a on the cognitive function in PTZ-kindled rats. 48 SD male rats were divided into 4 groups as follows: a PTZ kindled group, a miR-328a antagomir group, an antagomir-control group, and a sham group (n=12 for each). All rats except those from the sham group were treated with PTZ 14 times at intervals of 48h to establish the temporal lobe epilepsy (TLE) models, and miR-328a antagomir was given to the antagomir group as a treatment by lateral-ventricle injection the day after the first injection of PTZ. Morris water maze (MWM) test was performed to assay their learning and memory abilities. The down-regulation of miR-328a in the PTZ group was confirmed using RT-qPCR and the expression of miR-328a was diminished after antagomir treatment (P<0.05). In the probe test of water maze, the time and distance of the PTZ group were both shorter than those of the sham group (P<0.05), and those of the antagomir-control group were both longer than those of the antagomir group (P<0.05). In addition, we found that with the down-regulation of miR-328a, the levels of Beta-site APP-cleaving enzyme (BACE), which is a bioinformatics-predicted target of miR-328a, were up-regulated. These findings suggest that miR-328a may play a role in memory dysfunction in PTZ-kindled rats by regulating the BACE levels and this links the PTZ model with Alzheimer's disease.
Collapse
Affiliation(s)
- Yuhan Liao
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, China
| | - Yiqing Huang
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, China
| | - Xixia Liu
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, China
| | - Chun Luo
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, China
| | - Donghua Zou
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, China
| | - Xing Wei
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, China
| | - Qi Huang
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, China
| | - Yuan Wu
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, China; Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
41
|
Lesuis SL, Maurin H, Borghgraef P, Lucassen PJ, Leuven FV, Krugers HJ. Positive and negative early life experiences differentially modulate long term survival and amyloid protein levels in a mouse model of Alzheimer's disease. Oncotarget 2016; 7:39118-39135. [PMID: 27259247 PMCID: PMC5129918 DOI: 10.18632/oncotarget.9776] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 05/12/2016] [Indexed: 11/25/2022] Open
Abstract
Stress has been implicated as a risk factor for the severity and progression of sporadic Alzheimer's disease (AD). Early life experiences determine stress responsivity in later life, and modulate age-dependent cognitive decline. Therefore, we examined whether early life experiences influence AD outcome in a bigenic mouse model which progressively develops combined tau and amyloid pathology (biAT mice).Mice were subjected to either early life stress (ELS) or to 'positive' early handling (EH) postnatally (from day 2 to 9). In biAT mice, ELS significantly compromised long term survival, in contrast to EH which increased life expectancy. In 4 month old mice, ELS-reared biAT mice displayed increased hippocampal Aβ levels, while these levels were reduced in EH-reared biAT mice. No effects of ELS or EH were observed on the brain levels of APP, protein tau, or PSD-95. Dendritic morphology was moderately affected after ELS and EH in the amygdala and medial prefrontal cortex, while object recognition memory and open field performance were not affected. We conclude that despite the strong transgenic background, early life experiences significantly modulate the life expectancy of biAT mice. Parallel changes in hippocampal Aβ levels were evident, without affecting cognition of young adult biAT mice.
Collapse
Affiliation(s)
- Sylvie L. Lesuis
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Herve Maurin
- Experimental Genetics Group - LEGTEGG, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Peter Borghgraef
- Experimental Genetics Group - LEGTEGG, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Paul J. Lucassen
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Fred Van Leuven
- Experimental Genetics Group - LEGTEGG, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Harm J. Krugers
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
42
|
Hazra A, Corbett BF, You JC, Aschmies S, Zhao L, Li K, Lepore AC, Marsh ED, Chin J. Corticothalamic network dysfunction and behavioral deficits in a mouse model of Alzheimer's disease. Neurobiol Aging 2016; 44:96-107. [PMID: 27318137 DOI: 10.1016/j.neurobiolaging.2016.04.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 10/21/2022]
Abstract
Alzheimer's disease is associated with cognitive decline and seizures. Growing evidence indicates that seizures contribute to cognitive deficits early in disease, but how they develop and impact cognition are unclear. To investigate potential mechanisms, we studied a mouse model that overexpresses mutant human amyloid precursor protein with high levels of amyloid beta (Aβ). These mice develop generalized epileptiform activity, including nonconvulsive seizures, consistent with alterations in corticothalamic network activity. Amyloid precursor protein mice exhibited reduced activity marker expression in the reticular thalamic nucleus, a key inhibitory regulatory nucleus, and increased activity marker expression in downstream thalamic relay targets that project to cortex and limbic structures. Slice recordings revealed impaired cortical inputs to the reticular thalamic nucleus that may contribute to corticothalamic dysfunction. These results are consistent with our findings of impaired sleep maintenance in amyloid precursor protein mice. Finally, the severity of sleep impairments predicted the severity of deficits in Morris water maze, suggesting corticothalamic dysfunction may relate to hippocampal dysfunction, and may be a pathophysiological mechanism underlying multiple behavioral and cognitive alterations in Alzheimer's disease.
Collapse
Affiliation(s)
- Anupam Hazra
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107.,Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107
| | - Brian F Corbett
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107.,Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107
| | - Jason C You
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107.,Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107
| | - Suzan Aschmies
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107.,Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107
| | - Lijuan Zhao
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107.,Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107
| | - Ke Li
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107.,Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107
| | - Angelo C Lepore
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107.,Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107
| | - Eric D Marsh
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Jeannie Chin
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107.,Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107.,Memory & Brain Research Center, Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
43
|
|
44
|
Khan MZ. A possible significant role of zinc and GPR39 zinc sensing receptor in Alzheimer disease and epilepsy. Biomed Pharmacother 2016; 79:263-72. [PMID: 27044837 DOI: 10.1016/j.biopha.2016.02.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 02/16/2016] [Accepted: 02/16/2016] [Indexed: 12/14/2022] Open
Abstract
Zinc the essential trace element, plays a significant role in the brain development and in the proper brain functions at every stage of life. Misbalance of zinc (Zn(2+)) ions in the central nervous system is involved in the pathogenesis of numerous neurodegenerative disorders such as Alzheimer's disease, Depression, and Epilepsy. In brain, Zn(2+) has been identified as a ligand, capable of activating and inhibiting the receptors including the NMDA-type glutamate receptors (NMDARs), GABAA receptors, nicotinic acetylcholine receptors (nAChRs), glycine receptors (glyR) and serotonin receptors (5-HT3). Recently GPR39 has been identified as a zinc-specific receptor, widely expressed in brain tissues including the frontal cortex, amygdala, and hippocampus. GPR39, when binding with Zn(2+) has shown promising therapeutic potentials. This review presents current knowledge regarding the role of GPR39 zinc sensing receptor in brain, with a focus on Alzheimer's disease and Epilepsy. Although the results are encouraging, further research is needed to clarify zinc and GPR39 role in the treatment of Alzheimer's disease and Epilepsy.
Collapse
Affiliation(s)
- Muhammad Zahid Khan
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
45
|
Karlov VA, Guekht AB, Guzeva VI, Lipatova LV, Bazilevich SN, Mkrtchyan VR, Vlasov PN, Zhidkova IA, Mukhin KY, Petrukhin AS, Lebedeva AV. [Algorithms of mono- and polytherapy in clinical epileptology]. Zh Nevrol Psikhiatr Im S S Korsakova 2016. [PMID: 28635941 DOI: 10.17116/jnevro201611671120-129] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The large number of antiepileptic drugs (AEDs) at the physician's disposal provides not only a broad therapeutic potential in the treatment of epilepsy (EP), but creates difficulties in the adequate choice of AED. The sufficient experience in the management of patients with epilepsy has been gained so far in the world, based on which the International League Against Epilepsy (ILAE), updated classification, adopted the basic definition of efficiency, remission, resistance, evidence of research on the effectiveness of AED therapy, and introduced the concept of "resolved" epilepsy. In this article, a group of Russian experts suggest recommendations on the main steps in the choice of therapy in epilepsy. Possible drug interactions between different AEDs and other drugs as well as main characteristics of mono- and polytherapy of epilepsy are described. Some features of the use of AEDs in the elderly, characteristics of the "female" epilepsy related to the reproductive function and basic requirements for the therapy of epilepsy in children are presented.
Collapse
Affiliation(s)
- V A Karlov
- Evdokimov Moscow State Medical and Dentistry University, Moscow, Russia
| | - A B Guekht
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - V I Guzeva
- Saint-Petersburg State Medical Academy, St. Petersburg, Russia
| | - L V Lipatova
- Bekhterev Saint-Petersburg Research Psychoneurological Institute, St. Petersburg, Russia
| | | | - V R Mkrtchyan
- Soloviev Scientific-Practical Psycho-Neurological Сenter, Moscow, Russia
| | - P N Vlasov
- Evdokimov Moscow State Medical and Dentistry University, Moscow, Russia
| | - I A Zhidkova
- Evdokimov Moscow State Medical and Dentistry University, Moscow, Russia
| | - K Yu Mukhin
- Svt. Luka's Institute of Child Neurology and Epilepsy, Moscow, Russia
| | - A S Petrukhin
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - A V Lebedeva
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
46
|
Nicholas R, Magliozzi R, Campbell G, Mahad D, Reynolds R. Temporal lobe cortical pathology and inhibitory GABA interneuron cell loss are associated with seizures in multiple sclerosis. Mult Scler 2016; 22:25-35. [PMID: 25921040 PMCID: PMC4702245 DOI: 10.1177/1352458515579445] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 02/17/2015] [Accepted: 03/04/2015] [Indexed: 11/17/2022]
Abstract
BACKGROUND Seizures are recognised in multiple sclerosis (MS), but their true incidence and the mechanism by which they are associated with MS is unclear. OBJECTIVE The objective of this paper is to determine the lifetime frequency of seizures in the United Kingdom MS Tissue Bank (UKMSTB) population and any pathological features associated with seizures. METHODS We evaluated 255 individuals from the UKMSTB. A subset underwent analysis of cortical thickness, grey matter lesion (GML) (type and number) and cortical neuronal numbers (total and GABAergic). RESULTS A total of 37/255 patients had seizures (14.5% lifetime incidence); in 47% they were associated with concurrent infection. In those with seizures, death and wheelchair use occurred earlier and in 59% seizures developed after 15 years of disease. Seizures were associated with Type 1 GMLs and reduced cortical thickness in the middle temporal gyrus. Localised selective GABAergic interneuron loss in layers IV and VI was related to GMLs but was not explained by the presence of inflammation or by mitochondrial dysfunction within Type I GMLs. CONCLUSION We confirm that seizure frequency rises in MS. Type I GMLs in the temporal lobe underlie a loss of inhibitory interneurons in cortical layers IV and VI and these changes could together with concurrent infection enhance susceptibility to seizures.
Collapse
Affiliation(s)
- Richard Nicholas
- UK Multiple Sclerosis Tissue Bank, Wolfson Neuroscience Laboratories, Imperial College London Faculty of Medicine, Hammersmith Hospital Campus, UK
| | - Roberta Magliozzi
- UK Multiple Sclerosis Tissue Bank, Wolfson Neuroscience Laboratories, Imperial College London Faculty of Medicine, Hammersmith Hospital Campus, UK/Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | | | - Don Mahad
- Centre for Neuroregeneration, University of Edinburgh, UK/Centre for Clinical Brain Sciences, University of Edinburgh, UK
| | - Richard Reynolds
- UK Multiple Sclerosis Tissue Bank, Wolfson Neuroscience Laboratories, Imperial College London Faculty of Medicine, Hammersmith Hospital Campus, UK
| |
Collapse
|
47
|
Bungenberg J, Surano N, Grote A, Surges R, Pernhorst K, Hofmann A, Schoch S, Helmstaedter C, Becker AJ. Gene expression variance in hippocampal tissue of temporal lobe epilepsy patients corresponds to differential memory performance. Neurobiol Dis 2015; 86:121-30. [PMID: 26631617 DOI: 10.1016/j.nbd.2015.11.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/27/2015] [Accepted: 11/13/2015] [Indexed: 01/05/2023] Open
Abstract
Temporal lobe epilepsy (TLE) is a severe brain disorder affecting particularly young adults. TLE is frequently associated with memory deterioration and neuronal damage of the hippocampal formation. It thereby reveals striking parallels to neurodegenerative disorders including Alzheimer's disease (AD). TLE patients differ with respect to their cognitive performance, but currently little is known about relevant molecular-genetic factors. Here, we correlated differential memory performance of pharmacoresistant TLE patients undergoing neurosurgery for seizure control with in-vitro findings of their hippocampal tissues. We analyzed mRNA transcripts and subsequently promoter variants specifically altered in brain tissue of individuals with 'very severe' memory impairment. TLE patients (n=79) were stratified according to preoperative memory impairment using an established four-tiered grading system ranging from 'average' to 'very severely'. Multimodal cluster analyses revealed molecules specifically associated with synaptic function and abundantly expressed in TLE patients with very impaired memory performance. In a subsequent promoter analysis, we found the single nucleotide polymorphism rs744373 C-allele to be associated with high mRNA levels of bridging integrator 1 (BIN1)/Amphiphysin 2, i.e. a major component of the endocytotic machinery and located in a crucial genetic AD risk locus. Using in vitro luciferase transfection assays, we found that BIN1 promoter activation is genotype dependent and strongly increased by reduced binding of the transcriptional repressor TGIF. Our data indicate that poor memory performance in patients with TLE strongly corresponds to distinctly altered neuronal transcript signatures, which - as demonstrated for BIN1 - can correlate with a particular allelic promoter variant. Our data suggest aberrant transcriptional signaling to significantly impact synaptic dynamics in TLE resulting in impaired memory performance and may serve as basis for future therapy development of this severe comorbidity.
Collapse
Affiliation(s)
- Julia Bungenberg
- Dept. of Neuropathology, University of Bonn Medical Center, Germany
| | - Natascha Surano
- Dept. of Neuropathology, University of Bonn Medical Center, Germany
| | - Alexander Grote
- Dept. of Neurosurgery, University of Bonn Medical Center, Germany
| | - Rainer Surges
- Dept. of Epileptology, University of Bonn Medical Center, Germany
| | | | - Andrea Hofmann
- Institute of Human Genetics, Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Susanne Schoch
- Dept. of Neuropathology, University of Bonn Medical Center, Germany
| | | | - Albert J Becker
- Dept. of Neuropathology, University of Bonn Medical Center, Germany.
| |
Collapse
|
48
|
Boison D, Aronica E. Comorbidities in Neurology: Is adenosine the common link? Neuropharmacology 2015; 97:18-34. [PMID: 25979489 PMCID: PMC4537378 DOI: 10.1016/j.neuropharm.2015.04.031] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 04/24/2015] [Accepted: 04/27/2015] [Indexed: 12/13/2022]
Abstract
Comorbidities in Neurology represent a major conceptual and therapeutic challenge. For example, temporal lobe epilepsy (TLE) is a syndrome comprised of epileptic seizures and comorbid symptoms including memory and psychiatric impairment, depression, and sleep dysfunction. Similarly, Alzheimer's disease (AD), Parkinson's disease (PD), and Amyotrophic Lateral Sclerosis (ALS) are accompanied by various degrees of memory dysfunction. Patients with AD have an increased likelihood for seizures, whereas all four conditions share certain aspects of psychosis, depression, and sleep dysfunction. This remarkable overlap suggests common pathophysiological mechanisms, which include synaptic dysfunction and synaptotoxicity, as well as glial activation and astrogliosis. Astrogliosis is linked to synapse function via the tripartite synapse, but astrocytes also control the availability of gliotransmitters and adenosine. Here we will specifically focus on the 'adenosine hypothesis of comorbidities' implying that astrocyte activation, via overexpression of adenosine kinase (ADK), induces a deficiency in the homeostatic tone of adenosine. We present evidence from patient-derived samples showing astrogliosis and overexpression of ADK as common pathological hallmark of epilepsy, AD, PD, and ALS. We discuss a transgenic 'comorbidity model', in which brain-wide overexpression of ADK and resulting adenosine deficiency produces a comorbid spectrum of seizures, altered dopaminergic function, attentional impairment, and deficits in cognitive domains and sleep regulation. We conclude that dysfunction of adenosine signaling is common in neurological conditions, that adenosine dysfunction can explain co-morbid phenotypes, and that therapeutic adenosine augmentation might be effective for the treatment of comorbid symptoms in multiple neurological conditions.
Collapse
Affiliation(s)
- Detlev Boison
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR 97232, USA.
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Academic Medical Center and Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, The Netherlands; Stichting Epilepsie Instellingen (SEIN) Nederland, Heemstede, The Netherlands
| |
Collapse
|
49
|
Cheng CH, Liu CJ, Ou SM, Yeh CM, Chen TJ, Lin YY, Wang SJ. Incidence and risk of seizures in Alzheimer's disease: A nationwide population-based cohort study. Epilepsy Res 2015. [PMID: 26220378 DOI: 10.1016/j.eplepsyres.2015.05.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The reported incidence and risk factors mediating seizures in Alzheimer's disease (AD) have been extremely inconsistent and relevant data is lacking in Asia. We investigated the incidence rate and risk of seizures in AD and in a large, nationwide cohort from Han Chinese. A retrospective population-based study was conducted on the data from Taiwan's National Health Insurance Research Database from 2000 to 2010. To reduce selection bias, we applied propensity scores, wherein 981 patients with AD were matched to 3835 non-AD controls from a pool of 1000,000 randomly sampled cohort dataset. This approach was based on age, sex, comorbidities and previous brain conditions. Incidence rate, cumulative incidence and hazard ratios (HRs) were estimated. During the 10-year follow-up period (mean follow-up time, 4.02 years), 44 out of 937 AD patients (4.7%) developed seizures. The incidence rate in the AD cohort (11.9 per 1000 person-years) was higher than that in the matched cohort (5.7 per 1000 person-years), with an adjusted HR of 1.85 (95% confidence interval [CI], 1.20-2.83, p=0.005). The mean duration from the diagnosis of AD to the occurrence of seizure is 3.6 years. The Cox regression analysis revealed that AD itself is a significant predictor after adjustment for confounders (HR=2.01, 95% CI, 1.40-2.90, p<0.001). Moreover, age is an independent predictor, with an adjusted HR of 1.03 (95% CI, 1.00-1.05, p=0.019). In conclusion, seizure occurrence in AD is more common than in the matched cohort. Notably, advanced age carries a higher risk for development of seizures in patients with AD.
Collapse
Affiliation(s)
- Chia-Hsiung Cheng
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan, Taiwan; Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Jen Liu
- Institute of Public Health, National Yang-Ming University, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Internal Medicine, National Yang-Ming University Hospital, Yilan, Taiwan; Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shuo-Ming Ou
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chiu-Mei Yeh
- Department of Family Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tzeng-Ji Chen
- Department of Family Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yung-Yang Lin
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan; Department of Neurology, National Yang-Ming University, Taipei, Taiwan; Institute of Physiology, National Yang-Ming University, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Brain Research Center, National Yang-Ming University, Taipei, Taiwan; Laboratory of Neurophysiology, Taipei Veterans General Hospital, Taipei, Taiwan; Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.
| | - Shuu-Jiun Wang
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan; Department of Neurology, National Yang-Ming University, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan; Brain Research Center, National Yang-Ming University, Taipei, Taiwan; Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
50
|
Neuronal Network Oscillations in Neurodegenerative Diseases. Neuromolecular Med 2015; 17:270-84. [PMID: 25920466 DOI: 10.1007/s12017-015-8355-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 04/16/2015] [Indexed: 10/23/2022]
Abstract
Cognitive and behavioral acts go along with highly coordinated spatiotemporal activity patterns in neuronal networks. Most of these patterns are synchronized by coherent membrane potential oscillations within and between local networks. By entraining multiple neurons into a common time regime, such network oscillations form a critical interface between cellular activity and large-scale systemic functions. Synaptic integrity is altered in neurodegenerative diseases, and it is likely that this goes along with characteristic changes of coordinated network activity. This notion is supported by EEG recordings from human patients and from different animal models of such disorders. However, our knowledge about the pathophysiology of network oscillations in neurodegenerative diseases is surprisingly incomplete, and increased research efforts are urgently needed. One complicating factor is the pronounced diversity of network oscillations between different brain regions and functional states. Pathological changes must, therefore, be analyzed separately in each condition and affected area. However, cumulative evidence from different diseases may result, in the future, in more unifying "oscillopathy" concepts of neurodegenerative diseases. In this review, we report present evidence for pathological changes of network oscillations in Alzheimer's disease (AD), one of the most prominent and challenging neurodegenerative disorders. The heterogeneous findings from AD are contrasted to Parkinson's disease, where motor-related changes in specific frequency bands do already fulfill criteria of a valid biomarker.
Collapse
|