1
|
Rigillo G, Cappellucci G, Baini G, Vaccaro F, Miraldi E, Pani L, Tascedda F, Bruni R, Biagi M. Comprehensive Analysis of Berberis aristata DC. Bark Extracts: In Vitro and In Silico Evaluation of Bioaccessibility and Safety. Nutrients 2024; 16:2953. [PMID: 39275269 PMCID: PMC11397700 DOI: 10.3390/nu16172953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Berberine (BER) is an alkaloid found, together with other protoberberinoids (PROTBERs), in several species used in medicines and food supplements. While some herbal preparations containing BER and PROTBERs, such as Berberis aristata DC. bark extracts, have shown promising potential for human health, their safety has not been fully assessed. Recently, the EFSA issued a call for data to deepen the pharmacokinetic and pharmacodynamic understanding of products containing BER and PROTBERs and to comprehensively assess their safety, especially when used in food supplements. In this context, new data were collected in this work by assessing: (i) the phytochemical profile of 16 different commercial B. aristata dry extracts, which are among the most widely used preparations containing BER and PROTBERs in Europe; (ii) the In Vitro and In Silico investigation of the pharmacokinetic properties of BER and PROTBERs; (iii) the In Vitro cytotoxicity of selected extracts in different human cell lines, including tests on hepatic cells in the presence of CYP450 substrates; (iv) the effects of the extracts on cancer cell migration; and (v) the In Vitro molecular effects of extracts in non-cancer human cells. Results showed that commercial B. aristata extracts contain BER as the main constituent, with jatrorrhizine as main secondary PROTBER. BER and jatrorrhizine were found to have a good bioaccessibility rate, but they interact with P-gp. B. aristata extracts showed limited cytotoxicity and minimal interaction with CYP450 substrates. Furthermore, tested extracts demonstrated inhibition of cancer cell migration and were devoid of any pro-tumoral effects in normal cells. Overall, our work provides a valuable overview to better elucidate important concerns regarding botanicals containing BER and PROTBERs.
Collapse
Affiliation(s)
- Giovanna Rigillo
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Laboratory of Italian Society of Phytoterapy-SIFITLab, 53100 Siena, Italy
| | - Giorgio Cappellucci
- Laboratory of Italian Society of Phytoterapy-SIFITLab, 53100 Siena, Italy
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy
| | - Giulia Baini
- Laboratory of Italian Society of Phytoterapy-SIFITLab, 53100 Siena, Italy
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy
| | - Federica Vaccaro
- Laboratory of Italian Society of Phytoterapy-SIFITLab, 53100 Siena, Italy
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy
| | - Elisabetta Miraldi
- Laboratory of Italian Society of Phytoterapy-SIFITLab, 53100 Siena, Italy
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy
| | - Luca Pani
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL 33136, USA
| | - Fabio Tascedda
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Consorzio Interuniversitario Biotecnologie (CIB), 34148 Trieste, Italy
| | - Renato Bruni
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| | - Marco Biagi
- Laboratory of Italian Society of Phytoterapy-SIFITLab, 53100 Siena, Italy
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| |
Collapse
|
2
|
Shakeri F, Kiani S, Rahimi G, Boskabady MH. Anti-inflammatory, antioxidant, and immunomodulatory effects of Berberis vulgaris and its constituent berberine, experimental and clinical, a review. Phytother Res 2024; 38:1882-1902. [PMID: 38358731 DOI: 10.1002/ptr.8077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/04/2023] [Accepted: 11/09/2023] [Indexed: 02/16/2024]
Abstract
Berberis vulgaris (B. vulgaris or barberry) is a medicinal plant that has been used for various purposes in traditional medicine. Berberine is one of the main alkaloids isolated from B. vulgaris and other plants. Both B. vulgaris and berberine have shown anti-inflammatory, antioxidant, and immunomodulatory effects in different experimental models and clinical trials. This review aims to summarize the current evidence on the mechanisms and applications of B. vulgaris and berberine in modulating inflammation, oxidative stress, and immune responses. The literature search was performed using PubMed, Scopus, and Google Scholar databases until August 2023. The results indicated that B. vulgaris and berberine could inhibit the production of pro-inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), interleukin 6 (IL-6), and interleukin-17 (IL-17), and enhance the expression of anti-inflammatory cytokines, such as interleukin 10 (IL-10) and transforming growth factor-β (TGF-β), in various cell types and tissues. B. vulgaris and berberine can also scavenge free radicals, increase antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), and reduce lipid peroxidation and DNA damage. B. vulgaris and berberine have been reported to exert beneficial effects in several inflammatory, oxidative, and immune-related diseases, such as diabetes, obesity, cardiovascular diseases, neurodegenerative diseases, autoimmune diseases, allergic diseases, and infections. However, more studies are needed to elucidate the optimal doses, safety profiles, and potential interactions of B. vulgaris and berberine with other drugs or natural compounds.
Collapse
Affiliation(s)
- Farzaneh Shakeri
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Sahar Kiani
- Department of Stem Cell and Developmental Biology, Cell Science Research Center, ROYAN Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Brain and Cognitive Sciences, Cell Science Research Center, ROYAN Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Golnoosh Rahimi
- Department of Stem Cell and Developmental Biology, Cell Science Research Center, ROYAN Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Brain and Cognitive Sciences, Cell Science Research Center, ROYAN Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Zhao J, Ma X, Li S, Liu C, Liu Y, Tan J, Yu L, Li X, Li W. Berberine hydrochloride ameliorates PM2.5-induced pulmonary fibrosis in mice through inhibiting oxidative stress and inflammatory. Chem Biol Interact 2023; 386:110731. [PMID: 37839514 DOI: 10.1016/j.cbi.2023.110731] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/17/2023]
Abstract
Elevated levels of respirable particulate matter (PM) have been strongly linked to disease incidence and mortality in population-based epidemiological studies. Berberine hydrochloride (BBR), an isoquinoline alkaloid found in Coptis chinensis, exhibits antipyretic, anti-inflammatory, and antioxidant properties. However, the protective effects and underlying mechanism of BBR against pulmonary fibrosis remain unclear. This study aimed to investigate the protective effect of BBR on lung tissue damage using a mouse model of PM2.5-induced pulmonary fibrosis. SPF grade C57BL/6 mice were randomly assigned to four groups, each consisting of 10 mice. The mice were pretreated with BBR (50 mg/kg) by gavage for 45 consecutive days. A tracheal drip of PM2.5 suspension (8 mg/kg) was administered once every three days for a total of 15 times to induce lung fibrosis. Moreover, the results demonstrated that PM2.5 was found to inhibit the PPARγ signaling pathway, increase ROS expression, upregulate protein levels of IL-6, IL-1β, TNF-α, as well as regulation of gene expression of STAT3 and SOCS3. Importantly, PM2.5 induced lung fibrosis by promoting collagen deposition, upregulating gene expression of fibrosis markers (TGF-β1, FN, α-SMA, COL-1, and COL-3), and downregulating E-cadherin expression. Remarkably, our findings suggest that these injuries could be reversed by BBR pretreatment. BBR acts as a PPARγ agonist in PM2.5-induced pulmonary fibrosis, activating the PPARγ signaling pathway to mitigate oxidative and inflammatory factor-mediated lung injury. This study provides valuable insights for the future prevention and treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Jiali Zhao
- School of Public Health, Weifang Medical University, Weifang, 261053, China
| | - Xuan Ma
- School of Public Health, Weifang Medical University, Weifang, 261053, China
| | - Siqi Li
- School of Public Health, Weifang Medical University, Weifang, 261053, China
| | - Chen Liu
- School of Public Health, Weifang Medical University, Weifang, 261053, China
| | - Yumei Liu
- School of Public Health, Weifang Medical University, Weifang, 261053, China; Weifang Key Laboratory of Health Inspection and Quarantine, Weifang, 261053, China
| | - Jinfeng Tan
- Weifang Environmental Monitoring Station, Weifang, 261044, China
| | - Li Yu
- School of Basic Medicine, Weifang Medical University, Weifang, 261053, China
| | - Xiaohong Li
- School of Public Health, Weifang Medical University, Weifang, 261053, China; "Healthy Shandong" Major Social Risk Prediction and Management Collaborative Innovation Center, Weifang, 261053, China; Weifang Key Laboratory of Health Inspection and Quarantine, Weifang, 261053, China.
| | - Wanwei Li
- School of Public Health, Weifang Medical University, Weifang, 261053, China; "Healthy Shandong" Major Social Risk Prediction and Management Collaborative Innovation Center, Weifang, 261053, China; Weifang Key Laboratory of Health Inspection and Quarantine, Weifang, 261053, China.
| |
Collapse
|
4
|
Vahedi-Mazdabadi Y, Shahinfar H, Toushih M, Shidfar F. Effects of berberine and barberry on selected inflammatory biomarkers in adults: A systematic review and dose-response meta-analysis of randomized clinical trials. Phytother Res 2023; 37:5541-5557. [PMID: 37675930 DOI: 10.1002/ptr.7998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 07/03/2023] [Accepted: 08/16/2023] [Indexed: 09/08/2023]
Abstract
The previous meta-analysis showed an advantageous effect of berberine supplementation on interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α), and serum C-reactive protein (CRP) concentrations; however, it is unknown the dosage that this component influences inflammatory biomarkers. A comprehensive search was done in Scopus, PubMed, and Web of Science until September 2022 to find randomized controlled trials (RCT) that assessed the effects of berberine/barberry on IL-6, TNF-α, and CRP in adults but not trials without a control group. Studies bias was assessed using RoB 2. A random-effects model was performed to calculate the weighted mean difference (WMD). A dose-dependent effect was calculated. Eighteen clinical trials with 1600 participants were included in the current meta-analysis. These interventions significantly mitigate IL-6 levels (-1.18 pg/mL), TNF-α levels (-3.72 pg/mL), and CRP levels (-1.33 mg/L). In addition, the non-linear analysis showed a significant lowering effect of berberine/barberry on IL-6 and TNF-α levels in doses <1000 mg/day and less than 5 weeks of intervention. There are limitations to our findings, including low-quality studies and significant heterogeneity. These interventions might be considered adjunct therapy to managing inflammation status. However, more investigation and high-quality evidence must be conducted to obtain more comprehensive and generalizable results.
Collapse
Affiliation(s)
- Yasaman Vahedi-Mazdabadi
- Student Research Committee, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Shahinfar
- Student Research Committee, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Toushih
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Cardiac Primary Prevention Research Center, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Shidfar
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Liu G, Tan L, Zhao X, Wang M, Zhang Z, Zhang J, Gao H, Liu M, Qin W. Anti-atherosclerosis mechanisms associated with regulation of non-coding RNAs by active monomers of traditional Chinese medicine. Front Pharmacol 2023; 14:1283494. [PMID: 38026969 PMCID: PMC10657887 DOI: 10.3389/fphar.2023.1283494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Atherosclerosis is the leading cause of numerous cardiovascular diseases with a high mortality rate. Non-coding RNAs (ncRNAs), RNA molecules that do not encode proteins in human genome transcripts, are known to play crucial roles in various physiological and pathological processes. Recently, researches on the regulation of atherosclerosis by ncRNAs, mainly including microRNAs, long non-coding RNAs, and circular RNAs, have gradually become a hot topic. Traditional Chinese medicine has been proved to be effective in treating cardiovascular diseases in China for a long time, and its active monomers have been found to target a variety of atherosclerosis-related ncRNAs. These active monomers of traditional Chinese medicine hold great potential as drugs for the treatment of atherosclerosis. Here, we summarized current advancement of the molecular pathways by which ncRNAs regulate atherosclerosis and mainly highlighted the mechanisms of traditional Chinese medicine monomers in regulating atherosclerosis through targeting ncRNAs.
Collapse
Affiliation(s)
- Guoqing Liu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Liqiang Tan
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xiaona Zhao
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| | - Minghui Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Zejin Zhang
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Jing Zhang
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Honggang Gao
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Meifang Liu
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Wei Qin
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| |
Collapse
|
6
|
Wei W, Zeng Q, Wang Y, Guo X, Fan T, Li Y, Deng H, Zhao L, Zhang X, Liu Y, Shi Y, Zhu J, Ma X, Wang Y, Jiang J, Song D. Discovery and identification of EIF2AK2 as a direct key target of berberine for anti-inflammatory effects. Acta Pharm Sin B 2023; 13:2138-2151. [PMID: 37250154 PMCID: PMC10213791 DOI: 10.1016/j.apsb.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/05/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Using chemoproteomic techniques, we first identified EIF2AK2, eEF1A1, PRDX3 and VPS4B as direct targets of berberine (BBR) for its synergistically anti-inflammatory effects. Of them, BBR has the strongest affinity with EIF2AK2 via two ionic bonds, and regulates several key inflammatory pathways through EIF2AK2, indicating the dominant role of EIF2AK2. Also, BBR could subtly inhibit the dimerization of EIF2AK2, rather than its enzyme activity, to selectively modulate its downstream pathways including JNK, NF-κB, AKT and NLRP3, with an advantage of good safety profile. In EIF2AK2 gene knockdown mice, the inhibitory IL-1β, IL-6, IL-18 and TNF-α secretion of BBR was obviously attenuated, confirming an EIF2AK2-dependent anti-inflammatory efficacy. The results highlight the BBR's network mechanism on anti-inflammatory effects in which EIF2AK2 is a key target, and inhibition of EIF2AK2 dimerization has a potential to be a therapeutic strategy against inflammation-related disorders.
Collapse
Affiliation(s)
| | | | | | - Xixi Guo
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Tianyun Fan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yinghong Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hongbin Deng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Liping Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xintong Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yonghua Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yulong Shi
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jingyang Zhu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xican Ma
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yanxiang Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jiandong Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Danqing Song
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
7
|
Yao SJ, Lan TH, Zhang XY, Zeng QH, Xu WJ, Li XQ, Huang GB, Liu T, Lyu WH, Jiang W. LOX-1 Regulation in Anti-atherosclerosis of Active Compounds of Herbal Medicine: Current Knowledge and the New Insight. Chin J Integr Med 2023; 29:179-185. [PMID: 36342592 DOI: 10.1007/s11655-022-3621-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2022] [Indexed: 11/09/2022]
Abstract
Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) have recently been identified to be closely related to the occurrence and development of atherosclerosis (AS). A growing body of evidence has suggested Chinese medicine takes unique advantages in preventing and treating AS. In this review, the related research progress of AS and LOX-1 has been summarized. And the anti-AS effects of 10 active components of herbal medicine through LOX-1 regulation have been further reviewed. As a potential biomarker and target for intervention in AS, LOX-1 targeted therapy might provide a promising and novel approach to atherosclerotic prevention and treatment.
Collapse
Affiliation(s)
- Si-Jie Yao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Department of Cardiology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510020, China
| | - Tao-Hua Lan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Department of Cardiology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510020, China.,Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, 510020, China.,The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xin-Yu Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Department of Cardiology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510020, China
| | - Qiao-Huang Zeng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Department of Cardiology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510020, China.,Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, 510020, China.,The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Wen-Jing Xu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Department of Cardiology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510020, China
| | - Xiao-Qing Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Department of Cardiology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510020, China
| | - Gui-Bao Huang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Department of Cardiology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510020, China
| | - Tong Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Department of Cardiology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510020, China
| | - Wei-Hui Lyu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Department of Cardiology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510020, China.,Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, 510020, China.,The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Wei Jiang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Department of Cardiology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510020, China. .,Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, 510020, China. .,The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
8
|
Babalghith AO, Al-kuraishy HM, Al-Gareeb AI, De Waard M, Al-Hamash SM, Jean-Marc S, Negm WA, Batiha GES. The role of berberine in Covid-19: potential adjunct therapy. Inflammopharmacology 2022; 30:2003-2016. [PMID: 36183284 PMCID: PMC9526677 DOI: 10.1007/s10787-022-01080-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/09/2022] [Indexed: 12/16/2022]
Abstract
Coronavirus disease 2019 (Covid-19) is a global diastrophic disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Covid-19 leads to inflammatory, immunological, and oxidative changes, by which SARS-CoV-2 leads to endothelial dysfunction (ED), acute lung injury (ALI), acute respiratory distress syndrome (ARDS), and multi-organ failure (MOF). Despite evidence illustrating that some drugs and vaccines effectively manage and prevent Covid-19, complementary herbal medicines are urgently needed to control this pandemic disease. One of the most used herbal medicines is berberine (BBR), which has anti-inflammatory, antioxidant, antiviral, and immune-regulatory effects; thus, BBR may be a prospective candidate against SARS-CoV-2 infection. This review found that BBR has anti-SARS-CoV-2 effects with mitigation of associated inflammatory changes. BBR also reduces the risk of ALI/ARDS in Covid-19 patients by inhibiting the release of pro-inflammatory cytokines and inflammatory signaling pathways. In conclusion, BBR has potent anti-inflammatory, antioxidant, and antiviral effects. Therefore, it can be utilized as a possible anti-SARS-CoV-2 agent. BBR inhibits the proliferation of SARS-CoV-2 and attenuates the associated inflammatory disorders linked by the activation of inflammatory signaling pathways. Indeed, BBR can alleviate ALI/ARDS in patients with severe Covid-19. In this sense, clinical trials and prospective studies are suggested to illustrate the potential role of BBR in treating Covid-19.
Collapse
Affiliation(s)
- Ahmad O. Babalghith
- Medical Genetics Department, College of Medicine, Umm Al-Qura University, Mecca, Kingdom of Saudi Arabia
| | - Hayder M. Al-kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Ali I. Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Michel De Waard
- Smartox Biotechnology, 6 rue des Platanes, 38120 Saint-Egrève, France
- L’institut du Thorax, INSERM, CNRS, UNIV NANTES, 44007 Nantes, France
- LabEx « Ion Channels, Science and Therapeutics», Université de Nice Sophia-Antipolis, 06560 Valbonne, France
| | - Sadiq Mohammed Al-Hamash
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Sabatier Jean-Marc
- Faculté des sciences médicales et paramédicales, Aix-Marseille Université, Institut de Neurophysiopathologie (INP), CNRS UMR, 7051, 27 Bd Jean Moulin, 13005 Marseille, France
| | - Walaa A. Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, 31527 Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511 Al Beheira Egypt
| |
Collapse
|
9
|
Ma SR, Tong Q, Lin Y, Pan LB, Fu J, Peng R, Zhang XF, Zhao ZX, Li Y, Yu JB, Cong L, Han P, Zhang ZW, Yu H, Wang Y, Jiang JD. Berberine treats atherosclerosis via a vitamine-like effect down-regulating Choline-TMA-TMAO production pathway in gut microbiota. Signal Transduct Target Ther 2022; 7:207. [PMID: 35794102 PMCID: PMC9259588 DOI: 10.1038/s41392-022-01027-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/29/2022] [Accepted: 05/11/2022] [Indexed: 11/17/2022] Open
Abstract
Trimethylamine-N-oxide (TMAO) derived from the gut microbiota is an atherogenic metabolite. This study investigates whether or not berberine (BBR) could reduce TMAO production in the gut microbiota and treat atherosclerosis. Effects of BBR on TMAO production in the gut microbiota, as well as on plaque development in atherosclerosis were investigated in the culture of animal intestinal bacterial, HFD-fed animals and atherosclerotic patients, respectively. We found that oral BBR in animals lowers TMAO biosynthesis in intestine through interacting with the enzyme/co-enzyme of choline-trimethylamine lyase (CutC) and flavin-containing monooxygenase (FMO) in the gut microbiota. This action was performed by BBR’s metabolite dihydroberberine (a reductive BBR by nitroreductase in the gut microbiota), via a vitamine-like effect down-regulating Choline-TMA-TMAO production pathway. Oral BBR decreased TMAO production in animal intestine, lowered blood TMAO and interrupted plaque formation in blood vessels in the HFD-fed hamsters. Moreover, 21 patients with atherosclerosis exhibited the average decrease of plaque score by 3.2% after oral BBR (0.5 g, bid) for 4 months (*P < 0.05, n = 21); whereas the plaque score in patients treated with rosuvastatin plus aspirin, or clopidogrel sulfate or ticagrelor (4 months, n = 12) increased by 1.9%. TMA and TMAO in patients decreased by 38 and 29% in faeces (*P < 0.05; *P < 0.05), and 37 and 35% in plasma (***P < 0.001; *P < 0.05), after 4 months on BBR. BBR might treat atherosclerotic plaque at least partially through decreasing TMAO in a mode of action similar to that of vitamins.
Collapse
Affiliation(s)
- Shu-Rong Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Qian Tong
- The First Hospital of Jilin University, Changchun, China
| | - Yuan Lin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Li-Bin Pan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Jie Fu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Ran Peng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | | | - Zhen-Xiong Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Yang Li
- The First Hospital of Jilin University, Changchun, China
| | - Jin-Bo Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Lin Cong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Pei Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Zheng-Wei Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Hang Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China.
| | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China.
| |
Collapse
|
10
|
Chen H, Siu SWI, Wong CTT, Qiu J, Cheung AKK, Lee SMY. Anti-epileptic Kunitz-like peptides discovered in the branching coral Acropora digitifera through transcriptomic analysis. Arch Toxicol 2022; 96:2589-2608. [PMID: 35604417 DOI: 10.1007/s00204-022-03311-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/27/2022] [Indexed: 11/29/2022]
Abstract
Approximately 50 million people are suffering from epilepsy worldwide. Corals have been used for treating epilepsy in traditional Chinese medicine, but the mechanism of this treatment is unknown. In this study, we analyzed the transcriptome of the branching coral Acropora digitifera and obtained its Kyoto Encyclopedia of Genes and Genomes (KEGG), EuKaryotic Orthologous Groups (KOG) and Gene Ontology (GO) annotation. Combined with multiple sequence alignment and phylogenetic analysis, we discovered three polypeptides, we named them AdKuz1, AdKuz2 and AdKuz3, from A. digitifera that showed a close relationship to Kunitz-type peptides. Molecular docking and molecular dynamics simulation indicated that AdKuz1 to 3 could interact with GABAA receptor but AdKuz2-GABAA remained more stable than others. The biological experiments showed that AdKuz1 and AdKuz2 exhibited an anti-inflammatory effect by decreasing the aberrant level of nitric oxide (NO), IL-6, TNF-α and IL-1β induced by LPS in BV-2 cells. In addition, the pentylenetetrazol (PTZ)-induced epileptic effect on zebrafish was remarkably suppressed by AdKuz1 and AdKuz2. AdKuz2 particularly showed superior anti-epileptic effects compared to the other two peptides. Furthermore, AdKuz2 significantly decreased the expression of c-fos and npas4a, which were up-regulated by PTZ treatment. In addition, AdKuz2 reduced the synthesis of glutamate and enhanced the biosynthesis of gamma-aminobutyric acid (GABA). In conclusion, the results indicated that AdKuz2 may affect the synthesis of glutamate and GABA and enhance the activity of the GABAA receptor to inhibit the symptoms of epilepsy. We believe, AdKuz2 could be a promising anti-epileptic agent and its mechanism of action should be further investigated.
Collapse
Affiliation(s)
- Hanbin Chen
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China.,Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Shirley Weng In Siu
- Institute of Science and Environment, University of Saint Joseph, Macao, China
| | - Clarence Tsun Ting Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jianwen Qiu
- Department of Biology and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong Baptist University, Hong Kong, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Alex Kwok-Kuen Cheung
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Simon Ming Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China. .,Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao, China.
| |
Collapse
|
11
|
Yin L, Wang L, Shi Z, Ji X, Liu L. The Role of Peroxisome Proliferator-Activated Receptor Gamma and Atherosclerosis: Post-translational Modification and Selective Modulators. Front Physiol 2022; 13:826811. [PMID: 35309069 PMCID: PMC8924581 DOI: 10.3389/fphys.2022.826811] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/11/2022] [Indexed: 11/13/2022] Open
Abstract
Atherosclerosis is the hallmark of cardiovascular disease (CVD) which is a leading cause of death in type 2 diabetes patients, and glycemic control is not beneficial in reducing the potential risk of CVD. Clinically, it was shown that Thiazolidinediones (TZDs), a class of peroxisome proliferator-activated receptor gamma (PPARγ) agonists, are insulin sensitizers with reducing risk of CVD, while the potential adverse effects, such as weight gain, fluid retention, bone loss, and cardiovascular risk, restricts its use in diabetic treatment. PPARγ, a ligand-activated nuclear receptor, has shown to play a crucial role in anti-atherosclerosis by promoting cholesterol efflux, repressing monocytes infiltrating into the vascular intima under endothelial layer, their transformation into macrophages, and inhibiting vascular smooth muscle cells proliferation as well as migration. The selective activation of subsets of PPARγ targets, such as through PPARγ post-translational modification, is thought to improve the safety profile of PPARγ agonists. Here, this review focuses on the significance of PPARγ activity regulation (selective activation and post-translational modification) in the occurrence, development and treatment of atherosclerosis, and further clarifies the value of PPARγ as a safe therapeutic target for anti-atherosclerosis especially in diabetic treatment.
Collapse
Affiliation(s)
- Liqin Yin
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Lihui Wang
- Department of Medical Imaging, Shanghai East Hospital (East Hospital Affiliated to Tongji University), Tongji University, Shanghai, China
| | - Zunhan Shi
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Xiaohui Ji
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Longhua Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- *Correspondence: Longhua Liu,
| |
Collapse
|
12
|
Zou B, Cao C, Fu Y, Pan D, Wang W, Kong L. Berberine Alleviates Gastroesophageal Reflux-Induced Airway Hyperresponsiveness in a Transient Receptor Potential A1-Dependent Manner. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:7464147. [PMID: 35586690 PMCID: PMC9110152 DOI: 10.1155/2022/7464147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 03/24/2022] [Accepted: 04/21/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND To investigate the beneficial effect of berberine on gastroesophageal reflux-induced airway hyperresponsiveness (GERAHR) and explore the underlying mechanism. METHODS Coword cluster analysis and strategic coordinates were used to identify hotspots for GERAHR research, and an online tool (STRING, https://string-db.org/) was used to predict the potential relationships between proteins. Guinea pigs with chemically induced GERAHR received PBS or different berberine-based treatments to evaluate the therapeutic effect of berberine and characterize the underlying mechanism. Airway responsiveness was assessed using a plethysmography system, and protein expression was evaluated by western blotting, immunohistochemical staining, and quantitative PCR analysis. RESULTS Bioinformatics analyses revealed that TRP channels are hotspots of GERAHR research, and TRPA1 is related to the proinflammatory neuropeptide substance P (SP). Berberine, especially at the middle dose tested (MB, 150 mg/kg), significantly improved lung function, suppressed inflammatory cell infiltration, and protected inflammation-driven tissue damage in the lung, trachea, esophagus, and nerve tissues in GERAHR guinea pigs. MB reduced the expression of TRPA1, SP, and tumor necrosis factor-alpha (TNF-α) in evaluated organs and tissues. Meanwhile, the MB-mediated protective effects were attenuated by simultaneous TRPA1 activation. CONCLUSIONS Mechanistically, berberine was found to suppress GERAHR-induced upregulation of TRPA1, SP, and TNF-α in many tissues. Our study has highlighted the potential therapeutic value of berberine for the treatment of GERAHR.
Collapse
Affiliation(s)
- Bo Zou
- Institute of Respiratory Diseases, The First Hospital of China Medical University, Shenyang City, Liaoning Province, China
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang City, Liaoning Province, China
| | - Chaofan Cao
- Institute of Respiratory Diseases, The First Hospital of China Medical University, Shenyang City, Liaoning Province, China
- Department of Respiratory Medicine, The Second Affiliated Hospital of Shenyang Medical College, Shenyang City, Liaoning Province, China
| | - Yue Fu
- Institute of Respiratory Diseases, The First Hospital of China Medical University, Shenyang City, Liaoning Province, China
| | - Dianzhu Pan
- Department of Respiratory Medicine, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, Liaoning Province, China
| | - Wei Wang
- Institute of Respiratory Diseases, The First Hospital of China Medical University, Shenyang City, Liaoning Province, China
| | - Lingfei Kong
- Institute of Respiratory Diseases, The First Hospital of China Medical University, Shenyang City, Liaoning Province, China
| |
Collapse
|
13
|
Xing L, Zhou X, Li AH, Li HJ, He CX, Qin W, Zhao D, Li PQ, Zhu L, Cao HL. Atheroprotective Effects and Molecular Mechanism of Berberine. Front Mol Biosci 2021; 8:762673. [PMID: 34869592 PMCID: PMC8636941 DOI: 10.3389/fmolb.2021.762673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/18/2021] [Indexed: 02/05/2023] Open
Abstract
Cardiovascular diseases remain the leading cause of morbidity and mortality worldwide. Atherosclerosis is the main pathological basis of cardiovascular diseases and it is closely associated with hyperlipidemia, endothelial injury, macrophage-derived foam cells formation, proliferation and migration of vascular smooth muscle cells (VSMCs), platelet aggregation, and altered gut microbiota. Various symptomatic treatments, that are currently used to inhibit atherosclerosis, need to be administered in long term and their adverse effects cannot be ignored. Berberine (BBR) has beneficial effects on atherosclerosis through regulating multiple aspects of its progression. This review highlights the recent advances in understanding the anti-atherosclerosis mechanism of BBR. BBR alleviated atherosclerosis by attenuation of dyslipidemia, correction of endothelial dysfunction, inhibition of macrophage inflammation and foam cell formation, activation of macrophage autophagy, regulation of the proliferation and migration of VSMCs, attenuation of platelet aggregation, and modulation of gut microbiota. This review would provide a modern scientific perspective to further understanding the molecular mechanism of BBR attenuating atherosclerosis and supply new ideas for atherosclerosis management.
Collapse
Affiliation(s)
- Lu Xing
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Xin Zhou
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Ai-Hong Li
- Shaanxi Key Laboratory of Chinese Herb and Natural Drug Development, Medicine Research Institute, Shaanxi Pharmaceutical Holding Group Co., Ltd., Xi’an, China
| | - Hui-Jin Li
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Chun-Xia He
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Wei Qin
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Dong Zhao
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Peng-Quan Li
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Li Zhu
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Hui-Ling Cao
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
- Shaanxi Key Laboratory of Chinese Herb and Natural Drug Development, Medicine Research Institute, Shaanxi Pharmaceutical Holding Group Co., Ltd., Xi’an, China
| |
Collapse
|
14
|
Khorshidi-Sedehi S, Aryaeian N, Shahram F, Akhlaghi M, Mahmoudi M, Motevalian M, Asgari -Taee F, Hosseini A. Effects of hydroalcoholic extract of Berberis integerrima on the clinical signs, hs-CRP, TNFα, and ESR in active rheumatoid arthritis patients. J Herb Med 2021. [DOI: 10.1016/j.hermed.2021.100444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
15
|
Zhao Y, Yang YY, Yang BL, Du YW, Ren DW, Zhou HM, Wang J, Yang HM, Wang YX, Zhang YY, Wu SX. Efficacy and safety of berberine for dyslipidemia: study protocol for a randomized double-blind placebo-controlled trial. Trials 2021; 22:85. [PMID: 33482853 PMCID: PMC7825207 DOI: 10.1186/s13063-021-05028-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 01/06/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Dyslipidemia is a major risk factor for atherosclerotic cardiovascular disease and a leading cause of death worldwide. The clinical utility of commonly used lipid-lowering drugs such as statins and fibrates is sometimes limited by the occurrence of various adverse reactions. Recently, berberine (BBR) has received increasing attention as a safer and more cost-effective option to manage dyslipidemia. Thus, a high-quality randomized controlled trial to evaluate the efficacy and safety of BBR in the treatment of dyslipidemia is deemed necessary. METHODS/DESIGN This is a randomized, double-blind, and placebo-controlled clinical trial. A total of 118 patients with dyslipidemia will be enrolled in this study and randomized into two groups at a ratio of 1:1. BBR or placebo will be taken orally for 12 weeks. The primary outcome is the percentage of low-density lipoprotein cholesterol reduction at week 12. Other outcome measures include changes in other lipid profiles, high sensitivity C-reactive protein, blood pressure, body weight, Bristol Stool Chart, traditional Chinese medicine symptom form, adipokine profiles, and metagenomics of intestinal microbiota. Safety assessment includes general physical examination, blood and urine routine test, liver and kidney function test, and adverse events. DISCUSSION This trial may provide high-quality evidence on the efficacy and safety of BBR for dyslipidemia. Importantly, the findings of this trial will help to identify patient and disease characteristics that may predict favorable outcomes of treatment with BBR and optimize its indication for clinical use. TRIAL REGISTRATION Chinese Clinical Trial Registry ChiCTR1900021361 . Registered on 17 February 2019.
Collapse
Affiliation(s)
- Ying Zhao
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
- Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 10078, China
| | - Yuan-Yuan Yang
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Bao-Lin Yang
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Ya-Wei Du
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Da-Wei Ren
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Hong-Mei Zhou
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Jing Wang
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Hui-Min Yang
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Yao-Xian Wang
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ying-Ying Zhang
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Sheng-Xian Wu
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China.
| |
Collapse
|
16
|
Ehteshamfar S, Akhbari M, Afshari JT, Seyedi M, Nikfar B, Shapouri‐Moghaddam A, Ghanbarzadeh E, Momtazi‐Borojeni AA. Anti-inflammatory and immune-modulatory impacts of berberine on activation of autoreactive T cells in autoimmune inflammation. J Cell Mol Med 2020; 24:13573-13588. [PMID: 33135395 PMCID: PMC7754052 DOI: 10.1111/jcmm.16049] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/29/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
Autoreactive inflammatory CD4+ T cells, such as T helper (Th)1 and Th17 subtypes, have been found to associate with the pathogenesis of autoimmune disorders. On the other hand, CD4+ Foxp3+ T regulatory (Treg) cells are crucial for the immune tolerance and have a critical role in the suppression of the excessive immune and inflammatory response promoted by these Th cells. In contrast, dendritic cells (DCs) and macrophages are immune cells that through their inflammatory functions promote autoreactive T-cell responses in autoimmune conditions. In recent years, there has been increasing attention to exploring effective immunomodulatory or anti-inflammatory agents from the herbal collection of traditional medicine. Berberine, an isoquinoline alkaloid, is one of the main active ingredients extracted from medicinal herbs and has been shown to exert various biological and pharmacological effects that are suggested to be mainly attributed to its anti-inflammatory and immunomodulatory properties. Several lines of experimental study have recently investigated the therapeutic potential of berberine for treating autoimmune conditions in animal models of human autoimmune diseases. Here, we aimed to seek mechanisms underlying immunomodulatory and anti-inflammatory effects of berberine on autoreactive inflammatory responses in autoimmune conditions. Reported data reveal that berberine can directly suppress functions and differentiation of pro-inflammatory Th1 and Th17 cells, and indirectly decrease Th cell-mediated inflammation through modulating or suppressing other cells assisting autoreactive inflammation, such as Tregs, DCs and macrophages.
Collapse
Affiliation(s)
- Seyed‐Morteza Ehteshamfar
- Department of ImmunologyFaculty of MedicineBuAli Research InstituteMashhad University of Medical SciencesMashhadIran
| | - Masoume Akhbari
- Department of Molecular MedicineSchool of MedicineQazvin University of Medical SciencesQazvinIran
| | - Jalil Tavakol Afshari
- Department of ImmunologyFaculty of MedicineBuAli Research InstituteMashhad University of Medical SciencesMashhadIran
| | | | - Banafsheh Nikfar
- Pars Advanced and Minimally Invasive Medical Manners Research CenterPars HospitalIran University of Medical SciencesTehranIran
| | - Abbas Shapouri‐Moghaddam
- Department of ImmunologyFaculty of MedicineBuAli Research InstituteMashhad University of Medical SciencesMashhadIran
| | | | | |
Collapse
|
17
|
Rezaeian L, Kalalian-Moghaddam H, Mohseni F, Khaksari M, Rafaiee R. Effects of berberine hydrochloride on methamphetamine-induced anxiety behaviors and relapse in rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:1480-1488. [PMID: 33235706 PMCID: PMC7671426 DOI: 10.22038/ijbms.2020.47285.10884] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Objective(s): This research aimed at evaluating the effect of berberine hydrochloride on anxiety-related behaviors induced by methamphetamine (METH) in rats, assessing relapse and neuroprotective effects. Materials and Methods: 27 male Wistar rats were randomly assigned into groups of Control, METH-withdrawal (METH addiction and subsequent withdrawal), and METH addiction with berberine hydrochloride oral treatment (100 mg/kg/per day) during the three weeks of withdrawal. Two groups received inhaled METH self-administration for two weeks (up to 10 mg/kg). The elevated plus maze (EPM) test and open field test (OFT) were carried out one day after the last berberine treatment and relapse was assessed by conditional place preference (CPP) test. TUNEL assay and immunofluorescence staining for NF-κB, TLR4, Sirt1, and α-actin expression in the hippocampus were tested. Results: After 3 weeks withdrawal, berberine hydrochloride decreased locomotor activity and reduced anxiety-related behaviors in comparison with the METH-withdrawal group (P<0.001). The obtained results from CPP showed that berberine significantly reduced relapse (P<0.01). Significantly decrease in activation of TLR4, Sirt1, and α-actin in METH-withdrawal group was found and the percentage of TLR4, Sirt1, and α-actin improved in berberine-treated group (P<0.001). A significant activity rise of NF-κB of cells in the METH-withdrawal group was detected compared to berberine-treated and control groups (P<0.001). Conclusion: Treatment with berberine hydrochloride via modulating neuroinflammation may be considered as a potential new medication for the treatment of METH addiction and relapse. The histological assays supported the neuroprotective effects of berberine in the hippocampus.
Collapse
Affiliation(s)
- Leila Rezaeian
- Department of Addiction Studies, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | | | - Fahimeh Mohseni
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mehdi Khaksari
- Department of Physiology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Raheleh Rafaiee
- Department of Neuroscience, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
18
|
Berberine Attenuates Cholesterol Accumulation in Macrophage Foam Cells by Suppressing AP-1 Activity and Activation of the Nrf2/HO-1 Pathway. J Cardiovasc Pharmacol 2020; 75:45-53. [PMID: 31895879 DOI: 10.1097/fjc.0000000000000769] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Atherosclerosis is a chronic inflammation condition resulting from the interaction between lipoproteins, monocyte-derived macrophages, T lymphocytes, and other cellular elements in the arterial wall. Macrophage-derived foam cells play a key role in both early and advanced stage of atherosclerosis. Previous studies have shown that berberine could inhibit foam cell formation and prevent experimental atherosclerosis. However, its underlying molecular mechanisms have not been fully clarified. In this study, we explored the cholesterol-lowering effects of berberine in macrophage-derived foam cells and investigated its possible mechanisms in prevention and treatment of atherosclerosis. Here, we demonstrated that berberine could inhibit atherosclerosis in apolipoprotein E-deficient mice and induce cholesterol reduction as well as decrease the content of macrophages. Berberine can regulate oxLDL uptake and cholesterol efflux, thus suppresses foam cell formation. Mechanisms study showed that berberine can suppress scavenger receptor expression via inhibiting the activity of AP-1 and upregulate ATP-binding cassette transporter via activating Nrf2/HO-1 signaling in human macrophage. In summary, berberine significantly inhibits atherosclerotic disease development by regulating lipid homeostasis and suppressing macrophage foam cell formation.
Collapse
|
19
|
Subedi L, Lee SE, Madiha S, Gaire BP, Jin M, Yumnam S, Kim SY. Phytochemicals against TNFα-Mediated Neuroinflammatory Diseases. Int J Mol Sci 2020; 21:ijms21030764. [PMID: 31991572 PMCID: PMC7037901 DOI: 10.3390/ijms21030764] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 02/07/2023] Open
Abstract
Tumor necrosis factor-alpha (TNF-α) is a well-known pro-inflammatory cytokine responsible for the modulation of the immune system. TNF-α plays a critical role in almost every type of inflammatory disorder, including central nervous system (CNS) diseases. Although TNF-α is a well-studied component of inflammatory responses, its functioning in diverse cell types is still unclear. TNF-α functions through its two main receptors: tumor necrosis factor receptor 1 and 2 (TNFR1, TNFR2), also known as p55 and p75, respectively. Normally, the functions of soluble TNF-α-induced TNFR1 activation are reported to be pro-inflammatory and apoptotic. While TNF-α mediated TNFR2 activation has a dual role. Several synthetic drugs used as inhibitors of TNF-α for diverse inflammatory diseases possess serious adverse effects, which make patients and researchers turn their focus toward natural medicines, phytochemicals in particular. Phytochemicals targeting TNF-α can significantly improve disease conditions involving TNF-α with fewer side effects. Here, we reviewed known TNF-α inhibitors, as well as lately studied phytochemicals, with a role in inhibiting TNF-α itself, and TNF-α-mediated signaling in inflammatory diseases focusing mainly on CNS disorders.
Collapse
Affiliation(s)
- Lalita Subedi
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea; (L.S.); (S.E.L.); (B.P.G.)
| | - Si Eun Lee
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea; (L.S.); (S.E.L.); (B.P.G.)
| | - Syeda Madiha
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi-75270, Pakistan;
| | - Bhakta Prasad Gaire
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea; (L.S.); (S.E.L.); (B.P.G.)
| | - Mirim Jin
- College of Medicine and Department of Health Science and Technology, GAIHST, Gachon University #155, Gaebeol-ro, Yeonsu-gu, Incheon 21999, Korea;
| | - Silvia Yumnam
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea; (L.S.); (S.E.L.); (B.P.G.)
- Correspondence: (S.Y.); (S.Y.K.); Tel.: +82-32-820-4931 (S.Y. & S.Y.K.); Fax: +82-32-820-4932 (S.Y. & S.Y.K.)
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea; (L.S.); (S.E.L.); (B.P.G.)
- Correspondence: (S.Y.); (S.Y.K.); Tel.: +82-32-820-4931 (S.Y. & S.Y.K.); Fax: +82-32-820-4932 (S.Y. & S.Y.K.)
| |
Collapse
|
20
|
El Ouarrat D, Isaac R, Lee YS, Oh DY, Wollam J, Lackey D, Riopel M, Bandyopadhyay G, Seo JB, Sampath-Kumar R, Olefsky JM. TAZ Is a Negative Regulator of PPARγ Activity in Adipocytes and TAZ Deletion Improves Insulin Sensitivity and Glucose Tolerance. Cell Metab 2020; 31:162-173.e5. [PMID: 31708444 PMCID: PMC7784082 DOI: 10.1016/j.cmet.2019.10.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/17/2019] [Accepted: 10/09/2019] [Indexed: 12/30/2022]
Abstract
Insulin resistance is a major factor in obesity-linked type 2 diabetes. PPARγ is a master regulator of adipogenesis, and small molecule agonists, termed thiazolidinediones, are potent therapeutic insulin sensitizers. Here, we studied the role of transcriptional co-activator with PDZ-binding motif (TAZ) as a transcriptional co-repressor of PPARγ. We found that adipocyte-specific TAZ knockout (TAZ AKO) mice demonstrate a constitutively active PPARγ state. Obese TAZ AKO mice show improved glucose tolerance and insulin sensitivity compared to littermate controls. PPARγ response genes are upregulated in adipose tissue from TAZ AKO mice and adipose tissue inflammation was also decreased. In vitro and in vivo mechanistic studies revealed that the TAZ-PPARγ interaction is partially dependent on ERK-mediated Ser112 PPARγ phosphorylation. As adipocyte PPARγ Ser112 phosphorylation is increased in obesity, repression of PPARγ activity by TAZ could contribute to insulin resistance. These results identify TAZ as a new factor in the development of obesity-induced insulin resistance.
Collapse
Affiliation(s)
- Dalila El Ouarrat
- Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Roi Isaac
- Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Yun Sok Lee
- Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Da Young Oh
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas, Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joshua Wollam
- Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Denise Lackey
- Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Matthew Riopel
- Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Gautam Bandyopadhyay
- Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jong Bae Seo
- Department of Biosciences, Mokpo National University, Muan-gun, Jeonnam, Republic of Korea
| | | | - Jerrold M Olefsky
- Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
21
|
Hasan UH, Uttra AM, Qasim S, Ikram J, Saleem M, Niazi ZR. Phytochemicals targeting matrix metalloproteinases regulating tissue degradation in inflammation and rheumatoid arthritis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 66:153134. [PMID: 31812101 DOI: 10.1016/j.phymed.2019.153134] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 10/26/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
PURPOSE Matrix metalloproteinases, zinc dependent proteolytic enzymes, have significant implications in extracellular matrix degradation associated with tissue damage in inflammation and Rheumatoid arthritis. Numerous orchestrated pathways affects instigation and blockade of metalloproteinases as well as various factors that increase the expression of MMPs including inflammatory cytokines, hormones and growth factors. Direct inhibition of these proteolytic enzymes or modulation of these pathways can provide protection against tissue destruction in inflammation and rheumatoid arthritis. Inclination towards use of plant derived phytochemicals to prevent tissue damage has been increasing day by day. Diversity of phytochemicals have been known to directly inhibit metalloproteinases. Hence, thorough knowledge of phytochemicals is very important in novel drug discovery. METHODS Present communication evaluates various classes of phytochemicals, in effort to unveil the lead molecules as potential therapeutic agents, for prevention of MMPs mediated tissue damage in inflammation and rheumatoid arthritis. Data have been analyzed through different search engines. RESULTS Numerous phytochemicals have been studied for their role as MMPs inhibitors which can be processed further to develop into useful drugs for the treatment of inflammation and rheumatoid arthritis. CONCLUSION In search of new drugs, phytochemicals like flavonoids, glycosides, alkaloids, lignans & terpenes offer a wide canvas to develop into valuable forthcoming medicaments.
Collapse
Affiliation(s)
- Umme Habiba Hasan
- Laboratory of Cardiovascular Research and Integrative Pharmacology, College of Pharmacy University of Sargodha, Sargodha, Pakistan
| | - Ambreen Malik Uttra
- Laboratory of Cardiovascular Research and Integrative Pharmacology, College of Pharmacy University of Sargodha, Sargodha, Pakistan
| | - Sumera Qasim
- Laboratory of Cardiovascular Research and Integrative Pharmacology, College of Pharmacy University of Sargodha, Sargodha, Pakistan
| | - Javaria Ikram
- Laboratory of Cardiovascular Research and Integrative Pharmacology, College of Pharmacy University of Sargodha, Sargodha, Pakistan
| | - Muhammad Saleem
- University College of Pharmacy, University of Punjab Lahore, Lahore, Pakistan
| | - Zahid Rasul Niazi
- Department of Basic medical science, Faculty of Pharmacy, Gomal University, DI Khan, KPK, Pakistan
| |
Collapse
|
22
|
Fatahian A, Haftcheshmeh SM, Azhdari S, Farshchi HK, Nikfar B, Momtazi-Borojeni AA. Promising Anti-atherosclerotic Effect of Berberine: Evidence from In Vitro, In Vivo, and Clinical Studies. Rev Physiol Biochem Pharmacol 2020; 178:83-110. [PMID: 32789786 DOI: 10.1007/112_2020_42] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Elevated levels of plasma cholesterol, impaired vascular wall, and presence of inflammatory macrophages are important atherogenic risk factors contributing to atherosclerotic plaque formation and progression. The interventions modulating these risk factors have been found to protect against atherosclerosis development and to decrease atherosclerosis-related cardiovascular disorders. Nutritional approaches involving supplements followed by improving dietary habits and lifestyle have become growingly attractive and acceptable methods used to control atherosclerosis risk factors, mainly high levels of plasma cholesterol. There are a large number of studies that show berberine, a plant bioactive compound, could ameliorate atherosclerosis-related risk factors. In the present literature review, we put together this studies and provide integrated evidence that exhibits berberine has the potential atheroprotective effect through reducing increased levels of plasma cholesterol, particularly low-density lipoprotein (LDL) cholesterol (LDL-C) via LDL receptor (LDLR)-dependent and LDL receptor-independent mechanisms, inhibiting migration and inflammatory activity of macrophages, improving the functionality of endothelial cells via anti-oxidant activities, and suppressing proliferation of vascular smooth muscle cells. In conclusion, berberine can exert inhibitory effects on the atherosclerotic plaque development mainly through LDL-lowering activity and suppressing atherogenic functions of mentioned cells. As the second achievement of this review, among the signaling pathways through which berberine regulates intracellular processes, AMP-activated protein kinase (AMPK) has a central and critical role, showing that enhancing activity of AMPK pathway can be considered as a promising therapeutic approach for atherosclerosis treatment.
Collapse
Affiliation(s)
- Alireza Fatahian
- Department of Cardiology, Cardiovascular Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Sara Azhdari
- Department of Anatomy and Embryology, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Helaleh Kaboli Farshchi
- Department of Horticulture, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Banafsheh Nikfar
- Pars Advanced and Minimally Invasive Medical Manners Research Center, Pars Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | - Amir Abbas Momtazi-Borojeni
- Halal research center of IRI, FDA, Tehran, Iran.
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
23
|
Zhou Z, Lin Y, Gao L, Yang Z, Wang S, Wu B. Circadian pharmacological effects of berberine on chronic colitis in mice: Role of the clock component Rev-erbα. Biochem Pharmacol 2019; 172:113773. [PMID: 31866303 DOI: 10.1016/j.bcp.2019.113773] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/17/2019] [Indexed: 12/29/2022]
Abstract
Berberine, initially isolated from Rhizoma Coptidis (Huanglian in Chinese), is a drug used to treat gastrointestinal disorders such as colitis. Here we uncovered a time-varying berberine effect on chronic colitis in mice, and investigated a potential role of the clock protein Rev-erbα in this timing effect. Berberine activity toward Rev-erbα was determined by luciferase reporter, Gal4-cotransfection assay and target gene expression analyses. Chronic colitis was induced by feeding mice with dextran sulfate sodium in drinking water. Colitis severity and pharmacological effects of berberine were assessed by measuring myeloperoxidase and malondialdehyde activities as well as the levels of inflammatory factors (IL-1β, IL-6, IL-18 and Ccl2). Berberine significantly inhibited Bmal1 (-2000/+100 bp)- and Nlrp3 (-1310/+100 bp)-Luc reporter activities, and dose-dependently decreased cellular expressions of both Bmal1 and Nlrp3. Also, it enhanced the transcriptional repressor activity of Rev-erbα in the Gal4 chimeric assay. These data indicated berberine as a Rev-erbα agonist. As expected, berberine attenuated inflammatory responses in BMDMs (bone marrow-derived macrophages) and in colitis mice. However, the anti-inflammatory effects of berberine were lost in BMDMs derived from Rev-erbα-deficient mice. Furthermore, chronic colitis displayed a diurnal rhythmicity in disease severity and its diurnal pattern was in an opposite phase to that of Rev-erbα expression, supporting a direct control of colitis by Rev-erbα. Moreover, berberine effects on chronic colitis were dosing time-dependent. ZT10 dosing generated a better treatment outcome compared to ZT2. This was because colitis was less severe and Rev-erbα expression was much higher at ZT10 than at ZT2. In conclusion, circadian pharmacological effects of berberine on chronic colitis were mainly contributed by diurnal rhythms of both disease severity and Rev-erbα (as a drug target). The findings may have implications for chronotherapeutic practice on colitis or related diseases.
Collapse
Affiliation(s)
- Ziyue Zhou
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, China
| | - Yanke Lin
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, China
| | - Lu Gao
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, China
| | - Zemin Yang
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, China
| | - Shuai Wang
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, China.
| | - Baojian Wu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
24
|
Raju M, Kulkarni YA, Wairkar S. Therapeutic potential and recent delivery systems of berberine: A wonder molecule. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103517] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
25
|
Han CY, Sun TT, Xv GP, Wang SS, Gu JG, Liu CY. Berberine ameliorates CCl4‑induced liver injury in rats through regulation of the Nrf2‑Keap1‑ARE and p53 signaling pathways. Mol Med Rep 2019; 20:3095-3102. [PMID: 31432116 PMCID: PMC6755230 DOI: 10.3892/mmr.2019.10551] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 07/01/2019] [Indexed: 01/21/2023] Open
Abstract
Berberine (BBR) is an isoquinoline alkaloid, reported to have multiple pharmacological functions. However, its effects against CCl4‑induced oxidative damage remain poorly studied. Therefore, the present study investigated the protective action of BBR, and its antioxidant mechanisms, against CCl4‑induced liver injury in rats. A total of 48 rats were randomly arranged into six groups: Control; model; positive control (PC); BBR low‑dose (BL); BBR middle‑dose (BM); and BBR high‑dose (BH). The BL, BM and BH animals received BBR (5, 10 and 15 mg/kg by weight, respectively) orally for 7 consecutive days. Rats in the PC group were given silymarin (150 mg/kg), and the control and model groups were administered distilled water orally. At the end of the experiment, blood samples and livers were collected. To measure the liver biochemical indices, the reactive oxygen species (ROS) generation and the expression levels of related genes and protein, the following methods were used: An automatic biochemical analyzer; flow cytometry; spectrophotometry; reverse transcription‑quantitative PCR; western blotting; and hematoxylin and eosin staining. The results revealed that BBR significantly decreased the serum levels of alanine transaminase, aspartate transaminase and alkaline phosphatase, and increased those of glutathione and superoxide dismutase, but decreased malondialdehyde activity in hepatic tissue, and significantly decreased the reactive oxygen species level in hepatocytes. In hepatic tissue, the expressions of nuclear factor erythroid 2‑related factor 2 (Nrf2), kelch‑like ECH‑associated protein 1 (Keap-1), NAD(P)H quinone dehydrogenase 1 (NQO-1), heme oxygenase 1 (HO‑1), Bcl‑2 and Bcl‑xL mRNA, and HO‑1 protein were elevated, and the expression of p53 mRNA was decreased, particularly in the BH group (15 mg/kg). In conclusion, BBR exerts a protective action against CCl4‑induced acute liver injury in rats via effectively regulating the expression of Nrf2‑Keap1‑antioxidant responsive element‑related genes and proteins, and inhibiting p53 pathway‑mediated hepatocyte apoptosis.
Collapse
Affiliation(s)
- Chun-Yang Han
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Tao-Tao Sun
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Guang-Pei Xv
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Si-Si Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Jin-Gang Gu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Cui-Yan Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| |
Collapse
|
26
|
The role of traditional Chinese medicine in the treatment of atherosclerosis through the regulation of macrophage activity. Biomed Pharmacother 2019; 118:109375. [PMID: 31548175 DOI: 10.1016/j.biopha.2019.109375] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/16/2019] [Accepted: 08/22/2019] [Indexed: 12/27/2022] Open
Abstract
Atherosclerosis (AS) is the main cause of ischemic cardiovascular, cerebrovascular and peripheral vascular diseases. Macrophage activity has been proven to play a critical role during the AS pathological process, which involves the adhesion, aggregation of mononuclear-macrophages, cell differentiation of M1/M2 macrophages as part of complex mechanisms occurring during lipid metabolism, apoptosis, autophagy, inflammation and immune reaction. Therefore, the development of effective AS treatments is likely to target macrophage activity. Certain herbal extracts (such as Salvia miltiorrhiza) have exhibited enormous potential for AS treatment in the past. Here, we aim to provide a summary on the current understanding of the type of action and the underlying target/pathway in macrophage regulation of certain herbal extracts used in Traditional Chinese Medicine for treatment of AS.
Collapse
|
27
|
Yu ZC, Cen YX, Wu BH, Wei C, Xiong F, Li DF, Liu TT, Luo MH, Guo LL, Li YX, Wang LS, Wang JY, Yao J. Berberine prevents stress-induced gut inflammation and visceral hypersensitivity and reduces intestinal motility in rats. World J Gastroenterol 2019; 25:3956-3971. [PMID: 31413530 PMCID: PMC6689801 DOI: 10.3748/wjg.v25.i29.3956] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/26/2019] [Accepted: 07/05/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Irritable bowel syndrome (IBS) is a common chronic non-organic disease of the digestive system. Berberine (BBR) has been used to treat patients with IBS, but the underlying therapeutic mechanism is little understood. We believe that BBR achieves its therapeutic effect on IBS by preventing stress intestinal inflammation and visceral hypersensitivity and reducing bowel motility.
AIM To test the hypothesis that BBR achieves its therapeutic effect on IBS by preventing subclinical inflammation of the intestinal mucosa and reducing visceral hypersensitivity and intestinal motility.
METHODS IBS was induced in rats via water avoidance stress (WAS). qRT-PCR and histological analyses were used to evaluate the levels of cytokines and mucosal inflammation, respectively. Modified ELISA and qRT-PCR were used to evaluate the nuclear factor kappa-B (NF-κB) signal transduction pathway. Colorectal distention test, gastrointestinal transit measurement, Western blot, and qRT-PCR were used to analyze visceral sensitivity, intestinal motility, the expression of C-kit (marker of Cajal mesenchymal cells), and the expression of brain derived neurotrophic factor (BDNF) and its receptor TrkB.
RESULTS WAS led to mucosal inflammation, visceral hyperalgesia, and high intestinal motility. Oral administration of BBR inhibited the NF-κB signal transduction pathway, reduced the expression of pro-inflammatory cytokines [interleukin (IL)-1β, IL-6, interferon-γ, and tumor necrosis factor-α], promoted the expression of anti-inflammatory cytokines (IL-10 and transforming growth factor-β), and improved the terminal ileum tissue inflammation. BBR inhibited the expression of BDNF, TrkB, and C-kit in IBS rats, leading to the reduction of intestinal motility and visceral hypersensitivity. The therapeutic effect of BBR at a high dose (100 mg/kg) was superior to than that of the low-dose (25 mg/kg) group.
CONCLUSION BBR reduces intestinal mucosal inflammation by inhibiting the intestinal NF-κB signal pathway in the IBS rats. BBR reduces the expression of BDNF, its receptor TrkB, and C-kit. BBR also reduces intestinal motility and visceral sensitivity to achieve its therapeutic effect on IBS.
Collapse
Affiliation(s)
- Zhi-Chao Yu
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, Shenzhen 518020, Guangdong Province, China
| | - Yong-Xin Cen
- Department of Gastroenterology, Foshan Gaoming Affiliated Hospital of Guangdong Medical University, Foshan 528500, Guangdong Province, China
| | - Ben-Hua Wu
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, Shenzhen 518020, Guangdong Province, China
| | - Cheng Wei
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, Shenzhen 518020, Guangdong Province, China
| | - Feng Xiong
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, Shenzhen 518020, Guangdong Province, China
| | - De-Feng Li
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, Shenzhen 518020, Guangdong Province, China
| | - Ting-Ting Liu
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, Shenzhen 518020, Guangdong Province, China
| | - Ming-Han Luo
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, Shenzhen 518020, Guangdong Province, China
| | - Li-Liangzi Guo
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, Shenzhen 518020, Guangdong Province, China
| | - Ying-Xue Li
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, Shenzhen 518020, Guangdong Province, China
| | - Li-Sheng Wang
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, Shenzhen 518020, Guangdong Province, China
| | - Jian-Yao Wang
- Department of General Surgery, Shenzhen Children’s Hospital, Shenzhen 518026, Guangdong Province, China
| | - Jun Yao
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, Shenzhen 518020, Guangdong Province, China
| |
Collapse
|
28
|
Beba M, Djafarian K, Shab-Bidar S. Effect of Berberine on C-reactive protein: A systematic review and meta-analysis of randomized controlled trials. Complement Ther Med 2019; 46:81-86. [PMID: 31519292 DOI: 10.1016/j.ctim.2019.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/01/2019] [Accepted: 08/01/2019] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVES Clinical evidence suggests the beneficial effects of Berberine (BER) on inflammatory markers. However, these results are controversial. The aim of this systematic review was to assess the effects of BER on C-reactive protein (CRP) using clinical trials in adults. DESIGN Systematic review and meta-analysis. MAIN OUTCOME MEASURES We searched randomized controlled trials in PubMed and Scopus up to November 2018. The mean differences (MD) and confidence interval (CI) of CRP (mg/L) concentrations were pooled with a random- or a fixed-effects model depending on the results of heterogeneity tests. RESULTS Of 1242 studies identified, 5 were included in the meta-analysis. Pooled analysis showed that serum levels of CRP were decreased after BER supplementation (MD:-0.64 mg/L, 95% CI(-0.67 to -0.61) P < 0.001)) without any significant heterogeneity (I2 = 0.0% and P = 0.984). CONCLUSION This meta-analysis showed BER supplementation may ameliorate the state of chronic inflammation. Patients with cardiovascular disease and diabetes are two important groups which may benefit from BER supplementation. Further well-designed investigations with larger samples are needed to ascertain the long-term effects of BER on chronic inflammation.
Collapse
Affiliation(s)
- Mohammad Beba
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Kurosh Djafarian
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Sakineh Shab-Bidar
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
29
|
Ma X, Chen Z, Wang L, Wang G, Wang Z, Dong X, Wen B, Zhang Z. The Pathogenesis of Diabetes Mellitus by Oxidative Stress and Inflammation: Its Inhibition by Berberine. Front Pharmacol 2018; 9:782. [PMID: 30100874 PMCID: PMC6072898 DOI: 10.3389/fphar.2018.00782] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/27/2018] [Indexed: 12/17/2022] Open
Abstract
A substantial knowledge on the pathogenesis of diabetes mellitus (DM) by oxidative stress and inflammation is available. Berberine is a biologically active botanical that can combat oxidative stress and inflammation and thus ameliorate DM, especially type 2 DM. This article describes the potential of berberine against oxidative stress and inflammation with special emphasis on its mechanistic aspects. In diabetic animal studies, the modified levels of proinflammatory cytokines and oxidative stress markers were observed after administering berberine. In renal, fat, hepatic, pancreatic and several others tissues, berberine-mediated suppression of oxidative stress and inflammation was noted. Berberine acted against oxidative stress and inflammation through a very complex mechanism consisting of several kinases and signaling pathways involving various factors, including NF-κB (nuclear factor-κB) and AMPK (AMP-activated protein kinases). Moreover, MAPKs (mitogen-activated protein kinases) and Nrf2 (nuclear factor erythroid-2 related factor 2) also have mechanistic involvement in oxidative stress and inflammation. In spite of above advancements, the mechanistic aspects of the inhibitory role of berberine against oxidative stress and inflammation in diabetes mellitus still necessitate additional molecular studies. These studies will be useful to examine the new prospects of natural moieties against DM.
Collapse
Affiliation(s)
- Xueling Ma
- Beijing University of Chinese Medicine, Beijing, China
| | - Zhongjun Chen
- Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, China
| | - Le Wang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Gesheng Wang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zihui Wang
- Chaoyang Hospital, Capital Medical University, Beijing, China
| | - XiaoBo Dong
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Binyu Wen
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhichen Zhang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
30
|
Mahdavi Siuki M, Fazel Nasab N, Barati E, Nezafat Firizi M, Jalilvand T, Namdar Ahmadabad H. The protective effect of berberine against lipopolysaccharide-induced abortion by modulation of inflammatory/immune responses. Immunopharmacol Immunotoxicol 2018; 40:333-337. [PMID: 30003821 DOI: 10.1080/08923973.2018.1485155] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Berberine is an isoquinoline derivative alkaloid with anti-inflammatory activity. In this study, we investigated the protective effects of berberine in prevention of LPS-induced abortion. MATERIALS AND METHODS On the gestation day (GD) 9.5, the pregnant mice were injected with low, medium, and high doses of berberine or with PBS. After 4 h, berberine or PBS-pretreated mice were injected with LPS. On GD 11.5, blood samples and uterine tissues were collected from treated mice and percentage of abortion and serum levels of NO, TNF-α, IL-10, and IL12p70 were measured by macroscopic examination and sandwich ELISA, respectively. RESULTS Our findings show that mice injected with berberine were resistant to LPS-induced abortion. We also found that this treatment prevents the reduction of IL-10 and the enhancement of NO, TNF-α, and IL-12p70 in LPS-treated pregnant mice. CONCLUSIONS Taken together, our results suggest that berberine as an anti-inflammatory agent has protective effects on LPS-induced abortion by modulation of inflammatory/immune responses.
Collapse
Affiliation(s)
- Maryam Mahdavi Siuki
- a Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology , Tehran , Iran
| | - Nafiseh Fazel Nasab
- b Department of English Language , Eghbal Lahoori Institute of Higher Education , Mashhad , Iran
| | - Elham Barati
- c Department of Biology , Payame Noor University of Mashhad , Mashhad , Iran
| | - Maryam Nezafat Firizi
- d Department of Pathobiology and Laboratory Sciences , North Khorasan University of Medical Sciences , Bojnurd , Iran
| | - Tahereh Jalilvand
- e Department of Molecular Science, School of Medicine , North Khorasan University of Medical Sciences , Bojnurd , Iran
| | - Hasan Namdar Ahmadabad
- d Department of Pathobiology and Laboratory Sciences , North Khorasan University of Medical Sciences , Bojnurd , Iran
| |
Collapse
|
31
|
The Signaling Pathways Involved in the Antiatherosclerotic Effects Produced by Chinese Herbal Medicines. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5392375. [PMID: 30009170 PMCID: PMC6020658 DOI: 10.1155/2018/5392375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/15/2018] [Accepted: 05/21/2018] [Indexed: 12/19/2022]
Abstract
Cardiovascular diseases (CVDs) are considered to be the predominant cause of death in the world. Chinese herb medicines (CHMs) have been widely used for the treatment of CVDs in Asian countries for thousands of years. One reason of high efficacy of CHMs in treating CVDs is attributed to their inhibition in atherosclerosis (AS) development, a critical contributor to CVDs occurrence. Cumulative studies have demonstrated that CHMs alleviate atherogenesis via mediating pathophysiologic events involved in AS. However, there is deficiency in the summaries regarding antiatherogenic signal pathways regulated by CHMs. In this review, we focus on the signal cascades by which herb medicines and relevant extractives, derivatives, and patents improve proatherogenic processes including endothelium dysfunction, lipid accumulation, and inflammation. We mainly elaborate the CHMs-mediated signaling pathways in endothelial cells, macrophages, and vascular smooth muscle cells of each pathogenic event. Moreover, we briefly describe the other AS-related factors such as thrombosis, autophagy, immune response, and noncoding RNAs and effects of CHMs on them in the way of cascade regulation, which is helpful to further illustrate the molecular mechanisms of AS initiation and progression and discover newly effective agents for AS management.
Collapse
|
32
|
Yin Z, Yang J, Ning R, Liu Y, Feng M, Gu C, Fei J, Li Y. Signal pathways, diseases, and functions associated with the miR-19a/92a cluster and the use of berberine to modulate the expression of this cluster in multiple myeloma cells. J Biochem Mol Toxicol 2018; 32:e22057. [PMID: 29687521 DOI: 10.1002/jbt.22057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/27/2018] [Accepted: 04/02/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND Berberine downregulated miR-19a/92a cluster expression in multiple myeloma (MM) cells. METHODS The cell viability of MM cells after berberine treatment was measured by CCK8 assay. qRT-PCR assay validated miR-19a/92a expression in multiple myeloma cells. TAM database analyzed miR-19a/92a-associated disease. miREnvironment database revealed that effects of environmental factors on the miR-19a/92a cluster. By targeting the seed region in the miRNA, the role of t-anti-miR-19a/92a cluster was evaluated by cell proliferation, migration, and colony formation. RESULTS Berberine inhibited the cell viability of MM cells and downregulated the expression of miR-19a/92a. Seven kinds of hematological malignancies are closely associated with miR-19a/92a expression. By targeting the seed region of the miRNA, t-anti-miR-19a/92a significantly inhibits multiple myeloma cell proliferation, migration, and colony formation. CONCLUSION Our findings may exhibit that miR-19a/92a cluster is a therapeutic target for MM and provide new mechanistic insight into the anti-MM effects of certain compounds in traditional Chinese herbal medicines.
Collapse
Affiliation(s)
- Zhao Yin
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, 601 Western Huangpu Avenue, 510632, Guangzhou, China.,Engineering Technology Research Center of drug development for small nucleic acid, Guangdong, China.,Institute of Chinese Integrative Medicine, Medical College of Jinan University, Guangzhou 510632, China.,Antisense Biopharmaceutical technology co., Ltd., Guangzhou, China
| | - Juhua Yang
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, 601 Western Huangpu Avenue, 510632, Guangzhou, China.,Engineering Technology Research Center of drug development for small nucleic acid, Guangdong, China
| | - Rong Ning
- Department of Clinical Medicine, Medical College of Jinan University, Guangzhou 510632, China
| | - Yanjun Liu
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, 601 Western Huangpu Avenue, 510632, Guangzhou, China
| | - Maoxiao Feng
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, 601 Western Huangpu Avenue, 510632, Guangzhou, China
| | - Chunmin Gu
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, 601 Western Huangpu Avenue, 510632, Guangzhou, China.,Engineering Technology Research Center of drug development for small nucleic acid, Guangdong, China.,Institute of Chinese Integrative Medicine, Medical College of Jinan University, Guangzhou 510632, China
| | - Jia Fei
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, 601 Western Huangpu Avenue, 510632, Guangzhou, China.,Engineering Technology Research Center of drug development for small nucleic acid, Guangdong, China.,Institute of Chinese Integrative Medicine, Medical College of Jinan University, Guangzhou 510632, China.,Department of Clinical Medicine, Medical College of Jinan University, Guangzhou 510632, China
| | - Yumin Li
- Antisense Biopharmaceutical technology co., Ltd., Guangzhou, China.,Medical Laboratory of Shen zhen Luohu People's Hospital
| |
Collapse
|
33
|
Wan Q, Liu Z, Yang Y, Cui X. Suppressive effects of berberine on atherosclerosis via downregulating visfatin expression and attenuating visfatin-induced endothelial dysfunction. Int J Mol Med 2018; 41:1939-1948. [PMID: 29393413 PMCID: PMC5810236 DOI: 10.3892/ijmm.2018.3440] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/24/2018] [Indexed: 11/05/2022] Open
Abstract
Berberine (BBR) possesses significant anti-atherosclerosis properties. Visfatin is one of the most promising biomarkers of incoming atherosclerosis. However, research on the effect of BBR on regulating visfatin expression in atherogenesis remains largely unknown. In this study, we investigated the effects of BBR on visfatin expression and atherogenesis in apolipoprotein E knockout (ApoE-/-) mice. The effect of BBR on attenuating visfatin-induced endothelial dysfunction was also evaluated in cultured human umbilical vein endothelial cells (HUVECs). In vivo experiments showed that BBR treatment (5 mg/kg/day) significantly reduced the serum levels of visfatin, lipid, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), the protein expression of visfatin, p-p38 MAPK and p-c-Jun N-terminal kinase (JNK) in mice aorta and the distribution of visfatin in the atherosclerotic lesions in ApoE-/- mice fed with a Western diet. In addition, in vitro experiments indicated that visfatin (100 µg/l) significantly increased apoptosis, the contents of IL-6 and TNF-α, the protein levels of p-p38 MAPK, p-JNK and Bax in HUVECs, which were reversed by BBR administration (50 µmol/l). Our findings suggest that BBR significantly ameliorates Western diet-induced atherosclerosis in ApoE-/- mice via downregulating visfatin expression, which is related to the inhibition of p38 MAPK and JNK signaling pathways and subsequent suppression of visfatin-induced endothelial dysfunction.
Collapse
Affiliation(s)
- Qiang Wan
- Department of Medical Cardiology, The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330006, P.R. China
| | - Zhongyong Liu
- Department of Medical Cardiology, The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330006, P.R. China
| | - Yuping Yang
- Department of Medical Cardiology, The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330006, P.R. China
| | - Xiaobing Cui
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
34
|
He Y, Yuan X, Zhou G, Feng A. Activation of IGF-1/IGFBP-3 signaling by berberine improves intestinal mucosal barrier of rats with acute endotoxemia. Fitoterapia 2018; 124:200-205. [DOI: 10.1016/j.fitote.2017.11.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 11/06/2017] [Accepted: 11/13/2017] [Indexed: 12/19/2022]
|
35
|
Xie D, Huang L, Zhao G, Yu Y, Gao J, Li H, Wen C. Dissecting the Underlying Pharmaceutical Mechanism of Chinese Traditional Medicine Yun-Pi-Yi-Shen-Tong-Du-Tang Acting on Ankylosing Spondylitis through Systems Biology Approaches. Sci Rep 2017; 7:13436. [PMID: 29044146 PMCID: PMC5647417 DOI: 10.1038/s41598-017-13723-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 09/27/2017] [Indexed: 02/07/2023] Open
Abstract
Traditional Chinese Medicine (TCM) has been served as complementary medicine for Ankylosing Spondylitis (AS) treatment for a long time. Yun-Pi-Yi-Shen-Tong-Du-Tang (Y-Y-T) is a novel empirical formula designed by Prof. Chengping Wen. In this study, a retrospective investigation supported efficacy of Y-Y-T and then we deciphered the underlying molecular mechanism of the efficacy. Herbal ingredients and targeting proteins were collected from TCMID. PPI networks were constructed to further infer the relationship among Y-Y-T, drugs used for treating AS, differentially expressed genes of AS patients and AS disease proteins. Finally, it was suggested that TLR signaling pathway and T cell receptor signaling pathway may involve in the biological processes of AS progression and contribute to the curative effect and proteins such as JAK2, STAT3, HSP90AA1, TNF and PTEN were the key targets. Our systemic investigation to infer therapeutic mechanism of Y-Y-T for AS treatment provides a new insight in understanding TCM pharmacology.
Collapse
Affiliation(s)
- Duoli Xie
- TCM Clinical Basis Institute, Zhejiang Chinese Medicine University, 548 Binwen Road, Hangzhou, Zhejiang, 310000, China
| | - Lin Huang
- TCM Clinical Basis Institute, Zhejiang Chinese Medicine University, 548 Binwen Road, Hangzhou, Zhejiang, 310000, China
| | - Guanghui Zhao
- Guangzhou University of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou, 510006, China
| | - Yiran Yu
- TCM Clinical Basis Institute, Zhejiang Chinese Medicine University, 548 Binwen Road, Hangzhou, Zhejiang, 310000, China
| | - Jiawei Gao
- TCM Clinical Basis Institute, Zhejiang Chinese Medicine University, 548 Binwen Road, Hangzhou, Zhejiang, 310000, China
| | - Haichang Li
- TCM Clinical Basis Institute, Zhejiang Chinese Medicine University, 548 Binwen Road, Hangzhou, Zhejiang, 310000, China
| | - Chengping Wen
- TCM Clinical Basis Institute, Zhejiang Chinese Medicine University, 548 Binwen Road, Hangzhou, Zhejiang, 310000, China.
| |
Collapse
|
36
|
Traditional Chinese Medicine Protects against Cytokine Production as the Potential Immunosuppressive Agents in Atherosclerosis. J Immunol Res 2017; 2017:7424307. [PMID: 29038791 PMCID: PMC5606136 DOI: 10.1155/2017/7424307] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/10/2017] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease caused by dyslipidemia and mediated by both innate and adaptive immune responses. Inflammation is a critical factor at all stages of atherosclerosis progression. Proinflammatory cytokines accelerate atherosclerosis progression, while anti-inflammatory cytokines ameliorate the disease. Accordingly, strategies to inhibit immune activation and impede immune responses towards anti-inflammatory activity are an alternative therapeutic strategy to conventional chemotherapy on cardiocerebrovascular outcomes. Since a number of Chinese medicinal plants have been used traditionally to prevent and treat atherosclerosis, it is reasonable to assume that the plants used for such disease may suppress the immune responses and the resultant inflammation. This review focuses on plants that have immunomodulatory effects on the production of inflammatory cytokine burst and are used in Chinese traditional medicine for the prevention and therapy of atherosclerosis.
Collapse
|
37
|
Anti-inflammatory activity of coptisine free base in mice through inhibition of NF-κB and MAPK signaling pathways. Eur J Pharmacol 2017. [DOI: 10.1016/j.ejphar.2017.06.027] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
38
|
Fu D, Yu JY, Connell AR, Yang S, Hookham MB, McLeese R, Lyons TJ. Beneficial Effects of Berberine on Oxidized LDL-Induced Cytotoxicity to Human Retinal Müller Cells. Invest Ophthalmol Vis Sci 2017; 57:3369-79. [PMID: 27367504 PMCID: PMC4961062 DOI: 10.1167/iovs.16-19291] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Purpose Limited mechanistic understanding of diabetic retinopathy (DR) has hindered therapeutic advances. Berberine, an isoquinolone alkaloid, has shown favorable effects on glucose and lipid metabolism in animal and human studies, but effects on DR are unknown. We previously demonstrated intraretinal extravasation and modification of LDL in human diabetes, and toxicity of modified LDL to human retinal Müller cells. We now explore pathogenic effects of modified LDL on Müller cells, and the efficacy of berberine in mitigating this cytotoxicity. Methods Confluent human Müller cells were exposed to in vitro–modified ‘highly oxidized, glycated (HOG-) LDL versus native-LDL (N-LDL; 200 mg protein/L) for 6 or 24 hours, with/without pretreatment with berberine (5 μM, 1 hour) and/or the adenosine monophosphate (AMP)-activated protein kinase (AMPK) inhibitor, Compound C (5 μM, 1 hour). Using techniques including Western blots, reactive oxygen species (ROS) detection assay, and quantitative real-time PCR, the following outcomes were assessed: cell viability (CCK-8 assay), autophagy (LC3, Beclin-1, ATG-5), apoptosis (cleaved caspase 3, cleaved poly-ADP ribose polymerase), oxidative stress (ROS, nuclear factor erythroid 2-related factor 2, glutathione peroxidase 1, NADPH oxidase 4), angiogenesis (VEGF, pigment epithelium-derived factor), inflammation (inducible nitric oxide synthase, intercellular adhesion molecule 1, IL-6, IL-8, TNF-α), and glial cell activation (glial fibrillary acidic protein). Results Native-LDL had no effect on cultured human Müller cells, but HOG-LDL exhibited marked toxicity, significantly decreasing viability and inducing autophagy, apoptosis, oxidative stress, expression of angiogenic factors, inflammation, and glial cell activation. Berberine attenuated all the effects of HOG-LDL (all P < 0.05), and its effects were mitigated by AMPK inhibition (P < 0.05). Conclusions Berberine inhibits modified LDL-induced Müller cell injury by activating the AMPK pathway, and merits further study as an agent for preventing and/or treating DR.
Collapse
Affiliation(s)
- Dongxu Fu
- Centre for Experimental Medicine School of Medicine, Dentistry, and Biomedical Sciences, Queen's University Belfast, Northern Ireland, United Kingdom
| | - Jeremy Y Yu
- Centre for Experimental Medicine School of Medicine, Dentistry, and Biomedical Sciences, Queen's University Belfast, Northern Ireland, United Kingdom
| | - Anna R Connell
- Centre for Experimental Medicine School of Medicine, Dentistry, and Biomedical Sciences, Queen's University Belfast, Northern Ireland, United Kingdom
| | - Shihe Yang
- Section of Endocrinology and Diabetes, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Michelle B Hookham
- Centre for Experimental Medicine School of Medicine, Dentistry, and Biomedical Sciences, Queen's University Belfast, Northern Ireland, United Kingdom
| | - Rebecca McLeese
- Centre for Experimental Medicine School of Medicine, Dentistry, and Biomedical Sciences, Queen's University Belfast, Northern Ireland, United Kingdom
| | - Timothy J Lyons
- Centre for Experimental Medicine School of Medicine, Dentistry, and Biomedical Sciences, Queen's University Belfast, Northern Ireland, United Kingdom
| |
Collapse
|
39
|
Maleki SN, Aboutaleb N, Souri F. Berberine confers neuroprotection in coping with focal cerebral ischemia by targeting inflammatory cytokines. J Chem Neuroanat 2017; 87:54-59. [PMID: 28495517 PMCID: PMC5812778 DOI: 10.1016/j.jchemneu.2017.04.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 03/24/2017] [Accepted: 04/24/2017] [Indexed: 01/05/2023]
Abstract
Berberine reduces brain edema and infarct volume through regulation of inflammatory responses in focal cerebral ischemia. Berberine increases the expression of anti-inflammatory cytokines after ischemic stroke. Berberine contributes to recovery of motor function after focal cerebral ischemia.
Scope Existing research indicates that anti-inflammatory and antioxidant properties of berberine play major roles in coping with oxidative stress in neurodegenerative diseases, but it is not known if this isoquinoline alkaloid affects inflammatory cytokines such as interleukin 10 in focal cerebral ischemia. Methods and results Male Wistar rats (10 weeks old) were treated with 40 mg/kg concentration of berberine 1 h after focal cerebral ischemia and the anti-inflammatory properties of berberine were evaluated by immunohistochemical analysis, water content measure and behavioral tests. Evaluation of infarct volume was performed by TTC staining. Immunohistochemistry and behavioral assessment indicated recovery in treatment group compared to only ischemia group. The infarct volume decreased in treatment group compared to ischemia group. Berberine administration significantly decreased brain edema and contributed to the restoration of motor function. Moreover, berberine potently contributed to neuroprotection in motor area through downregulation of pro-inflammatory cytokines and upregulation of anti-inflammatory cytokines. Conclusions These findings confirm the validity of berberine as a potent anti-inflammatory agent in treatment of ischemic stroke.
Collapse
Affiliation(s)
- Solmaz Nasseri Maleki
- Physiology Research Center and Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nahid Aboutaleb
- Physiology Research Center and Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Faramarz Souri
- Physiology Research Center and Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Tian Y, Li LH, Yang GZ, Chen WM. [Study of the effects in vitro of berberine combined with bortezomib on multiple myeloma cell line U266 cells]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2016; 37:976-981. [PMID: 27995884 PMCID: PMC7348517 DOI: 10.3760/cma.j.issn.0253-2727.2016.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Objective: To investigate the effects of berberine in combination with bortezomib on proliferation and apoptosis of multiple myeloma (MM) cell line. Methods: MM cell line U266 cells were treated with berberine and/or bortezomib. The effects of berberine and/or bortezomib on proliferation of cells were measured by methylthiazolyl tetrazolium bromide (MTT). Flow cytometric Annexin Ⅴ/PI double staining method was used to detect effect of either drug alone or in combination on apoptosis of MM cell line U266. ELISA was used to measure the expression of casepase-3,-8,-9 affected by the two drugs. Western blot was used to detect the expression of the apoptosis-related protein TRADD and FADD. King formula was used to determine if there was a synergistic effect of berberine in combination with bortezomib. Results: ① Both berberine and bortezomib as single agent had dose- and time-dependent effects of proliferation inhibition on U266 cells. Berberine (20 μmol/L) and bortezomib (5 nmol/L) had a synergistic effect of proliferation inhibition (Q value: 1.31-1.65). ② The proportion of early stage apoptosis in both single agent groups and combination group significantly increased compared to control group (P< 0.05). Berberine and bortezomib had a synergistic effect on cell apoptosis (Q value after 6 h and 12 h were 0.896 and 1.197, respectively). ③ Berberine in combination with bortezomib significantly upregulated expressions of caspase-3, -8 and -9, which were statistically significant (P<0.05). ④Berberine in combination with bortezomib significantly upregulated expressions of TRADD (0.91±0.01, 0.70±0.01) and FADD (0.98±0.01, 0.98±0.01) compared with control group (both P<0.05). Conclusion: Berberine in combination with bortezomib had synergistic effects on proliferation inhibition and apoptosis, which were mediated by up-regulated levels of TRADD and FADD.
Collapse
Affiliation(s)
- Y Tian
- Department of Hematology, Beiijing Chao-yang Hospital, Capital Medical University, Beijing 100020, China
| | | | | | | |
Collapse
|
41
|
Berberine and inflammatory bowel disease: A concise review. Pharmacol Res 2016; 113:592-599. [DOI: 10.1016/j.phrs.2016.09.041] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/27/2016] [Accepted: 09/29/2016] [Indexed: 12/14/2022]
|
42
|
Gu C, Li T, Yin Z, Chen S, Fei J, Shen J, Zhang Y. Integrative analysis of signaling pathways and diseases associated with the miR-106b/25 cluster and their function study in berberine-induced multiple myeloma cells. Funct Integr Genomics 2016; 17:253-262. [PMID: 27647143 DOI: 10.1007/s10142-016-0519-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 08/25/2016] [Accepted: 08/30/2016] [Indexed: 01/22/2023]
Abstract
Berberine (BBR), a traditional Chinese herbal medicine compound, has emerged as a novel class of anti-tumor agent. Our previous microRNA (miRNA) microarray demonstrated that miR-106b/25 was significantly down-regulated in BBR-treated multiple myeloma (MM) cells. Here, systematic integration showed that miR-106b/25 cluster is involved in multiple cancer-related signaling pathways and tumorigenesis. MiREnvironment database revealed that multiple environmental factors (drug, ionizing radiation, hypoxia) affected the miR-106b/25 cluster expression. By targeting the seed region in the miRNA, tiny anti-mir106b/25 cluster (t-anti-mir106b/25 cluster) significantly induced suppression in cell viability and colony formation. Western blot validated that t-anti-miR-106b/25 cluster effectively inhibited the expression of P38 MAPK and phospho-P38 MAPK in MM cells. These findings indicated the miR-106b/25 cluster functioned as oncogene and might provide a novel molecular insight into MM.
Collapse
Affiliation(s)
- Chunming Gu
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, 601 Western Huangpu Avenue, 510632, Guangzhou, China.,Institute of Chinese Integrative Medicine, Medical College of Jinan University, Guangzhou, 510632, China
| | - Tianfu Li
- Department of Clinical Medicine, Medical College of Jinan University, Guangzhou, 510632, China
| | - Zhao Yin
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, 601 Western Huangpu Avenue, 510632, Guangzhou, China
| | - Shengting Chen
- Department of Blood Transfusion, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Jia Fei
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, 601 Western Huangpu Avenue, 510632, Guangzhou, China. .,Institute of Chinese Integrative Medicine, Medical College of Jinan University, Guangzhou, 510632, China.
| | - Jianping Shen
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China.
| | - Yuan Zhang
- Institute of Hematology, Medical College of Jinan University, Guangzhou, 510632, China
| |
Collapse
|
43
|
Imenshahidi M, Hosseinzadeh H. Berberis Vulgaris and Berberine: An Update Review. Phytother Res 2016; 30:1745-1764. [PMID: 27528198 DOI: 10.1002/ptr.5693] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 07/04/2016] [Accepted: 07/16/2016] [Indexed: 01/30/2023]
Abstract
Berberine is an isoquinoline alkaloid present in several plants, including Coptis sp. and Berberis sp. Berberine is a customary component in Chinese medicine, and is characterized by a diversity of pharmacological effects. An extensive search in electronic databases (PubMed, Scopus, Ovid, Wiley, ProQuest, ISI, and Science Direct) were used to identify the pharmacological and clinical studies on Berberis vulgaris and berberine, during 2008 to 2015, using 'berberine' and 'Berberis vulgaris' as search words. We found more than 1200 new article studying the properties and clinical uses of berberine and B. vulgaris, for treating tumor, diabetes, cardiovascular disease, hyperlipidemia, inflammation, bacterial and viral infections, cerebral ischemia trauma, mental disease, Alzheimer disease, osteoporosis, and so on. In this article, we have updated the pharmacological effects of B. vulgaris and its active constituent, berberine. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Mohsen Imenshahidi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
44
|
Cicero AFG, Baggioni A. Berberine and Its Role in Chronic Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 928:27-45. [PMID: 27671811 DOI: 10.1007/978-3-319-41334-1_2] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Berberine is a quaternary ammonium salt from the protoberberine group of isoquinoline alkaloids. It is found in such plants as Berberis [e.g. Berberis aquifolium (Oregon grape), Berberis vulgaris (barberry), Berberis aristata (tree turmeric)], Hydrastis canadensis (goldenseal), Xanthorhiza simplicissima (yellowroot), Phellodendron amurense [2] (Amur corktree), Coptis chinensis (Chinese goldthread), Tinospora cordifolia, Argemone mexicana (prickly poppy) and Eschscholzia californica (Californian poppy). In vitro it exerts significant anti-inflammatory and antioxidant activities. In animal models berberine has neuroprotective and cardiovascular protective effects. In humans, its lipid-lowering and insulin-resistance improving actions have clearly been demonstrated in numerous randomized clinical trials. Moreover, preliminary clinical evidence suggest the ability of berberine to reduce endothelial inflammation improving vascular health, even in patients already affected by cardiovascular diseases. Altogether the available evidences suggest a possible application of berberine use in the management of chronic cardiometabolic disorders.
Collapse
Affiliation(s)
- Arrigo F G Cicero
- Cardiovascular Disease Prevention Research Unit, Department of Medical and Surgical Sciences, S. Orsola-Malpighi University Hospital, Via Albertoni 15, 40138, Bologna, Italy.
| | - Alessandra Baggioni
- Cardiovascular Disease Prevention Research Unit, Department of Medical and Surgical Sciences, S. Orsola-Malpighi University Hospital, Via Albertoni 15, 40138, Bologna, Italy
| |
Collapse
|
45
|
Feng M, Luo X, Gu C, Li Y, Zhu X, Fei J. Systematic analysis of berberine-induced signaling pathway between miRNA clusters and mRNAs and identification of mir-99a ∼ 125b cluster function by seed-targeting inhibitors in multiple myeloma cells. RNA Biol 2015; 12:82-91. [PMID: 25826415 DOI: 10.1080/15476286.2015.1017219] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Berberine (BBR) is a natural alkaloid derived from a traditional Chinese herbal medicine. However, the exact mechanisms underlying the different effects of berberine on MM cells have not been fully elucidated. METHODS A systematic analysis assay integrated common signaling pathways modulated by the 3 miRNA clusters and mRNAs in MM cells after BBR treatment. The role of the mir-99a ∼ 125b cluster, an important oncomir in MM, was identified by comparing the effects of t-anti-mirs with complete complementary antisense locked nucleic acids (LNAs) against mature mir-125b (anti-mir-125b). RESULTS Three miRNAs clusters (miR-99a ∼ 125b, miR-17 ∼ 92 and miR-106 ∼ 25) were significantly down-regulated in BBR-treated MM cells and are involved in multiple cancer-related signaling pathways. Furthermore, the top 5 differentially regulated genes, RAC1, NFκB1, MYC, JUN and CCND1 might play key roles in the progression of MM. Systematic integration revealed that 3 common signaling pathways (TP53, Erb and MAPK) link the 3 miRNA clusters and the 5 key mRNAs. Meanwhile, both BBR and seed-targeting t-anti-mir-99a ∼ 125b cluster LNAs significantly induced apoptosis, G2-phase cell cycle arrest and colony inhibition. CONCLUSIONS our results suggest that BBR suppresses multiple myeloma cells, partly by down-regulating the 3 miRNA clusters and many mRNAs, possibly through TP53, Erb and MAPK signaling pathways. The mir-99a ∼ 125b cluster might be a novel target for MM treatment. These findings provide new mechanistic insight into the anticancer effects of certain traditional Chinese herbal medicine compounds.
Collapse
Affiliation(s)
- Maoxiao Feng
- a Department of Biochemistry and Molecular Biology; Medical College of Jinan University ; Guangzhou , China
| | | | | | | | | | | |
Collapse
|
46
|
Cardiac-Restricted IGF-1Ea Overexpression Reduces the Early Accumulation of Inflammatory Myeloid Cells and Mediates Expression of Extracellular Matrix Remodelling Genes after Myocardial Infarction. Mediators Inflamm 2015; 2015:484357. [PMID: 26491228 PMCID: PMC4605352 DOI: 10.1155/2015/484357] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/13/2015] [Indexed: 12/19/2022] Open
Abstract
Strategies to limit damage and improve repair after myocardial infarct remain a major therapeutic goal in cardiology. Our previous studies have shown that constitutive expression of a locally acting insulin-like growth factor-1 Ea (IGF-1Ea) propeptide promotes functional restoration after cardiac injury associated with decreased scar formation. In the current study, we investigated the underlying molecular and cellular mechanisms behind the enhanced functional recovery. We observed improved cardiac function in mice overexpressing cardiac-specific IGF-1Ea as early as day 7 after myocardial infarction. Analysis of gene transcription revealed that supplemental IGF-1Ea regulated expression of key metalloproteinases (MMP-2 and MMP-9), their inhibitors (TIMP-1 and TIMP-2), and collagen types (Col 1α1 and Col 1α3) in the first week after injury. Infiltration of inflammatory cells, which direct the remodelling process, was also altered; in particular there was a notable reduction in inflammatory Ly6C+ monocytes at day 3 and an increase in anti-inflammatory CD206+ macrophages at day 7. Taken together, these results indicate that the IGF-1Ea transgene shifts the balance of innate immune cell populations early after infarction, favouring a reduction in inflammatory myeloid cells. This correlates with reduced extracellular matrix remodelling and changes in collagen composition that may confer enhanced scar elasticity and improved cardiac function.
Collapse
|
47
|
Zimetti F, Adorni MP, Ronda N, Gatti R, Bernini F, Favari E. The natural compound berberine positively affects macrophage functions involved in atherogenesis. Nutr Metab Cardiovasc Dis 2015; 25:195-201. [PMID: 25240689 DOI: 10.1016/j.numecd.2014.08.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 08/01/2014] [Accepted: 08/12/2014] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND AIMS We investigated the effect of berberine (BBR), an alkaloid showing antiatherogenic properties beyond the cholesterol lowering capacity, on macrophage cholesterol handling upon exposure to human serum and on macrophage responses to excess free cholesterol (FC) loading. METHODS AND RESULTS Mouse and human macrophages were utilized as cellular models. Cholesterol content was measured by a fluorimetric assay; cholesterol efflux, cytotoxicity and membrane FC distribution were evaluated by radioisotopic assays. Monocyte chemotactic protein-1 (MCP-1) secretion was measured by ELISA; membrane ruffling and macropinocytosis were visualized by confocal microscopy. Exposure of cholesterol-enriched MPM to serum in the presence of 1 μM BBR resulted in a reduction of intracellular cholesterol content twice greater than exposure to serum alone (-52%; p < 0.01 and -21%; p < 0.05), an effect not mediated by an increase of cholesterol efflux, but rather by the inhibition of cholesterol uptake from serum. Consistently, BBR inhibited in a dose-dependent manner cholesterol accumulation in human macrophages exposed to hypercholesterolemic serum. Confocal microscope analysis revealed that BBR inhibited macropinocytosis, an independent-receptor process involved in LDL internalization. Macrophage FC-enrichment increased MCP-1 release by 1.5 folds, increased cytotoxicity by 2 fold, and induced membrane ruffling; all these responses were markedly inhibited by BBR. FC-enrichment led to an increase in plasma membrane cholesterol by 4.5 folds, an effect counteracted by BBR. CONCLUSION We showed novel potentially atheroprotective activities of BBR in macrophages, consisting in the inhibition of serum-induced cholesterol accumulation, occurring at least in part through an impairment of macropinocytosis, and of FC-induced deleterious effects.
Collapse
Affiliation(s)
- F Zimetti
- Department of Pharmacy, University of Parma, Parma, Italy
| | - M P Adorni
- Department of Pharmacy, University of Parma, Parma, Italy
| | - N Ronda
- Department of Pharmacy, University of Parma, Parma, Italy
| | - R Gatti
- Department of Biomedical, Biotechnology and Translational Sciences, University of Parma, Parma, Italy
| | - F Bernini
- Department of Pharmacy, University of Parma, Parma, Italy.
| | - E Favari
- Department of Pharmacy, University of Parma, Parma, Italy
| |
Collapse
|
48
|
Mahmoud AM, Germoush MO, Soliman AS. Berberine Attenuates Isoniazid-Induced Hepatotoxicity by Modulating Peroxisome Proliferator-Activated Receptor γ, Oxidative Stress and Inflammation. INT J PHARMACOL 2014. [DOI: 10.3923/ijp.2014.451.460] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
49
|
Tang QL, Zhong YF, Huang D, Li SD, He SH, Su JK, Zhang MQ. Effect of berberine on visceral hypersensitivity in a rat model of irritable bowel syndrome. Shijie Huaren Xiaohua Zazhi 2014; 22:4566-4572. [DOI: 10.11569/wcjd.v22.i30.4566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the effect of berberine (BBR) on visceral hypersensitivity in a rat model of irritable bowel syndrome (IBS) and explore the underlying mechanism.
METHODS: IBS was induced in rats by maternal separation. After berberine intervention, visceral sensitivity was evaluated using the score of abdominal withdrawal reflex (AWR). Defecation parameters were evaluated by restraint stress procedure. The levels of 5-hydroxytryptamine (5-HT) in the colon and interleukin-6 (IL-6) in plasma were determined by ELISA.
RESULTS: Compared with normal control rats, the score of AWR, defecation parameters, and levels of 5-HT and IL-6 were significantly increased in rats treated with normal saline, pinaverium or BBR (P < 0.05); however, these indexes were significantly lower in the pinaverium and BBR groups than in the normal saline group (P < 0.05), and in the BBR group than in the pinaverium group (P < 0.05).
CONCLUSION: BBR has a protective effect on visceral hypersensitivity in rats with IBS via mechanisms possibly related to IL-6 and 5-HT.
Collapse
|
50
|
Chen C, Yu Z, Li Y, Fichna J, Storr M. Effects of berberine in the gastrointestinal tract - a review of actions and therapeutic implications. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2014; 42:1053-70. [PMID: 25183302 DOI: 10.1142/s0192415x14500669] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Berberine is an isoquinoline alkaloid present in several plant species, including Coptis sp. and Berberis sp. In traditional medicine, extracts of berberine are used in the treatment of diarrhea of different origins. Recent studies have shown that berberine and its derivatives have significant biological effects on gastrointestinal (GI) and other functions and may become therapeutics for the treatment of diarrhea, gastroenteritis, diabetes, hyperlipidemia, cardiovascular diseases and inflammatory conditions. This paper summarizes the current knowledge on the actions of berberine in the GI tract. Binding and target sites, activated intracellular pathways, as well as the absorption and metabolism of berberine are discussed. Effects that may be useful in future clinical treatment, like antidiarrheal, anti-inflammatory and antitumor effects are critically reviewed and potential clinical applications are presented in detail.
Collapse
Affiliation(s)
- Chunqiu Chen
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | | | | | | | | |
Collapse
|