1
|
Chow SKH, Gao Q, Pius A, Morita M, Ergul Y, Murayama M, Shinohara I, Cekuc MS, Ma C, Susuki Y, Goodman SB. The Advantages and Shortcomings of Stem Cell Therapy for Enhanced Bone Healing. Tissue Eng Part C Methods 2024; 30:415-430. [PMID: 39311464 DOI: 10.1089/ten.tec.2024.0252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
This review explores the regenerative potential of key progenitor cell types and therapeutic strategies to improve healing of complex fractures and bone defects. We define, summarize, and discuss the differentiation potential of totipotent, pluripotent, and multipotent stem cells, emphasizing the advantages and shortcomings of cell therapy for bone repair and regeneration. The fundamental role of mesenchymal stem cells is highlighted due to their multipotency to differentiate into the key lineage cells including osteoblasts, osteocytes, and chondrocytes, which are crucial for bone formation and remodeling. Hematopoietic stem cells (HSCs) also play a significant role; immune cells such as macrophages and T-cells modulate inflammation and tissue repair. Osteoclasts are multinucleated cells that are important to bone remodeling. Vascular progenitor (VP) cells are critical to oxygen and nutrient supply. The dynamic interplay among these lineages and their microenvironment is essential for effective bone restoration. Therapies involving cells that are more than "minimally manipulated" are controversial and include embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). ESCs, derived from early-stage embryos, possess pluripotent capabilities and have shown promise in preclinical studies for bone healing. iPSCs, reprogrammed from somatic cells, offer personalized medicine applications and can differentiate into various tissue-specific cell lines. Minimally manipulative cell therapy approaches such as the use of bone marrow aspirate concentrate (BMAC), exosomes, and various biomaterials for local delivery are explored for their effectiveness in bone regeneration. BMAC, which contains mostly immune cells but few mesenchymal and VPs, probably improves bone healing by facilitating paracrine-mediated intercellular communication. Exosome isolation harnesses the biological signals and cellular by-products that are a primary source for cell crosstalk and activation. Safe, efficacious, and cost-effective strategies to enhance bone healing using novel cellular therapies are part of a changing paradigm to modulate the inflammatory, repair, and regenerative pathways to achieve earlier more robust tissue healing and improved physical function. Impact Statement Stem cell therapy holds immense potential for bone healing due to its ability to regenerate damaged tissue. Nonmanipulated bone marrow aspirate contains mesenchymal stem cells that promote bone repair and reduce healing time. Induced pluripotent stem cells offer the advantage of creating patient-specific cells that can differentiate into osteoblasts, aiding in bone regeneration. Other delivery methods, such as scaffold-based techniques, enhance stem cell integration and function. Collectively, these approaches can improve treatment outcomes, reduce recovery periods, and advance our understanding of bone healing mechanisms, making them pivotal in orthopedic research and regenerative medicine.
Collapse
Affiliation(s)
- Simon Kwoon-Ho Chow
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Qi Gao
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Alexa Pius
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Mayu Morita
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Yasemin Ergul
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Masatoshi Murayama
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Issei Shinohara
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Mehmet Sertac Cekuc
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Chao Ma
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Yosuke Susuki
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
- Department of Bioengineering, Stanford University, Stanford, California, USA
| |
Collapse
|
2
|
Karyagina AS, Grishin AV, Kudinova AG, Bulygina IN, Koudan EV, Orlova PA, Datsenko VP, Zhulina AV, Grunina TM, Poponova MS, Krivozubov MS, Gromova MS, Strukova NV, Generalova MS, Nikitin KE, Shchetinin IV, Luchnikov LO, Zaitseva SV, Kirsanova MA, Statnik ES, Senatov FS, Lunin VG, Gromov AV. Dual-Functional Implant Based on Gellan-Xanthan Hydrogel with Diopside, BMP-2 and Lysostaphin for Bone Defect Repair and Control of Staphylococcal Infection. Macromol Biosci 2024:e2400205. [PMID: 39140453 DOI: 10.1002/mabi.202400205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/10/2024] [Indexed: 08/15/2024]
Abstract
A new dual-functional implant based on gellan-xanthan hydrogel with calcium-magnesium silicate ceramic diopside and recombinant lysostaphin and bone morphogenetic protein 2 (BMP-2)-ray is developed. In this composite, BMP-2 is immobilized on microparticles of diopside while lysostaphin is mixed directly into the hydrogel, providing sustained release of BMP-2 to allow gradual bone formation and rapid release of lysostaphin to eliminate infection immediately after implantation. Introduction of diopside of up to 3% (w/v) has a negligible effect on the mechanical properties of the hydrogel but provides a high sorption capacity for BMP-2. The hydrogels show good biocompatibility and antibacterial activity. Lysostaphin released from the implants over a 3 h period efficiently kills planktonic cells and completely destroys 24 h pre-formed biofilms of Staphylococcus aureus. Furthermore, in vivo experiments in a mouse model of critically-sized cranial defects infected with S. aureus show a complete lack of osteogenesis when implants contain only BMP-2, whereas, in the presence of lysostaphin, complete closure of the defect with newly formed mineralized bone tissue is observed. Thus, the new implantable gellan-xanthan hydrogel with diopside and recombinant lysostaphin and BMP-2 shows both osteogenic and antibacterial properties and represents a promising material for the treatment and/or prevention of osteomyelitis after bone trauma.
Collapse
Affiliation(s)
- Anna S Karyagina
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, 127550, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
- Institute of Biomedical Engineering, National University of Science and Technology "MISIS", Moscow, 119049, Russia
| | - Alexander V Grishin
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, 127550, Russia
| | - Alina G Kudinova
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - Inna N Bulygina
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
- Institute of Biomedical Engineering, National University of Science and Technology "MISIS", Moscow, 119049, Russia
| | - Elizaveta V Koudan
- Institute of Biomedical Engineering, National University of Science and Technology "MISIS", Moscow, 119049, Russia
| | - Polina A Orlova
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - Vera P Datsenko
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - Anna V Zhulina
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - Tatyana M Grunina
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, 127550, Russia
| | - Maria S Poponova
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - Mikhail S Krivozubov
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - Maria S Gromova
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - Natalia V Strukova
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - Maria S Generalova
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - Kirill E Nikitin
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - Igor V Shchetinin
- Material Science Department, National University of Science and Technology "MISIS", Moscow, 119049, Russia
| | - Lev O Luchnikov
- LASE - Laboratory of Advanced Solar Energy, National University of Science and Technology "MISIS", Moscow, 119049, Russia
| | - Svetlana V Zaitseva
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
- Institute of Biomedical Engineering, National University of Science and Technology "MISIS", Moscow, 119049, Russia
| | | | - Eugene S Statnik
- "LUCh" Laboratory, National University of Science and Technology "MISIS", Moscow, 119049, Russia
| | - Fedor S Senatov
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
- Institute of Biomedical Engineering, National University of Science and Technology "MISIS", Moscow, 119049, Russia
| | - Vladimir G Lunin
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, 127550, Russia
| | - Alexander V Gromov
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| |
Collapse
|
3
|
Chandran M, Akesson KE, Javaid MK, Harvey N, Blank RD, Brandi ML, Chevalley T, Cinelli P, Cooper C, Lems W, Lyritis GP, Makras P, Paccou J, Pierroz DD, Sosa M, Thomas T, Silverman S. Impact of osteoporosis and osteoporosis medications on fracture healing: a narrative review. Osteoporos Int 2024; 35:1337-1358. [PMID: 38587674 PMCID: PMC11282157 DOI: 10.1007/s00198-024-07059-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/06/2024] [Indexed: 04/09/2024]
Abstract
Antiresorptive medications do not negatively affect fracture healing in humans. Teriparatide may decrease time to fracture healing. Romosozumab has not shown a beneficial effect on human fracture healing. BACKGROUND Fracture healing is a complex process. Uncertainty exists over the influence of osteoporosis and the medications used to treat it on fracture healing. METHODS Narrative review authored by the members of the Fracture Working Group of the Committee of Scientific Advisors of the International Osteoporosis Foundation (IOF), on behalf of the IOF and the Société Internationale de Chirurgie Orthopédique et de Traumatologie (SICOT). RESULTS Fracture healing is a multistep process. Most fractures heal through a combination of intramembranous and endochondral ossification. Radiographic imaging is important for evaluating fracture healing and for detecting delayed or non-union. The presence of callus formation, bridging trabeculae, and a decrease in the size of the fracture line over time are indicative of healing. Imaging must be combined with clinical parameters and patient-reported outcomes. Animal data support a negative effect of osteoporosis on fracture healing; however, clinical data do not appear to corroborate with this. Evidence does not support a delay in the initiation of antiresorptive therapy following acute fragility fractures. There is no reason for suspension of osteoporosis medication at the time of fracture if the person is already on treatment. Teriparatide treatment may shorten fracture healing time at certain sites such as distal radius; however, it does not prevent non-union or influence union rate. The positive effect on fracture healing that romosozumab has demonstrated in animals has not been observed in humans. CONCLUSION Overall, there appears to be no deleterious effect of osteoporosis medications on fracture healing. The benefit of treating osteoporosis and the urgent necessity to mitigate imminent refracture risk after a fracture should be given prime consideration. It is imperative that new radiological and biological markers of fracture healing be identified. It is also important to synthesize clinical and basic science methodologies to assess fracture healing, so that a convergence of the two frameworks can be achieved.
Collapse
Affiliation(s)
- M Chandran
- Osteoporosis and Bone Metabolism Unit, Department of Endocrinology, Singapore General Hospital, DUKE NUS Medical School, Singapore, Singapore.
| | - K E Akesson
- Clinical and Molecular Osteoporosis Research Unit, Department of Clinical Sciences, Lund University, Department of Orthopedics, Skåne University Hospital, Malmö, Sweden
| | - M K Javaid
- NIHR Musculoskeletal Biomedical Research Unit, University of Oxford, Oxford, UK
| | - N Harvey
- MRC Lifecourse Epidemiology Centre, University of Southampton, NIHR Southampton Biomedical Research Centre, University of Southampton, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - R D Blank
- Garvan Institute of Medical Research, Medical College of Wisconsin, Darlinghurst, NSW, Australia
- Medical College of Wisconsin, Milwaukee, WI, USA
| | - M L Brandi
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Largo Palagi 1, Florence, Italy
| | - T Chevalley
- Division of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - P Cinelli
- Department of Trauma Surgery, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - C Cooper
- MRC Lifecourse Epidemiology Centre, University of Southampton, NIHR Southampton Biomedical Research Centre, University of Southampton, University Hospitals Southampton NHS Foundation Trust, Southampton, UK
- NIHR Oxford Biomedical Research Unit, University of Oxford, Oxford, UK
| | - W Lems
- Department of Rheumatology, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands
| | - G P Lyritis
- Hellenic Osteoporosis Foundation, Athens, Greece
| | - P Makras
- Department of Medical Research, 251 Hellenic Air Force & VA General Hospital, Athens, Greece
| | - J Paccou
- Department of Rheumatology, MABlab ULR 4490, CHU Lille, Univ. Lille, 59000, Lille, France
| | - D D Pierroz
- International Osteoporosis Foundation, Nyon, Switzerland
| | - M Sosa
- University of Las Palmas de Gran Canaria, Investigation Group on Osteoporosis and Mineral Metabolism, Canary Islands, Spain
| | - T Thomas
- Department of Rheumatology, North Hospital, CHU Saint-Etienne and INSERM U1059, University of Lyon-University Jean Monnet, Saint‑Etienne, France
| | - S Silverman
- Cedars-Sinai Medical Center and Geffen School of Medicine UCLA, Los Angeles, CA, USA
| |
Collapse
|
4
|
Agostinacchio F, Biada E, Gambari L, Grassi F, Bucciarelli A, Motta A. Surfactant-assisted photo-crosslinked silk fibroin sponges: A versatile platform for the design of bone scaffolds. BIOMATERIALS ADVANCES 2024; 161:213887. [PMID: 38735199 DOI: 10.1016/j.bioadv.2024.213887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/16/2024] [Accepted: 05/03/2024] [Indexed: 05/14/2024]
Abstract
Critical size bone defects cannot heal without aid and current clinical approaches exhibit some limitations, underling the need for novel solutions. Silk fibroin, derived from silkworms, is widely utilized in tissue engineering and regenerative medicine due to its remarkable properties, making it a promising candidate for bone tissue regeneration in vitro and in vivo. However, the clinical translation of silk-based materials requires refinements in 3D architecture, stability, and biomechanical properties. In earlier research, improved mechanical resistance and stability of chemically crosslinked methacrylate silk fibroin (Sil-Ma) sponges over physically crosslinked counterparts were highlighted. Furthermore, the influence of photo-initiator and surfactant concentrations on silk properties was investigated. However, the characterization of sponges with Sil-Ma solution concentrations above 10 % (w/V) was hindered by production optimization challenges, with only cell viability assessed. This study focuses on the evaluation of methacrylate sponges' suitability as temporal bone tissue regeneration scaffolds. Sil-Ma sponge fabrication at a fixed concentration of 20 % (w/V) was optimized and the impact of photo-initiator (LAP) concentrations and surfactant (Tween 80) presence/absence was studied. Their effects on pore formation, silk secondary structure, mechanical properties, and osteogenic differentiation of hBM-MSCs were investigated. We demonstrated that, by tuning silk sponges' composition, the optimal combination boosted osteogenic gene expression, offering a strategy to tailor biomechanical properties for effective bone regeneration. Utilizing Design of Experiment (DoE), correlations between sponge composition, porosity, and mechanical properties are established, guiding tailored material outcomes. Additionally, correlation matrices elucidate the microstructure's influence on gene expressions, providing insights for personalized approaches in bone tissue regeneration.
Collapse
Affiliation(s)
- Francesca Agostinacchio
- National Interuniversity Consortium of Material Science and Technology, Florence, Italy; BIOtech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Department of Industrial Engineering, University of Trento, Trento, Italy
| | - Elisa Biada
- BIOtech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Department of Industrial Engineering, University of Trento, Trento, Italy
| | - Laura Gambari
- Laboratorio Ramses, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Francesco Grassi
- Laboratorio Ramses, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | - Antonella Motta
- BIOtech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Department of Industrial Engineering, University of Trento, Trento, Italy.
| |
Collapse
|
5
|
Bixel MG, Sivaraj KK, Timmen M, Mohanakrishnan V, Aravamudhan A, Adams S, Koh BI, Jeong HW, Kruse K, Stange R, Adams RH. Angiogenesis is uncoupled from osteogenesis during calvarial bone regeneration. Nat Commun 2024; 15:4575. [PMID: 38834586 PMCID: PMC11150404 DOI: 10.1038/s41467-024-48579-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 05/06/2024] [Indexed: 06/06/2024] Open
Abstract
Bone regeneration requires a well-orchestrated cellular and molecular response including robust vascularization and recruitment of mesenchymal and osteogenic cells. In femoral fractures, angiogenesis and osteogenesis are closely coupled during the complex healing process. Here, we show with advanced longitudinal intravital multiphoton microscopy that early vascular sprouting is not directly coupled to osteoprogenitor invasion during calvarial bone regeneration. Early osteoprogenitors emerging from the periosteum give rise to bone-forming osteoblasts at the injured calvarial bone edge. Microvessels growing inside the lesions are not associated with osteoprogenitors. Subsequently, osteogenic cells collectively invade the vascularized and perfused lesion as a multicellular layer, thereby advancing regenerative ossification. Vascular sprouting and remodeling result in dynamic blood flow alterations to accommodate the growing bone. Single cell profiling of injured calvarial bones demonstrates mesenchymal stromal cell heterogeneity comparable to femoral fractures with increase in cell types promoting bone regeneration. Expression of angiogenesis and hypoxia-related genes are slightly elevated reflecting ossification of a vascularized lesion site. Endothelial Notch and VEGF signaling alter vascular growth in calvarial bone repair without affecting the ossification progress. Our findings may have clinical implications for bone regeneration and bioengineering approaches.
Collapse
Affiliation(s)
- M Gabriele Bixel
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and University of Münster, Faculty of Medicine, D-48149, Münster, Germany.
| | - Kishor K Sivaraj
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
| | - Melanie Timmen
- Department of Regenerative Musculoskeletal Medicine, Institute of Musculoskeletal Medicine, University Hospital Münster, D-48149, Münster, Germany
| | - Vishal Mohanakrishnan
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
| | - Anusha Aravamudhan
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
| | - Susanne Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
| | - Bong-Ihn Koh
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
| | - Hyun-Woo Jeong
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
- Max Planck Institute for Molecular Biomedicine, Sequencing Core Facility, D-48149, Münster, Germany
| | - Kai Kruse
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
- Max Planck Institute for Molecular Biomedicine, Bioinformatics Service Unit, D-48149, Münster, Germany
| | - Richard Stange
- Department of Regenerative Musculoskeletal Medicine, Institute of Musculoskeletal Medicine, University Hospital Münster, D-48149, Münster, Germany
| | - Ralf H Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and University of Münster, Faculty of Medicine, D-48149, Münster, Germany.
| |
Collapse
|
6
|
Thangavelu M, Kim PY, Cho H, Song JE, Park S, Bucciarelli A, Khang G. A Gellan Gum, Polyethylene Glycol, Hydroxyapatite Composite Scaffold with the Addition of Ginseng Derived Compound K with Possible Applications in Bone Regeneration. Gels 2024; 10:257. [PMID: 38667676 PMCID: PMC11049517 DOI: 10.3390/gels10040257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Engineered bone scaffolds should mimic the natural material to promote cell adhesion and regeneration. For this reason, natural biopolymers are becoming a gold standard in scaffold production. In this study, we proposed a hybrid scaffold produced using gellan gum, hydroxyapatite, and Poly (ethylene glycol) within the addition of the ginseng compound K (CK) as a candidate for bone regeneration. The fabricated scaffold was physiochemically characterized. The morphology studied by scanning electron microscopy (SEM) and image analysis revealed a pore distribution suitable for cells growth. The addition of CK further improved the biological activity of the hybrid scaffold as demonstrated by the MTT assay. The addition of CK influenced the scaffold morphology, decreasing the mean pore diameter. These findings can potentially help the development of a new generation of hybrid scaffolds to best mimic the natural tissue.
Collapse
Affiliation(s)
| | - Pil-Yun Kim
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeonbuk, Republic of Korea; (P.-Y.K.); (H.C.); (J.-E.S.)
| | - Hunhwi Cho
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeonbuk, Republic of Korea; (P.-Y.K.); (H.C.); (J.-E.S.)
| | - Jeong-Eun Song
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeonbuk, Republic of Korea; (P.-Y.K.); (H.C.); (J.-E.S.)
| | - Sunjae Park
- Department of Polymer Nano Science & Technology and Polymer Materials Fusion Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeonbuk, Republic of Korea;
| | - Alessio Bucciarelli
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Gilson Khang
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeonbuk, Republic of Korea; (P.-Y.K.); (H.C.); (J.-E.S.)
| |
Collapse
|
7
|
Mehl J, Farahani SK, Brauer E, Klaus‐Bergmann A, Thiele T, Ellinghaus A, Bartels‐Klein E, Koch K, Schmidt‐Bleek K, Petersen A, Gerhardt H, Vogel V, Duda GN. External Mechanical Stability Regulates Hematoma Vascularization in Bone Healing Rather than Endothelial YAP/TAZ Mechanotransduction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307050. [PMID: 38273642 PMCID: PMC10987120 DOI: 10.1002/advs.202307050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/21/2023] [Indexed: 01/27/2024]
Abstract
Bone fracture healing is regulated by mechanobiological cues. Both, extracellular matrix (ECM) deposition and microvascular assembly determine the dynamics of the regenerative processes. Mechanical instability as by inter-fragmentary shear or compression is known to influence early ECM formation and wound healing. However, it remains unclear how these external cues shape subsequent ECM and microvascular network assembly. As transcriptional coactivators, the mechanotransducers yes-associated protein 1 (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) translate physical cues into downstream signaling events, yet their role in sprouting angiogenesis into the hematoma after injury is unknown. Using bone healing as model system for scar-free regeneration, the role of endothelial YAP/TAZ in combination with tuning the extrinsic mechanical stability via fracture fixation is investigated. Extrinsically imposed shear across the gap delayed hematoma remodeling and shaped the morphology of early collagen fiber orientations and microvascular networks, suggesting that enhanced shear increased the nutrient exchange in the hematoma. In contrast, endothelial YAP/TAZ deletion has little impact on the overall vascularization of the fracture gap, yet slightly increases the collagen fiber deposition under semi-rigid fixation. Together, these data provide novel insights into the respective roles of endothelial YAP/TAZ and extrinsic mechanical cues in orchestrating the process of bone regeneration.
Collapse
Affiliation(s)
- Julia Mehl
- Julius Wolff InstituteBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
- Laboratory of Applied MechanobiologyDepartment of Health Sciences and TechnologyETH ZurichZurich8092Switzerland
| | - Saeed Khomeijani Farahani
- Julius Wolff InstituteBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
| | - Erik Brauer
- Julius Wolff InstituteBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
| | - Alexandra Klaus‐Bergmann
- Integrative Vascular Biology LaboratoryMax‐Delbrück‐Center for Molecular Medicine (MDC) in the Helmholtz Association13125BerlinGermany
- German Center for Cardiovascular Research (DZHK)Partnersite Berlin10785BerlinGermany
| | - Tobias Thiele
- Julius Wolff InstituteBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
| | - Agnes Ellinghaus
- Julius Wolff InstituteBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
| | - Eireen Bartels‐Klein
- Integrative Vascular Biology LaboratoryMax‐Delbrück‐Center for Molecular Medicine (MDC) in the Helmholtz Association13125BerlinGermany
- German Center for Cardiovascular Research (DZHK)Partnersite Berlin10785BerlinGermany
| | - Katharina Koch
- Integrative Vascular Biology LaboratoryMax‐Delbrück‐Center for Molecular Medicine (MDC) in the Helmholtz Association13125BerlinGermany
- German Center for Cardiovascular Research (DZHK)Partnersite Berlin10785BerlinGermany
| | - Katharina Schmidt‐Bleek
- Julius Wolff InstituteBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
| | - Ansgar Petersen
- Julius Wolff InstituteBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
| | - Holger Gerhardt
- Integrative Vascular Biology LaboratoryMax‐Delbrück‐Center for Molecular Medicine (MDC) in the Helmholtz Association13125BerlinGermany
- German Center for Cardiovascular Research (DZHK)Partnersite Berlin10785BerlinGermany
| | - Viola Vogel
- Laboratory of Applied MechanobiologyDepartment of Health Sciences and TechnologyETH ZurichZurich8092Switzerland
| | - Georg N. Duda
- Julius Wolff InstituteBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
| |
Collapse
|
8
|
Hajdu KS, Baker CE, Moore-Lotridge SN, Schoenecker JG. Sequestration and Involucrum: Understanding Bone Necrosis and Revascularization in Pediatric Orthopedics. Orthop Clin North Am 2024; 55:233-246. [PMID: 38403369 DOI: 10.1016/j.ocl.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Sequestration, a condition where a section of bone becomes necrotic due to a loss of vascularity or thrombosis, can be a challenging complication of osteomyelitis. This review explores the pathophysiology of sequestration, highlighting the role of the periosteum in forming involucrum and creeping substitution which facilitate revascularization and bone formation. The authors also discuss the induced membrane technique, a two-stage surgical procedure for cases of failed healing of sequestration. Future directions include the potential use of prophylactic anticoagulation and novel drugs targeting immunocoagulopathy, as well as the development of advanced imaging techniques and single-stage surgical procedures.
Collapse
Affiliation(s)
- Katherine S Hajdu
- School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Courtney E Baker
- Department of Orthopedics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Stephanie N Moore-Lotridge
- Department of Orthopedics, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jonathan G Schoenecker
- Department of Orthopedics, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA; Department of Pediatrics, Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville, Tennessee, USA.
| |
Collapse
|
9
|
Rohaiem SN, Khan BF, Al-Julaih GH, Mohammedin AS. Atraumatic Fractures in Multi-Morbid Older Adults: A Series of Five Cases and Review of Literature. Cureus 2023; 15:e51333. [PMID: 38288221 PMCID: PMC10824280 DOI: 10.7759/cureus.51333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2023] [Indexed: 01/31/2024] Open
Abstract
Atraumatic fractures (ATFs) are a fragility fracture subtype with occasional medicolegal issues. ATFs are defined as fractures because of a "low-energy mechanism that is usually considered incapable of producing a fracture." They are an underreported disorder, with epidemiological variations. ATF phenomena were previously reported not only in older adults, but also in children, young adults, older adults, and animals. This study is a short retrospective case series exploring atraumatic fractures in a tertiary care university hospital. Over a period of two years, a total of seven ATF cases were identified. However, only five fulfilled the inclusion criteria. Local causes of pathologic fractures (e.g., metastasis) and elder abuse or neglect were excluded. Comparison of the cases' clinical profile, fracture profile, and management was done. All five cases were frail females with significant osteotoxic burdens from medications and multi-morbidities. ATF presentations included typical (as pain) and atypical (as painless, loud crack, and sudden giveaway) symptomatology. One ATF had a coincident unexplained aseptic fever. Three cases had more than one fracture (fracture cascade), confirmed and followed up by x-rays. All the cases were managed conservatively except for one case that underwent hip hemiarthroplasty. Plans of care included managing the osteotoxic multi-morbidities burden, focusing on the whole body, not only on the fracture or bone. The study provided insights about challenges in presentations of ATF (as the bone fracture acute phase reaction: osteogenic aseptic fever). Risk factors are classically assumed to be osteoporosis, but it is usually systemic and multifactorial. A high risk of fracture warning sign could help decrease ATF occurrence or fracture cascades. Four ATF categories were detected to help healthcare systems identify high-risk patients and raise awareness among medical staff, families, and caregivers. Future studies of the at-risk groups are needed to understand ATF knowledge gaps, challenges, and the best treatments.
Collapse
Affiliation(s)
| | - Basim F Khan
- Pediatrics and Child Health, King Fahd Hospital of the University, Al-Khobar, SAU
| | | | - Ahmed S Mohammedin
- Geriatrics and Gerontology, Ain Shams University, Cairo, EGY
- Internal Medicine/Geriatrics, King Fahd Hospital of the University, Imam Abdulrahman bin Faisal University, Al-Khobar, SAU
| |
Collapse
|
10
|
Posey SL, Gaston RG. Staple Technology for Fracture Fixation and Joint Arthrodesis. Hand Clin 2023; 39:505-513. [PMID: 37827603 DOI: 10.1016/j.hcl.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The use of staple technology in the upper extremity has continued to evolve with the development of shape-memory alloys (SMAs) such as Nitinol that display superelastic properties that can be exploited for persistent compression. Clinical and biomechanical studies support the use of SMA staples for upper extremity fracture fixation and joint arthrodesis. To optimize biomechanical strength and clinical outcomes, it is recommended to place two staples, if possible, at the site of interest as well as to trough the staples to prevent hardware prominence.
Collapse
Affiliation(s)
- Samuel L Posey
- Department of Orthopaedic Surgery, Atrium Health, 1000 Blythe Boulevard, Charlotte, NC 28203, USA
| | | |
Collapse
|
11
|
Moore-Lotridge SN, Hajdu KS, Hou BQ, Gibson BHY, Schoenecker JG. Maintaining the balance: the critical role of plasmin activity in orthopedic surgery injury response. J Thromb Haemost 2023; 21:2653-2665. [PMID: 37558131 PMCID: PMC10926148 DOI: 10.1016/j.jtha.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023]
Abstract
The musculoskeletal system plays vital roles in the body, facilitating movement, protecting vital structures, and regulating hematopoiesis and mineral metabolism. Injuries to this system are common and can cause chronic pain, loss of range of motion, and disability. The acute phase response (APR) is a complex process necessary for surviving and repairing injured musculoskeletal tissue. To conceptualize the APR, it is useful to divide it into 2 distinct phases, survival and repair. During the survival-APR, a "damage matrix" primarily composed of fibrin, via thrombin activity, is produced to contain the zone of injury. Once containment is achieved, the APR transitions to the repair phase, where reparative inflammatory cells use plasmin to systematically remove the damage matrix and replace it with new permanent matrices produced by differentiated mesenchymal stem cells. The timing of thrombin and plasmin activation during their respective APR phases is crucial for appropriate regulation of the damage matrix. This review focuses on evidence indicating that inappropriate exuberant activation of plasmin during the survival-APR can result in an overactive APR, leading to an "immunocoagulopathy" that may cause "immunothrombosis" and death. Conversely, preclinical data suggest that too little plasmin activity during the repair-APR may contribute to failed tissue repair, such as a fracture nonunion, and chronic inflammatory degenerative diseases like osteoporosis. Future clinical studies are required to affirm these findings. Therefore, the temporal-spatial functions of plasmin in response to musculoskeletal injury and its pharmacologic manipulation are intriguing new targets for improving orthopedic care.
Collapse
Affiliation(s)
- Stephanie N Moore-Lotridge
- Department of Orthopaedics, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Katherine S Hajdu
- School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Brian Q Hou
- School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Breanne H Y Gibson
- Department of Orthopaedics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jonathan G Schoenecker
- Department of Orthopaedics, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA.
| |
Collapse
|
12
|
Ruan Z, Yin H, Wan TF, Lin ZR, Zhao SS, Long HT, Long C, Li ZH, Liu YQ, Luo H, Cheng L, Chen C, Zeng M, Lin ZY, Zhao RB, Chen CY, Wang ZX, Liu ZZ, Cao J, Wang YY, Jin L, Liu YW, Zhu GQ, Zou JT, Gong JS, Luo Y, Hu Y, Zhu Y, Xie H. Metformin accelerates bone fracture healing by promoting type H vessel formation through inhibition of YAP1/TAZ expression. Bone Res 2023; 11:45. [PMID: 37587136 PMCID: PMC10432554 DOI: 10.1038/s41413-023-00279-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 06/04/2023] [Accepted: 06/26/2023] [Indexed: 08/18/2023] Open
Abstract
Due to increasing morbidity worldwide, fractures are becoming an emerging public health concern. This study aimed to investigate the effect of metformin on the healing of osteoporotic as well as normal fractures. Type H vessels have recently been identified as a bone-specific vascular subtype that supports osteogenesis. Here, we show that metformin accelerated fracture healing in both osteoporotic and normal mice. Moreover, metformin promoted angiogenesis in vitro under hypoxia as well as type H vessel formation throughout fracture healing. Mechanistically, metformin increased the expression of HIF-1α, an important positive regulator of type H vessel formation, by inhibiting the expression of YAP1/TAZ in calluses and hypoxia-cultured human microvascular endothelial cells (HMECs). The results of HIF-1α or YAP1/TAZ interference in hypoxia-cultured HMECs using siRNA further suggested that the enhancement of HIF-1α and its target genes by metformin is primarily through YAP1/TAZ inhibition. Finally, overexpression of YAP1/TAZ partially counteracted the effect of metformin in promoting type H vessel-induced angiogenesis-osteogenesis coupling during fracture repair. In summary, our findings suggest that metformin has the potential to be a therapeutic agent for fractures by promoting type H vessel formation through YAP1/TAZ inhibition.
Collapse
Affiliation(s)
- Zhe Ruan
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hao Yin
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
- Angmedicine Research Center of Central South University, Changsha, Hunan, 410008, China
| | - Teng-Fei Wan
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
- Angmedicine Research Center of Central South University, Changsha, Hunan, 410008, China
| | - Zhi-Rou Lin
- The First Affiliated Hospital, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Shu-Shan Zhao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hai-Tao Long
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Cheng Long
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Zhao-Hui Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yu-Qi Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hao Luo
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Liang Cheng
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Can Chen
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Min Zeng
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Zhang-Yuan Lin
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Rui-Bo Zhao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Chun-Yuan Chen
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
- Angmedicine Research Center of Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Zhen-Xing Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
- Angmedicine Research Center of Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Zheng-Zhao Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
- Angmedicine Research Center of Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Jia Cao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
- Angmedicine Research Center of Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yi-Yi Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
- Angmedicine Research Center of Central South University, Changsha, Hunan, 410008, China
| | - Ling Jin
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
- Angmedicine Research Center of Central South University, Changsha, Hunan, 410008, China
| | - Yi-Wei Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
- Angmedicine Research Center of Central South University, Changsha, Hunan, 410008, China
| | - Guo-Qiang Zhu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
- Angmedicine Research Center of Central South University, Changsha, Hunan, 410008, China
| | - Jing-Tao Zou
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
- Angmedicine Research Center of Central South University, Changsha, Hunan, 410008, China
| | - Jiang-Shan Gong
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
- Angmedicine Research Center of Central South University, Changsha, Hunan, 410008, China
| | - Yi Luo
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
- Angmedicine Research Center of Central South University, Changsha, Hunan, 410008, China
| | - Yin Hu
- The First Affiliated Hospital, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yong Zhu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Hui Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China.
- Angmedicine Research Center of Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
13
|
Hong S, Jiang W, Ding Q, Lin K, Zhao C, Wang X. The Current Progress of Tetrahedral DNA Nanostructure for Antibacterial Application and Bone Tissue Regeneration. Int J Nanomedicine 2023; 18:3761-3780. [PMID: 37457798 PMCID: PMC10348378 DOI: 10.2147/ijn.s403882] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Recently, programmable assembly technologies have enabled the application of DNA in the creation of new nanomaterials with unprecedented functionality. One of the most common DNA nanostructures is the tetrahedral DNA nanostructure (TDN), which has attracted great interest worldwide due to its high stability, simple assembly procedure, high predictability, perfect programmability, and excellent biocompatibility. The unique spatial structure of TDN allows it to penetrate cell membranes in abundance and regulate cellular biological properties as a natural genetic material. Previous studies have demonstrated that TDNs can regulate various cellular biological properties, including promoting cells proliferation, migration and differentiation, inhibiting cells apoptosis, as well as possessing anti-inflammation and immunomodulatory capabilities. Furthermore, functional molecules can be easily modified at the vertices of DNA tetrahedron, DNA double helix structure, DNA tetrahedral arms or DNA tetrahedral cage structure, enabling TDN to be used as a nanocarrier for a variety of biological applications, including targeted therapies, molecular diagnosis, biosensing, antibacterial treatment, antitumor strategies, and tissue regeneration. In this review, we mainly focus on the current progress of TDN-based nanomaterials for antimicrobial applications, bone and cartilage tissue repair and regeneration. The synthesis and characterization of TDN, as well as the biological merits are introduced. In addition, the challenges and prospects of TDN-based nanomaterials are also discussed.
Collapse
Affiliation(s)
- Shebin Hong
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, People’s Republic of China
| | - Weidong Jiang
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, People’s Republic of China
| | - Qinfeng Ding
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, People’s Republic of China
| | - Kaili Lin
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, People’s Republic of China
| | - Cancan Zhao
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, People’s Republic of China
| | - Xudong Wang
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, People’s Republic of China
| |
Collapse
|
14
|
Watanabe H, Maishi N, Hoshi-Numahata M, Nishiura M, Nakanishi-Kimura A, Hida K, Iimura T. Skeletal-Vascular Interactions in Bone Development, Homeostasis, and Pathological Destruction. Int J Mol Sci 2023; 24:10912. [PMID: 37446097 DOI: 10.3390/ijms241310912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Bone is a highly vascularized organ that not only plays multiple roles in supporting the body and organs but also endows the microstructure, enabling distinct cell lineages to reciprocally interact. Recent studies have uncovered relevant roles of the bone vasculature in bone patterning, morphogenesis, homeostasis, and pathological bone destruction, including osteoporosis and tumor metastasis. This review provides an overview of current topics in the interactive molecular events between endothelial cells and bone cells during bone ontogeny and discusses the future direction of this research area to find novel ways to treat bone diseases.
Collapse
Affiliation(s)
- Haruhisa Watanabe
- Department of Pharmacology, Faculty and Graduate School of Dental Medicine, Hokkaido University, N13 W7, Sapporo 060-8586, Hokkaido, Japan
| | - Nako Maishi
- Department of Vascular Biology, Faculty and Graduate School of Dental Medicine, Hokkaido University, N13 W7, Sapporo 060-8586, Hokkaido, Japan
| | - Marie Hoshi-Numahata
- Department of Pharmacology, Faculty and Graduate School of Dental Medicine, Hokkaido University, N13 W7, Sapporo 060-8586, Hokkaido, Japan
| | - Mai Nishiura
- Department of Pharmacology, Faculty and Graduate School of Dental Medicine, Hokkaido University, N13 W7, Sapporo 060-8586, Hokkaido, Japan
| | - Atsuko Nakanishi-Kimura
- Department of Pharmacology, Faculty and Graduate School of Dental Medicine, Hokkaido University, N13 W7, Sapporo 060-8586, Hokkaido, Japan
| | - Kyoko Hida
- Department of Vascular Biology, Faculty and Graduate School of Dental Medicine, Hokkaido University, N13 W7, Sapporo 060-8586, Hokkaido, Japan
| | - Tadahiro Iimura
- Department of Pharmacology, Faculty and Graduate School of Dental Medicine, Hokkaido University, N13 W7, Sapporo 060-8586, Hokkaido, Japan
| |
Collapse
|
15
|
Subasi O, Karaismailoglu B, Ashkani-Esfahani S, Lazoglu I. Investigation of lattice infill parameters for additively manufactured bone fracture plates to reduce stress shielding. Comput Biol Med 2023; 161:107062. [PMID: 37235944 DOI: 10.1016/j.compbiomed.2023.107062] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/09/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023]
Abstract
BACKGROUND Stress shielding is a detrimental phenomenon caused by the stiffness mismatch between metallic bone plates and bone tissue, which can hamper fracture healing. Additively manufactured plates can decrease plate stiffness and alleviate the stress shielding effect. METHODS Rectilinear lattice plates with varying cell sizes, wall thicknesses, and orientations are computationally generated. Finite element analysis is used to calculate the four-point bending stiffness and strength of the plates. The mechanical behaviors of three different lattice plates are also simulated under a simple diaphyseal fracture fixation scenario. RESULTS The study shows that with different combinations of lattice infill parameters, plates with up to 68% decrease in stiffness compared to the 100% infill plate can be created. Moreover, in the fixation simulations, the least stiff lattice plate displays 53% more average stress distribution at the healing callus region compared to the 100% infill plate. CONCLUSIONS Using computational techniques, it has been demonstrated that additively manufactured stiffness-reduced bone plates can successfully address stress shielding with the strategic modulation of lattice infill parameters. Lattice plates with design versatility have the potential for use in various fracture fixation scenarios.
Collapse
Affiliation(s)
- Omer Subasi
- Foot & Ankle Research and Innovation Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02493, USA; Manufacturing and Automation Research Center, Koc University, Istanbul, 34450, Turkey.
| | - Bedri Karaismailoglu
- Foot & Ankle Research and Innovation Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02493, USA; Department of Orthopaedics and Traumatology, Istanbul University-Cerrahpasa, Istanbul, Turkey; CAST (Cerrahpasa Research Simulation and Design) Laboratory, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Soheil Ashkani-Esfahani
- Foot & Ankle Research and Innovation Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02493, USA
| | - Ismail Lazoglu
- Manufacturing and Automation Research Center, Koc University, Istanbul, 34450, Turkey
| |
Collapse
|
16
|
Adeoye AO, Hadie SNH, Munajat I, Mohd Zaharri NI, Zawawi MSF, Tuan Sharif SE, Sulaiman AR. Periosteum: Functional Anatomy and Clinical Application. MALAYSIAN JOURNAL OF MEDICINE AND HEALTH SCIENCES 2023; 19:362-374. [DOI: 10.47836/mjmhs.19.3.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Periosteum is a connective tissue that envelopes the outer surface of bones and is tightly bound to the underlying bone by Sharpey’s fibers. It is composed of two layers, the outer fibrous layer and the inner cambium layer. The periosteum is densely vascularised and contains an osteoprogenitor niche that serves as a repository for bone-forming cells, which makes it an essential bone-regenerating tissue and has immensely contributed to fracture healing. Due to the high vascularity of inner cambium layer of the periosteum, periosteal transplantation has been widely used in the management of bone defects and fracture by orthopedic surgeons. Nevertheless, the use of periosteal graft in the management of bone defect is limited due to its contracted nature after being harvested. This review summarizes the current state of knowledge about the structure of periosteum, and how periosteal transplantation have been used in clinical practices, with special reference on its expansion.
Collapse
|
17
|
Johnson SR, Benvenuti T, Nian H, Thomson IP, Baldwin K, Obremskey WT, Schoenecker JG, Moore-Lotridge SN. Measures of Admission Immunocoagulopathy as an Indicator for In-Hospital Mortality in Patients with Necrotizing Fasciitis: A Retrospective Study. JB JS Open Access 2023; 8:JBJSOA-D-22-00106. [PMID: 36864907 PMCID: PMC9974085 DOI: 10.2106/jbjs.oa.22.00106] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
Necrotizing fasciitis is a rapidly progressive infection with a high mortality rate. Pathogens evade the host containment and bactericidal mechanisms by hijacking the coagulation and inflammation signaling pathways, leading to their rapid dissemination, thrombosis, organ dysfunction, and death. This study examines the hypothesis that measures of immunocoagulopathy upon admission could aid in the identification of patients with necrotizing fasciitis at high risk for in-hospital mortality. Methods Demographic data, infection characteristics, and laboratory values from 389 confirmed necrotizing fasciitis cases from a single institution were analyzed. A multivariable logistic regression model was built on admission immunocoagulopathy measures (absolute neutrophil, absolute lymphocyte, and platelet counts) and patient age to predict in-hospital mortality. Results The overall in-hospital mortality rate was 19.8% for the 389 cases and 14.6% for the 261 cases with complete measures of immunocoagulopathy on admission. A multivariable logistic regression model indicated that platelet count was the most important predictor of mortality, followed by age and absolute neutrophil count. Greater age, higher neutrophil count, and lower platelet count led to significantly higher risk of mortality. The model discriminated well between survivors and non-survivors, with an overfitting-corrected C-index of 0.806. Conclusions This study determined that measures of immunocoagulopathy and patient age at admission effectively prognosticated the in-hospital mortality risk of patients with necrotizing fasciitis. Given the accessibility of neutrophil-to-lymphocyte ratio and platelet count measurements determined from a simple complete blood-cell count with differential, future prospective studies examining the utility of these measures are warranted. Level of Evidence Prognostic Level III. See Instructions for Authors for a complete description of levels of evidence.
Collapse
Affiliation(s)
| | - Teresa Benvenuti
- Department of Orthopaedics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Hui Nian
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Isaac P. Thomson
- Division of Infectious Disease, Monroe Carell Jr. Children’s Hospital at Vanderbilt, Nashville, Tennessee,Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Keith Baldwin
- Department of Orthopaedics, The Children’s Hospital of Pennsylvania, Philadelphia, Pennsylvania
| | - William T. Obremskey
- Department of Orthopaedics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jonathan G. Schoenecker
- Department of Orthopaedics, Vanderbilt University Medical Center, Nashville, Tennessee,Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee,Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee,Division of Pediatric Orthopaedics, Monroe Carell Jr. Children’s Hospital at Vanderbilt, Nashville, Tennessee,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee,Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee,Email for corresponding author:
| | - Stephanie N. Moore-Lotridge
- Department of Orthopaedics, Vanderbilt University Medical Center, Nashville, Tennessee,Division of Pediatric Orthopaedics, Monroe Carell Jr. Children’s Hospital at Vanderbilt, Nashville, Tennessee,Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
18
|
Schafer P, Sullivan TC, Lambert B, Park KJ, Clyburn TA, Incavo SJ. Greater Trochanteric Fixation Using Cable Plate Devices in Complex Primary and Revision Total Hip Arthroplasty. Arthroplast Today 2023; 20:101103. [PMID: 36844656 PMCID: PMC9945632 DOI: 10.1016/j.artd.2023.101103] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/19/2022] [Accepted: 01/15/2023] [Indexed: 02/12/2023] Open
Abstract
Background Successful fixation of the greater trochanter (GT) in total hip arthroplasty (THA) is a challenging task. A wide range of clinical results are reported in the literature despite advancements in fixation technology. Previous studies may have lacked adequate sample sizes to detect differences. This study evaluates nonunion and reoperation rates and determines factors influencing successful fixation of the GT using current-generation cable plate devices. Methods This retrospective cohort study included 76 patients who underwent surgery requiring fixation of their GT and had at least 1-year radiographic follow-up. Indications for a surgery were periprosthetic fracture (n = 25), revision THA requiring an extended trochanteric osteotomy (n = 30), GT fracture (n = 3), GT fracture nonunion (n = 9), and complex primary THA (n = 3). Primary outcomes were radiographic union and reoperation. Secondary objectives were patient and plate factors influencing radiographic union. Results At a mean radiographic follow-up of 2.5 years, the union rate was 76.3% with a nonunion rate of 23.7%. Twenty-eight patients underwent plate removal, reasons for removal were pain (n = 21), nonunion (n = 5), and hardware failure (n = 2). Seven patients had cable-induced bone loss. Anatomic positioning of the plate (P = .03) and number of cables used (P = .03) were associated with radiographic union. Nonunion was associated with a higher incidence (+30%) of hardware failure due to broken cable(s) (P = .005). Conclusions Greater trochanteric nonunion remains a problem in THA. Successful fixation using current-generation cable plate devices may be influenced by plate positioning and number of cables used. Plate removal may be required for pain or cable-induced bone loss.
Collapse
Affiliation(s)
| | | | | | | | | | - Stephen J. Incavo
- Corresponding author. Houston Methodist Hospital, Houston Methodist Orthopedics & Sports Medicine, 6445 Main Street, Suite 2500, Houston, TX 77030, USA. Tel.: +1 713 441 3539.
| |
Collapse
|
19
|
Makary C, Menhall A, Lahoud P, An HW, Park KB, Traini T. Nanostructured Calcium-Incorporated Surface Compared to Machined and SLA Dental Implants-A Split-Mouth Randomized Case/Double-Control Histological Human Study. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:357. [PMID: 36678110 PMCID: PMC9866326 DOI: 10.3390/nano13020357] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
Background: Implant surface topography is a key element in achieving osseointegration. Nanostructured surfaces have shown promising results in accelerating and improving bone healing around dental implants. The main objective of the present clinical and histological study is to compare, at 4 and 6 weeks, (w) bone-to-implant contact in implants having either machined surface (MAC), sandblasted, large grit, acid-etched implant surface (SLA) medium roughness surface or a nanostructured calcium-incorporated surface (XPEED®). Methods: 35 mini-implants of 3.5 × 8.5 mm with three different surface treatments (XPEED® (n = 16)—SLA (n = 13)—MAC (n = 6), were placed in the posterior maxilla of 11 patients (6 females and 5 males) then, retrieved at either 4 or 6w in a randomized split-mouth study design. Results: The BIC rates measured at 4w and 6w respectively, were: 16.8% (±5.0) and 29.0% (±3.1) for MAC surface; 18.5% (±2.3) and 33.7% (±3.3) for SLA surface; 22.4% (±1.3) and 38.6% (±3.2) for XPEED® surface. In all types of investigated surfaces, the time factor appeared to significantly increase the bone to implant contact (BIC) rate (p < 0.05). XPEED® surface showed significantly higher BIC values when compared to both SLA and MAC values at 4w (p < 0.05). Also, at 6w, both roughened surfaces (SLA and XPEED®) showed significantly higher values (p < 0.05) than turned surface (MAC). Conclusions: Nanostructured Calcium titanate coating is able to enhance bone deposition around implants at early healing stages.
Collapse
Affiliation(s)
- Christian Makary
- Oral Surgery Department, Saint Joseph University, Beirut P.O. Box 1104-2020, Lebanon
| | - Abdallah Menhall
- Oral Surgery Department, Saint Joseph University, Beirut P.O. Box 1104-2020, Lebanon
| | - Pierre Lahoud
- Oral Surgery Department, Saint Joseph University, Beirut P.O. Box 1104-2020, Lebanon
| | - Hyun-Wook An
- Department of Dental Science, Kyungpook National University, Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Kwang-Bum Park
- Daegu Mir Dental Hospital, Jung-gu, Daegu 41934, Republic of Korea
| | - Tonino Traini
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Electron Microscopy Laboratory, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
20
|
Cui Y, Liu H, Tian Y, Fan Y, Li S, Wang G, Wang Y, Peng C, Wu D. Dual-functional composite scaffolds for inhibiting infection and promoting bone regeneration. Mater Today Bio 2022; 16:100409. [PMID: 36090611 PMCID: PMC9449864 DOI: 10.1016/j.mtbio.2022.100409] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 12/14/2022] Open
Abstract
The treatment of infected bone defects is an intractable problem in orthopedics. It comprises two critical parts, namely that of infection control and bone defect repair. According to these two core tasks during treatment, the ideal approach of simultaneously controlling infection and repairing bone defects is promising treatment strategy. Several engineered biomaterials and drug delivery systems with dual functions of anti-bacterial action and ostogenesis-promotion have been developed and demonstrated excellent therapeutic effects. Compared with the conventional treatment method, the dual-functional composite scaffold can provide one-stage treatment avoiding multiple surgeries, thereby remarkably simplifying the treatment process and reducing the treatment time, overcoming the disadvantages of conventional bone transplantation. In this review, the impaired bone repair ability and its specific mechanisms in the microenvironment of pathogen infection and excessive inflammation were analyzed, providing a theoretical basis for the treatment of infectious bone defects. Furthermore, we discussed the composite dual-functional scaffold composed of a combination of antibacterial and osteogenic material. Finally, a series of advanced drug delivery systems with antibacterial and bone-promoting capabilities were summarized and discussed. This review provides a comprehensive understanding for the microenvironment of infectious bone defects and leading-edge design strategies for the antibacterial and bone-promoting dual-function scaffold, thus providing clinically significant treatment methods for infectious bone defects. Antibacterial and bone-promoting dual-function scaffolds are ideal strategies for treatment of infectious bone defects. The effect of infection on bone repair was summarized in detail from four important aspects. A variety of dual-function scaffolds based on antibacterial and osteogenic materials were discussed. Dual-function drug delivery systems promoting repair of infectious bone defects by locally releasing functional agents. Leading-edge design strategies, challenges and prospects for dual-functional biomaterials were provided.
Collapse
|
21
|
Post Mortem Study on the Effects of Routine Handling and Manipulation of Laboratory Mice. Animals (Basel) 2022; 12:ani12233234. [PMID: 36496755 PMCID: PMC9737896 DOI: 10.3390/ani12233234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
Routine handling and manipulation of laboratory mice are integral components of most preclinical studies. Any type of handling and manipulation may cause stress and result in physical harm to mice, potentially leading to unintended consequences of experimental outcomes. Nevertheless, the pathological effects of these interventions are poorly documented and assumed to have a negligible effect on experimental variables. In that context, we provide a comprehensive post mortem overview of the main pathological changes associated with routine interventions (i.e., restraint, blood drawing, and intraperitoneal injections) of laboratory mice with an emphasis on presumed traumatic osteoarticular lesions. A total of 1000 mice from various studies were included, with 864 animals being heavily manipulated and 136 being handled for routine husbandry procedures only. The most common lesions observed were associated with blood collection or intraperitoneal injections, as well as a series of traumatic osteoarticular lesions likely resulting from restraint. Osteoarticular lesions were found in 62 animals (61 heavily manipulated; 1 unmanipulated) with rib fractures and avulsion of the dens of the axis being over-represented. Histopathology and micro-CT confirmed the traumatic nature of the rib fractures. While these lesions might be unavoidable if mice are manipulated according to the current standards, intentional training of research personnel on appropriate mouse handling and restraint techniques could help reduce their frequency and the impact on animal wellbeing as well as study reproducibility.
Collapse
|
22
|
Kang D, Lee YB, Yang GH, Choi E, Nam Y, Lee JS, Lee K, Kim KS, Yeo M, Yoon GS, An S, Jeon H. FeS 2-incorporated 3D PCL scaffold improves new bone formation and neovascularization in a rat calvarial defect model. Int J Bioprint 2022; 9:636. [PMID: 36844239 PMCID: PMC9947485 DOI: 10.18063/ijb.v9i1.636] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/02/2022] [Indexed: 11/06/2022] Open
Abstract
199Three-dimensional (3D) scaffolds composed of various biomaterials, including metals, ceramics, and synthetic polymers, have been widely used to regenerate bone defects. However, these materials possess clear downsides, which prevent bone regeneration. Therefore, composite scaffolds have been developed to compensate these disadvantages and achieve synergetic effects. In this study, a naturally occurring biomineral, FeS2, was incorporated in PCL scaffolds to enhance the mechanical properties, which would in turn influence the biological characteristics. The composite scaffolds consisting of different weight fractions of FeS2 were 3D printed and compared to pure PCL scaffold. The surface roughness (5.77-fold) and the compressive strength (3.38-fold) of the PCL scaffold was remarkably enhanced in a dose-dependent manner. The in vivo results showed that the group with PCL/ FeS2 scaffold implanted had increased neovascularization and bone formation (2.9-fold). These results demonstrated that the FeS2 incorporated PCL scaffold might be an effective bioimplant for bone tissue regeneration.
Collapse
Affiliation(s)
- Donggu Kang
- Research Institute of Additive Manufacturing and Regenerative Medicine, Baobab Healthcare Inc., Ansan, Gyeonggi-Do, 15588, South Korea
| | - Yoon Bum Lee
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Dong-gu, Daegu 41061, South Korea
| | - Gi Hoon Yang
- Research Institute of Additive Manufacturing and Regenerative Medicine, Baobab Healthcare Inc., Ansan, Gyeonggi-Do, 15588, South Korea
| | - Eunjeong Choi
- Research Institute of Additive Manufacturing and Regenerative Medicine, Baobab Healthcare Inc., Ansan, Gyeonggi-Do, 15588, South Korea
| | - Yoonju Nam
- Research Institute of Additive Manufacturing and Regenerative Medicine, Baobab Healthcare Inc., Ansan, Gyeonggi-Do, 15588, South Korea
| | - Jeong-Seok Lee
- Research Institute of Additive Manufacturing and Regenerative Medicine, Baobab Healthcare Inc., Ansan, Gyeonggi-Do, 15588, South Korea
| | - KyoungHo Lee
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Dong-gu, Daegu 41061, South Korea
| | - Kil Soo Kim
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Dong-gu, Daegu 41061, South Korea,College of Veterinary Medicine, Kyungpook National University, Daegu 41566, South Korea
| | - MyungGu Yeo
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Dong-gu, Daegu 41061, South Korea
| | - Gil-Sang Yoon
- Molds & Dies Technology R&D Group, Korea Institute of Industrial Technology (KITECH), Bucheonsi, Gyeonggi-Do, 14441, South Korea
| | - SangHyun An
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Dong-gu, Daegu 41061, South Korea,Corresponding authors: Sang-Hyun An () Hojun Jeon ()
| | - Hojun Jeon
- Research Institute of Additive Manufacturing and Regenerative Medicine, Baobab Healthcare Inc., Ansan, Gyeonggi-Do, 15588, South Korea,Corresponding authors: Sang-Hyun An () Hojun Jeon ()
| |
Collapse
|
23
|
Inacio JV, Schwarzenberg P, Kantzos A, Malige A, Nwachuku CO, Dailey HL. Rethinking the 10% strain rule in fracture healing: A distal femur fracture case series. J Orthop Res 2022; 41:1049-1059. [PMID: 36116021 DOI: 10.1002/jor.25446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/24/2022] [Accepted: 09/14/2022] [Indexed: 02/04/2023]
Abstract
Since the 1970s, the 2%-10% rule has been used to describe the range of interfragmentary gap closure strains that are conducive for secondary bone healing. Interpreting the available evidence for the association between strain and bone healing remains challenging because interfragmentary strain is impossible to directly measure in vivo. The question of how much strain occurs within and around the fracture gap is also difficult to resolve using bench tests with osteotomy models because these do not reflect the complexity of injury patterns seen in the clinic. To account for these challenges, we used finite element modeling to assess the three-dimensional interfragmentary strain in a case series of naturally occurring distal femur fractures treated with lateral plating under load conditions representative of the early postoperative period. Preoperative computed tomography scans were used to construct patient-specific finite element models and plate fixation constructs to match the operative management of each patient. The simulations showed that gap strains were within 2%-10% only for the lowest load application level, 20% static body weight (BW). Moderate loading of 60% static BW and above caused gap strains that far exceeded 10%, but in all cases, strains in the periosteal region external to the fracture line remained low. Comparing these findings with postoperative radiographs suggests that in vivo secondary healing of distal femur fractures may be robust to early gap strains much greater than 10% because formation of new bone is initiated outside the gap where strains are lower, followed by later consolidation within the gap.
Collapse
Affiliation(s)
- Jordan V Inacio
- Packard Laboratory, Department of Mechanical Engineering & Mechanics, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Peter Schwarzenberg
- Packard Laboratory, Department of Mechanical Engineering & Mechanics, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Andrew Kantzos
- Department of Orthopaedic Surgery, St. Luke's University Health Network, Bethlehem, Pennsylvania, USA
| | - Ajith Malige
- Department of Orthopaedic Surgery, St. Luke's University Health Network, Bethlehem, Pennsylvania, USA
| | - Chinenye O Nwachuku
- Department of Orthopaedic Surgery, St. Luke's University Health Network, Bethlehem, Pennsylvania, USA
| | - Hannah L Dailey
- Packard Laboratory, Department of Mechanical Engineering & Mechanics, Lehigh University, Bethlehem, Pennsylvania, USA
| |
Collapse
|
24
|
Tower RJ, Bancroft AC, Chowdary AR, Barnes S, Edwards NJ, Pagani CA, Dawson LA, Levi B. Single-cell mapping of regenerative and fibrotic healing responses after musculoskeletal injury. Stem Cell Reports 2022; 17:2334-2348. [PMID: 36150381 PMCID: PMC9561541 DOI: 10.1016/j.stemcr.2022.08.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 11/09/2022] Open
Abstract
After injury, a cascade of events repairs the damaged tissue, including expansion and differentiation of the progenitor pool and redeposition of matrix. To guide future wound regeneration strategies, we compared single-cell sequencing of regenerative (third phalangeal element [P3]) and fibrotic (second phalangeal element [P2]) digit tip amputation (DTA) models as well as traumatic heterotopic ossification (HO; aberrant). Analyses point to a common initial response to injury, including expansion of progenitors, redeposition of matrix, and activation of transforming growth factor β (TGF-β) and WNT pathways. Surprisingly, fibrotic P2 DTA showed greater transcriptional similarity to HO than to regenerative P3 DTA, suggesting that gene expression more strongly correlates with healing outcome than with injury type or cell origin. Differential analysis and immunostaining revealed altered activation of inflammatory pathways, such as the complement pathway, in the progenitor cells. These data suggests that common pathways are activated in response to damage but are fine tuned within each injury. Modulating these pathways may shift the balance toward regenerative outcomes. Regenerative and fibrotic injuries share common early response mechanisms Transcriptomes correlate with healing outcome more than injury type or cell source Matrix composition after injury-induced tissue repair is highly injury type dependent Inflammatory cascades are activated in immune and mesenchymal cells
Collapse
Affiliation(s)
- Robert J Tower
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Alec C Bancroft
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ashish R Chowdary
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Spencer Barnes
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Bioinformatics Core, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nicole J Edwards
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chase A Pagani
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lindsay A Dawson
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Benjamin Levi
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
25
|
Potential bioactive coating system for high-performance absorbable magnesium bone implants. Bioact Mater 2022; 12:42-63. [PMID: 35087962 PMCID: PMC8777287 DOI: 10.1016/j.bioactmat.2021.10.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022] Open
Abstract
Magnesium alloys are considered the most suitable absorbable metals for bone fracture fixation implants. The main challenge in absorbable magnesium alloys is their high corrosion/degradation rate that needs to be controlled. Various coatings have been applied to magnesium alloys to slow down their corrosion rates to match their corrosion rate to the regeneration rate of the bone fracture. In this review, a bioactive coating is proposed to slow down the corrosion rate of magnesium alloys and accelerate the bone fracture healing process. The main aim of the bioactive coatings is to enhance the direct attachment of living tissues and thereby facilitate osteoconduction. Hydroxyapatite, collagen type I, recombinant human bone morphogenetic proteins 2, simvastatin, zoledronate, and strontium are six bioactive agents that show high potential for developing a bioactive coating system for high-performance absorbable magnesium bone implants. In addition to coating, the substrate itself can be made bioactive by alloying magnesium with calcium, zinc, copper, and manganese that were found to promote bone regeneration. Bioactive-coated magnesium implant could accelerate bone fracture healing time to match with magnesium degradation. Hydroxyapatite, collagen type I, recombinant human bone morphogenetic proteins 2, simvastatin, zoledronate, and strontium are high potential bioactive coating materials. The incorporation of Ca, Zn, Cu, Sr, and Mn in Mg base-metal could further enhance bone formation.
Collapse
|
26
|
Lowen GB, Garrett KA, Moore-Lotridge SN, Uppuganti S, Guelcher SA, Schoenecker JG, Nyman JS. Effect of Intramedullary Nailing Patterns on Interfragmentary Strain in a Mouse Femur Fracture: A Parametric Finite Element Analysis. J Biomech Eng 2022; 144:051007. [PMID: 34802060 PMCID: PMC8822464 DOI: 10.1115/1.4053085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 11/17/2021] [Indexed: 11/08/2022]
Abstract
Delayed long bone fracture healing and nonunion continue to be a significant socioeconomic burden. While mechanical stimulation is known to be an important determinant of the bone repair process, understanding how the magnitude, mode, and commencement of interfragmentary strain (IFS) affect fracture healing can guide new therapeutic strategies to prevent delayed healing or nonunion. Mouse models provide a means to investigate the molecular and cellular aspects of fracture repair, yet there is only one commercially available, clinically-relevant, locking intramedullary nail (IMN) currently available for studying long bone fractures in rodents. Having access to alternative IMNs would allow a variety of mechanical environments at the fracture site to be evaluated, and the purpose of this proof-of-concept finite element analysis study is to identify which IMN design parameters have the largest impact on IFS in a murine transverse femoral osteotomy model. Using the dimensions of the clinically relevant IMN as a guide, the nail material, distance between interlocking screws, and clearance between the nail and endosteal surface were varied between simulations. Of these parameters, changing the nail material from stainless steel (SS) to polyetheretherketone (PEEK) had the largest impact on IFS. Reducing the distance between the proximal and distal interlocking screws substantially affected IFS only when nail modulus was low. Therefore, IMNs with low modulus (e.g., PEEK) can be used alongside commercially available SS nails to investigate the effect of initial IFS or stability on fracture healing with respect to different biological conditions of repair in rodents.
Collapse
Affiliation(s)
- Gregory B. Lowen
- Vanderbilt University, Department of Chemical and Biomolecular Engineering, 2201 West End Ave, Nashville, TN 37235
| | - Katherine A. Garrett
- Vanderbilt University Medical Center, Department of Orthopaedic Surgery, 1215 21 Ave. S., Suite 4200, Nashville, TN 37232
| | - Stephanie N. Moore-Lotridge
- Vanderbilt University Medical Center, Department of Orthopaedic Surgery, 1215 21 Ave. S., Suite 4200, Nashville, TN 37232;Vanderbilt University Medical Center, Vanderbilt Center for Bone Biology, 1211 Medical Center Dr., Nashville, TN 37212
| | - Sasidhar Uppuganti
- Vanderbilt University Medical Center, Department of Orthopaedic Surgery, 1215 21 Ave. S., Suite 4200, Nashville, TN 37232;Vanderbilt University Medical Center, Vanderbilt Center for Bone Biology, 1211 Medical Center Dr., Nashville, TN 37212
| | - Scott A. Guelcher
- Vanderbilt University, Department of Chemical and Biomolecular Engineering, 2201 West End Ave, Nashville, TN 37235; Vanderbilt University, Department of Biomedical Engineering, 5824 Stevenson Center, Nashville, TN 37232; Vanderbilt University Medical Center, Vanderbilt Center for Bone Biology, 1211 Medical Center Dr., Nashville, TN 37212; Vanderbilt University Medical Center, Division of Clinical Pharmacology, 1211 Medical Center Dr, Nashville, TN 37217
| | - Jonathan G. Schoenecker
- Vanderbilt University, Department of Pharmacology, 465 21 Ave South, 7124 Medical Research Building III, Nashville, TN 37232; Vanderbilt University Medical Center, Vanderbilt Center for Bone Biology, 1211 Medical Center Dr., Nashville, TN 37212; Vanderbilt University Medical Center, Department of Pathology, Microbiology, and Immunology, 1161 21 Ave S C-3322 Medical Center North, Nashville, TN 37232; Vanderbilt University Medical Center, Department of Pediatrics, 2200 Children's Way, Suite 2404, Nashville, TN 37232
| | - Jeffry S. Nyman
- Vanderbilt University, Department of Biomedical Engineering, 5824 Stevenson Center, Nashville, TN 37232; Vanderbilt University Medical Center, Department of Orthopaedic Surgery, 1215 21 Ave. S., Suite 4200, Nashville, TN 37232; Vanderbilt University Medical Center, Vanderbilt Center for Bone Biology, 1211 Medical Center Dr., Nashville, TN 37212; Tennessee Valley Healthcare System, Department of Veterans Affairs, 1310 24 Ave. S, Nashville, TN 37212
| |
Collapse
|
27
|
Sag AA, Zuchowski A, Ronald J, Goodwin CR, Enterline DS. Augmented reality overlay fluoroscopic guidance versus CT-fluoroscopic guidance for sacroplasty. Clin Imaging 2022; 85:14-21. [DOI: 10.1016/j.clinimag.2022.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/23/2022] [Accepted: 02/12/2022] [Indexed: 12/01/2022]
|
28
|
Saito M, Moore-Lotridge SN, Uppuganti S, Egawa S, Yoshii T, Robinette JP, Posey SL, Gibson BHY, Cole HA, Hawley GD, Guelcher SA, Tanner SB, McCarthy JR, Nyman JS, Schoenecker JG. Determining the pharmacologic window of bisphosphonates that mitigates severe injury-induced osteoporosis and muscle calcification, while preserving fracture repair. Osteoporos Int 2022; 33:807-820. [PMID: 34719727 PMCID: PMC9530779 DOI: 10.1007/s00198-021-06208-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/09/2021] [Indexed: 12/16/2022]
Abstract
UNLABELLED Following severe injury, biomineralization is disrupted and limited therapeutic options exist to correct these pathologic changes. This study utilized a clinically relevant murine model of polytrauma including a severe injury with concomitant musculoskeletal injuries to identify when bisphosphonate administration can prevent the paradoxical decrease of biomineralization in bone and increased biomineralization in soft tissues, yet not interfere with musculoskeletal repair. INTRODUCTION Systemic and intrinsic mechanisms in bone and soft tissues help promote biomineralization to the skeleton, while preventing it in soft tissues. However, severe injury can disrupt this homeostatic biomineralization tropism, leading to adverse patient outcomes due to a paradoxical decrease of biomineralization in bone and increased biomineralization in soft tissues. There remains a need for therapeutics that restore the natural tropism of biomineralization in severely injured patients. Bisphosphonates can elicit potent effects on biomineralization, though with variable impact on musculoskeletal repair. Thus, a critical clinical question remains as to the optimal time to initiate bisphosphonate therapy in patients following a polytrauma, in which bone and muscle are injured in combination with a severe injury, such as a burn. METHODS To test the hypothesis that the dichotomous effects of bisphosphonates are dependent upon the time of administration relative to the ongoing biomineralization in reparative bone and soft tissues, this study utilized murine models of isolated injury or polytrauma with a severe injury, in conjunction with sensitive, longitudinal measure of musculoskeletal repair. RESULTS This study demonstrated that if administered at the time of injury, bisphosphonates prevented severe injury-induced bone loss and soft tissue calcification, but did not interfere with bone repair or remodeling. However, if administered between 7 and 21 days post-injury, bisphosphonates temporally and spatially localized to sites of active biomineralization, leading to impaired fracture callus remodeling and permanence of soft tissue calcification. CONCLUSION There is a specific pharmacologic window following polytrauma that bisphosphonates can prevent the consequences of dysregulated biomineralization, yet not impair musculoskeletal regeneration.
Collapse
Affiliation(s)
- M Saito
- Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Orthopaedic Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - S N Moore-Lotridge
- Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - S Uppuganti
- Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - S Egawa
- Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Orthopaedic Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - T Yoshii
- Department of Orthopaedic Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - J P Robinette
- School of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - S L Posey
- School of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - B H Y Gibson
- Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University Medical Center, 2215-B Garland Ave, 1155 Medical Research Building 4, Nashville, TN, 37232, USA
| | - H A Cole
- Department of Nuclear Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - G D Hawley
- Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - S A Guelcher
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Chemical and Biomolecular Engineering, Vanderbilt University Medical Center, Nashville, TN, USA
| | - S B Tanner
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Allergy, Pulmonary, and Critical Care, Vanderbilt University Medical Center, Nashville, TN, USA
| | - J R McCarthy
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY, 13501, USA
| | - J S Nyman
- Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, Nashville, TN, USA.
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Biomedical Engineering, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Veterans Affairs, Tennessee Valley Health Care System, 1215 21st Ave S, Suite 4200, Nashville, TN, 37232, USA.
| | - J G Schoenecker
- Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, Nashville, TN, USA.
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Pharmacology, Vanderbilt University Medical Center, 2215-B Garland Ave, 1155 Medical Research Building 4, Nashville, TN, 37232, USA.
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
29
|
Nambiar J, Jana S, Nandi SK. Strategies for Enhancing Vascularization of Biomaterial-Based Scaffold in Bone Regeneration. CHEM REC 2022; 22:e202200008. [PMID: 35352873 DOI: 10.1002/tcr.202200008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/12/2022] [Indexed: 12/29/2022]
Abstract
Despite the recent advances in reconstructive orthopedics; fracture union is a challenge to bone regeneration. Concurrent angiogenesis is a complex process governed by events, delicately entwined with osteogenesis. However, poorly perfused scaffolds have lower success rates; necessitating the need for a better vascular component, which is important for the delivery of nutrients, oxygen, waste elimination, recruitment of cells for optimal bone repair. This review highlights the latest strategies to promote biomaterial-based scaffold vascularization by incorporation of cells, growth factors, inorganic ions, etc. into natural or synthetic polymers, ceramic materials, or composites of organic and inorganic compounds. Furthermore, it emphasizes structural modifications, biophysical stimuli, and natural molecules to fabricate scaffolds aiding the genesis of dense vascularization following their implantation to manifest a compatible regenerative microenvironment without graft rejection.
Collapse
Affiliation(s)
- Jasna Nambiar
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal & Fishery Sciences, Kolkata, 700037, India
| | - Sonali Jana
- Department of Veterinary Physiology, West Bengal University of Animal & Fishery Sciences, Kolkata, 700037, India
| | - Samit Kumar Nandi
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal & Fishery Sciences, Kolkata, 700037, India
| |
Collapse
|
30
|
Owen-Woods C, Kusumbe A. Fundamentals of bone vasculature: Specialization, interactions and functions. Semin Cell Dev Biol 2022; 123:36-47. [PMID: 34281770 DOI: 10.1016/j.semcdb.2021.06.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 02/06/2023]
Abstract
Angiogenesis, hematopoiesis and osteogenesis are fundamental processes mediating complex and essential biological functions. In the bone marrow, endothelial cells (ECs) are a principal mediator of regulatory signals that govern hematopoietic and mesenchymal stem cells. EC and osteoblast interactions and niche functions of ECs are fundamental in maintaining bone health and coordinating repair and regeneration following injury. These cellular interactions are subject to dysregulation and deterioration under stress, aging, chronic disease states and malignancy. Thus, the prospect of manipulating the bone vasculature has tremendous potential to advance therapeutic interventions for the management of bone diseases. This review discusses the current state of vascular-skeletal tissue interactions focusing on osteoblast and hematopoietic stem cells interaction with ECs.
Collapse
Affiliation(s)
- Charlotte Owen-Woods
- Tissue and Tumor Microenvironments Group, NDORMS, University of Oxford, Oxford OX3 7FY, UK
| | - Anjali Kusumbe
- Tissue and Tumor Microenvironments Group, NDORMS, University of Oxford, Oxford OX3 7FY, UK.
| |
Collapse
|
31
|
Cereijo C, Johnson SR, Schoenecker JG, Collinge CA, Obremskey WT, Moore-Lotridge SN. Quantitative Analysis of Growth Factors From Cancellous Bone Graft Collected With a Reamer-Irrigator-Aspirator System From Native Long Bones Versus Previously Reamed Long Bones. J Orthop Trauma 2022; 36:S23-S27. [PMID: 35061647 DOI: 10.1097/bot.0000000000002309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/09/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Collection of bone graft with the Reamer-Irrigator-Aspirator (RIA) system has become common practice across the field of orthopaedic surgery. While RIA bone graft is typically obtained from native long bones, grafting material can likewise be harvested from long bones that have previously undergone the placement and removal of an intramedullary nail, a process termed re-reamed RIA (RRR). The purpose of this study was to evaluate the total protein and growth factor concentrations present in native-RIA (NR) compared with RRR samples. METHODS NR and RRR bone grafts were collected intraoperatively with the RIA system and processed to evaluate both the aqueous and the hard tissue components. Total protein concentration and specific growth factors were analyzed using standard bicinchoninic acid and multiplex assays, respectively. Analyte levels were then normalized to the total amount of protein detected. RESULTS Total protein levels were comparable between NR and RRR samples for both the aqueous filtrate and the hard tissue samples. When normalized, while levels of bone morphogenic protein-2 and vascular endothelial growth factor were comparable in the hard tissue component, the aqueous filtrate from the RRR sample was found to have elevated levels of growth factors, with bone morphogenic protein-2 reaching statistical significance. CONCLUSIONS This study demonstrates that ample protein is found within both NR and RRR samples, with comparable or elevated levels of osteogenic growth factors found within RRR samples. Future, larger, prospective studies will be required to evaluate the osteogenic potential and clinical efficacy of NR and RRR cancellous bone grafts to validate their equivalency.
Collapse
Affiliation(s)
- Cesar Cereijo
- Department of Orthopaedics, Vanderbilt University Medical Center, Nashville, TN
- Division of Orthopaedic Trauma, Vanderbilt University Medical Center, Nashville, TN
| | | | - Jonathan G Schoenecker
- Department of Orthopaedics, Vanderbilt University Medical Center, Nashville, TN
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
- Department of Pharmacology, Vanderbilt University, Nashville, TN ; and
| | - Cory A Collinge
- Fort Worth Orthopaedic Trauma Specialists, Harris Methodist Hospital Fort Worth, Fort Worth, TX
| | - William T Obremskey
- Department of Orthopaedics, Vanderbilt University Medical Center, Nashville, TN
- Division of Orthopaedic Trauma, Vanderbilt University Medical Center, Nashville, TN
| | - Stephanie N Moore-Lotridge
- Department of Orthopaedics, Vanderbilt University Medical Center, Nashville, TN
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
32
|
3D Printing Adjustable Stiffness External Fixator for Mechanically Stimulated Healing of Tibial Fractures. BIOMED RESEARCH INTERNATIONAL 2022; 2021:8539416. [PMID: 34977247 PMCID: PMC8718297 DOI: 10.1155/2021/8539416] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/06/2021] [Indexed: 11/17/2022]
Abstract
External fixation is a long-standing but well-established method, which has been widely used for the treatment of fractures. To obtain the maximum benefit from the mechanical stimulus, the stiffness of the external fixator should be adjusted properly throughout the treatment phase. Nevertheless, the lack of a valid dynamic adjustable fixation device impedes this possibility. Based on the stiffness adjustment tolerance of the healing callus, this paper proposes an active-dynamic stiffness adjustable external fixator design method to meet stiffness requirements at different stages of the tibial fracture healing process. A novel external fixator with an adjustable stiffness configuration was designed, and the finite element method was used to simulate the stress distribution between fixator and fracture gap. The stiffness adjustment tolerance was determined based on previous studies. According to this tolerance, the optimal block structure dismantling sequence was sought and the corresponding stiffness was calculated through topology optimization for the entire external fixator model. The appropriate amount of variable stiffness at the fracture gap was applied by dismantling the configuration of the block structure external fixator during the healing process. A novel patient-specific adjustable stiffness external fixator for mechanically stimulated tibial fracture reduction and therapy was proposed. This enables surgeons to tailor the construction of the external fixator frame to the clinical needs of each patient. The presented dismantling approach of the block structure to produce conformable stiffness provides a new clinical treatment strategy for tibial fractures.
Collapse
|
33
|
Dalisson B, Charbonnier B, Aoude A, Gilardino M, Harvey E, Makhoul N, Barralet J. Skeletal regeneration for segmental bone loss: Vascularised grafts, analogues and surrogates. Acta Biomater 2021; 136:37-55. [PMID: 34626818 DOI: 10.1016/j.actbio.2021.09.053] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 02/08/2023]
Abstract
Massive segmental bone defects (SBD) are mostly treated by removing the fibula and transplanting it complete with blood supply. While revolutionary 50 years ago, this remains the standard treatment. This review considers different strategies to repair SBD and emerging potential replacements for this highly invasive procedure. Prior to the technical breakthrough of microsurgery, researchers in the 1960s and 1970s had begun to make considerable progress in developing non autologous routes to repairing SBD. While the breaktthrough of vascularised bone transplantation solved the immediate problem of a lack of reliable repair strategies, much of their prior work is still relevant today. We challenge the assumption that mimicry is necessary or likely to be successful and instead point to the utility of quite crude (from a materials technology perspective), approaches. Together there are quite compelling indications that the body can regenerate entire bone segments with few or no exogenous factors. This is important, as there is a limit to how expensive a bone repair can be and still be widely available to all patients since cost restraints within healthcare systems are not likely to diminish in the near future. STATEMENT OF SIGNIFICANCE: This review is significant because it is a multidisciplinary view of several surgeons and scientists as to what is driving improvement in segmental bone defect repair, why many approaches to date have not succeeded and why some quite basic approaches can be as effective as they are. While there are many reviews of the literature of grafting and bone repair the relative lack of substantial improvement and slow rate of progress in clinical translation is often overlooked and we seek to challenge the reader to consider the issue more broadly.
Collapse
|
34
|
Lorente A, Gandía A, Mariscal G, Palacios P, Lorente R. Quality of life and complications in elderly patients after pronation rotation type III ankle fractures treated with a cast and early weight-bearing. BMC Musculoskelet Disord 2021; 22:878. [PMID: 34649545 PMCID: PMC8518213 DOI: 10.1186/s12891-021-04745-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 09/28/2021] [Indexed: 11/14/2022] Open
Abstract
Background Early weight-bearing is becoming increasingly common because it can positively affect the quality of life of patients. Therefore, the efficacy and safety of this conservative treatment should be assessed for different types of ankle fractures. The goal of this study was to compare early weight-bearing and non-weight-bearing in terms of effectiveness and safety in patients with pronation rotation type III ankle fractures treated nonsurgically. Methods A prospective multicenter cohort study was conducted over two years. Elderly patients with a nondisplaced pronation rotation type III ankle fracture were included. The main variables were the Barthel Index and SF-12 scores. The patients completed the questionnaires at six weeks, one year and two years. We also compared the complications associated with the two interventions. Results 30 patients were included in the weight-bearing group, while 32 patients were included in the non-weight-bearing (WB) group. The mean ages were 82.6 ± 2.6 years and 83.1 ± 2.6 years, respectively. Quality of life, measured with the SF-12 scale, increased significantly in both the short and long term in the WB group (53.5 ± 5.8 points vs 65.2 ± 4.4 points at 6 weeks and 70.1 ± 4.2 points vs. 80.9 ± 3.7 points at 2 years; p<0.001). The WB group also showed a higher quality of life, as measured by the Barthel Index (54.5 ± 5.2 points vs. 64.3 ± 4.0 points at 6 weeks and 71.0 ± 4.3 points vs. 80.7 ± 3.4 points at 2 years; p<0.001). Conclusions Elderly patients with pronation rotation type III fractures could benefit from an early weight-bearing protocol in terms of quality of life and functionality.
Collapse
Affiliation(s)
- Alejandro Lorente
- Department of Traumatology and Orthopaedic Surgery, University Hospital Ramón y Cajal, M-607, km. 9, 100, 28034, Madrid, Spain
| | - Antonio Gandía
- Department of Traumatology and Orthopaedic Surgery, University Hospital Ramón y Cajal, M-607, km. 9, 100, 28034, Madrid, Spain
| | - Gonzalo Mariscal
- Institute for Research on Musculoskeletal Disorders, School of Medicine, Valencia Catholic University, 46001, Valencia, Spain
| | - Pablo Palacios
- Department of Traumatology and Orthopaedic Surgery, University Hospital Madrid Sanchinarro, Calle de Oña, 10, 28050, Madrid, Spain
| | - Rafael Lorente
- Department of Orthopedic Surgery and Traumatology, University Hospital of Badajoz, Av. de Elvas, s/n, 06080, Badajoz, Spain.
| |
Collapse
|
35
|
Lee QJ, Wong WYD, Yau YL, Chang WYE, Wong YC. Proximal tibial bone loss in the first 2 years after unicondylar knee arthroplasty: Anatomical pattern, predictors and clinical correlation. Knee 2021; 32:201-210. [PMID: 34509826 DOI: 10.1016/j.knee.2021.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/26/2021] [Accepted: 08/23/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Tibial stress fracture, anteromedial bone pain, and early subsidence could occur after unicondylar knee arthroplasty (UKA). The change in metaphyseal tibial bone density (MTBD) in the coronal and sagittal planes after UKA might be a contributing factor, but this has rarely been investigated. The aim of this study was to assess the regional and temporal change in MTBD in the coronal and sagittal planes in the first 2 years after UKA. METHODS Patients with fixed-bearing medial UKA were recruited. The change in MTBD in the first 24 months after UKA using digital radiological densitometry (DRD) was measured. Potential predictors and clinical correlations were analyzed. RESULTS Eighty-four cases (female 60%) were selected for review. The follow up time was 63 (±17) months. Anterior and medial regions had the largest proportion of cases with MTBD reduction (90-97%, P < 0.05). Reduction was largest at anterior and medial regions (21-29%, P < 0.05) and smallest at posterior and lateral regions (5-15%, P < 0.05). Maximal reduction occurred at 12 months for the medial region and 24 months for the anterior region. MTBDs of both regions were not significantly influenced by any confounding factors. Significant correlation was found between medial MTBD and Function Score at 6 months. CONCLUSIONS Bone loss in a zonal pattern occurs in the first 2 years after UKA with the largest loss in the anterior region below the tibial tray. It is not affected by body mass index, perioperative alignment, or angle of correction. This suggests a physiological response to trauma other than a mechanical response to the change in bone strain.
Collapse
Affiliation(s)
- Qunn Jid Lee
- Total Joint Replacement Center, Yan Chai Hospital, Tsuen Wan, Hong Kong Special Administrative Region.
| | - Wai Yip Daniel Wong
- Total Joint Replacement Center, Yan Chai Hospital, Tsuen Wan, Hong Kong Special Administrative Region
| | - Yee Ling Yau
- Total Joint Replacement Center, Yan Chai Hospital, Tsuen Wan, Hong Kong Special Administrative Region
| | - Wai Yee Esther Chang
- Total Joint Replacement Center, Yan Chai Hospital, Tsuen Wan, Hong Kong Special Administrative Region
| | - Yiu Chung Wong
- Total Joint Replacement Center, Yan Chai Hospital, Tsuen Wan, Hong Kong Special Administrative Region
| |
Collapse
|
36
|
In silico analysis of modular bone plates. J Mech Behav Biomed Mater 2021; 124:104847. [PMID: 34555620 DOI: 10.1016/j.jmbbm.2021.104847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/07/2021] [Accepted: 09/17/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Inventory management or immediate availability of fracture plates can be problematic since for each surgical intervention a specific plate of varying size and functionality must be ordered. Modularization of the standard monolithic plate is proposed to address this issue. METHODS The effects of four different unit module design parameters (type, degree of modularization, connector screw diameter, sandwich ratio) on the plate bending stiffness and failure are investigated in a finite element four-point-bending analysis. A chosen, best-performing modular plate is then tested in silico for a simple diaphyseal tibial fracture scenario under anatomical compressional, torsional, and bending loads. RESULTS A modularization strategy is proposed to match the monolithic plate bending properties as closely as possible. With the best combination of design parameters, a fully modularized equivalent length plate with a 42.3% decrease in stiffness and 46.2% decrease in strength could be assembled. The chosen modular plate also displayed sufficient mechanical performance under the fracture fixation scenarios for a potentially successful osteosynthesis. CONCLUSIONS Via computational methods, the viability of the modularization strategy as an alternate to the traditional monolithic plate is demonstrated. As a further realized advantage, the modular plates can alleviate stress shielding thanks to the reduced stiffness.
Collapse
|
37
|
Inoue S, Takito J, Nakamura M. Site-Specific Fracture Healing: Comparison between Diaphysis and Metaphysis in the Mouse Long Bone. Int J Mol Sci 2021; 22:ijms22179299. [PMID: 34502206 PMCID: PMC8430651 DOI: 10.3390/ijms22179299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/14/2022] Open
Abstract
The process of fracture healing varies depending upon internal and external factors, such as the fracture site, mode of injury, and mechanical environment. This review focuses on site-specific fracture healing, particularly diaphyseal and metaphyseal healing in mouse long bones. Diaphyseal fractures heal by forming the periosteal and medullary callus, whereas metaphyseal fractures heal by forming the medullary callus. Bone healing in ovariectomized mice is accompanied by a decrease in the medullary callus formation both in the diaphysis and metaphysis. Administration of estrogen after fracture significantly recovers the decrease in diaphyseal healing but fails to recover the metaphyseal healing. Thus, the two bones show different osteogenic potentials after fracture in ovariectomized mice. This difference may be attributed to the heterogeneity of the skeletal stem cells (SSCs)/osteoblast progenitors of the two bones. The Hox genes that specify the patterning of the mammalian skeleton during embryogenesis are upregulated during the diaphyseal healing. Hox genes positively regulate the differentiation of osteoblasts from SSCs in vitro. During bone grafting, the SSCs in the donor’s bone express Hox with adaptability in the heterologous bone. These novel functions of the Hox genes are discussed herein with reference to the site-specificity of fracture healing.
Collapse
|
38
|
Boller LA, Shiels SM, Florian DC, Peck SH, Schoenecker JG, Duvall C, Wenke JC, Guelcher SA. Effects of nanocrystalline hydroxyapatite concentration and skeletal site on bone and cartilage formation in rats. Acta Biomater 2021; 130:485-496. [PMID: 34129957 DOI: 10.1016/j.actbio.2021.05.056] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/29/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023]
Abstract
Most fractures heal by a combination of endochondral and intramembranous ossification dependent upon strain and vascularity at the fracture site. Many biomaterials-based bone regeneration strategies rely on the use of calcium phosphates such as nano-crystalline hydroxyapatite (nHA) to create bone-like scaffolds. In this study, nHA was dispersed in reactive polymers to form composite scaffolds that were evaluated both in vitro and in vivo. Matrix assays, immunofluorescent staining, and Western blots demonstrated that nHA influenced mineralization and subsequent osteogenesis in a dose-dependent manner in vitro. Furthermore, nHA dispersed in polymeric composites promoted osteogenesis by a similar mechanism as particulated nHA. Scaffolds were implanted into a 2-mm defect in the femoral diaphysis or metaphysis of Sprague-Dawley rats to evaluate new bone formation at 4 and 8 weeks. Two formulations were tested: a poly(thioketal urethane) scaffold without nHA (PTKUR) and a PTKUR scaffold augmented with 22 wt% nHA (22nHA). The scaffolds supported new bone formation in both anatomic sites. In the metaphysis, augmentation of scaffolds with nHA promoted an intramembranous healing response. Within the diaphysis, nHA inhibited endochondral ossification. Immunohistochemistry was performed on cryo-sections of the bone/scaffold interface in which CD146, CD31, Endomucin, CD68, and Myeloperoxidase were evaluated. No significant differences in the infiltrating cell populations were observed. These findings suggest that nHA dispersed in polymeric composites induces osteogenic differentiation of adherent endogenous cells, which has skeletal site-specific effects on fracture healing. STATEMENT OF SIGNIFICANCE: Understanding the mechanism by which synthetic scaffolds promote new bone formation in preclinical models is crucial for bone regeneration applications in the clinic where complex fracture cases are seen. In this study, we found that dispersion of nHA in polymeric scaffolds promoted in vitro osteogenesis in a dose-dependent manner through activation of the PiT1 receptor and subsequent downstream Erk1/2 signaling. While augmentation of polymeric scaffolds with nHA enhanced intramembranous ossification in metaphyseal defects, it inhibited endochondral ossification in diaphyseal defects. Thus, our findings provide new insights into designing synthetic bone grafts that complement the skeletal site-specific fracture healing response.
Collapse
|
39
|
Bass AR, Zhang Y, Mehta B, Do HT, Russell LA, Sculco PK, Goodman SM. Periprosthetic Joint Infection Is Associated with an Increased Risk of Venous Thromboembolism Following Revision Total Knee Replacement: An Analysis of Administrative Discharge Data. J Bone Joint Surg Am 2021; 103:1312-1318. [PMID: 33750744 DOI: 10.2106/jbjs.20.01486] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Little is known about the relationship between infection and the risk of risk of venous thromboembolism (VTE) following orthopaedic surgery. We assessed the 90-day risk of VTE following revision total knee replacement to measure the association between periprosthetic joint infection and the risk of postoperative VTE. METHODS We used New York Statewide Planning and Research Cooperative System data to identify all New York State residents undergoing revision total knee replacement from 1998 to 2014. ICD-9-CM (International Classification of Diseases, Ninth Revision, Clinical Modification) codes were used to identify comorbidities and to classify the indication for revision total knee replacement as aseptic, infection, or fracture. The primary outcome was any diagnosis code for VTE recorded for the revision surgery and/or subsequent admissions within 90 days. A multivariable logistic regression model that included demographic characteristics and comorbidities was used to estimate the risk of VTE after revision for infection or fracture, with aseptic revision as the reference group. RESULTS The present study included 25,441 patients who were managed with revision total knee replacement; the indication for revision was aseptic for 17,563 patients (69%), infection for 7,075 (28%), and fracture for 803 (3%). The mean age (and standard deviation) was 66 ± 12 years, 15,592 (61%) of the patients were female, 3,198 (13%) were Black, 1,192 (5%) were smokers, and 4,222 (17%) were obese. Seven hundred and nineteen patients (2.8%) had VTE within the 90 days after revision total knee replacement, including 387 (1.5%) during the admission for the revision procedure. The 90-day incidence of VTE was 2.1% after aseptic revision, 4.3% after revision for infection, and 5.9% after revision for fracture. The adjusted odds ratio (aOR) for VTE relative to aseptic revision was 2.01 (95% confidence interval [CI], 1.72 to 2.35) for septic revision total knee replacement and 2.62 (95% CI, 1.91 to 3.6) for fracture. A history of VTE was also a strong risk factor for VTE following revision total knee replacement (aOR, 2.01; 95% CI, 1.48 to 2.71). CONCLUSIONS We found that the odds of VTE after revision total knee replacement for infection were double those after aseptic revision total knee replacement. Although fracture accounts for a small percentage of revision total knee replacements, the risk of VTE was 2.6-fold higher after these procedures. The indication for revision total knee replacement should be considered when choosing postoperative VTE prophylaxis. LEVEL OF EVIDENCE Prognostic Level III. See Instructions for Authors for a complete description of levels of evidence.
Collapse
Affiliation(s)
| | - Yi Zhang
- Hospital for Special Surgery, New York, NY
| | | | - Huong T Do
- Hospital for Special Surgery, New York, NY
| | | | | | | |
Collapse
|
40
|
Gupta S, Teotia AK, Qayoom I, Shiekh PA, Andrabi SM, Kumar A. Periosteum-Mimicking Tissue-Engineered Composite for Treating Periosteum Damage in Critical-Sized Bone Defects. Biomacromolecules 2021; 22:3237-3250. [PMID: 34252271 DOI: 10.1021/acs.biomac.1c00319] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The periosteum is an indispensable part of the bone that nourishes the cortical bone and acts as a repertoire of osteoprogenitor cells. Periosteal damage as a result of traumatic injuries, infections, or surgical assistance in bone surgeries is often associated with a high incidence of delayed bone healing (union or nonunion) compounded with severe pain and a risk of a secondary fracture. Developing bioengineered functional periosteal substitutes is an indispensable approach to augment bone healing. In this study, we have developed a biomimetic periosteum membrane consisting of electrospun oxygen-releasing antioxidant polyurethane on collagen membrane (polyurethane-ascorbic acid-calcium peroxide containing fibers on collagen (PUAOCC)). Further, to assist bone formation, we have developed a bioactive inorganic-organic composite cryogel (bioglass-collagen-gelatin-nanohydroxyapatite (BCGH)) as a bone substitute. In an in vitro simulated oxidative stress model, PUAOCC supported the primary periosteal cell survival. Moreover, in an in vivo, critical-sized (5.9 mm × 3.2 mm × 1.50 mm) unicortical rat tibial bone defect, implantation of PUAOCC along with the functionalized BCGH led to significant improvement in bone formation along with periosteal regeneration. The periosteal regeneration was confirmed by expression of periosteum-specific periostin and neuronal regulation-related protein markers. Our study demonstrates the development of a periosteum-mimicking membrane with promising applications to facilitate periosteal regeneration, thus assisting bone formation when used in combination with bone composites and mimicking the natural bone repair process.
Collapse
Affiliation(s)
- Sneha Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Arun Kumar Teotia
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Irfan Qayoom
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Parvaiz Ahmad Shiekh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Syed Muntazir Andrabi
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India.,Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India.,The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India.,Centre for Nanosciences, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| |
Collapse
|
41
|
Amaro E, Moore-Lotridge SN, Wessinger B, Benvenuti MA, An TJ, Oelsner WK, Polkowski GG, Schoenecker JG. Albumin and the fibrinogen-to-albumin ratio: Biomarkers for the acute phase response following total knee arthroplasty. PLoS One 2021; 16:e0247070. [PMID: 33592030 PMCID: PMC7886137 DOI: 10.1371/journal.pone.0247070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/29/2021] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Complications following total knee arthroplasty (TKA) lead to patient morbidity and cost. While acute phase reactants, such as c-reactive protein (CRP) and fibrinogen, have been used to predict complications following TKA, the extent and duration of changes in albumin levels following TKA are unknown. It is hypothesized that like CRP and fibrinogen, albumin, and the fibrinogen/albumin ratio (FAR) represent useful measures of the acute phase response (APR) following TKA. The purpose of this study was to describe the longitudinal course of albumin and FAR in healthy patients following TKA, relative to established biomarkers, and examine if the variance in albumin or FAR correlates with patient comorbidities. METHODS This retrospective cohort study of patients undergoing TKA at a tertiary medical center. CRP, fibrinogen, and albumin values were collected pre- and post-operatively. An age-adjusted Charlson comorbidity index (CCI) was utilized as a measure of patient comorbidity status. RESULTS The median preoperative albumin value was 4.3 g/dL, which dropped to 3.6 g/dL on postoperative day 1 following TKA. The albumin value returned to 93% of the baseline by postoperative week 2. The course of albumin inversely mirrored the course of CRP (r = -0.41). Median preoperative FAR was 0.087 g/L, which rose to 0.130 g/L by postoperative week 2 and returned to baseline by postoperative week 6. While preoperative FAR strongly correlated with postoperative week 2 values (r = 0.74), there was a weak positive correlation between age-adjusted CCI and pre-operative FAR (r = 0.24) in patients undergoing primary TKA. CONCLUSION Albumin levels follow a predictable postoperative decline that inversely correlates with CRP in healthy patients following TKA. Given the low cost and abundance of laboratories offering albumin levels, direct albumin levels and/or albumin ratios such as FAR may be underutilized biomarkers for monitoring the APR following TKA.
Collapse
Affiliation(s)
- Emilie Amaro
- Department of Orthopedics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Stephanie N. Moore-Lotridge
- Department of Orthopedics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Bronson Wessinger
- School of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Michael A. Benvenuti
- Department of Orthopedics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Thomas J. An
- School of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - William K. Oelsner
- Department of Orthopedics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Gregory G. Polkowski
- Department of Orthopedics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Jonathan G. Schoenecker
- Department of Orthopedics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
42
|
Financial and Clinical Ramifications of Introducing a Novel Pediatric Enhanced Recovery After Surgery Pathway for Pediatric Complex Hip Reconstructive Surgery. Anesth Analg 2021; 132:182-193. [PMID: 32665473 DOI: 10.1213/ane.0000000000004980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Enhanced recovery after surgery pathways confer significant perioperative benefits to patients and are currently well described for adult patients undergoing a variety of surgical procedures. Robust data to support enhanced recovery pathway use in children are relatively lacking in the medical literature, though clinical benefits are reported in targeted pediatric surgical populations. Surgery for complex hip pathology in the adolescent patient is painful, often requiring prolonged courses of opioid analgesia. Postoperative opioid-related side effects may lead to prolonged recovery periods and suboptimal postoperative physical function. Excessive opioid use in the perioperative period is also a major risk factor for the development of opioid misuse in adolescents. Perioperative opioid reduction strategies in this vulnerable population will help to mitigate this risk. METHODS A total of 85 adolescents undergoing complex hip reconstructive surgery were enrolled into an enhanced recovery after surgery pathway (October 2015 to December 2018) and were compared with 110 patients undergoing similar procedures in previous years (March 2010 to September 2015). The primary outcome was total perioperative opioid consumption. Secondary outcomes included hospital length of stay, postoperative nausea, intraoperative blood loss, and other perioperative outcomes. Total cost of care and specific charge sectors were also assessed. Segmented regression was used to assess the effects of pathway implementation on outcomes, adjusting for potential confounders, including the preimplementation trend over time. RESULTS Before pathway implementation, there was a significant downward trend over time in average perioperative opioid consumption (-0.10 mg total morphine equivalents/90 days; 95% confidence interval [CI], -0.20 to 0.00) and several secondary perioperative outcomes. However, there was no evidence that pathway implementation by itself significantly altered the prepathway trend in perioperative opioid consumption (ie, the preceding trend continued). For postanesthesia care unit time, the downward trend leveled off significantly (pre: -5.25 min/90 d; 95% CI, -6.13 to -4.36; post: 1.04 min/90 d; 95% CI, -0.47 to 2.56; Change: 6.29; 95% CI, 4.53-8.06). Clinical, laboratory, pharmacy, operating room, and total charges were significantly associated with pathway implementation. There was no evidence that pathway implementation significantly altered the prepathway trend in other secondary outcomes. CONCLUSIONS The impacts of our pediatric enhanced recovery pathway for adolescents undergoing complex hip reconstruction are consistent with the ongoing improvement in perioperative metrics at our institution but are difficult to distinguish from the impacts of other initiatives and evolving practice patterns in a pragmatic setting. The ERAS pathway helped codify and organize this new pattern of care, promoting multidisciplinary evidence-based care patterns and sustaining positive preexisting trends in financial and clinical metrics.
Collapse
|
43
|
Moore-Lotridge SN, Ihejirika R, Gibson BHY, Posey SL, Mignemi NA, Cole HA, Hawley GD, Uppuganti S, Nyman JS, Schoenecker JG. Severe injury-induced osteoporosis and skeletal muscle mineralization: Are these related complications? Bone Rep 2020; 14:100743. [PMID: 33490313 PMCID: PMC7804603 DOI: 10.1016/j.bonr.2020.100743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 12/10/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022] Open
Abstract
Severely injured patients are beleaguered by complications during convalescence, such as dysregulated biomineralization. Paradoxically, severely injured patients experience the loss of bone (osteoporosis), resulting in diminished skeletal integrity and increased risk of fragility fractures; yet they also accrue mineralization in soft tissues, resulting in complications such as heterotopic ossification (HO). The pathophysiology leading to dysregulated biomineralization in severely injured patients is not well defined. It has been postulated that these pathologies are linked, such that mineralization is "transferred" from the bone to soft tissue compartments. The goal of this study was to determine if severe injury-induced osteoporosis and soft tissue calcification are temporally coincident following injury. Using a murine model of combined burn and skeletal muscle injury to model severe injury, it was determined that mice developed significant progressive bone loss, detectable as early as 3 days post injury, and marked soft tissue mineralization by 7 days after injury. The observed temporal concordance between the development of severe injury-induced osteoporosis and soft tissue mineralization indicates the plausibility that these complications share a common pathophysiology, though further experiments are required.
Collapse
Key Words
- BMD, bone mineral density
- BV/TV, bone volume/tissue volume
- Biomineralization
- Burn
- CTX, cardiotoxin
- DC, dystrophic calcification
- DPI, days post injury
- DXA, dual energy X-ray absorptiometry
- Dystrophic calcification
- H&E, hematoxylin and eosin
- HO, heterotopic ossification
- Heterotopic ossificaiton
- Osteoporosis
- STiCSS, soft tissue calcification scoring system
- Severe injury
- Severe injury-induced osteoporosis
- Soft tissue mineralization
- Trauma
- μCT, microcomputed tomography
Collapse
Affiliation(s)
- Stephanie N Moore-Lotridge
- Department of Orthopaedics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Center of Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rivka Ihejirika
- Vanderbilt University Medical School, Vanderbilt University, Nashville, TN 37232, USA
| | - Breanne H Y Gibson
- Department of Orthopaedics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Samuel L Posey
- Vanderbilt University Medical School, Vanderbilt University, Nashville, TN 37232, USA
| | - Nicholas A Mignemi
- Department of Orthopaedics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Heather A Cole
- Department of Nuclear Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Gregory D Hawley
- Department of Orthopaedics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sasidhar Uppuganti
- Department of Orthopaedics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Center of Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Tennessee Valley Healthcare System, Vanderbilt University, Nashville, TN 37232, USA
| | - Jeffry S Nyman
- Department of Orthopaedics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Center of Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Tennessee Valley Healthcare System, Vanderbilt University, Nashville, TN 37232, USA
| | - Jonathan G Schoenecker
- Department of Orthopaedics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Center of Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
44
|
A biomimetic engineered bone platform for advanced testing of prosthetic implants. Sci Rep 2020; 10:22154. [PMID: 33335113 PMCID: PMC7747643 DOI: 10.1038/s41598-020-78416-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/09/2020] [Indexed: 02/08/2023] Open
Abstract
Existing methods for testing prosthetic implants suffer from critical limitations, creating an urgent need for new strategies that facilitate research and development of implants with enhanced osseointegration potential. Herein, we describe a novel, biomimetic, human bone platform for advanced testing of implants in vitro, and demonstrate the scientific validity and predictive value of this approach using an assortment of complementary evaluation methods. We anchored titanium (Ti) and stainless steel (SS) implants into biomimetic scaffolds, seeded with human induced mesenchymal stem cells, to recapitulate the osseointegration process in vitro. We show distinct patterns of gene expression, matrix deposition, and mineralization in response to the two materials, with Ti implants ultimately resulting in stronger integration strength, as seen in other preclinical and clinical studies. Interestingly, RNAseq analysis reveals that the TGF-beta and the FGF2 pathways are overexpressed in response to Ti implants, while the Wnt, BMP, and IGF pathways are overexpressed in response to SS implants. High-resolution imaging shows significantly increased tissue mineralization and calcium deposition at the tissue-implant interface in response to Ti implants, contributing to a twofold increase in pullout strength compared to SS implants. Our technology creates unprecedented research opportunities towards the design of implants and biomaterials that can be personalized, and exhibit enhanced osseointegration potential, with reduced need for animal testing.
Collapse
|
45
|
Ghimire S, Miramini S, Edwards G, Rotne R, Xu J, Ebeling P, Zhang L. The investigation of bone fracture healing under intramembranous and endochondral ossification. Bone Rep 2020; 14:100740. [PMID: 33385019 PMCID: PMC7772545 DOI: 10.1016/j.bonr.2020.100740] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 01/08/2023] Open
Abstract
After trauma, fractured bone starts healing directly through bone union or indirectly through callus formation process. Intramembranous and endochondral ossification are two commonly known mechanisms of indirect healing. The present study investigated the bone fracture healing under intramembranous and endochondral ossification by developing theoretical models in conjunction with performing a series of animal experiments. Using experimentally determined mean bone densities in sheep tibia stabilized by the Locking Compression Plate (LCP) fixation system, the research outcomes showed that intramembranous and endochondral ossification can be described by Hill Function with two unique sets of function parameters in mechanical stimuli mediated fracture healing. Two different thresholds exist within the range of mechanical simulation index which could trigger significant intramembranous and endochondral ossification, with a relatively higher bone formation rate of endochondral ossification than that of intramembranous ossification. Furthermore, the increase of flexibility of the LCP system and the use of titanium LCP could potentially promote uniform bone formation across the fracture gap, ultimately better healing outcomes.
Collapse
Affiliation(s)
- Smriti Ghimire
- Department of Infrastructure Engineering, The University of Melbourne, Victoria 3010, Australia
| | - Saeed Miramini
- Department of Infrastructure Engineering, The University of Melbourne, Victoria 3010, Australia
| | - Glenn Edwards
- School of Animal & Veterinary Sciences, Charles Sturt University, NSW 2678, Australia
| | - Randi Rotne
- School of Animal & Veterinary Sciences, Charles Sturt University, NSW 2678, Australia
| | - Jiake Xu
- School of Pathology and Laboratory Medicine, University of Western Australia, WA 6009, Australia
| | - Peter Ebeling
- Department of Medicine, Monash University, Clayton, Victoria 3168, Australia
| | - Lihai Zhang
- Department of Infrastructure Engineering, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
46
|
Stucker S, Chen J, Watt FE, Kusumbe AP. Bone Angiogenesis and Vascular Niche Remodeling in Stress, Aging, and Diseases. Front Cell Dev Biol 2020; 8:602269. [PMID: 33324652 PMCID: PMC7726257 DOI: 10.3389/fcell.2020.602269] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/05/2020] [Indexed: 02/05/2023] Open
Abstract
The bone marrow (BM) vascular niche microenvironments harbor stem and progenitor cells of various lineages. Bone angiogenesis is distinct and involves tissue-specific signals. The nurturing vascular niches in the BM are complex and heterogenous consisting of distinct vascular and perivascular cell types that provide crucial signals for the maintenance of stem and progenitor cells. Growing evidence suggests that the BM niche is highly sensitive to stress. Aging, inflammation and other stress factors induce changes in BM niche cells and their crosstalk with tissue cells leading to perturbed hematopoiesis, bone angiogenesis and bone formation. Defining vascular niche remodeling under stress conditions will improve our understanding of the BM vascular niche and its role in homeostasis and disease. Therefore, this review provides an overview of the current understanding of the BM vascular niches for hematopoietic stem cells and their malfunction during aging, bone loss diseases, arthritis and metastasis.
Collapse
Affiliation(s)
- Sina Stucker
- Tissue and Tumor Microenvironments Group, Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - Junyu Chen
- Tissue and Tumor Microenvironments Group, Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fiona E. Watt
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - Anjali P. Kusumbe
- Tissue and Tumor Microenvironments Group, Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
47
|
Gibson BH, Duvernay MT, Moore‐Lotridge SN, Flick MJ, Schoenecker JG. Plasminogen activation in the musculoskeletal acute phase response: Injury, repair, and disease. Res Pract Thromb Haemost 2020; 4:469-480. [PMID: 32548548 PMCID: PMC7293893 DOI: 10.1002/rth2.12355] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 12/22/2022] Open
Abstract
The musculoskeletal system is critical for movement and the protection of organs. In addition to abrupt injuries, daily physical demands inflict minor injuries, necessitating a coordinated process of repair referred to as the acute-phase response (APR). Dysfunctional APRs caused by severe injuries or underlying chronic diseases are implicated in pathologic musculoskeletal repair, resulting in decreased mobility and chronic pain. The molecular mechanisms behind these phenomena are not well understood, hindering the development of clinical solutions. Recent studies indicate that, in addition to regulating intravascular clotting, the coagulation and fibrinolytic systems are also entrenched in tissue repair. Although plasmin and fibrin are considered antithetical to one another in the context of hemostasis, in a proper APR, they complement one another within a coordinated spatiotemporal framework. Once a wound is contained by fibrin, activation of plasmin promotes the removal of fibrin and stimulates angiogenesis, tissue remodeling, and tissue regeneration. Insufficient fibrin deposition or excessive plasmin-mediated fibrinolysis in early convalescence prevents injury containment, causing bleeding. Alternatively, excess fibrin deposition and/or inefficient plasmin activity later in convalescence impairs musculoskeletal repair, resulting in tissue fibrosis and osteoporosis, while inappropriate fibrin or plasmin activity in a synovial joint can cause arthritis. Together, these pathologic conditions lead to chronic pain, poor mobility, and diminished quality of life. In this review, we discuss both fibrin-dependent and -independent roles of plasminogen activation in the musculoskeletal APR, how dysregulation of these mechanisms promote musculoskeletal degeneration, and the possibility of therapeutically manipulating plasmin or fibrin to treat musculoskeletal disease.
Collapse
Affiliation(s)
| | - Matthew T. Duvernay
- Department of PharmacologyVanderbilt UniversityNashvilleTNUSA
- Department of OrthopaedicsVanderbilt University Medical CenterNashvilleTNUSA
- Center for Bone BiologyVanderbilt University Medical CenterNashvilleTNUSA
| | | | - Matthew J. Flick
- Department of Pathology and Laboratory MedicineUniversity of North Carolina‐Chapel HillNCUSA
- UNC Blood Research CenterChapel HillNCUSA
| | - Jonathan G. Schoenecker
- Department of PharmacologyVanderbilt UniversityNashvilleTNUSA
- Department of OrthopaedicsVanderbilt University Medical CenterNashvilleTNUSA
- Center for Bone BiologyVanderbilt University Medical CenterNashvilleTNUSA
- Department of Pathology, Microbiology, and ImmunologyVanderbilt University Medical CenterNashvilleTNUSA
- Department of PediatricsVanderbilt University Medical CenterNashvilleTNUSA
| |
Collapse
|
48
|
McGough MA, Boller LA, Groff DM, Schoenecker JG, Nyman JS, Wenke JC, Rhodes C, Shimko D, Duvall CL, Guelcher SA. Nanocrystalline hydroxyapatite-poly(thioketal urethane) nanocomposites stimulate a combined intramembranous and endochondral ossification response in rabbits. ACS Biomater Sci Eng 2020; 6:564-574. [PMID: 32405537 PMCID: PMC7220073 DOI: 10.1021/acsbiomaterials.9b01378] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Resorbable bone cements are replaced by bone osteoclastic resorption and osteoblastic new bone formation near the periphery. However, the ideal bone cement would be replaced by new bone through processes similar to fracture repair, which occurs through a variable combination of endochondral and intramembranous ossification. In this study, nanocrystalline hydroxyapatite (nHA)-poly(thioketal urethane) (PTKUR) cements were implanted in femoral defects in New Zealand White rabbits to evaluate ossification at 4, 12, and 18 months. Four formulations were tested: an injectable, flowable cement and three moldable putties with varying ratios of calcium phosphate to sucrose granules. New bone formation and resorption of the cement by osteoclasts occurred near the periphery. Stevenel's Blue and Safranin O staining revealed infiltration of chondrocytes into the cements and ossification of the cartilaginous intermediate. These findings suggest that nHA-PTKUR cements support combined intramembranous and endochondral ossification, resulting in enhanced osseointegration of the cement that could potentially improve patient outcomes.
Collapse
Affiliation(s)
- Madison A.P. McGough
- Department of Biomedical Engineering, Vanderbilt University, 2201 West End Ave, Nashville, TN 37235
| | - Lauren A. Boller
- Department of Biomedical Engineering, Vanderbilt University, 2201 West End Ave, Nashville, TN 37235
| | - Dustin M. Groff
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, 2201 West End Ave, Nashville, TN 37235
| | - Jonathan G. Schoenecker
- Vanderbilt Center for Bone Biology, Department of Medicine, Vanderbilt University Medical Center, 1211 Medical Center Dr, Nashville, TN 37212
- Department of Orthopaedics, Vanderbilt University Medical Center, 1211 Medical Center Dr, Nashville, TN 37212
| | - Jeffry S. Nyman
- Vanderbilt Center for Bone Biology, Department of Medicine, Vanderbilt University Medical Center, 1211 Medical Center Dr, Nashville, TN 37212
- Department of Orthopaedics, Vanderbilt University Medical Center, 1211 Medical Center Dr, Nashville, TN 37212
| | - Joseph C. Wenke
- U.S. Army Institute of Surgical Research, 3698 Chambers Rd, San Antonio, TX 78234
| | - Cheyenne Rhodes
- Medtronic Spinal & Biologics, 1800 Pyramid Pl, Memphis, TN 38132
| | - Dan Shimko
- Medtronic Spinal & Biologics, 1800 Pyramid Pl, Memphis, TN 38132
| | - Craig L. Duvall
- Department of Biomedical Engineering, Vanderbilt University, 2201 West End Ave, Nashville, TN 37235
| | - Scott A. Guelcher
- Department of Biomedical Engineering, Vanderbilt University, 2201 West End Ave, Nashville, TN 37235
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, 2201 West End Ave, Nashville, TN 37235
- Vanderbilt Center for Bone Biology, Department of Medicine, Vanderbilt University Medical Center, 1211 Medical Center Dr, Nashville, TN 37212
| |
Collapse
|
49
|
Zhang L, Jin L, Guo J, Bao K, Hu J, Zhang Y, Hou Z, Zhang L. Chronic Intermittent Hypobaric Hypoxia Enhances Bone Fracture Healing. Front Endocrinol (Lausanne) 2020; 11:582670. [PMID: 33664707 PMCID: PMC7921462 DOI: 10.3389/fendo.2020.582670] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/14/2020] [Indexed: 01/08/2023] Open
Abstract
The effect of chronic intermittent hypobaric hypoxia (CIHH) on bone fracture healing is not elucidated. The present study aimed to investigate the role of CIHH on bone fracture healing and the mechanism. The Sprague-Dawley rats were randomly divided into the CIHH group and control group and monitored for 2, 4, or 8 weeks after femoral fracture surgery. Bone healing efficiency was significantly increased in the CIHH group as evidenced by higher high-density bone volume fractions, higher bone mineral density, higher maximum force, and higher stiffness. Histologically, the CIHH group exhibited superior bone formation, endochondral ossification, and angiogenic ability compared with the control group. The expression of HIF-1α and its downstream signaling proteins VEGF, SDF-1/CXCR4 axis were increased by the CIHH treatment. Moreover, the expression of RUNX2, osterix, and type I collagen in the callus tissues were also up-regulated in the CIHH group. In conclusion, our study demonstrated that CIHH treatment improves fracture healing, increases bone mineral density, and increases bone strength via the activation of HIF-1α and bone production-related genes.
Collapse
Affiliation(s)
- Li Zhang
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lin Jin
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jialiang Guo
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Kai Bao
- Department of Orthopaedic Surgery, Hebei Provincial Hospital of Traditional Chinese Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Jinglue Hu
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yingze Zhang
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhiyong Hou
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Zhiyong Hou, ; Liping Zhang,
| | - Liping Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
- *Correspondence: Zhiyong Hou, ; Liping Zhang,
| |
Collapse
|
50
|
Krüger K, Schmid S, Paulsen F, Ignatius A, Klinger P, Hotfiel T, Swoboda B, Gelse K. Trefoil Factor 3 (TFF3) Is Involved in Cell Migration for Skeletal Repair. Int J Mol Sci 2019; 20:ijms20174277. [PMID: 31480518 PMCID: PMC6747154 DOI: 10.3390/ijms20174277] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 12/25/2022] Open
Abstract
The aim of the study was to explore the possible role of Trefoil Factor Family peptide 3 (TFF3) for skeletal repair. The expression of TFF3 was analyzed in human joint tissues as well as in a murine bone fracture model. Serum levels of TFF3 following a defined skeletal trauma in humans were determined by ELISA. The mRNA expression of TFF3 was analyzed under normoxia and hypoxia. Expression analysis after stimulation of human mesenchymal progenitor cells (MPCs) with TFF3 was performed by RT2 Profiler PCR Array. The effect of recombinant human (rh)TFF3 on MPCs was analysed by different migration and chemotaxis assays. The effect on cell motility was also visualized by fluorescence staining of F-Actin. TFF3 was absent in human articular cartilage, but strongly expressed in the subchondral bone and periosteum of adult joints. Strong TFF3 immunoreactivity was also detected in murine fracture callus. Serum levels of TFF3 were significantly increased after skeletal trauma in humans. Expression analysis demonstrated that rhTFF3 significantly decreased mRNA of ROCK1. Wound healing assays showed increased cell migration of MPCs by rhTFF3. The F-Actin cytoskeleton was markedly influenced by rhTFF3. Cell proliferation was not increased by rhTFF3. The data demonstrate elevated expression of TFF3 after skeletal trauma. The stimulatory effects on cell motility and migration of MPCs suggest a role of TFF3 in skeletal repair.
Collapse
Affiliation(s)
- Katharina Krüger
- Department of Orthopaedic Trauma Surgery, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Sebastian Schmid
- Department of Orthopaedic Trauma Surgery, University Hospital Erlangen, 91054 Erlangen, Germany
- Institute of Functional and Clinical Anatomy, University of Erlangen-Nuernberg, 91054 Erlangen, Germany
| | - Friedrich Paulsen
- Institute of Functional and Clinical Anatomy, University of Erlangen-Nuernberg, 91054 Erlangen, Germany
| | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, University of Ulm, 89081 Ulm, Germany
| | - Patricia Klinger
- Department of Orthopaedic Trauma Surgery, University Hospital Erlangen, 91054 Erlangen, Germany
- Institute of Functional and Clinical Anatomy, University of Erlangen-Nuernberg, 91054 Erlangen, Germany
| | - Thilo Hotfiel
- Division of Orthopaedic Rheumatology, Department of Orthopaedics, University of Erlangen-Nuernberg, 91054 Erlangen, Germany
| | - Bernd Swoboda
- Division of Orthopaedic Rheumatology, Department of Orthopaedics, University of Erlangen-Nuernberg, 91054 Erlangen, Germany
| | - Kolja Gelse
- Department of Orthopaedic Trauma Surgery, University Hospital Erlangen, 91054 Erlangen, Germany.
| |
Collapse
|