1
|
Lisek M, Tomczak J, Boczek T, Zylinska L. Calcium-Associated Proteins in Neuroregeneration. Biomolecules 2024; 14:183. [PMID: 38397420 PMCID: PMC10887043 DOI: 10.3390/biom14020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/27/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
The dysregulation of intracellular calcium levels is a critical factor in neurodegeneration, leading to the aberrant activation of calcium-dependent processes and, ultimately, cell death. Ca2+ signals vary in magnitude, duration, and the type of neuron affected. A moderate Ca2+ concentration can initiate certain cellular repair pathways and promote neuroregeneration. While the peripheral nervous system exhibits an intrinsic regenerative capability, the central nervous system has limited self-repair potential. There is evidence that significant variations exist in evoked calcium responses and axonal regeneration among neurons, and individual differences in regenerative capacity are apparent even within the same type of neurons. Furthermore, some studies have shown that neuronal activity could serve as a potent regulator of this process. The spatio-temporal patterns of calcium dynamics are intricately controlled by a variety of proteins, including channels, ion pumps, enzymes, and various calcium-binding proteins, each of which can exert either positive or negative effects on neural repair, depending on the cellular context. In this concise review, we focus on several calcium-associated proteins such as CaM kinase II, GAP-43, oncomodulin, caldendrin, calneuron, and NCS-1 in order to elaborate on their roles in the intrinsic mechanisms governing neuronal regeneration following traumatic damage processes.
Collapse
Affiliation(s)
| | | | | | - Ludmila Zylinska
- Department of Molecular Neurochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (M.L.); (J.T.); (T.B.)
| |
Collapse
|
2
|
Cheah M, Cheng Y, Petrova V, Cimpean A, Jendelova P, Swarup V, Woolf CJ, Geschwind DH, Fawcett JW. Integrin-Driven Axon Regeneration in the Spinal Cord Activates a Distinctive CNS Regeneration Program. J Neurosci 2023; 43:4775-4794. [PMID: 37277179 PMCID: PMC10312060 DOI: 10.1523/jneurosci.2076-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 06/07/2023] Open
Abstract
The peripheral branch of sensory dorsal root ganglion (DRG) neurons regenerates readily after injury unlike their central branch in the spinal cord. However, extensive regeneration and reconnection of sensory axons in the spinal cord can be driven by the expression of α9 integrin and its activator kindlin-1 (α9k1), which enable axons to interact with tenascin-C. To elucidate the mechanisms and downstream pathways affected by activated integrin expression and central regeneration, we conducted transcriptomic analyses of adult male rat DRG sensory neurons transduced with α9k1, and controls, with and without axotomy of the central branch. Expression of α9k1 without the central axotomy led to upregulation of a known PNS regeneration program, including many genes associated with peripheral nerve regeneration. Coupling α9k1 treatment with dorsal root axotomy led to extensive central axonal regeneration. In addition to the program upregulated by α9k1 expression, regeneration in the spinal cord led to expression of a distinctive CNS regeneration program, including genes associated with ubiquitination, autophagy, endoplasmic reticulum (ER), trafficking, and signaling. Pharmacological inhibition of these processes blocked the regeneration of axons from DRGs and human iPSC-derived sensory neurons, validating their causal contributions to sensory regeneration. This CNS regeneration-associated program showed little correlation with either embryonic development or PNS regeneration programs. Potential transcriptional drivers of this CNS program coupled to regeneration include Mef2a, Runx3, E2f4, and Yy1. Signaling from integrins primes sensory neurons for regeneration, but their axon growth in the CNS is associated with an additional distinctive program that differs from that involved in PNS regeneration.SIGNIFICANCE STATEMENT Restoration of neurologic function after spinal cord injury has yet to be achieved in human patients. To accomplish this, severed nerve fibers must be made to regenerate. Reconstruction of nerve pathways has not been possible, but recently, a method for stimulating long-distance axon regeneration of sensory fibers in rodents has been developed. This research uses profiling of messenger RNAs in the regenerating sensory neurons to discover which mechanisms are activated. This study shows that the regenerating neurons initiate a novel CNS regeneration program which includes molecular transport, autophagy, ubiquitination, and modulation of the endoplasmic reticulum (ER). The study identifies mechanisms that neurons need to activate to regenerate their nerve fibers.
Collapse
Affiliation(s)
- Menghon Cheah
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, United Kingdom
| | - Yuyan Cheng
- Program in Neurogenetics, Department of Neurology, and Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Veselina Petrova
- Department of Neurobiology, Harvard Medical School; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts 02115
| | - Anda Cimpean
- Centre for Reconstructive Neuroscience, Institute of Experimental Medicine Czech Academy of Science, Prague, Czech Republic
| | - Pavla Jendelova
- Centre for Reconstructive Neuroscience, Institute of Experimental Medicine Czech Academy of Science, Prague, Czech Republic
| | - Vivek Swarup
- Program in Neurogenetics, Department of Neurology, and Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California 90095
- Department of Neurobiology and Behavior, University of California, Irvine, California 92697
| | - Clifford J Woolf
- Department of Neurobiology, Harvard Medical School; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts 02115
| | - Daniel H Geschwind
- Program in Neurogenetics, Department of Neurology, and Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - James W Fawcett
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, United Kingdom
- Centre for Reconstructive Neuroscience, Institute of Experimental Medicine Czech Academy of Science, Prague, Czech Republic
| |
Collapse
|
3
|
Avraham O, Le J, Leahy K, Li T, Zhao G, Cavalli V. Analysis of neuronal injury transcriptional response identifies CTCF and YY1 as co-operating factors regulating axon regeneration. Front Mol Neurosci 2022; 15:967472. [PMID: 36081575 PMCID: PMC9446241 DOI: 10.3389/fnmol.2022.967472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Injured sensory neurons activate a transcriptional program necessary for robust axon regeneration and eventual target reinnervation. Understanding the transcriptional regulators that govern this axon regenerative response may guide therapeutic strategies to promote axon regeneration in the injured nervous system. Here, we used cultured dorsal root ganglia neurons to identify pro-regenerative transcription factors. Using RNA sequencing, we first characterized this neuronal culture and determined that embryonic day 13.5 DRG (eDRG) neurons cultured for 7 days are similar to e15.5 DRG neurons in vivo and that all neuronal subtypes are represented. This eDRG neuronal culture does not contain other non-neuronal cell types. Next, we performed RNA sequencing at different time points after in vitro axotomy. Analysis of differentially expressed genes revealed upregulation of known regeneration associated transcription factors, including Jun, Atf3 and Rest, paralleling the axon injury response in vivo. Analysis of transcription factor binding sites in differentially expressed genes revealed other known transcription factors promoting axon regeneration, such as Myc, Hif1α, Pparγ, Ascl1a, Srf, and Ctcf, as well as other transcription factors not yet characterized in axon regeneration. We next tested if overexpression of novel candidate transcription factors alone or in combination promotes axon regeneration in vitro. Our results demonstrate that expression of Ctcf with Yy1 or E2f2 enhances in vitro axon regeneration. Our analysis highlights that transcription factor interaction and chromatin architecture play important roles as a regulator of axon regeneration.
Collapse
Affiliation(s)
- Oshri Avraham
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Jimmy Le
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Kathleen Leahy
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Tiandao Li
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Guoyan Zhao
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Valeria Cavalli
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, United States
- *Correspondence: Valeria Cavalli,
| |
Collapse
|
4
|
Cheng Y, Yin Y, Zhang A, Bernstein AM, Kawaguchi R, Gao K, Potter K, Gilbert HY, Ao Y, Ou J, Fricano-Kugler CJ, Goldberg JL, He Z, Woolf CJ, Sofroniew MV, Benowitz LI, Geschwind DH. Transcription factor network analysis identifies REST/NRSF as an intrinsic regulator of CNS regeneration in mice. Nat Commun 2022; 13:4418. [PMID: 35906210 PMCID: PMC9338053 DOI: 10.1038/s41467-022-31960-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/08/2022] [Indexed: 01/30/2023] Open
Abstract
The inability of neurons to regenerate long axons within the CNS is a major impediment to improving outcome after spinal cord injury, stroke, and other CNS insults. Recent advances have uncovered an intrinsic program that involves coordinate regulation by multiple transcription factors that can be manipulated to enhance growth in the peripheral nervous system. Here, we use a systems genomics approach to characterize regulatory relationships of regeneration-associated transcription factors, identifying RE1-Silencing Transcription Factor (REST; Neuron-Restrictive Silencer Factor, NRSF) as a predicted upstream suppressor of a pro-regenerative gene program associated with axon regeneration in the CNS. We validate our predictions using multiple paradigms, showing that mature mice bearing cell type-specific deletions of REST or expressing dominant-negative mutant REST show improved regeneration of the corticospinal tract and optic nerve after spinal cord injury and optic nerve crush, which is accompanied by upregulation of regeneration-associated genes in cortical motor neurons and retinal ganglion cells, respectively. These analyses identify a role for REST as an upstream suppressor of the intrinsic regenerative program in the CNS and demonstrate the utility of a systems biology approach involving integrative genomics and bio-informatics to prioritize hypotheses relevant to CNS repair.
Collapse
Affiliation(s)
- Yuyan Cheng
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yuqin Yin
- Department of Neurosurgery, Boston Children's Hospital, Boston, MA, 02115, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Neurosurgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Alice Zhang
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Alexander M Bernstein
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Riki Kawaguchi
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Psychiatry, Semel Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Kun Gao
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Kyra Potter
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Hui-Ya Gilbert
- Department of Neurosurgery, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Yan Ao
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jing Ou
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Catherine J Fricano-Kugler
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jeffrey L Goldberg
- Byers Eye Institute and Wu Tsai Neuroscience Institute, Stanford University, Palo Alto, CA, 94305, USA
| | - Zhigang He
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA
| | - Clifford J Woolf
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA
| | - Michael V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Larry I Benowitz
- Department of Neurosurgery, Boston Children's Hospital, Boston, MA, 02115, USA.
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA.
- Department of Neurosurgery, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Ophthalmology, Harvard Medical School, Boston, MA, 02115, USA.
| | - Daniel H Geschwind
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Psychiatry, Semel Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
5
|
Katz HR, Arcese AA, Bloom O, Morgan JR. Activating Transcription Factor 3 (ATF3) is a Highly Conserved Pro-regenerative Transcription Factor in the Vertebrate Nervous System. Front Cell Dev Biol 2022; 10:824036. [PMID: 35350379 PMCID: PMC8957905 DOI: 10.3389/fcell.2022.824036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/17/2022] [Indexed: 12/24/2022] Open
Abstract
The vertebrate nervous system exhibits dramatic variability in regenerative capacity across species and neuronal populations. For example, while the mammalian central nervous system (CNS) is limited in its regenerative capacity, the CNS of many other vertebrates readily regenerates after injury, as does the peripheral nervous system (PNS) of mammals. Comparing molecular responses across species and tissues can therefore provide valuable insights into both conserved and distinct mechanisms of successful regeneration. One gene that is emerging as a conserved pro-regenerative factor across vertebrates is activating transcription factor 3 (ATF3), which has long been associated with tissue trauma. A growing number of studies indicate that ATF3 may actively promote neuronal axon regrowth and regeneration in species ranging from lampreys to mammals. Here, we review data on the structural and functional conservation of ATF3 protein across species. Comparing RNA expression data across species that exhibit different abilities to regenerate their nervous system following traumatic nerve injury reveals that ATF3 is consistently induced in neurons within the first few days after injury. Genetic deletion or knockdown of ATF3 expression has been shown in mouse and zebrafish, respectively, to reduce axon regeneration, while inducing ATF3 promotes axon sprouting, regrowth, or regeneration. Thus, we propose that ATF3 may be an evolutionarily conserved regulator of neuronal regeneration. Identifying downstream effectors of ATF3 will be a critical next step in understanding the molecular basis of vertebrate CNS regeneration.
Collapse
Affiliation(s)
- Hilary R Katz
- The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA, United States
| | - Anthony A Arcese
- The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Ona Bloom
- The Feinstein Institutes for Medical Research, Manhasset, NY, United States.,The Donald and Barbara Zucker School of Medicine, Hempstead, NY, United States
| | - Jennifer R Morgan
- The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA, United States
| |
Collapse
|
6
|
Harnessing rAAV-retro for gene manipulations in multiple pathways that are interrupted after spinal cord injury. Exp Neurol 2021; 350:113965. [PMID: 34973965 DOI: 10.1016/j.expneurol.2021.113965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022]
Abstract
This paper explores the potential of rAAV2-retro to deliver gene modifying cargoes to the cells of origin of multiple pathways that are interrupted by spinal cord injury (SCI), summarizing data from previous studies and new data from additional experiments. rAAV-retro exhibits uniquely robust and reliable long-distance retrograde transport from pre-terminal axons and synapses back to neuronal bodies. Previous studies have documented that various AAV-based genetic modifications can enable axon regeneration after SCI, but these have targeted the cells of origin of one pathway at a time. In contrast, rAAV-retro can simultaneously transduce large numbers of neurons of origin of multiple spinal pathways with single injections into the spinal cord. Our initial studies use RosatdTomato and double transgenic PTENf/f; RosatdTomato mice in which transfection with rAAV-retro/Cre deletes PTEN and activates tdT expression in the same neurons. Injections of rAAV-retro/Cre into the cervical, thoracic and lumbar spinal cord led to topographically specific retrograde transduction in cortical motoneurons and neurons in subcortical regions that give rise to different spinal pathways. Our results confirm and extend previous studies indicating selective transduction of neurons that terminate at the level of the injection with minimal retrograde transduction of axons in transit to lower levels. We document feasibility of using rAAV-retro expressing shRNA against PTEN along with a GFP reporter (rAAV-retro-shPTEN/GFP) to effectively knock down PTEN in multiple populations of neurons, which can be used in any species. Some limitations and caveats of currently available rAAV-retros are discussed. Together, our results support the potential applications of rAAV-retro for AAV-based gene-modifications for SCI.
Collapse
|
7
|
Avraham O, Feng R, Ewan EE, Rustenhoven J, Zhao G, Cavalli V. Profiling sensory neuron microenvironment after peripheral and central axon injury reveals key pathways for neural repair. eLife 2021; 10:e68457. [PMID: 34586065 PMCID: PMC8480984 DOI: 10.7554/elife.68457] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 09/12/2021] [Indexed: 12/19/2022] Open
Abstract
Sensory neurons with cell bodies in dorsal root ganglia (DRG) represent a useful model to study axon regeneration. Whereas regeneration and functional recovery occurs after peripheral nerve injury, spinal cord injury or dorsal root injury is not followed by regenerative outcomes. Regeneration of sensory axons in peripheral nerves is not entirely cell autonomous. Whether the DRG microenvironment influences the different regenerative capacities after injury to peripheral or central axons remains largely unknown. To answer this question, we performed a single-cell transcriptional profiling of mouse DRG in response to peripheral (sciatic nerve crush) and central axon injuries (dorsal root crush and spinal cord injury). Each cell type responded differently to the three types of injuries. All injuries increased the proportion of a cell type that shares features of both immune cells and glial cells. A distinct subset of satellite glial cells (SGC) appeared specifically in response to peripheral nerve injury. Activation of the PPARα signaling pathway in SGC, which promotes axon regeneration after peripheral nerve injury, failed to occur after central axon injuries. Treatment with the FDA-approved PPARα agonist fenofibrate increased axon regeneration after dorsal root injury. This study provides a map of the distinct DRG microenvironment responses to peripheral and central injuries at the single-cell level and highlights that manipulating non-neuronal cells could lead to avenues to promote functional recovery after CNS injuries or disease.
Collapse
Affiliation(s)
- Oshri Avraham
- Department of Neuroscience, Washington University School of MedicineSaint LouisUnited States
| | - Rui Feng
- Department of Neuroscience, Washington University School of MedicineSaint LouisUnited States
| | - Eric Edward Ewan
- Department of Neuroscience, Washington University School of MedicineSaint LouisUnited States
| | - Justin Rustenhoven
- Department of Pathology and Immunology, Washington University School of MedicineSt LouisUnited States
- Center for Brain Immunology and Glia (BIG), Washington University School of MedicineSt LouisUnited States
| | - Guoyan Zhao
- Department of Neuroscience, Washington University School of MedicineSaint LouisUnited States
- Department of Pathology and Immunology, Washington University School of MedicineSt LouisUnited States
| | - Valeria Cavalli
- Department of Neuroscience, Washington University School of MedicineSaint LouisUnited States
- Center of Regenerative Medicine, Washington University School of MedicineSt. LouisUnited States
- Hope Center for Neurological Disorders, Washington University School of MedicineSt. LouisUnited States
| |
Collapse
|
8
|
Wiggins JW, Sledd JE, Coolen LM. Spinal Cord Injury Causes Reduction of Galanin and Gastrin Releasing Peptide mRNA Expression in the Spinal Ejaculation Generator of Male Rats. Front Neurol 2021; 12:670536. [PMID: 34239493 PMCID: PMC8258150 DOI: 10.3389/fneur.2021.670536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/21/2021] [Indexed: 01/23/2023] Open
Abstract
Spinal cord injury (SCI) in men is commonly associated with sexual dysfunction, including anejaculation, and chronic mid-thoracic contusion injury in male rats also impairs ejaculatory reflexes. Ejaculation is controlled by a spinal ejaculation generator consisting of a population of lumbar spinothalamic (LSt) neurons that control ejaculation through release of four neuropeptides including galanin and gastrin releasing peptide (GRP) onto lumbar and sacral autonomic and motor nuclei. It was recently demonstrated that spinal contusion injury in male rats caused reduction of GRP-immunoreactivity, but not galanin-immunoreactivity in LSt cells, indicative of reduced GRP peptide levels, but inconclusive results for galanin. The current study further tests the hypothesis that contusion injury causes a disruption of GRP and galanin mRNA in LSt cells. Male rats received mid-thoracic contusion injury and galanin and GRP mRNA were visualized 8 weeks later in the lumbar spinal cord using fluorescent in situ hybridization. Spinal cord injury significantly reduced GRP and galanin mRNA in LSt cells. Galanin expression was higher in LSt cells compared to GRP. However, expression of the two transcripts were positively correlated in LSt cells in both sham and SCI animals, suggesting that expression for the two neuropeptides may be co-regulated. Immunofluorescent visualization of galanin and GRP peptides demonstrated a significant reduction in GRP-immunoreactivity, but not galanin in LSt cells, confirming the previous observations. In conclusion, SCI reduced GRP and galanin expression in LSt cells with an apparent greater impact on GRP peptide levels. GRP and galanin are both essential for triggering ejaculation and thus such reduction may contribute to ejaculatory dysfunction following SCI in rats.
Collapse
Affiliation(s)
- James W Wiggins
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States.,Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, United States
| | - Jonathan E Sledd
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States
| | - Lique M Coolen
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States.,Department of Biological Sciences, Kent State University, Kent, OH, United States
| |
Collapse
|
9
|
Stepankova K, Jendelova P, Machova Urdzikova L. Planet of the AAVs: The Spinal Cord Injury Episode. Biomedicines 2021; 9:613. [PMID: 34071245 PMCID: PMC8228984 DOI: 10.3390/biomedicines9060613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
The spinal cord injury (SCI) is a medical and life-disrupting condition with devastating consequences for the physical, social, and professional welfare of patients, and there is no adequate treatment for it. At the same time, gene therapy has been studied as a promising approach for the treatment of neurological and neurodegenerative disorders by delivering remedial genes to the central nervous system (CNS), of which the spinal cord is a part. For gene therapy, multiple vectors have been introduced, including integrating lentiviral vectors and non-integrating adeno-associated virus (AAV) vectors. AAV vectors are a promising system for transgene delivery into the CNS due to their safety profile as well as long-term gene expression. Gene therapy mediated by AAV vectors shows potential for treating SCI by delivering certain genetic information to specific cell types. This review has focused on a potential treatment of SCI by gene therapy using AAV vectors.
Collapse
Affiliation(s)
- Katerina Stepankova
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14200 Prague, Czech Republic;
- Department of Neuroscience, Second Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| | - Pavla Jendelova
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14200 Prague, Czech Republic;
- Department of Neuroscience, Second Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| | - Lucia Machova Urdzikova
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14200 Prague, Czech Republic;
- Department of Neuroscience, Second Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| |
Collapse
|
10
|
Li XH, Zhu X, Liu XY, Xu HH, Jiang W, Wang JJ, Chen F, Zhang S, Li RX, Chen XY, Tu Y. The corticospinal tract structure of collagen/silk fibroin scaffold implants using 3D printing promotes functional recovery after complete spinal cord transection in rats. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:31. [PMID: 33751254 PMCID: PMC7985105 DOI: 10.1007/s10856-021-06500-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
No effective treatment has been established for nerve dysfunction caused by spinal cord injury (SCI). Orderly axonal growth at the site of spinal cord transection and creation of an appropriate biological microenvironment are important for functional recovery. To axially guiding axonal growth, designing a collagen/silk fibroin scaffold fabricated with 3D printing technology (3D-C/SF) emulated the corticospinal tract. The normal collagen/silk fibroin scaffold with freeze-drying technology (C/SF) or 3D-C/SF scaffold were implanted into rats with completely transected SCI to evaluate its effect on nerve repair during an 8-week observation period. Electrophysiological analysis and locomotor performance showed that the 3D-C/SF implants contributed to significant improvements in the neurogolical function of rats compared to C/SF group. By magnetic resonance imaging, 3D-C/SF implants promoted a striking degree of axonal regeneration and connection between the proximal and distal SCI sites. Compared with C/SF group, rats with 3D-C/SF scaffold exhibited fewer lesions and disordered structures in histological analysis and more GAP43-positive profiles at the lesion site. The above results indicated that the corticospinal tract structure of 3D printing collagen/silk fibroin scaffold improved axonal regeneration and promoted orderly connections within the neural network, which could provided a promising and innovative approach for tissue repair after SCI.
Collapse
Affiliation(s)
- Xiao-Hong Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Xiang Zhu
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin, 300162, China
- Henan provincial people's hospital of southeast branch, Zhu ma dian, 463500, China
| | - Xiao-Yin Liu
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin, 300162, China
- Tianjin Medical University, Tianjin, 300070, China
| | - Hai-Huan Xu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin, 300162, China
| | - Wei Jiang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Jing-Jing Wang
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin, 300162, China
| | - Feng Chen
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin, 300162, China
| | - Sai Zhang
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin, 300162, China
- Emergency Medical Center, Beijing Chaoyang Integrative medicine, Beijing, 100191, China
| | - Rui-Xin Li
- Central Laboratory, Tianjin Stomatological Hospital, Tianjin, 300041, China.
| | - Xu-Yi Chen
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin, 300162, China.
| | - Yue Tu
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin, 300162, China.
- Emergency Medical Center, Beijing Chaoyang Integrative medicine, Beijing, 100191, China.
| |
Collapse
|
11
|
Deng Q, Ma L, Chen T, Yang Y, Ma Y, Ma L. NF-κB 1-induced LINC00665 regulates inflammation and apoptosis of neurons caused by spinal cord injury by targeting miR-34a-5p. Neurol Res 2021; 43:418-427. [PMID: 33435858 DOI: 10.1080/01616412.2020.1866373] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Background: Spinal cord injury (SCI) has high disability rate and low cure rate, which frustrates the patients and brings a heavy burden to their families. This study aimed to explore whether NF-κB1 could induce the expression of LINC00665 and form a feedback loop with miR-34a-5p to regulate inflammation and apoptosis of neurons. Results: Basso, Beattie, and Bresnahan (BBB) scoring was decreased, damage for spinal cord tissue was aggravated and neuron number was decreased in SCI rats. The levels of TNF-α, IL-1β and IL-6 in serum and the expression of LINC00665 and NF-κB1 in spinal cord tissues were all increased in SCI rats. After LPS induction, PC12 cell viability was decreased. The expression of LINC00665 and NF-κB1 in LPS-induced PC12 cells was increased, which was partially reversed by BAY11-7082 (NF-κB inhibitor). Inhibition of LINC00665 improved cell viability, suppressed apoptosis and inflammation and down-regulated the NF-κB1 expression in LPS-induced PC12 cells. Furthermore, miR-34a-5p expression was decreased in LPS-induced PC12 cells, which could be promoted by inhibition of LINC00665. miR-34a-5p inhibitor restrained the effect of inhibition of LINC00665 on NF-κB1 expression in LPS-induced PC12 cells. Conclusion: inhibition of LINC00665 improved cell viability, suppressed apoptosis and inflammation in LPS-induced PC12 cells, and the NF-κB1/LINC00665/miR-34a-5ploop might be a useful therapeutic target in SCI treatment.
Collapse
Affiliation(s)
- Qilong Deng
- Rehabilitation Medical Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China.,Rehabilitation Medical Center, Luqiao Hospital, Taizhou Enze Medical Center (Group), Taizhou, Zhejiang, China
| | - Lili Ma
- Rehabilitation Medical Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China.,Rehabilitation Medical Center, Luqiao Hospital, Taizhou Enze Medical Center (Group), Taizhou, Zhejiang, China
| | - Ting Chen
- Rehabilitation Medical Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China.,Rehabilitation Medical Center, Luqiao Hospital, Taizhou Enze Medical Center (Group), Taizhou, Zhejiang, China
| | - Yu Yang
- Rehabilitation Medical Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China.,Rehabilitation Medical Center, Luqiao Hospital, Taizhou Enze Medical Center (Group), Taizhou, Zhejiang, China
| | - Yuetao Ma
- Rehabilitation Medical Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China.,Rehabilitation Medical Center, Luqiao Hospital, Taizhou Enze Medical Center (Group), Taizhou, Zhejiang, China
| | - Lizhong Ma
- Rehabilitation Medical Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China.,Rehabilitation Medical Center, Luqiao Hospital, Taizhou Enze Medical Center (Group), Taizhou, Zhejiang, China
| |
Collapse
|
12
|
Ewan EE, Avraham O, Carlin D, Gonçalves TM, Zhao G, Cavalli V. Ascending dorsal column sensory neurons respond to spinal cord injury and downregulate genes related to lipid metabolism. Sci Rep 2021; 11:374. [PMID: 33431991 PMCID: PMC7801468 DOI: 10.1038/s41598-020-79624-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 12/07/2020] [Indexed: 02/08/2023] Open
Abstract
Regeneration failure after spinal cord injury (SCI) results in part from the lack of a pro-regenerative response in injured neurons, but the response to SCI has not been examined specifically in injured sensory neurons. Using RNA sequencing of dorsal root ganglion, we determined that thoracic SCI elicits a transcriptional response distinct from sciatic nerve injury (SNI). Both SNI and SCI induced upregulation of ATF3 and Jun, yet this response failed to promote growth in sensory neurons after SCI. RNA sequencing of purified sensory neurons one and three days after injury revealed that unlike SNI, the SCI response is not sustained. Both SCI and SNI elicited the expression of ATF3 target genes, with very little overlap between conditions. Pathway analysis of differentially expressed ATF3 target genes revealed that fatty acid biosynthesis and terpenoid backbone synthesis were downregulated after SCI but not SNI. Pharmacologic inhibition of fatty acid synthase, the enzyme generating palmitic acid, decreased axon growth and regeneration in vitro. These results support the notion that decreased expression of lipid metabolism-related genes after SCI, including fatty acid synthase, may restrict axon regenerative capacity after SCI.
Collapse
Affiliation(s)
- Eric E Ewan
- Department of Neuroscience, Washington University School of Medicine, 660 S. Euclid Ave, Campus Box 8108, St. Louis, MO, 63110-1093, USA
| | - Oshri Avraham
- Department of Neuroscience, Washington University School of Medicine, 660 S. Euclid Ave, Campus Box 8108, St. Louis, MO, 63110-1093, USA
| | - Dan Carlin
- Department of Neuroscience, Washington University School of Medicine, 660 S. Euclid Ave, Campus Box 8108, St. Louis, MO, 63110-1093, USA
| | - Tassia Mangetti Gonçalves
- Department of Neuroscience, Washington University School of Medicine, 660 S. Euclid Ave, Campus Box 8108, St. Louis, MO, 63110-1093, USA
| | - Guoyan Zhao
- Department of Neuroscience, Washington University School of Medicine, 660 S. Euclid Ave, Campus Box 8108, St. Louis, MO, 63110-1093, USA
| | - Valeria Cavalli
- Department of Neuroscience, Washington University School of Medicine, 660 S. Euclid Ave, Campus Box 8108, St. Louis, MO, 63110-1093, USA. .,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA. .,Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
13
|
Zheng Y, Mao YR, Yuan TF, Xu DS, Cheng LM. Multimodal treatment for spinal cord injury: a sword of neuroregeneration upon neuromodulation. Neural Regen Res 2020; 15:1437-1450. [PMID: 31997803 PMCID: PMC7059565 DOI: 10.4103/1673-5374.274332] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 04/28/2019] [Accepted: 07/08/2019] [Indexed: 12/25/2022] Open
Abstract
Spinal cord injury is linked to the interruption of neural pathways, which results in irreversible neural dysfunction. Neural repair and neuroregeneration are critical goals and issues for rehabilitation in spinal cord injury, which require neural stem cell repair and multimodal neuromodulation techniques involving personalized rehabilitation strategies. Besides the involvement of endogenous stem cells in neurogenesis and neural repair, exogenous neural stem cell transplantation is an emerging effective method for repairing and replacing damaged tissues in central nervous system diseases. However, to ensure that endogenous or exogenous neural stem cells truly participate in neural repair following spinal cord injury, appropriate interventional measures (e.g., neuromodulation) should be adopted. Neuromodulation techniques, such as noninvasive magnetic stimulation and electrical stimulation, have been safely applied in many neuropsychiatric diseases. There is increasing evidence to suggest that neuromagnetic/electrical modulation promotes neuroregeneration and neural repair by affecting signaling in the nervous system; namely, by exciting, inhibiting, or regulating neuronal and neural network activities to improve motor function and motor learning following spinal cord injury. Several studies have indicated that fine motor skill rehabilitation training makes use of residual nerve fibers for collateral growth, encourages the formation of new synaptic connections to promote neural plasticity, and improves motor function recovery in patients with spinal cord injury. With the development of biomaterial technology and biomechanical engineering, several emerging treatments have been developed, such as robots, brain-computer interfaces, and nanomaterials. These treatments have the potential to help millions of patients suffering from motor dysfunction caused by spinal cord injury. However, large-scale clinical trials need to be conducted to validate their efficacy. This review evaluated the efficacy of neural stem cells and magnetic or electrical stimulation combined with rehabilitation training and intelligent therapies for spinal cord injury according to existing evidence, to build up a multimodal treatment strategy of spinal cord injury to enhance nerve repair and regeneration.
Collapse
Affiliation(s)
- Ya Zheng
- Rehabilitation Section, Spine Surgery Division of Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Ye-Ran Mao
- Rehabilitation Section, Spine Surgery Division of Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Dong-Sheng Xu
- Rehabilitation Section, Spine Surgery Division of Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education of the People's Republic of China, Tongji University, Shanghai, China
| | - Li-Ming Cheng
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education of the People's Republic of China, Tongji University, Shanghai, China
- Spine Surgery Division of Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Romeo-Guitart D, Leiva-Rodríguez T, Casas C. SIRT2 Inhibition Improves Functional Motor Recovery After Peripheral Nerve Injury. Neurotherapeutics 2020; 17:1197-1211. [PMID: 32323205 PMCID: PMC7609484 DOI: 10.1007/s13311-020-00860-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Sirtuin-2 (Sirt2) is a member of the NAD (+)-dependent protein deacetylase family involved in neuroprotection, cellular metabolism, homeostasis, and stress responses after injury of the nervous system. So far, no data have been published describing the role of SIRT2 in motor functional recovery after damage. We found that SIRT2 expression and deacetylase activity were increased within motoneurons after axotomy. To shed light onto the biological relevance of this change, we combined in vitro and in vivo models with pharmacological and genetic ablation approaches. We found that SIRT2 KO (knockout) mice exhibited improved functional recovery after sciatic nerve crush. SIRT2 activity blockage, using AK7, increased neurite outgrowth and length in organotypic spinal cord cultures and human cell line models. SIRT2 blockage enhanced the acetyltransferase activity of p300, which in turn increased the levels of an acetylated form of p53 (Ac-p53 k373), histone 3 (Ac-H3K9), and expression of GAP43, a downstream marker of regeneration. Lastly, we verified that p300 acetyltransferase activity is essential for these effects. Our results suggest that bolstering an epigenetic shift that promotes SIRT2 inhibition can be an effective therapy to increase functional recovery after peripheral nerve injury.
Collapse
Affiliation(s)
- David Romeo-Guitart
- Institut de Neurociències (INc) and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - Tatiana Leiva-Rodríguez
- Institut de Neurociències (INc) and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - Caty Casas
- Institut de Neurociències (INc) and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain.
- Unitat de Fisiologia Mèdica, Facultat de Medicina, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
15
|
Abstract
Permanent disabilities following CNS injuries result from the failure of injured axons to regenerate and rebuild functional connections with their original targets. By contrast, injury to peripheral nerves is followed by robust regeneration, which can lead to recovery of sensory and motor functions. This regenerative response requires the induction of widespread transcriptional and epigenetic changes in injured neurons. Considerable progress has been made in recent years in understanding how peripheral axon injury elicits these widespread changes through the coordinated actions of transcription factors, epigenetic modifiers and, to a lesser extent, microRNAs. Although many questions remain about the interplay between these mechanisms, these new findings provide important insights into the pivotal role of coordinated gene expression and chromatin remodelling in the neuronal response to injury.
Collapse
Affiliation(s)
- Marcus Mahar
- Department of Neuroscience, Hope Center for Neurological Disorders and Center of Regenerative Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Valeria Cavalli
- Department of Neuroscience, Hope Center for Neurological Disorders and Center of Regenerative Medicine, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
16
|
Wiggins JW, Kozyrev N, Sledd JE, Wilson GG, Coolen LM. Chronic Spinal Cord Injury Reduces Gastrin-Releasing Peptide in the Spinal Ejaculation Generator in Male Rats. J Neurotrauma 2019; 36:3378-3393. [PMID: 31111794 DOI: 10.1089/neu.2019.6509] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Spinal cord injury (SCI) causes sexual dysfunction, including anejaculation in men. Likewise, chronic mid-thoracic contusion injury impairs ejaculatory reflexes in male rats. Ejaculation is controlled by a spinal ejaculation generator (SEG) comprised of a population of lumbar spinothalamic (LSt) neurons. LSt neurons co-express four neuropeptides, including gastrin-releasing peptide (GRP) and galanin and control ejaculation via release of these peptides in lumbar and sacral autonomic and motor nuclei. Here, we tested the hypothesis that contusion injury causes a disruption of the neuropeptides that are expressed in LSt cell bodies and axon terminals, thereby causing ejaculatory dysfunction. Male Sprague Dawley rats received contusion or sham surgery at spinal levels T6-7. Five to six weeks later, animals were perfused and spinal cords were immunoprocessed for galanin and GRP. Results showed that numbers of cells immunoreactive for galanin were not altered by SCI, suggesting that LSt cells are not ablated by SCI. In contrast, GRP immunoreactivity was decreased in LSt cells following SCI, evidenced by fewer GRP and galanin/GRP dual labeled cells. However, SCI did not affect efferent connections of LSt, cells as axon terminals containing galanin or GRP in contact with autonomic cells were not reduced following SCI. Finally, no changes in testosterone plasma levels or androgen receptor expression were noted after SCI. In conclusion, chronic contusion injury decreased immunoreactivity for GRP in LSt cell soma, but did not affect LSt neurons per se or LSt connections within the SEG. Since GRP is essential for triggering ejaculation, such loss may contribute to ejaculatory dysfunction following SCI.
Collapse
Affiliation(s)
- J Walker Wiggins
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi.,Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, Mississippi
| | - Natalie Kozyrev
- Robarts Institute, Western University, London, Ontario, Canada
| | - Jonathan E Sledd
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi
| | - George G Wilson
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi
| | - Lique M Coolen
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi.,Department of Biological Sciences, Kent State University, Kent, Ohio
| |
Collapse
|
17
|
Ren X, Wan C, Niu Y. Overexpression of lncRNA TCTN2 protects neurons from apoptosis by enhancing cell autophagy in spinal cord injury. FEBS Open Bio 2019; 9:1223-1231. [PMID: 31050183 PMCID: PMC6609579 DOI: 10.1002/2211-5463.12651] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/29/2019] [Accepted: 05/02/2019] [Indexed: 12/11/2022] Open
Abstract
Neuronal apoptosis is the main pathological feature of spinal cord injury (SCI), while autophagy contributes to ameliorating neuronal damage via inhibition of apoptosis. Here, we investigated the role of tectonic family member 2 (TCTN2) long non-coding RNA on apoptosis and autophagy in SCI. TCTN2 was down-regulated in the spinal cord tissues of a rat model of SCI and in oxygen-glucose deprivation-induced hypoxic SY-SH-5Y cells, while microRNA-216b (miR-216b) was up-regulated. Overexpression of TCTN2 reduced neuron apoptosis by inducing autophagy, and TCTN2 was observed to negatively regulate miR-216b. Furthermore, TCTN2 promoted autophagy to repress apoptosis through the miR-216b-Beclin-1 pathway, and overexpression of TCTN2 improved neurological function in the SCI rat model. In summary, our data suggest that TCTN2 enhances autophagy by targeting the miR-216b-Beclin-1 pathway, thereby ameliorating neuronal apoptosis and relieving spinal cord injury.
Collapse
Affiliation(s)
- Xiao‐dong Ren
- Department of RehabilitationThe General HospitalTianjin Medical UniversityChina
| | - Chun‐xiao Wan
- Department of RehabilitationThe General HospitalTianjin Medical UniversityChina
| | - Ya‐li Niu
- Department of RehabilitationThe General HospitalTianjin Medical UniversityChina
| |
Collapse
|
18
|
Epigenetic regulator UHRF1 inactivates REST and growth suppressor gene expression via DNA methylation to promote axon regeneration. Proc Natl Acad Sci U S A 2018; 115:E12417-E12426. [PMID: 30530687 DOI: 10.1073/pnas.1812518115] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Injured peripheral sensory neurons switch to a regenerative state after axon injury, which requires transcriptional and epigenetic changes. However, the roles and mechanisms of gene inactivation after injury are poorly understood. Here, we show that DNA methylation, which generally leads to gene silencing, is required for robust axon regeneration after peripheral nerve lesion. Ubiquitin-like containing PHD ring finger 1 (UHRF1), a critical epigenetic regulator involved in DNA methylation, increases upon axon injury and is required for robust axon regeneration. The increased level of UHRF1 results from a decrease in miR-9. The level of another target of miR-9, the transcriptional regulator RE1 silencing transcription factor (REST), transiently increases after injury and is required for axon regeneration. Mechanistically, UHRF1 interacts with DNA methyltransferases (DNMTs) and H3K9me3 at the promoter region to repress the expression of the tumor suppressor gene phosphatase and tensin homolog (PTEN) and REST. Our study reveals an epigenetic mechanism that silences tumor suppressor genes and restricts REST expression in time after injury to promote axon regeneration.
Collapse
|
19
|
Estrada V, Krebbers J, Voss C, Brazda N, Blazyca H, Illgen J, Seide K, Jürgens C, Müller J, Martini R, Trieu HK, Müller HW. Low-pressure micro-mechanical re-adaptation device sustainably and effectively improves locomotor recovery from complete spinal cord injury. Commun Biol 2018; 1:205. [PMID: 30511019 PMCID: PMC6255786 DOI: 10.1038/s42003-018-0210-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 10/31/2018] [Indexed: 12/16/2022] Open
Abstract
Traumatic spinal cord injuries result in impairment or even complete loss of motor, sensory and autonomic functions. Recovery after complete spinal cord injury is very limited even in animal models receiving elaborate combinatorial treatments. Recently, we described an implantable microsystem (microconnector) for low-pressure re-adaption of severed spinal stumps in rat. Here we investigate the long-term structural and functional outcome following microconnector implantation after complete spinal cord transection. Re-adaptation of spinal stumps supports formation of a tissue bridge, glial and vascular cell invasion, motor axon regeneration and myelination, resulting in partial recovery of motor-evoked potentials and a thus far unmet improvement of locomotor behaviour. The recovery lasts for at least 5 months. Despite a late partial decline, motor recovery remains significantly superior to controls. Our findings demonstrate that microsystem technology can foster long-lasting functional improvement after complete spinal injury, providing a new and effective tool for combinatorial therapies.
Collapse
Affiliation(s)
- Veronica Estrada
- 1Molecular Neurobiology Laboratory, Department of Neurology, Heinrich-Heine-University Medical Centre Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Julia Krebbers
- 1Molecular Neurobiology Laboratory, Department of Neurology, Heinrich-Heine-University Medical Centre Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Christian Voss
- 2Institute of Microsystems Technology, Hamburg University of Technology, Eißendorfer Str. 42, 21073 Hamburg, Germany.,BG Trauma Centre Hamburg, Bergedorfer Str. 10, 21033 Hamburg, Germany
| | - Nicole Brazda
- 1Molecular Neurobiology Laboratory, Department of Neurology, Heinrich-Heine-University Medical Centre Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Heinrich Blazyca
- 4Developmental Neurobiology, Department of Neurology, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| | - Jennifer Illgen
- 1Molecular Neurobiology Laboratory, Department of Neurology, Heinrich-Heine-University Medical Centre Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Klaus Seide
- BG Trauma Centre Hamburg, Bergedorfer Str. 10, 21033 Hamburg, Germany
| | - Christian Jürgens
- BG Trauma Centre Hamburg, Bergedorfer Str. 10, 21033 Hamburg, Germany
| | - Jörg Müller
- 2Institute of Microsystems Technology, Hamburg University of Technology, Eißendorfer Str. 42, 21073 Hamburg, Germany
| | - Rudolf Martini
- 4Developmental Neurobiology, Department of Neurology, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| | - Hoc Khiem Trieu
- 2Institute of Microsystems Technology, Hamburg University of Technology, Eißendorfer Str. 42, 21073 Hamburg, Germany
| | - Hans Werner Müller
- 1Molecular Neurobiology Laboratory, Department of Neurology, Heinrich-Heine-University Medical Centre Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.,CNR (Center for Neuronal Regeneration), Merowinger Platz 1a, 40225 Düsseldorf, Germany.,6Biomedical Research Center, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
20
|
Jiang R, Liu Q, Zhu H, Dai Y, Yao J, Liu Y, Gong PP, Shi W. The expression of TRIAD1 and DISC1 after traumatic brain injury and its influence on NSCs. Stem Cell Res Ther 2018; 9:297. [PMID: 30409224 PMCID: PMC6225628 DOI: 10.1186/s13287-018-1024-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 09/13/2018] [Accepted: 09/30/2018] [Indexed: 01/06/2023] Open
Abstract
Background After cerebral injury, the proliferation and differentiation of neural stem cells are important for neural regeneration. Methods We used the SD rat to establish the traumatic brain injury model. Then, we verified molecular expression, interaction through Western blot, immunoprecipitation (IP), immunofluorescence, and other methods. All data were analyzed with Stata 8.0 statistical software. Results We showed for the first time that the interaction of TRIAD1 and DISC1 plays an important role in neural stem cell proliferation and differentiation after traumatic brain injury. In a rat model of traumatic brain injury, we found that the expression of TRIAD1 increased progressively, reached a peak at 3 to 5 days, and then decreased gradually. While the expression level of DISC1 was correlated with TRIAD1, its expression level at 3 days was significantly lower than at other time points. Immunofluorescence on frozen brain sections showed that TRIAD1 and DISC1 are co-localized in neural stem cells. Immunoprecipitation data suggested that TRIAD1 may interact with DISC1. We transfected 293T tool cells with plasmids containing truncated fragments of TRIAD1 and DISC1 and used additional IPs to reveal that these two proteins interact via specific fragments. Finally, we found that overexpressing TRIAD1 and DISC1 in primary neural stem cells, via lentiviral transfection, significantly affected the proliferation and differentiation of those neural stem cells. Conclusions Taken together, these data show that the expression of TRIAD1 and DISC1 change after traumatic brain injury and that their interaction may affect the proliferation and differentiation of neural stem cells. Our research may provide a sufficient experimental basis for finding molecular targets for neural stem cell proliferation and differentiation. Trial registration We did not report the results of a health care intervention on human participants.
Collapse
Affiliation(s)
- Rui Jiang
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, China.,Jiangsu Clinical Medicine Centre of Tissue Engineering and Nerve Injury Repair, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Qianqian Liu
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, China.,Jiangsu Clinical Medicine Centre of Tissue Engineering and Nerve Injury Repair, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Hui Zhu
- Jiangsu Clinical Medicine Centre of Tissue Engineering and Nerve Injury Repair, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Yong Dai
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, China.,Jiangsu Clinical Medicine Centre of Tissue Engineering and Nerve Injury Repair, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Junzhong Yao
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, China.,Jiangsu Clinical Medicine Centre of Tissue Engineering and Nerve Injury Repair, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Yazhou Liu
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, China.,Jiangsu Clinical Medicine Centre of Tissue Engineering and Nerve Injury Repair, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Pei Pei Gong
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, China. .,Jiangsu Clinical Medicine Centre of Tissue Engineering and Nerve Injury Repair, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| | - Wei Shi
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, China. .,Jiangsu Clinical Medicine Centre of Tissue Engineering and Nerve Injury Repair, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| |
Collapse
|
21
|
Nieuwenhuis B, Haenzi B, Andrews MR, Verhaagen J, Fawcett JW. Integrins promote axonal regeneration after injury of the nervous system. Biol Rev Camb Philos Soc 2018; 93:1339-1362. [PMID: 29446228 PMCID: PMC6055631 DOI: 10.1111/brv.12398] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 12/23/2017] [Accepted: 01/11/2018] [Indexed: 12/13/2022]
Abstract
Integrins are cell surface receptors that form the link between extracellular matrix molecules of the cell environment and internal cell signalling and the cytoskeleton. They are involved in several processes, e.g. adhesion and migration during development and repair. This review focuses on the role of integrins in axonal regeneration. Integrins participate in spontaneous axonal regeneration in the peripheral nervous system through binding to various ligands that either inhibit or enhance their activation and signalling. Integrin biology is more complex in the central nervous system. Integrins receptors are transported into growing axons during development, but selective polarised transport of integrins limits the regenerative response in adult neurons. Manipulation of integrins and related molecules to control their activation state and localisation within axons is a promising route towards stimulating effective regeneration in the central nervous system.
Collapse
Affiliation(s)
- Bart Nieuwenhuis
- John van Geest Centre for Brain Repair, Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0PYU.K.
- Laboratory for Regeneration of Sensorimotor SystemsNetherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW)1105 BAAmsterdamThe Netherlands
| | - Barbara Haenzi
- John van Geest Centre for Brain Repair, Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0PYU.K.
| | | | - Joost Verhaagen
- Laboratory for Regeneration of Sensorimotor SystemsNetherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW)1105 BAAmsterdamThe Netherlands
- Centre for Neurogenomics and Cognitive Research, Amsterdam NeuroscienceVrije Universiteit Amsterdam1081 HVAmsterdamThe Netherlands
| | - James W. Fawcett
- John van Geest Centre for Brain Repair, Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0PYU.K.
- Centre of Reconstructive NeuroscienceInstitute of Experimental Medicine142 20Prague 4Czech Republic
| |
Collapse
|
22
|
Förstner P, Rehman R, Anastasiadou S, Haffner-Luntzer M, Sinske D, Ignatius A, Roselli F, Knöll B. Neuroinflammation after Traumatic Brain Injury Is Enhanced in Activating Transcription Factor 3 Mutant Mice. J Neurotrauma 2018; 35:2317-2329. [PMID: 29463176 DOI: 10.1089/neu.2017.5593] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Traumatic brain injury (TBI) induces a neuroinflammatory response resulting in astrocyte and microglia activation at the lesion site. This involves upregulation of neuroinflammatory genes, including chemokines and interleukins. However, so far, there is lack of knowledge on transcription factors (TFs) modulating this TBI-associated gene expression response. Herein, we analyzed activating transcription factor 3 (ATF3), a TF encoding a regeneration-associated gene (RAG) predominantly studied in peripheral nervous system (PNS) injury. ATF3 contributes to PNS axon regeneration and was shown before to regulate inflammatory processes in other injury models. In contrast to PNS injury, data on ATF3 in central nervous system (CNS) injury are sparse. We used Atf3 mouse mutants and a closed-head weight-drop-based TBI model in adult mice to target the rostrolateral cortex resulting in moderate injury severity. Post-TBI, ATF3 was upregulated already at early time points (i.e,. 1-4 h) post-injury in the brain. Mortality and weight loss upon TBI were slightly elevated in Atf3 mutants. ATF3 deficiency enhanced TBI-induced paresis and hematoma formation, suggesting that ATF3 limits these injury outcomes in wild-type mice. Next, we analyzed TBI-associated RAG and inflammatory gene expression in the cortical impact area. In contrast to the PNS, only some RAGs (Atf3, Timp1, and Sprr1a) were induced by TBI, and, surprisingly, some RAG encoding neuropeptides were downregulated. Notably, we identified ATF3 as TF-regulating proneuroinflammatory gene expression, including CCL and CXCL chemokines (Ccl2, Ccl3, Ccl4, and Cxcl1) and lipocalin. In Atf3 mutant mice, mRNA abundance was further enhanced upon TBI compared to wild-type mice, suggesting immune gene repression by wild-type ATF3. In accord, more immune cells were present in the lesion area of ATF3-deficient mice. Overall, we identified ATF3 as a new TF-mediating TBI-associated CNS inflammatory responses.
Collapse
Affiliation(s)
- Philip Förstner
- 1 Institute of Physiological Chemistry, Ulm University , Ulm, Germany
| | - Rida Rehman
- 2 Department of Neurology, Ulm University , Ulm, Germany .,3 Department of Biomedical Engineering and Sciences (BMES), School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST) , H-12, Islamabad, Pakistan
| | | | - Melanie Haffner-Luntzer
- 4 Institute of Orthopaedic Research and Biomechanics, Center for Trauma Research Ulm, University of Ulm , Ulm, Germany
| | - Daniela Sinske
- 1 Institute of Physiological Chemistry, Ulm University , Ulm, Germany
| | - Anita Ignatius
- 4 Institute of Orthopaedic Research and Biomechanics, Center for Trauma Research Ulm, University of Ulm , Ulm, Germany
| | | | - Bernd Knöll
- 1 Institute of Physiological Chemistry, Ulm University , Ulm, Germany
| |
Collapse
|
23
|
Wang YF, Liu F, Lan J, Bai J, Li XQ. The Effect of Botulinum Neurotoxin Serotype a Heavy Chain on the Growth Related Proteins and Neurite Outgrowth after Spinal Cord Injury in Rats. Toxins (Basel) 2018; 10:toxins10020066. [PMID: 29393906 PMCID: PMC5848167 DOI: 10.3390/toxins10020066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/31/2018] [Accepted: 01/31/2018] [Indexed: 12/16/2022] Open
Abstract
(1) Background: The botulinum toxin A (BoNT-A) heavy chain (HC) can stimulate the growth of primary motor neurites. (2) Methods: A recombinant BoNT/A HC was injected locally plus interval intrathecal catheter of BoNT/A HC to rats with ipsilateral semi-dissociated lumbar spinal cord injuries (SCIs). First, 2D gel with a silver nitrate stain was applied to detect the general pattern of protein expression. Growth associated protein 43 (GAP-43) and superior cervical ganglion 10 (SCG10) were chosen to represent the altered proteins, based on their molecular weight and pI, and were used to further detect their expression. Meanwhile, the neuronal processes were measured. The measurements of thermal hyperalgesia and grasp power at the ipsilateral hindlimb were used to evaluate spinal sensory and motor function, respectively. (3) Results: The local injection of BoNT/A HC followed by its intrathecal catheter intervally altered the spinal protein expression pattern after an SCI; protein expression was similar to normal levels or displayed a remarkable increase. The changes in the expression and distribution of phosphorylated growth associated protein 43(p-GAP 43) and superior cervical ganglion 10 (SCG 10) indicated that the administration of BoNT/A HC to the SCI significantly amplified the expression of p-GAP43 and SCG10 (p < 0.05). Meanwhile, the positive immunofluorescent staining for both p-GAP43 and SCG10 was mainly present near the rostral aspect of the injury, both in the cytoplasm and the neuronal processes. Moreover, the outgrowth of neurites was stimulated by the BoNT/A HC treatment; this was evident from the increase in neurite length, number of branches and the percentage of cells with neuronal processes. The results from the spinal function tests suggested that the BoNT/A HC did not affect sensation, but had a large role in improving the ipsilateral hindlimb grasp power (p < 0.05). (4) Conclusions: The local injection with the intermittent intrathecal administration of BoNT/A heavy chain to rats with SCI increased the local expression of GAP-43 and SCG 10, which might be affiliated with the regeneration of neuronal processes surrounding the injury, and might also be favorable to the relief of spinal motor dysfunction.
Collapse
Affiliation(s)
- Ya-Fang Wang
- Department of Pathophysiology, Shanxi Medical University, Taiyuan 030001, China.
| | - Fu Liu
- Department of Pathophysiology, Shanxi Medical University, Taiyuan 030001, China.
| | - Jing Lan
- Department of Pathophysiology, Shanxi Medical University, Taiyuan 030001, China.
| | - Juan Bai
- Department of Pathophysiology, Shanxi Medical University, Taiyuan 030001, China.
| | - Xia-Qing Li
- Department of Pathophysiology, Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
24
|
An S, Zhou M, Li Z, Feng M, Cao G, Lu S, Liu L. Administration of CoCl 2 Improves Functional Recovery in a Rat Model of Sciatic Nerve Transection Injury. Int J Med Sci 2018; 15:1423-1432. [PMID: 30443161 PMCID: PMC6216053 DOI: 10.7150/ijms.27867] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/29/2018] [Indexed: 12/28/2022] Open
Abstract
Peripheral nerve injury is known to activate the hypoxia-inducible factor-1α (HIF-1α) pathway as one of pro-regenerative transcriptional programs, which could stimulate multiple injury-induced gene expression and contribute to axon regeneration and functional recovery. However, the role of HIF-1α in peripheral nerve regeneration remains to be fully elucidated. In this study, rats were divided into three groups and treated with sham surgery, surgery with cobalt chloride (CoCl2) and surgery with saline, respectively. Sciatic functional index, morphologic evaluations of muscle fibers, and never conduction velocity were performed to measure the functional recovery at 12 weeks postoperatively. In addition, the effects of CoCl2 on the expression of HIF-1α, glial cell line-derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) were determined at mRNA levels; as well as HIF-1α, the dual leucine zipper kinase (DLK), the c-Jun N-terminal kinase (JNK), phosphorylated JNK (p-JNK), BDNF and NGF were measured at protein level at 4 weeks postoperatively. Systemic administration of CoCl2 (15 mg/kg/day intraperitoneally) significantly promoted functional recovery of rats with sciatic nerve transection injury. This study demonstrated in rats treated with CoCl2, the expression of HIF-1α, GDNF, BDNF and NGF was significantly increased at mRNA level, while HIF-1α, DLK, p-JNK, BDNF and NGF was significantly increased at protein level.
Collapse
Affiliation(s)
- Shuai An
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University
| | - Meng Zhou
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University
| | - Zheng Li
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University
| | - Mingli Feng
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University
| | - Guanglei Cao
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University
| | - Shibao Lu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University
| | - Limin Liu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University
| |
Collapse
|
25
|
Ondacova K, Moravcikova L, Jurkovicova D, Lacinova L. Fibrotic scar model and TGF-β1 differently modulate action potential firing and voltage-dependent ion currents in hippocampal neurons in primary culture. Eur J Neurosci 2017; 46:2161-2176. [DOI: 10.1111/ejn.13663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 07/17/2017] [Accepted: 07/21/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Katarina Ondacova
- Center of Biosciences; Institute of Molecular Physiology and Genetics; Slovak Academy of Sciences; Dubravska cesta 9 Bratislava 84005 Slovakia
| | - Lucia Moravcikova
- Center of Biosciences; Institute of Molecular Physiology and Genetics; Slovak Academy of Sciences; Dubravska cesta 9 Bratislava 84005 Slovakia
| | - Dana Jurkovicova
- KRD Molecular Technologies s. r. o.; Bratislava Slovakia
- Biomedical Research Center; Cancer Research Institute; Slovak Academy of Sciences; Bratislava Slovakia
| | - Lubica Lacinova
- Center of Biosciences; Institute of Molecular Physiology and Genetics; Slovak Academy of Sciences; Dubravska cesta 9 Bratislava 84005 Slovakia
| |
Collapse
|
26
|
Devaux S, Cizkova D, Mallah K, Karnoub MA, Laouby Z, Kobeissy F, Blasko J, Nataf S, Pays L, Mériaux C, Fournier I, Salzet M. RhoA Inhibitor Treatment At Acute Phase of Spinal Cord Injury May Induce Neurite Outgrowth and Synaptogenesis. Mol Cell Proteomics 2017; 16:1394-1415. [PMID: 28659490 PMCID: PMC5546194 DOI: 10.1074/mcp.m116.064881] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 06/28/2017] [Indexed: 12/11/2022] Open
Abstract
The therapeutic use of RhoA inhibitors (RhoAi) has been experimentally tested in spinal cord injury (SCI). In order to decipher the underlying molecular mechanisms involved in such a process, an in vitro neuroproteomic-systems biology platform was developed in which the pan-proteomic profile of the dorsal root ganglia (DRG) cell line ND7/23 DRG was assessed in a large array of culture conditions using RhoAi and/or conditioned media obtained from SCI ex vivo derived spinal cord slices. A fine mapping of the spatio-temporal molecular events of the RhoAi treatment in SCI was performed. The data obtained allow a better understanding of regeneration/degeneration induced above and below the lesion site. Results notably showed a time-dependent alteration of the transcription factors profile along with the synthesis of growth cone-related factors (receptors, ligands, and signaling pathways) in RhoAi treated DRG cells. Furthermore, we assessed in a rat SCI model the in vivo impact of RhoAi treatment administered in situ via alginate scaffold that was combined with FK506 delivery. The improved recovery of locomotion was detected only at the early postinjury time points, whereas after overall survival a dramatic increase of synaptic contacts on outgrowing neurites in affected segments was observed. We validate these results by in vivo proteomic studies along the spinal cord segments from tissue and secreted media analyses, confirming the increase of the synaptogenesis expression factors under RhoAi treatment. Taken together, we demonstrate that RhoAi treatment seems to be useful to stimulate neurite outgrowth in both in vitro as well in vivo environments. However, for in vivo experiments there is a need for sustained delivery regiment to facilitate axon regeneration and promote synaptic reconnections with appropriate target neurons also at chronic phase, which in turn may lead to higher assumption for functional improvement.
Collapse
Affiliation(s)
- Stephanie Devaux
- From the ‡Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000 Lille, France
- §Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 10 Bratislava, Slovakia
| | - Dasa Cizkova
- From the ‡Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000 Lille, France
- §Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 10 Bratislava, Slovakia
- ¶Department of Anatomy, Histology and Physiology, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia
| | - Khalil Mallah
- From the ‡Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000 Lille, France
| | - Melodie Anne Karnoub
- From the ‡Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000 Lille, France
| | - Zahra Laouby
- From the ‡Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000 Lille, France
| | - Firas Kobeissy
- ‖Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut
| | - Juraj Blasko
- **Institute of Neurobiology, Slovak Academy of Sciences, Soltesovej 4-6 Kosice, Slovakia
| | - Serge Nataf
- ‡‡Univ Lyon, CarMeN laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon 1, INSA Lyon, Charles Merieux Medical School, Fr-69600, Oullins, France
| | - Laurent Pays
- ‡‡Univ Lyon, CarMeN laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon 1, INSA Lyon, Charles Merieux Medical School, Fr-69600, Oullins, France
| | - Céline Mériaux
- From the ‡Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000 Lille, France
| | - Isabelle Fournier
- From the ‡Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000 Lille, France
| | - Michel Salzet
- From the ‡Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000 Lille, France;
| |
Collapse
|
27
|
The Adaptor Protein CD2AP Is a Coordinator of Neurotrophin Signaling-Mediated Axon Arbor Plasticity. J Neurosci 2016; 36:4259-75. [PMID: 27076424 DOI: 10.1523/jneurosci.2423-15.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 02/14/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Growth of intact axons of noninjured neurons, often termed collateral sprouting, contributes to both adaptive and pathological plasticity in the adult nervous system, but the intracellular factors controlling this growth are largely unknown. An automated functional assay of genes regulated in sensory neurons from the rat in vivo spared dermatome model of collateral sprouting identified the adaptor protein CD2-associated protein (CD2AP; human CMS) as a positive regulator of axon growth. In non-neuronal cells, CD2AP, like other adaptor proteins, functions to selectively control the spatial/temporal assembly of multiprotein complexes that transmit intracellular signals. Although CD2AP polymorphisms are associated with increased risk of late-onset Alzheimer's disease, its role in axon growth is unknown. Assessments of neurite arbor structure in vitro revealed CD2AP overexpression, and siRNA-mediated knockdown, modulated (1) neurite length, (2) neurite complexity, and (3) growth cone filopodia number, in accordance with CD2AP expression levels. We show, for the first time, that CD2AP forms a novel multiprotein complex with the NGF receptor TrkA and the PI3K regulatory subunit p85, with the degree of TrkA:p85 association positively regulated by CD2AP levels. CD2AP also regulates NGF signaling through AKT, but not ERK, and regulates long-range signaling though TrkA(+)/RAB5(+) signaling endosomes. CD2AP mRNA and protein levels were increased in neurons during collateral sprouting but decreased following injury, suggesting that, although typically considered together, these two adult axonal growth processes are fundamentally different. These data position CD2AP as a major intracellular signaling molecule coordinating NGF signaling to regulate collateral sprouting and structural plasticity of intact adult axons. SIGNIFICANCE STATEMENT Growth of noninjured axons in the adult nervous system contributes to adaptive and maladaptive plasticity, and dysfunction of this process may contribute to neurologic pathologies. Functional screening of genes regulated during growth of noninjured axons revealed CD2AP as a positive regulator of axon outgrowth. A novel association of CD2AP with TrkA and p85 suggests a distinct intracellular signaling pathway regulating growth of noninjured axons. This may also represent a novel mechanism of generating specificity in multifunctional NGF signaling. Divergent regulation of CD2AP in different axon growth conditions suggests that separate mechanisms exist for different modes of axon growth. CD2AP is the first signaling molecule associated with adult sensory axonal collateral sprouting, and this association may offer new insights for NGF/TrkA-related Alzheimer's disease mechanisms.
Collapse
|
28
|
Vogelaar CF. Extrinsic and intrinsic mechanisms of axon regeneration: the need for spinal cord injury treatment strategies to address both. Neural Regen Res 2016; 11:572-4. [PMID: 27212916 PMCID: PMC4870912 DOI: 10.4103/1673-5374.180740] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
29
|
Cell-seeded alginate hydrogel scaffolds promote directed linear axonal regeneration in the injured rat spinal cord. Acta Biomater 2015; 27:140-150. [PMID: 26348141 DOI: 10.1016/j.actbio.2015.09.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/18/2015] [Accepted: 09/01/2015] [Indexed: 01/09/2023]
Abstract
Despite recent progress in enhancing axonal growth in the injured spinal cord, the guidance of regenerating axons across an extended lesion site remains a major challenge. To determine whether regenerating axons can be guided in rostrocaudal direction, we implanted 2mm long alginate-based anisotropic capillary hydrogels seeded with bone marrow stromal cells (BMSCs) expressing brain-derived neurotrophic factor (BDNF) or green fluorescent protein (GFP) as control into a C5 hemisection lesion of the rat spinal cord. Four weeks post-lesion, numerous BMSCs survived inside the scaffold channels, accompanied by macrophages, Schwann cells and blood vessels. Quantification of axons growing into channels demonstrated 3-4 times more axons in hydrogels seeded with BMSCs expressing BDNF (BMSC-BDNF) compared to control cells. The number of anterogradely traced axons extending through the entire length of the scaffold was also significantly higher in scaffolds with BMSC-BDNF. Increasing the channel diameters from 41μm to 64μm did not lead to significant differences in the number of regenerating axons. Lesions filled with BMSC-BDNF without hydrogels exhibited a random axon orientation, whereas axons were oriented parallel to the hydrogel channel walls. Thus, alginate-based scaffolds with an anisotropic capillary structure are able to physically guide regenerating axons. STATEMENT OF SIGNIFICANCE After injury, regenerating axons have to extend across the lesion site in the injured spinal cord to reestablish lost neuronal connections. While cell grafting and growth factor delivery can promote growth of injured axons, without proper guidance, axons rarely extend across the lesion site. Here, we show that alginate biomaterials with linear channels that are filled with cells expressing the growth-promoting neurotrophin BDNF promote linear axon extension throughout the channels after transplantation to the injured rat spinal cord. Animals that received the same cells but no alginate guidance structure did not show linear axonal growth and axons did not cross the lesion site. Thus, alginate-based scaffolds with a capillary structure are able to physically guide regenerating axons.
Collapse
|
30
|
Cho Y, Shin JE, Ewan EE, Oh YM, Pita-Thomas W, Cavalli V. Activating Injury-Responsive Genes with Hypoxia Enhances Axon Regeneration through Neuronal HIF-1α. Neuron 2015; 88:720-34. [PMID: 26526390 DOI: 10.1016/j.neuron.2015.09.050] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 08/24/2015] [Accepted: 09/22/2015] [Indexed: 02/07/2023]
Abstract
Injured peripheral neurons successfully activate a proregenerative transcriptional program to enable axon regeneration and functional recovery. How transcriptional regulators coordinate the expression of such program remains unclear. Here we show that hypoxia-inducible factor 1α (HIF-1α) controls multiple injury-induced genes in sensory neurons and contribute to the preconditioning lesion effect. Knockdown of HIF-1α in vitro or conditional knock out in vivo impairs sensory axon regeneration. The HIF-1α target gene Vascular Endothelial Growth Factor A (VEGFA) is expressed in injured neurons and contributes to stimulate axon regeneration. Induction of HIF-1α using hypoxia enhances axon regeneration in vitro and in vivo in sensory neurons. Hypoxia also stimulates motor neuron regeneration and accelerates neuromuscular junction re-innervation. This study demonstrates that HIF-1α represents a critical transcriptional regulator in regenerating neurons and suggests hypoxia as a tool to stimulate axon regeneration.
Collapse
Affiliation(s)
- Yongcheol Cho
- Department of Anatomy and Neurobiology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Jung Eun Shin
- Department of Developmental Biology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Eric Edward Ewan
- Department of Anatomy and Neurobiology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Young Mi Oh
- Department of Anatomy and Neurobiology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Wolfgang Pita-Thomas
- Department of Anatomy and Neurobiology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Valeria Cavalli
- Department of Anatomy and Neurobiology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
31
|
Sachdeva R, Theisen CC, Ninan V, Twiss JL, Houlé JD. Exercise dependent increase in axon regeneration into peripheral nerve grafts by propriospinal but not sensory neurons after spinal cord injury is associated with modulation of regeneration-associated genes. Exp Neurol 2015; 276:72-82. [PMID: 26366525 DOI: 10.1016/j.expneurol.2015.09.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 07/28/2015] [Accepted: 09/08/2015] [Indexed: 01/04/2023]
Abstract
Insufficient regeneration of central nervous system (CNS) axons contributes to persisting neurological dysfunction after spinal cord injury (SCI). Peripheral nerve grafts (PNGs) support regeneration by thousands of injured intraspinal axons and help them bypass some of the extracellular barriers that form after SCI. However this number represents but a small portion of the total number of axons that are injured. Here we tested if rhythmic sensory stimulation during cycling exercise would boost the intrinsic regenerative state of neurons to enhance axon regeneration into PNGs after a lower thoracic (T12) spinal transection of adult rats. Using True Blue retrograde tracing, we show that 4 weeks of cycling improves regeneration into a PNG from lumbar interneurons but not by primary sensory neurons. The majority of neurons that regenerate their axon are within 5 mm of the lesion and their number increased 70% with exercise. Importantly propriospinal neurons in more distant regions (5-20 mm from the lesion) that routinely exhibit very limited regeneration responded to exercise by increasing the number of regenerating neurons by 900%. There was no exercise-associated increase in regeneration from sensory neurons. Analyses using fluorescent in situ hybridization showed that this increase in regenerative response is associated with changes in levels of mRNAs encoding the regeneration associated genes (RAGs) GAP43, β-actin and Neuritin. While propriospinal neurons showed increased mRNA levels in response to SCI alone and then to grafting and exercise, sensory neurons did not respond to SCI, but there was a response to the presence of a PNG. Thus, exercise is a non-invasive approach to modulate gene expression in injured neurons leading to an increase in regeneration. This sets the stage for future studies to test whether exercise will promote axon outgrowth beyond the PNG and reconnection with spinal cord neurons, thereby demonstrating a potential clinical application of this combined therapeutic intervention.
Collapse
Affiliation(s)
- Rahul Sachdeva
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Catherine C Theisen
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Vinu Ninan
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Jeffery L Twiss
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - John D Houlé
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| |
Collapse
|
32
|
Sharma HS, Muresanu DF, Lafuente JV, Sjöquist PO, Patnaik R, Sharma A. Nanoparticles Exacerbate Both Ubiquitin and Heat Shock Protein Expressions in Spinal Cord Injury: Neuroprotective Effects of the Proteasome Inhibitor Carfilzomib and the Antioxidant Compound H-290/51. Mol Neurobiol 2015; 52:882-98. [DOI: 10.1007/s12035-015-9297-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Indexed: 12/22/2022]
|