1
|
Cabané P, Correa C, Bode I, Aguilar R, Elorza AA. Biomarkers in Thyroid Cancer: Emerging Opportunities from Non-Coding RNAs and Mitochondrial Space. Int J Mol Sci 2024; 25:6719. [PMID: 38928426 PMCID: PMC11204084 DOI: 10.3390/ijms25126719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/01/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Thyroid cancer diagnosis primarily relies on imaging techniques and cytological analyses. In cases where the diagnosis is uncertain, the quantification of molecular markers has been incorporated after cytological examination. This approach helps physicians to make surgical decisions, estimate cancer aggressiveness, and monitor the response to treatments. Despite the availability of commercial molecular tests, their widespread use has been hindered in our experience due to cost constraints and variability between them. Thus, numerous groups are currently evaluating new molecular markers that ultimately will lead to improved diagnostic certainty, as well as better classification of prognosis and recurrence. In this review, we start reviewing the current preoperative testing methodologies, followed by a comprehensive review of emerging molecular markers. We focus on micro RNAs, long non-coding RNAs, and mitochondrial (mt) signatures, including mtDNA genes and circulating cell-free mtDNA. We envision that a robust set of molecular markers will complement the national and international clinical guides for proper assessment of the disease.
Collapse
Affiliation(s)
- Patricio Cabané
- Department of Head and Neck Surgery, Clinica INDISA, Santiago 7520440, Chile; (P.C.); (C.C.)
- Faculty of Medicine, Universidad Andres Bello, Santiago 8370071, Chile
- Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Claudio Correa
- Department of Head and Neck Surgery, Clinica INDISA, Santiago 7520440, Chile; (P.C.); (C.C.)
- Faculty of Medicine, Universidad Andres Bello, Santiago 8370071, Chile
| | - Ignacio Bode
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370071, Chile;
| | - Rodrigo Aguilar
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370071, Chile;
| | - Alvaro A. Elorza
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370071, Chile;
| |
Collapse
|
2
|
Rithvik A, Samarpita S, Rasool M. Unleashing the pathological imprinting of cancer in autoimmunity: Is ZEB1 the answer? Life Sci 2023; 332:122115. [PMID: 37739160 DOI: 10.1016/j.lfs.2023.122115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/05/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
The intriguing scientific relationship between autoimmunity and cancer immunology have been traditionally indulged to throw spotlight on novel pathological targets. Understandably, these "slowly killing" diseases are on the opposite ends of the immune spectrum. However, the immune regulatory mechanisms between autoimmunity and cancer are not always contradictory and sometimes mirror each other based on disease stage, location, and timepoint. Moreover, the blockade of immune checkpoint molecules or signalling pathways that unleashes the immune response against cancer is being leveraged to preserve self-tolerance and treat many autoimmune disorders. Therefore, understanding the common crucial factors involved in cancer is of paramount importance to paint the autoimmune disease spectrum and validate novel drug candidates. In the current review, we will broadly describe how ZEB1, or Zinc-finger E-box Binding Homeobox 1, reinforces immune exhaustion in cancer or contributes to loss of self-tolerance in auto-immune conditions. We made an effort to exchange information about the molecular pathways and pathological responses (immune regulation, cell proliferation, senescence, autophagy, hypoxia, and circadian rhythm) that can be regulated by ZEB1 in the context of autoimmunity. This will help untwine the intricate and closely postured pathogenesis of ZEB1, that is less explored from the perspective of autoimmunity than its counterpart, cancer. This review will further consider several approaches for targeting ZEB1 in autoimmunity.
Collapse
Affiliation(s)
- Arulkumaran Rithvik
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, Tamil Nādu, India
| | - Snigdha Samarpita
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Mahaboobkhan Rasool
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, Tamil Nādu, India.
| |
Collapse
|
3
|
Zhao F, Zhu S, Fang J, Dong H, Zhu C. Correlation of DNA methylation and lymph node metastasis in papillary thyroid carcinoma. Head Neck 2023. [PMID: 37097909 DOI: 10.1002/hed.27377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/11/2023] [Accepted: 04/09/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Papillary thyroid carcinoma (PTC) is the most common type of thyroid cancer with a primarily good prognosis, and its 10-year survival rate is over 90%. However, PTC is prone to early lymph node metastasis. METHODS Thyroid cancer tissues from PTC patients with lymphatic metastasis and normal tissues were collected for DNA methylation analysis. Different methylation sites, different methylation regions, gene-enriched pathways, and protein-protein interactions (PPIs) were analyzed. RESULTS There were 1004 differentially methylated sites in the PTC group versus the control group; these involved 479 hypermethylated sites in 415 related genes, 525 hypomethylated sites in 482 related genes, 64 differentially methylated regions located in the CpG island region, 34 differentially methylated genes closely related to thyroid cancer, and 17 genes with differentially methylated genes in the DNA promoter region. CONCLUSION NDRG4 hypermethylation and FOXO3, ZEB2, and CDK6 hypomethylation were associated with PTC lymph node metastasis.
Collapse
Affiliation(s)
- Feng Zhao
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siyi Zhu
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Fang
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huilei Dong
- Department of Head and Neck Surgery, Cancer Hospital of China Medical University, Shenyang, China
| | - Chenfang Zhu
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Birkhoff JC, Korporaal AL, Brouwer RWW, Nowosad K, Milazzo C, Mouratidou L, van den Hout MCGN, van IJcken WFJ, Huylebroeck D, Conidi A. Zeb2 DNA-Binding Sites in Neuroprogenitor Cells Reveal Autoregulation and Affirm Neurodevelopmental Defects, Including in Mowat-Wilson Syndrome. Genes (Basel) 2023; 14:genes14030629. [PMID: 36980900 PMCID: PMC10048071 DOI: 10.3390/genes14030629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/16/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Functional perturbation and action mechanism studies have shown that the transcription factor Zeb2 controls cell fate decisions, differentiation, and/or maturation in multiple cell lineages in embryos and after birth. In cultured embryonic stem cells (ESCs), Zeb2’s mRNA/protein upregulation is necessary for the exit from primed pluripotency and for entering general and neural differentiation. We edited mouse ESCs to produce Flag-V5 epitope-tagged Zeb2 protein from one endogenous allele. Using chromatin immunoprecipitation coupled with sequencing (ChIP-seq), we mapped 2432 DNA-binding sites for this tagged Zeb2 in ESC-derived neuroprogenitor cells (NPCs). A new, major binding site maps promoter-proximal to Zeb2 itself. The homozygous deletion of this site demonstrates that autoregulation of Zeb2 is necessary to elicit the appropriate Zeb2-dependent effects in ESC-to-NPC differentiation. We have also cross-referenced all the mapped Zeb2 binding sites with previously obtained transcriptome data from Zeb2 perturbations in ESC-derived NPCs, GABAergic interneurons from the ventral forebrain of mouse embryos, and stem/progenitor cells from the post-natal ventricular-subventricular zone (V-SVZ) in mouse forebrain, respectively. Despite the different characteristics of each of these neurogenic systems, we found interesting target gene overlaps. In addition, our study also contributes to explaining developmental disorders, including Mowat-Wilson syndrome caused by ZEB2 deficiency, and also other monogenic syndromes.
Collapse
Affiliation(s)
- Judith C. Birkhoff
- Department of Cell Biology, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
| | - Anne L. Korporaal
- Department of Cell Biology, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
| | - Rutger W. W. Brouwer
- Center for Biomics-Genomics, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
| | - Karol Nowosad
- Department of Cell Biology, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland
- The Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Claudia Milazzo
- Department of Cell Biology, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
| | - Lidia Mouratidou
- Department of Cell Biology, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
| | | | - Wilfred F. J. van IJcken
- Department of Cell Biology, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
- Center for Biomics-Genomics, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
| | - Danny Huylebroeck
- Department of Cell Biology, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Andrea Conidi
- Department of Cell Biology, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
- Correspondence: ; Tel.: +31-10-7043169
| |
Collapse
|
5
|
Comprehensive and Integrated Analysis Identifies ZEB1 as a Key Novel Gene in Oral Squamous Cell Carcinoma. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:4486104. [PMID: 36034202 PMCID: PMC9381230 DOI: 10.1155/2022/4486104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/23/2022] [Indexed: 11/18/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is the most common head and neck cancer with a poor prognosis. Therefore, it is crucial to explore molecular prognostic biomarkers for OSCC. ZEB1 (also known as δEF1) is a member of the zinc finger E-box binding protein family of transcription factors involved in various biological processes, including tumorigenesis, progression, and metastasis. Recent evidence suggests that ZEB1 has a role in the tumorigenicity of oral epithelial cells, although its mode of action needs to be investigated further. To better understand the relationship between ZEB1 and OSCC, we transfected the ZEB1-overexpressing oral squamous cell lines SCC9 and SCC25 with lentivirus and then extracted RNA from the cells for gene expression analysis. Furthermore, the GSE30784 dataset was downloaded from the Gene Expression Omnibus (GEO) database to identify potential biomarkers of OSCC and to assess the potential mechanisms. The criteria for identification of their DEGs were |logFC| > 1 and
< 0.05. Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) analyses were also carried out. Integrating the data from the PPI network and survival analysis identified that ZEB1 might be an independent prognostic biomarker in OSCC. In conclusion, integrated bioinformatics and microarray analysis identified the critical gene ZEB1 linked to the overall survival (OS) of patients with OSCC. ZEB1 could be applied as a prognostic biomarker to forecast the survival of patients with OSCC and might indicate innovative therapeutic indicators for OSCC.
Collapse
|
6
|
Ding Y, Duan H, Lin J, Zhang X. YY1 accelerates oral squamous cell carcinoma progression through long non-coding RNA Kcnq1ot1/microRNA-506-3p/SYPL1 axis. J Ovarian Res 2022; 15:77. [PMID: 35778739 PMCID: PMC9250217 DOI: 10.1186/s13048-022-01000-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 05/16/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Ying Yang1 (YY1) has already been discussed in oral squamous cell carcinoma (OSCC), but the knowledge about its mediation on long non-coding RNA KCNQ1 overlapping transcript 1/microRNA-506-3p/synaptophysin like 1 (Kcnq1ot/miR-506-3p/SYPL1) axis in OSCC is still in its infancy. Hence, this article aims to explain the mechanism of YY1/Kcnq1ot1/miR-506-3p/SYPL1 axis in OSCC development. METHODS YY1, Kcnq1ot1, miR-506-3p and SYPL1 expression levels were determined in OSCC tissues. The potential relation among YY1, Kcnq1ot1, miR-506-3p and SYPL1 was explored. Cell progression was observed to figure out the actions of depleted YY1, Kcnq1ot1 and SYPL1 and restored miR-506-3p in OSCC. OSCC tumorigenic ability in mice was examined. RESULTS Elevated YY1, Kcnq1ot1 and SYPL1 and reduced miR-506-3p were manifested in OSCC. YY1 promoted Kcnq1ot1 transcription and up-regulated Kcnq1ot1 expression, thereby promoting OSCC cell procession. Silencing Kcnq1ot1 or elevating miR-506-3p delayed OSCC cell progression and silencing Kcnq1ot1 impeded tumorigenic ability of OSCC cells in mice. YY1-mediated Kcnq1ot1 sponged miR-506-3p to target SYPL1. CONCLUSION YY1 promotes OSCC cell progression via up-regulating Kcnq1ot1 to sponge miR-506-3p to elevate SYPL1, guiding a novel way to treat OSCC.
Collapse
Affiliation(s)
- Yi Ding
- Center for Drug Research and Development, Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Key Laboratory of New Drug Discovery and Evaluation of Ordinary Universities of Guangdong Province, Guangdong Pharmaceutical University, No. 280, Waihuan East Road, Guangzhou, 510006, Guangdong, China.,School of Life Sciences and Biophamaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Heng Duan
- Department of Pharmacy, Stomatological Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Jian Lin
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Xuanxuan Zhang
- Center for Drug Research and Development, Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Key Laboratory of New Drug Discovery and Evaluation of Ordinary Universities of Guangdong Province, Guangdong Pharmaceutical University, No. 280, Waihuan East Road, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
7
|
Hamidi AA, Taghehchian N, Basirat Z, Zangouei AS, Moghbeli M. MicroRNAs as the critical regulators of cell migration and invasion in thyroid cancer. Biomark Res 2022; 10:40. [PMID: 35659780 PMCID: PMC9167543 DOI: 10.1186/s40364-022-00382-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/07/2022] [Indexed: 12/14/2022] Open
Abstract
Thyroid cancer (TC) is one of the most frequent endocrine malignancies that is more common among females. Tumor recurrence is one of the most important clinical manifestations in differentiated TC which is associated with different factors including age, tumor size, and histological features. Various molecular processes such as genetic or epigenetic modifications and non-coding RNAs are also involved in TC progression and metastasis. The epithelial-to-mesenchymal transition (EMT) is an important biological process during tumor invasion and migration that affects the initiation and transformation of early-stage tumors into invasive malignancies. A combination of transcription factors, growth factors, signaling pathways, and epigenetic regulations affect the thyroid cell migration and EMT process. MicroRNAs (miRNAs) are important molecular factors involved in tumor metastasis by regulation of EMT-activating signaling pathways. Various miRNAs are involved in the signaling pathways associated with TC metastasis which can be used as diagnostic and therapeutic biomarkers. Since, the miRNAs are sensitive, specific, and non-invasive, they can be suggested as efficient and optimal biomarkers of tumor invasion and metastasis. In the present review, we have summarized all of the miRNAs which have been significantly involved in thyroid tumor cells migration and invasion. We also categorized all of the reported miRNAs based on their cellular processes to clarify the molecular role of miRNAs during thyroid tumor cell migration and invasion. This review paves the way of introducing a non-invasive diagnostic and prognostic panel of miRNAs in aggressive and metastatic TC patients.
Collapse
Affiliation(s)
- Amir Abbas Hamidi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Taghehchian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Basirat
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Fang G, Zhang C, Liu Z, Peng Z, Tang M, Xue Q. MiR-144-3p inhibits the proliferation and metastasis of lung cancer A549 cells via targeting HGF. J Cardiothorac Surg 2022; 17:117. [PMID: 35568918 PMCID: PMC9107261 DOI: 10.1186/s13019-022-01861-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/26/2022] [Indexed: 11/30/2022] Open
Abstract
Aim MicroRNAs have been confirmed as vital regulators in gene expression, which could affect multiple cancer cell biological behaviors. This study aims to elucidate the molecular mechanism of miR-144-3p in lung cancer cellular proliferation and metastasis. Methods MiR-144-3p expression in lung cancer tissues and cell lines was detected by qRT-PCR. HGF was predicted as the target gene of miR-144-3p using TargetScan and dual luciferase reporter assay. Immunohistochemistry and qRT-PCR were used to explore the impacts of HCF on lung cancer tissues and cell lines. Impacts of miR-144-3p and HGF on cancer cellular proliferation, migration and invasion were elucidated by CCK-8, Flow cytometry, Transwell invasion and Wound-healing assay. Moreover, nude mouse xenograft model was established to evaluate the effects of miR-144-3p on lung cancer cells. Results MiR-144-3p exhibited a reduction in both lung cancer tissues and cell lines. HGF was a direct target of miR-144-3p. In contrast to the miR-144-3p expression level, HGF showed a higher level in lung cancer tissues and cell lines. Overexpression miR-144-3p suppressed A549 and NCI-H1299 cell proliferation and metastasis, whereas this was reversed by HGF. MiR-144-3p exhibited an inhibitory effect on A549 cell-induced tumor growth of nude mice. Conclusions This study reveals miR-144-3p/HGF axis may be involved in the suppression of lung cancer cellular proliferation and development, and miR-144-3p may function as a potential therapeutic target in lung cancer treatment in the future.
Collapse
Affiliation(s)
- Guiju Fang
- Department of Respiratory Medicine, Ningde Municipal Hospital of Ningde Normal University, Ningde, 352100, People's Republic of China
| | - Canhui Zhang
- Department of Respiratory Medicine, Ningde Municipal Hospital of Ningde Normal University, Ningde, 352100, People's Republic of China
| | - Zhixin Liu
- Department of Respiratory Medicine, Ningde Municipal Hospital of Ningde Normal University, Ningde, 352100, People's Republic of China
| | - Zhiwen Peng
- Department of Respiratory Medicine, Ningde Municipal Hospital of Ningde Normal University, Ningde, 352100, People's Republic of China
| | - Meiyan Tang
- Department of Respiratory Medicine, Ningde Municipal Hospital of Ningde Normal University, Ningde, 352100, People's Republic of China
| | - Qing Xue
- Department of Respiratory Medicine, Ningde Municipal Hospital of Ningde Normal University, Ningde, 352100, People's Republic of China.
| |
Collapse
|
9
|
Boucai L, Seshan V, Williams M, Knauf JA, Saqcena M, Ghossein RA, Fagin JA. Characterization of Subtypes of BRAF-Mutant Papillary Thyroid Cancer Defined by Their Thyroid Differentiation Score. J Clin Endocrinol Metab 2022; 107:1030-1039. [PMID: 34897468 PMCID: PMC8947218 DOI: 10.1210/clinem/dgab851] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT The BRAFV600E mutation has been associated with more advanced clinical stage in papillary thyroid cancer (PTC) and decreased responsiveness to radioiodine (RAI). However, some BRAF mutant PTCs respond to RAI and have an indolent clinical behavior suggesting the presence of different subtypes of BRAF mutant tumors with distinct prognosis. OBJECTIVE To characterize the molecular and clinical features of 2 subtypes of BRAF-mutant PTCs defined by their degree of expression of iodine metabolism genes. DESIGN 227 BRAF-mutant PTCs from the Cancer Genome Atlas Thyroid Cancer study were divided into 2 subgroups based on their thyroid differentiation score (TDS): BRAF-TDShi and BRAF-TDSlo. Demographic, clinico-pathological, and molecular characteristics of the 2 subgroups were compared. RESULTS Compared to BRAF-TDShi tumors (17%), BRAF-TDSlo tumors (83%) were more frequent in blacks and Hispanics (6% vs 0%, P = 0.035 and 12% vs 0%, P = 0.05, respectively), they were larger (2.95 ± 1.7 vs 2.03 ± 1.5, P = 0.002), with more tumor-involved lymph nodes (3.9 ± 5.8 vs 2.0 ± 4.2, P = 0.042), and a higher frequency of distant metastases (3% vs 0%, P = 0.043). Gene set enrichment analysis showed positive enrichment for RAS signatures in the BRAF-TDShi cohort, with corresponding reciprocal changes in the BRAF-TDSlo group. Several microRNAs (miRs) targeting nodes in the transforming growth factor β (TGFβ)-SMAD pathway, miR-204, miR-205, and miR-144, were overexpressed in the BRAF-TDShi group. In the subset with follow-up data, BRAF-TDShi tumors had higher complete responses to therapy (94% vs 57%, P < 0.01) than BRAF-TDSlo tumors. CONCLUSION Enrichment for RAS signatures, key genes involved in cell polarity and specific miRs targeting the TGFβ-SMAD pathway define 2 subtypes of BRAF-mutant PTCs with distinct clinical characteristics and prognosis.
Collapse
Affiliation(s)
- Laura Boucai
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Venkatraman Seshan
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michelle Williams
- Department of Pathology, MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey A Knauf
- Center for Immunotherapy & Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA
| | - Mahesh Saqcena
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ronald A Ghossein
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - James A Fagin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
10
|
Mousavi SM, Derakhshan M, Baharloii F, Dashti F, Mirazimi SMA, Mahjoubin-Tehran M, Hosseindoost S, Goleij P, Rahimian N, Hamblin MR, Mirzaei H. Non-coding RNAs and glioblastoma: Insight into their roles in metastasis. Mol Ther Oncolytics 2022; 24:262-287. [PMID: 35071748 PMCID: PMC8762369 DOI: 10.1016/j.omto.2021.12.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Glioma, also known as glioblastoma multiforme (GBM), is the most prevalent and most lethal primary brain tumor in adults. Gliomas are highly invasive tumors with the highest death rate among all primary brain malignancies. Metastasis occurs as the tumor cells spread from the site of origin to another site in the brain. Metastasis is a multifactorial process, which depends on alterations in metabolism, genetic mutations, and the cancer microenvironment. During recent years, the scientific study of non-coding RNAs (ncRNAs) has led to new insight into the molecular mechanisms involved in glioma. Many studies have reported that ncRNAs play major roles in many biological procedures connected with the development and progression of glioma. Long ncRNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs) are all types of ncRNAs, which are commonly dysregulated in GBM. Dysregulation of ncRNAs can facilitate the invasion and metastasis of glioma. The present review highlights some ncRNAs that have been associated with metastasis in GBM. miRNAs, circRNAs, and lncRNAs are discussed in detail with respect to their relevant signaling pathways involved in metastasis.
Collapse
Affiliation(s)
- Seyed Mojtaba Mousavi
- Department of Neurosciences and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Derakhshan
- Department of Pathology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatereh Baharloii
- Department of Cardiology, Chamran Cardiovascular Research Education Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Mahjoubin-Tehran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saereh Hosseindoost
- Brain and Spinal Cord Research Center, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Pouya Goleij
- Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Internal Medicine, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
11
|
Zhao P, Ma X, Cheng J, Chen H, Li L. Identification of the hub genes and transcription factor-miRNA axes involved in Helicobacter pylori-associated gastric cancer. Oncol Lett 2022; 23:89. [PMID: 35126731 PMCID: PMC8805177 DOI: 10.3892/ol.2022.13209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 11/26/2021] [Indexed: 12/03/2022] Open
Abstract
It has been previously reported that transcription factor-microRNA (TF-miRNA) axes play a significant role in the carcinogenesis of several types of malignant tumor. However, there is a lack of research into the differences in the mechanism of Helicobacter pylori (HP)-positive [HP(+)] and HP-negative [HP(−)] gastric cancer. The aim of the present study was to identify the hub genes and TF-miRNA axes, and to determine the potential mechanisms involved in HP-associated gastric cancer. HP-associated mRNA and miRNA data, as well as the corresponding clinical information, was downloaded from The Cancer Genome Atlas database. Differentially expressed genes (DEGs) and DE miRNAs (DEMs) were then identified from the HP(+) and HP(−) cancer mRNA and miRNA datasets, respectively. Subsequently, gene set enrichment analysis and the protein-protein interaction (PPI) networks were investigated using the ClusterProfiler packages. Lastly, TF-miRNA-DEG networks were constructed using the miRWalk online tool. A total of 1,050 DEGs and 13 DEMs were identified from the normalized mRNA and miRNA expression datasets, respectively. In addition, 180 Gene Ontology terms and 30 Kyoto Encyclopedia of Genes and Genomes pathways were found to be enriched, while 6 hub genes were identified from the PPI analysis. Furthermore, 7 TF-miRNA interactions and 181 TF-miRNA-DEG axes were constructed using an integrated bioinformatics approach, while 2 TF-miRNA interactions (ZEB1-miRNA-144-3p and PAX2-miRNA-592) were confirmed using reverse transcription-quantitative PCR in samples from enrolled patients. Moreover, the ZEB1-miRNA-144-3p axis was further validated based on dual luciferase reporter assay results. In summary, an integrated bioinformatics approach was used to screen the significant molecular and regulatory axes, which may provide a novel direction to investigate the pathogenesis of gastric cancer associated with HP.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xianxiong Ma
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jiancheng Cheng
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Hengyu Chen
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, P.R. China.,Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Lei Li
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
12
|
Dashti F, Mirazimi SMA, Rabiei N, Fathazam R, Rabiei N, Piroozmand H, Vosough M, Rahimian N, Hamblin MR, Mirzaei H. The role of non-coding RNAs in chemotherapy for gastrointestinal cancers. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:892-926. [PMID: 34760336 PMCID: PMC8551789 DOI: 10.1016/j.omtn.2021.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gastrointestinal (GI) cancers, including colorectal, gastric, hepatic, esophageal, and pancreatic tumors, are responsible for large numbers of deaths around the world. Chemotherapy is the most common approach used to treat advanced GI cancer. However, chemoresistance has emerged as a critical challenge that prevents successful tumor elimination, leading to metastasis and recurrence. Chemoresistance mechanisms are complex, and many factors and pathways are involved. Among these factors, non-coding RNAs (ncRNAs) are critical regulators of GI tumor development and subsequently can induce resistance to chemotherapy. This occurs because ncRNAs can target multiple signaling pathways, affect downstream genes, and modulate proliferation, apoptosis, tumor cell migration, and autophagy. ncRNAs can also induce cancer stem cell features and affect the epithelial-mesenchymal transition. Thus, ncRNAs could possibly act as new targets in chemotherapy combinations to treat GI cancer and to predict treatment response.
Collapse
Affiliation(s)
- Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Nikta Rabiei
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Fathazam
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negin Rabiei
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Haleh Piroozmand
- Faculty of Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
13
|
Feng L, Wang R, Wang Y, Shen X, Shi Q, Lian M, Ma H, Fang J. Silencing long non-coding RNA DLX6-AS1 or restoring microRNA-193b-3p enhances thyroid carcinoma cell autophagy and apoptosis via depressing HOXA1. J Cell Mol Med 2021; 25:9319-9330. [PMID: 34514705 PMCID: PMC8500975 DOI: 10.1111/jcmm.16868] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 06/23/2021] [Accepted: 07/31/2021] [Indexed: 12/26/2022] Open
Abstract
Long non‐coding RNA DLX6 antisense RNA 1 (DLX6‐AS1) lists a critical position in thyroid carcinoma (TC) development. However, the overall comprehension about DLX6‐AS1, microRNA (miR)‐193b‐3p and homeobox A1 (HOXA1) in TC is not thoroughly enough. Concerning to this, this work is pivoted on DLX6‐AS1/miR‐193b‐3p/HOXA1 axis in TC cell growth and autophagy. TC tissues and adjacent normal thyroid tissues were collected, in which expression of DLX6‐AS1, miR‐193b‐3p and HOXA1 was tested, together with their interactions. TC cells were transfected with DLX6‐AS1/miR‐193b‐3p‐related oligonucleotides or plasmids to test cell growth and autophagy. Tumorigenesis in nude mice was observed. DLX6‐AS1 and HOXA1 were up‐regulated, and miR‐193b‐3p was down‐regulated in TC. Depleted DLX6‐AS1 or restored miR‐193b‐3p disturbed cell growth and promoted autophagy. DLX6‐AS1 targeted miR‐193b‐3p and positively regulated HOXA1. miR‐193b‐3p inhibition mitigated the impaired tumorigenesis induced by down‐regulated DLX6‐AS1. Tumorigenesis in nude mice was consistent with that in cells. It is clear that DLX6‐AS1 depletion hinders TC cell growth and promotes autophagy via up‐regulating miR‐193b‐3p and down‐regulating HOXA1.
Collapse
Affiliation(s)
- Ling Feng
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Otorhinolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Ru Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Otorhinolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Yifan Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Otorhinolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Xixi Shen
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Otorhinolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Qian Shi
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Otorhinolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Meng Lian
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Otorhinolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Hongzhi Ma
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Otorhinolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Jugao Fang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Otorhinolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China
| |
Collapse
|
14
|
Ramos-Ramírez P, Tliba O. Glucocorticoid Receptor β (GRβ): Beyond Its Dominant-Negative Function. Int J Mol Sci 2021; 22:3649. [PMID: 33807481 PMCID: PMC8036319 DOI: 10.3390/ijms22073649] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 12/17/2022] Open
Abstract
Glucocorticoids (GCs) act via the GC receptor (GR), a receptor ubiquitously expressed in the body where it drives a broad spectrum of responses within distinct cell types and tissues, which vary in strength and specificity. The variability of GR-mediated cell responses is further extended by the existence of GR isoforms, such as GRα and GRβ, generated through alternative splicing mechanisms. While GRα is the classic receptor responsible for GC actions, GRβ has been implicated in the impairment of GRα-mediated activities. Interestingly, in contrast to the popular belief that GRβ actions are restricted to its dominant-negative effects on GRα-mediated responses, GRβ has been shown to have intrinsic activities and "directly" regulates a plethora of genes related to inflammatory process, cell communication, migration, and malignancy, each in a GRα-independent manner. Furthermore, GRβ has been associated with increased cell migration, growth, and reduced sensitivity to GC-induced apoptosis. We will summarize the current knowledge of GRβ-mediated responses, with a focus on the GRα-independent/intrinsic effects of GRβ and the associated non-canonical signaling pathways. Where appropriate, potential links to airway inflammatory diseases will be highlighted.
Collapse
Affiliation(s)
- Patricia Ramos-Ramírez
- Department of Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY 11548, USA;
| | - Omar Tliba
- Department of Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY 11548, USA;
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers Institute for Translational Medicine and Science, New Brunswick, NJ 08901, USA
| |
Collapse
|
15
|
Lv N, Liu F, Cheng L, Liu F, Kuang J. The Expression of Transcription Factors is Different in Papillary Thyroid Cancer Cells during TNF - α induced EMT. J Cancer 2021; 12:2777-2786. [PMID: 33854637 PMCID: PMC8040707 DOI: 10.7150/jca.53349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Proinflammatory factor tumor necrosis factor-α (TNF-α) is an important inflammatory mediators in tumor microenvironment and autoimmune diseases, it is highly expressed in many solid tumors and tumor microenvironment, showing a tumor promoting role. However, the molecular mechanisms underlying TNF-α-increased invasion of thyroid cancer are still not fully understood. In order to explore whether TNF-α plays a key role in the process of epithelial mesenchymal transition (EMT) in papillary thyroid carcinoma (PTC), we used TNF-α to induce EMT in different PTC cell lines, and observed the expression of different transcription factors and signal pathways. After TNF-α treatment, in TPC-1, Snail and ZEB2 mRNA levels did not change significantly, while Slug, Twist1, ZEB1 mRNA expression increased. In BCPAP, Snail mRNA level increased significantly (P < 0.01), while Twist1 showed a certain degree of increase only at the concentration of TNF - α 20 ng / ml (P < 0.01), but mRNA of Slug, ZEB1, ZEB2 showed no significant change. The expression of proteins was consistent with genes. The activation of different pathways did not show gene differences, and pathway inhibitors could reduce the invasion and metastasis of cells, but only NF-κB inhibitors could reverse the expression of transcription factors. Expressions of Snail and Slug in different PTC cell lines were dependent on pro-oncogene mutation, but the pathway had no differences. The establishment of this study model can enrich the research on the pathogenesis and metastasis of thyroid cancer, effectively link the inflammatory microenvironment with the occurrence and development of thyroid cancer.
Collapse
Affiliation(s)
- Nannan Lv
- Department of Endocrinology and Metabolism, The Fourth People's Hospital of Shenyang; 20 Huanghe South st, Huanggu District, Shenyang,China
| | - Fei Liu
- Department of Endocrinology and Metabolism, The Fourth People's Hospital of Shenyang; 20 Huanghe South st, Huanggu District, Shenyang,China
| | - Lan Cheng
- Department of Endocrinology and Metabolism, The Fourth People's Hospital of Shenyang; 20 Huanghe South st, Huanggu District, Shenyang,China
| | - Feng Liu
- Department of Endocrinology and Metabolism, The Fourth People's Hospital of Shenyang; 20 Huanghe South st, Huanggu District, Shenyang,China
| | - Jinsong Kuang
- Department of Endocrinology and Metabolism, The Fourth People's Hospital of Shenyang; 20 Huanghe South st, Huanggu District, Shenyang,China
| |
Collapse
|
16
|
Cheng H, Zhao H, Xiao X, Huang Q, Zeng W, Tian B, Ma T, Lu D, Jin Y, Li Y. Long Non-coding RNA MALAT1 Upregulates ZEB2 Expression to Promote Malignant Progression of Glioma by Attenuating miR-124. Mol Neurobiol 2021; 58:1006-1016. [PMID: 33078370 DOI: 10.1007/s12035-020-02165-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 10/09/2020] [Indexed: 02/02/2023]
Abstract
Long non-coding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) has been shown to play a critical role in the development of several malignancies. However, the potential molecular mechanism of MALAT1 in glioma remains unclear. In the present study, we found that the expression of MALAT1 was aberrantly increased in both human glioma tissues and cells and associated with poor prognosis in glioma patients. We further found that MALAT1 silencing significantly inhibited glioma cell proliferation while induced cell cycle arrest and apoptosis. In parallel, knockdown of MALAT1 decreased tumor volume in vivo. These results suggested that MALAT1 acts as a functional oncogene, resulting in the oncogenicity in glioma. Nevertheless, the tumor-suppressive effect of MALAT1 silencing was reversed by miR-124. Besides, the relevance of ZEB2 in tumor progression has been studied in several forms of human cancer, and ZEB2 was identified as a target of miR-124 and negatively regulated by miR-124. MALAT1 overexpression or miR-124 inhibitor led to increased expression of ZEB2. In summary, our study depicts a novel pathway of MALAT1/miR-124/ZEB2 that regulates the progression of glioma and might provide a promising strategy for glioma therapy.
Collapse
Affiliation(s)
- Hongyu Cheng
- Department of Ultrasound Diagnosis, Tangdu Hospital, Air Force Medical University, No.1, Xinsi Road, Xi'an, 710038, Shaanxi, China
| | - Haikang Zhao
- Department of Neurosurgery, The Second Hospital Affiliated of Xi'an Medical University, Xi'an, Shaanxi, China
| | - Xin Xiao
- Department of Orthopedics, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Qian Huang
- College of Basic Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Wen Zeng
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Bo Tian
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Tao Ma
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Dan Lu
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Yulong Jin
- Department of Hematology, General Hospital of Central Theater Command, Wuhan, 430030, Hubei, China.
| | - Yuqian Li
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
17
|
Yi W, Liu J, Qu S, Fan H, Lv Z. An 8 miRNA-Based Risk Score System for Predicting the Prognosis of Patients With Papillary Thyroid Cancer. Technol Cancer Res Treat 2020; 19:1533033820965594. [PMID: 33054579 PMCID: PMC7570775 DOI: 10.1177/1533033820965594] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background: Dysregulation of microRNAs (miRNAs) in papillary thyroid cancer (PTC) might influence prognosis of PTC. This study is aimed to develop a risk score system for predicting prognosis of PTC. Methods: The miRNA and gene expression profiles of PTC were obtained from The Cancer Genome Atlas database. PTC samples were randomly separated into training set (n = 248) and validation set (n = 248). The differentially expressed miRNAs (DE-miRNAs) in the training set were screened using limma package. The independent prognosis-associated DE-miRNAs were identified for building a risk score system. Risk score of PTC samples in the training set was calculated and samples were divided into high risk group and low risk group. Kaplan-Meier curves and receiver operating characteristic (ROC) curve were used to assess the accuracy of the risk score system in the training set, validation set and entire set. Finally, a miRNA-gene regulatory network was visualized by Cytoscape software, followed by enrichment analysis. Results: Totally, 162 DE-miRNAs between tumor and control groups in the training set were identified. An 8 independent prognosis-associated DE-miRNAs, (including miR-1179, miR-133b, miR-3194, miR-3912, miR-548j, miR-6720, miR-6734, and miR-6843) based risk score system was developed. The area under ROC curve in the training set, validation set and entire set was all above 0.93. A miRNA-gene regulatory network involving the 8 DE-miRNAs were built and functional enrichment analysis suggested the genes in the network were significantly enriched into 13 pathways, including calcium signaling pathway and hedgehog signaling pathway. Conclusion: The risk score system developed this study might be used for predicting the prognosis of PTC. Besides, the 8 miRNAs might affect the prognosis of PTC via hedgehog signaling pathway and calcium signaling pathway.
Collapse
Affiliation(s)
- Wanwan Yi
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Wanwan Yi, Jin Liu and Shuping Qu are co-first authors
| | - Jin Liu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Wanwan Yi, Jin Liu and Shuping Qu are co-first authors
| | - Shuping Qu
- Department of Hepatic Surgery, The Eastern Hepatobiliary Surgery Hospital, Navy Medical University (Second Military Medical University), Shanghai, China.,Wanwan Yi, Jin Liu and Shuping Qu are co-first authors
| | - Hengwei Fan
- Department of Hepatic Surgery, The Eastern Hepatobiliary Surgery Hospital, Navy Medical University (Second Military Medical University), Shanghai, China.,Hengwei Fan and Zhongwei Lv are co-corresponding authors
| | - Zhongwei Lv
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Hengwei Fan and Zhongwei Lv are co-corresponding authors
| |
Collapse
|
18
|
Zhou M, Wu Y, Li H, Zha X. MicroRNA-144: A novel biological marker and potential therapeutic target in human solid cancers. J Cancer 2020; 11:6716-6726. [PMID: 33046994 PMCID: PMC7545670 DOI: 10.7150/jca.46293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs that negatively regulate gene expression at the post-transcriptional level. It has been reported that microRNA-144 (miR-144) is highly conserved and can combine complementarily with the 3'-UTRs of target gene mRNAs to inhibit mRNA translation or promote targeted mRNA degradation. MiR-144 is abnormally expressed and has been identified as a tumor suppressor in many types of solid tumors. Increasing evidence supports a crucial role for miR-144 in modulating physiopathologic processes, such as proliferation, apoptosis, invasion, migration and angiogenesis in different tumor cells. Apart from these functions, miR-144 can also affect drug sensitivity, cancer treatment and patient prognosis. In this review, we summarize the biological functions of miR-144, its direct targets and the important signal pathways through which it acts in relation to various tumors. We also discuss the role of miR-144 in tumor biology and its clinical significance in detail and offer novel insights into molecular targeting therapy for human cancers.
Collapse
Affiliation(s)
- Meng Zhou
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Yuncui Wu
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Hongwu Li
- Department of Otorhinolaryngology, Head & Neck Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei 230000, China
| | - Xiaojun Zha
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
19
|
Novel therapeutic options for radioiodine-refractory thyroid cancer: redifferentiation and beyond. Curr Opin Oncol 2020; 32:13-19. [PMID: 31599772 DOI: 10.1097/cco.0000000000000593] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE OF REVIEW Radioiodine-refractory thyroid cancers represent the main cause of thyroid cancer-related death. At present, targeted therapies with multikinase inhibitors represent a unique therapeutic tool, though they have limited benefit on patient survival and severe drug-associated adverse events. This review summarizes current treatment strategies for radioiodine-refractory thyroid cancer and focuses on novel approaches to redifferentiate thyroid cancer cells to restore responsiveness to radioiodine administration. RECENT FINDINGS We summarize and discuss recent clinical trial findings and early data from real-life experiences with multikinase-inhibiting drugs. Possible alternative strategies to traditional redifferentiation are also discussed. SUMMARY The current review focuses primarily on the major advancements in the knowledge of the pathophysiology of iodine transport and metabolism and the genetic and epigenetic alterations occurring in thyroid neoplasia as described using preclinical models. Results of clinical studies employing new compounds to induce thyroid cancer cell redifferentiation by acting against specific molecular targets are also discussed. Finally, we describe the current scenario emerging from such findings as well as future perspectives.
Collapse
|
20
|
Gou X, Wu J, Huang M, Weng Y, Yang T, Chen T, Li G, Fang K. microRNA-128 mediates CB1 expression and regulates NF-KB/p-JNK axis to influence the occurrence of diabetic bladder disease. J Transl Med 2020; 18:284. [PMID: 32678046 PMCID: PMC7367232 DOI: 10.1186/s12967-020-02406-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/05/2020] [Indexed: 12/03/2022] Open
Abstract
Background Diabetic bladder disease is common complications of diabetes, its symptoms are diverse, can be due to different stages. In this study we investigate the mechanism of miR-128 targeting CB1 expression to mediate the occurrence of diabetic bladder disease. Methods Bioinformatics analysis predicts related regulatory factors of miR-128 in diabetic bladder disease. Models of diabetic bladder lesions were constructed in male SD rats by intraperitoneal injection of streptozotocin at 65 mg/kg body weight. The expression of miR-128 and CB1 mRNA in bladder tissues of each group was detected by RT-qPCR, and CB1, NF-KB, p-JNK and Bcl2 protein expression was detected by Western Blotting. We tested the function of the bladder by urodynamics, detected the pathological characteristics of the bladder tissue by HE staining, and verified the targeting relationship between miR-128 and CB1 through the prediction of the biological website, dual luciferase reporter gene assay and RIP. Results miR-128 was highly expressed in the bladder tissue of diabetic rats. Inhibition of miR-128 could improve the occurrence of diabetic bladder lesions in rats. miR-128 could target the inhibition of CB1 expression, and high expression of CB1 could antagonize miR-128 against diabetic bladder. In the diabetic bladder, miR-128 can regulate the expression of NF-KB and p-JNK through CB1 and affect the level of apoptosis. miR-128 regulates NF-KB/p-JNK through CB1, thus affecting the occurrence of diabetic bladder disease. Conclusion The high expression of miR-128 can down-regulate the expression of CB1, promote the activation of NF-KB and p-JNK, increase the level of apoptosis and promote the occurrence of diabetic bladder disease.
Collapse
Affiliation(s)
- Xin Gou
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmian Dadao, Kunming, Yunnan, 650101, People's Republic of China
| | - Jing Wu
- Department of Biochemistry and Molecular Biology, The Primary Medicine School of Kunming Medical University, Kunming, 650101, People's Republic of China
| | - Mingqing Huang
- Department of Urology, The 2nd Hospital of Kunming Medical University, Kunming, 650101, People's Republic of China
| | - Yuting Weng
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmian Dadao, Kunming, Yunnan, 650101, People's Republic of China
| | - Tongxin Yang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmian Dadao, Kunming, Yunnan, 650101, People's Republic of China
| | - Tao Chen
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmian Dadao, Kunming, Yunnan, 650101, People's Republic of China
| | - Guiqing Li
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmian Dadao, Kunming, Yunnan, 650101, People's Republic of China
| | - Kewei Fang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmian Dadao, Kunming, Yunnan, 650101, People's Republic of China.
| |
Collapse
|
21
|
MicroRNAs and Their Influence on the ZEB Family: Mechanistic Aspects and Therapeutic Applications in Cancer Therapy. Biomolecules 2020; 10:biom10071040. [PMID: 32664703 PMCID: PMC7407563 DOI: 10.3390/biom10071040] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 02/07/2023] Open
Abstract
Molecular signaling pathways involved in cancer have been intensively studied due to their crucial role in cancer cell growth and dissemination. Among them, zinc finger E-box binding homeobox-1 (ZEB1) and -2 (ZEB2) are molecules that play vital roles in signaling pathways to ensure the survival of tumor cells, particularly through enhancing cell proliferation, promoting cell migration and invasion, and triggering drug resistance. Importantly, ZEB proteins are regulated by microRNAs (miRs). In this review, we demonstrate the impact that miRs have on cancer therapy, through their targeting of ZEB proteins. MiRs are able to act as onco-suppressor factors and inhibit the malignancy of tumor cells through ZEB1/2 down-regulation. This can lead to an inhibition of epithelial-mesenchymal transition (EMT) mechanism, therefore reducing metastasis. Additionally, miRs are able to inhibit ZEB1/2-mediated drug resistance and immunosuppression. Additionally, we explore the upstream modulators of miRs such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), as these regulators can influence the inhibitory effect of miRs on ZEB proteins and cancer progression.
Collapse
|
22
|
Reactivation of microRNA-506 inhibits gastric carcinoma cell metastasis through ZEB2. Aging (Albany NY) 2020; 11:1821-1831. [PMID: 30923258 PMCID: PMC6461178 DOI: 10.18632/aging.101877] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 03/10/2019] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are frequently dysregulated in a variety of human cancers, including gastric carcinoma. To improve our understanding of the role of miRNAs in gastric carcinoma and potential identify novel biomarkers or therapeutic agents, we performed microarray analysis to identify differentially expressed miRNAs in gastric carcinoma, compared with paired non-cancerous gastric tissues. We identified significantly differentially expressed miRNAs in gastric carcinoma tissues, including miR-506. We validated the microarray results by quantitative reverse transcription polymerase chain reaction in 26 specimens and confirmed significant downregulation of miR-506 in gastric carcinoma. Bioinformatics analysis predicted ZEB2 (zinc finger E-box-binding homeobox 2) as a potential target of miR-506. MiR-506 levels and ZEB2 levels were inversely correlated in gastric carcinoma, and low miR-506 levels in gastric carcinoma were associated with poor prognosis. Overexpression of miR-506 in gastric carcinoma cells significantly inhibited cell migration and invasion, while depletion of miR-506 in gastric carcinoma cells significantly increased cell migration and invasion. Transplantation of miR-506-overexpressing gastric carcinoma cells developed significantly smaller tumor, compared to the control. Thus, our results suggest that miR-506 may function as a tumor suppressor and targets and inhibits ZEB2 in gastric carcinoma.
Collapse
|
23
|
Khoei SG, Sadeghi H, Samadi P, Najafi R, Saidijam M. Relationship between Sphk1/S1P and microRNAs in human cancers. Biotechnol Appl Biochem 2020; 68:279-287. [PMID: 32275078 DOI: 10.1002/bab.1922] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/04/2020] [Indexed: 12/12/2022]
Abstract
Sphingosine kinases type 1 (SphK1) is a key enzyme in the phosphorylation of sphingosine to sphingosine 1-phosphate (S1P). Different abnormalities in SphK1 functions may correspond with poor prognosis in various cancers. Additionally, upregulated SphK1/S1P could promote cancer cell proliferation, angiogenesis, mobility, invasion, and metastasis. MicroRNAs as conserved small noncoding RNAs play major roles in cancer initiation, progression, metastasis, etc. Their posttranscriptionally mechanisms could affect the development of cancer growth or tumorigenesis suppression. The growing number of studies has described that various microRNAs can be regulated by SphK1, and its expression level can also be regulated by microRNAs. In this review, the relationship of SphK1 and microRNA functions and their interaction in human malignancies have been discussed. Based on them novel treatment strategies can be introduced.
Collapse
Affiliation(s)
- Saeideh Gholamzadeh Khoei
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.,Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamid Sadeghi
- Department of Microbiology and Virology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Pouria Samadi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.,Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Najafi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
24
|
Gao H, Sun X, Wang H, Zheng Y. Long noncoding RNA SNHG22 increases ZEB1 expression via competitive binding with microRNA-429 to promote the malignant development of papillary thyroid cancer. Cell Cycle 2020; 19:1186-1199. [PMID: 32306838 PMCID: PMC7217354 DOI: 10.1080/15384101.2020.1749466] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/28/2019] [Accepted: 03/08/2020] [Indexed: 02/07/2023] Open
Abstract
Long noncoding RNA termed small nucleolar RNA host gene 22 (SNHG22) is a crucial regulator in epithelial ovarian carcinoma. Nevertheless, the regulatory functions of SNHG22 in papillary thyroid cancer (PTC) progression and its mechanisms of action remain poorly defined. Therefore, the present study aimed to investigate the role of SNHG22 in the malignant phenotype of PTC and determine whether SNHG22 regulates PTC progression via a ceRNA mechanism. SNHG22 expression in PTC was detected using reverse transcription-quantitative polymerase chain reaction analysis. The biological actions of SNHG22 silencing in PTC cells were evaluated both in vitro (using Cell Counting Kit-8 assay, flow cytometry analysis, and cell migration and invasion assays) and in vivo (using tumorigenicity assay). Herein, high SNHG22 expression was observed in PTC tissues and cell lines. This high SNHG22 level was closely associated with unfavorable clinicopathological characteristics and worse overall survival in patients with PTC. SNHG22 knockdown effectively suppressed PTC cell proliferation, migration, and invasion in vitro; accelerated cell apoptosis; and hindered tumor growth in vivo. Mechanistic experiments revealed that SNHG22 directly interacts with microRNA-429 (miR-429) as an miRNA sponge and positively modulates ZEB1 expression. Rescue assays found that miR-429 inhibition or ZEB1 upregulation can offset the actions of SNHG22 knockdown in PTC cells. In sum, SNHG22, miR-429, and ZEB1 form an interactive regulatory network with cancer-promoting roles in PTC cells, suggesting that the SNHG22/miR-429/ZEB1 pathway is a novel diagnostic and therapeutic target.
Collapse
Affiliation(s)
- Hong Gao
- Department of Thyroid-Head and Neck Surgery, Jilin Cancer Hospital, Changchun, Jilin, P.R. China
| | - Xiaosong Sun
- Department of Thyroid-Head and Neck Surgery, Jilin Cancer Hospital, Changchun, Jilin, P.R. China
| | - Hongdong Wang
- Department of Thyroid-Head and Neck Surgery, Jilin Cancer Hospital, Changchun, Jilin, P.R. China
| | - Ying Zheng
- Department of Thyroid-Head and Neck Surgery, Jilin Cancer Hospital, Changchun, Jilin, P.R. China
| |
Collapse
|
25
|
Kooshkaki O, Rezaei Z, Rahmati M, Vahedi P, Derakhshani A, Brunetti O, Baghbanzadeh A, Mansoori B, Silvestris N, Baradaran B. MiR-144: A New Possible Therapeutic Target and Diagnostic/Prognostic Tool in Cancers. Int J Mol Sci 2020; 21:ijms21072578. [PMID: 32276343 PMCID: PMC7177921 DOI: 10.3390/ijms21072578] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are small and non-coding RNAs that display aberrant expression in the tissue and plasma of cancer patients when tested in comparison to healthy individuals. In past decades, research data proposed that miRNAs could be diagnostic and prognostic biomarkers in cancer patients. It has been confirmed that miRNAs can act either as oncogenes by silencing tumor inhibitors or as tumor suppressors by targeting oncoproteins. MiR-144s are located in the chromosomal region 17q11.2, which is subject to significant damage in many types of cancers. In this review, we assess the involvement of miR-144s in several cancer types by illustrating the possible target genes that are related to each cancer, and we also briefly describe the clinical applications of miR-144s as a diagnostic and prognostic tool in cancers.
Collapse
Affiliation(s)
- Omid Kooshkaki
- Student Research Committee, Birjand University of Medical Sciences, Birjand 9717853577, Iran;
- Department of Immunology, Birjand University of Medical Sciences, Birjand 9717853577, Iran
| | - Zohre Rezaei
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand 9717853577, Iran;
- Department of Biology, University of Sistan and Baluchestan, Zahedan 9816745845, Iran
| | - Meysam Rahmati
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran;
| | - Parviz Vahedi
- Department of Anatomical Sciences, Maragheh University of Medical Sciences, Maragheh 5165665931, Iran;
| | - Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (A.D.); (A.B.)
| | - Oronzo Brunetti
- Medical Oncology Unit—IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy;
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (A.D.); (A.B.)
| | - Behzad Mansoori
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark;
| | - Nicola Silvestris
- Medical Oncology Unit—IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy;
- Department of Biomedical Sciences and Human Oncology DIMO—University of Bari, 70124 Bari, Italy
- Correspondence: (N.S.); (B.B.); Tel.: +39-0805555419 (N.S.); +98-413-3371440 (B.B.)
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (A.D.); (A.B.)
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran
- Correspondence: (N.S.); (B.B.); Tel.: +39-0805555419 (N.S.); +98-413-3371440 (B.B.)
| |
Collapse
|
26
|
Fu W, Liu Z, Zhang J, Shi Y, Zhao R, Zhao H. Effect of miR-144-5p on the proliferation, migration, invasion and apoptosis of human umbilical vein endothelial cells by targeting RICTOR and its related mechanisms. Exp Ther Med 2020; 19:1817-1823. [PMID: 32104237 PMCID: PMC7027162 DOI: 10.3892/etm.2019.8369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 10/08/2019] [Indexed: 12/21/2022] Open
Abstract
The purpose of the present study was to investigate the effect of microRNA (miR)-144-5p on human umbilical vein endothelial cells (HUVECs) to explore the role of miR-144-5p in atherosclerosis. miR-144-5p expression was upregulated in HUVECs using miR-144-5p mimics. The relative expression level of miR-144-5p in HUVECs was detected using reverse transcription-quantitative PCR (RT-qPCR). Cell proliferation was detected by performing an MTT assay. Apoptosis was determined via flow cytometry. Cell migration ability was detected by a wound-healing assay. Cell invasion was determined by a transwell assay. The protein levels of phosphorylated (p)-PI3K, p-Akt and endothelial nitric oxide synthase (eNOS) were detected using western blot analysis. The binding sites between miR-144-5p and 3'-untranslated region of rapamycin-insensitive companion of mTOR (RICTOR) mRNA were predicted by TargetScan and confirmed by a dual luciferase reporter assay. The present study showed that miR-144-5p mimics significantly inhibited cell proliferation and induced apoptosis in HUVECs. In addition, miR-144-5p mimics could suppress migration and invasion of HUVECs. Further analysis identified that RICTOR was a direct target gene of miR-144-5p. Moreover, miR-144-5p upregulation decreased the protein level of p-PI3K, p-Akt and eNOS. In conclusion, miR-144-5p regulated HUVEC proliferation, migration, invasion, and apoptosis through affecting the PI3K-Akt-eNOS signaling pathway by altering the expression of RICTOR. These results indicated that miR-144-5p may be a potential target for the prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Wei Fu
- Department of Cardiology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Zidong Liu
- Department of Cardiology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Jing Zhang
- Department of Cardiology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Yuxue Shi
- Department of Cardiology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Ruiyao Zhao
- Department of Cardiology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Heng Zhao
- Department of Cardiology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| |
Collapse
|
27
|
Shakib H, Rajabi S, Dehghan MH, Mashayekhi FJ, Safari-Alighiarloo N, Hedayati M. Epithelial-to-mesenchymal transition in thyroid cancer: a comprehensive review. Endocrine 2019; 66:435-455. [PMID: 31378850 DOI: 10.1007/s12020-019-02030-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 07/19/2019] [Indexed: 12/12/2022]
Abstract
The Metastatic progression of solid tumors, such as thyroid cancer is a complex process which involves various factors. Current understanding on the role of epithelial-mesenchymal transition (EMT) in thyroid carcinomas suggests that EMT is implicated in the progression from follicular thyroid cancer (FTC) and papillary thyroid cancer (PTC) to poorly differentiated thyroid carcinoma (PDTC) and anaplastic thyroid cancer (ATC). According to the literature, the initiation of the EMT program in thyroid epithelial cells elevates the number of stem cells, which contribute to recurrent and metastatic diseases. The EMT process is orchestrated by a complex network of transcription factors, growth factors, signaling cascades, epigenetic modulations, and the tumor milieu. These factors have been shown to be dysregulated in thyroid carcinomas. Therefore, molecular interferences restoring the expression of tumor suppressors, or thwarting overexpressed oncogenes is a hopeful therapeutic method to improve the treatment of progressive diseases. In this review, we summarize the recent findings on EMT in thyroid cancer focusing on the main role-players and regulators of this process in thyroid tumors.
Collapse
Affiliation(s)
- Heewa Shakib
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sadegh Rajabi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Nahid Safari-Alighiarloo
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Fardi M, Alivand M, Baradaran B, Farshdousti Hagh M, Solali S. The crucial role of ZEB2: From development to epithelial-to-mesenchymal transition and cancer complexity. J Cell Physiol 2019; 234:14783-14799. [PMID: 30773635 DOI: 10.1002/jcp.28277] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/13/2019] [Accepted: 01/15/2019] [Indexed: 01/24/2023]
Abstract
Zinc finger E-box binding homeobox 2 (ZEB2) is a DNA-binding transcription factor, which is mainly involved in epithelial-to-mesenchymal transition (EMT). EMT is a conserved process during which mature and adherent epithelial-like state is converted into a mobile mesenchymal state. Emerging data indicate that ZEB2 plays a pivotal role in EMT-induced processes such as development, differentiation, and malignant mechanisms, for example, drug resistance, cancer stem cell-like traits, apoptosis, survival, cell cycle arrest, tumor recurrence, and metastasis. In this regard, the understanding of mentioned subjects in the development of normal and cancerous cells could be helpful in cancer complexity of diagnosis and therapy. In this study, we review recent findings about the biological properties of ZEB2 in healthy and cancerous states to find new approaches for cancer treatment.
Collapse
Affiliation(s)
- Masoumeh Fardi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Department, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Department, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Saeed Solali
- Immunology Department, Tabriz University of Medical Sciences, Tabriz, Iran
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
29
|
Ding Q, Li X, Sun Y, Zhang X. Schizandrin A inhibits proliferation, migration and invasion of thyroid cancer cell line TPC-1 by down regulation of microRNA-429. Cancer Biomark 2019; 24:497-508. [PMID: 30909188 DOI: 10.3233/cbm-182222] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Schizandrin A (SchA) exerts anticancer potential. However, the effects of SchA on thyroid cancer (TC) have not been clear illuminated. Therefore, we investigated the effects of SchA on TC cell line TPC-1 and the underlying mechanisms. METHODS TPC-1 cells were treated with SchA and/or transfected with miR-429 mimic, anti-miR-429 and their corresponding negative controls (NC). Cell viability, proliferation, migration, invasion and cell apoptosis were examined by CCK-8 assay, bromodeoxyuridine, modified two-chamber migration assay, Millicell Hanging Cell Culture and flow cytometry analysis, respectively. The expression of miR-429, p16, Cyclin D1, cyclin-dependent kinases 4 (CDK4), matrix metalloprotein (MMP)-2, MMP-9 and Vimentin was detected by qRT-PCR. All protein expression was examined by western blot. RESULTS SchA inhibited cell proliferation, metastasis and induced cell apoptosis. Moreover, SchA negatively regulated miR-429 expression. Treatment with miR-429 mimic and SchA reversed the results led by SchA and NC. Furthermore, the phosphorylation β-catenin, mitogen-activated protein kinase (MEK) and extracellular signal-regulated kinase (ERK) were statistically down-regulated by SchA while co-treatment with miR-429 mimic and SchA led to the opposite trend. Moreover, miR-429 knockdown showed contrary results. CONCLUSION SchA inhibits cell proliferation, migration, invasion and inactivates Wnt/β-catenin and MEK/ERK signaling pathways by down regulating miR-429.
Collapse
|
30
|
Javid H, Soltani A, Mohammadi F, Hashemy SI. Emerging roles of microRNAs in regulating the mTOR signaling pathway during tumorigenesis. J Cell Biochem 2019; 120:10874-10883. [PMID: 30719752 DOI: 10.1002/jcb.28401] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/13/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
The mammalian target of rapamycin (mTOR) is a large Ser/Thr protein kinase that belongs to the phosphoinositide 3-kinase (PI3K) family and mediates various physiological and pathological processes, especially cell proliferation, protein synthesis, autophagy, and cancer development. The mTOR expression is transient and tightly regulated in normal cells, but it is overactivated in cancer cells. Recently, several studies have indicated that microRNAs (miRNAs) play a critical role in the regulation of mTOR and mTOR-associated processes, some acting as inhibitors and the others as activators. Although it is still in infancy, the strategy of combining both miRNAs and mTOR inhibitors might provide an approach to selectively sensitizing tumor cells to chemotherapy-induced DNA damage and subsequently attenuating the tumor cell growth and apoptosis.
Collapse
Affiliation(s)
- Hossein Javid
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Soltani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fariba Mohammadi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
31
|
Guo H, Zhang L. MicroRNA-30a suppresses papillary thyroid cancer cell proliferation, migration and invasion by directly targeting E2F7. Exp Ther Med 2019; 18:209-215. [PMID: 31258655 PMCID: PMC6566087 DOI: 10.3892/etm.2019.7532] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 02/05/2019] [Indexed: 01/23/2023] Open
Abstract
microRNA (miRNA/miR)-30a, a tumor-associated miRNA, has been implicated in the tumorigenesis and progression of different types of human cancer. Thyroid cancer is a common endocrine malignancy, of which papillary thyroid cancer (PTC) accounts for ~80-90% of all TC. However, the effect of miR-30a in PTC is yet to be fully elucidated. The TPC-1 human PTC cell line, as well as the normal human thyroid cell line (HT-ori3), were utilized in the current study. The PTC cell line was transfected with a miR-30a mimic. Subsequently, reverse transcription-quantitative polymerase chain reaction was performed to detect the expression of miR-30a and E2F transcription factor 7 (E2F7). Cell proliferation was assessed via a MTT assay and transwell migration and invasion assays were performed to detect the migration and invasion of PTC cells. A dual-luciferase reporter assay was also utilized to clarify the association between miR-30a and E2F7. The results of the current study revealed that miR-30a was significantly downregulated in TPC-1 cells compared with HT-ori3 cells and that the expression of E2F7 was significantly upregulated in PTC cells. The upregulation of miR-30a also inhibited the proliferation, migration and invasion of PTC cells. Furthermore, the luciferase assay revealed that miR-30a binds to the 3'-UTR of E2F7. Additionally, the overexpression of miR-30a decreased E2F7 levels in TPC-1 cells. These results indicate that miR-30a functions as a tumor suppressor in PTC by direct targeting E2F7 and that miR-30a may be a novel therapeutic target for patients with PTC.
Collapse
Affiliation(s)
- Haiyan Guo
- Department of Clinical Medicine, Fenyang College, Shanxi Medical University, Fenyang, Shanxi 032200, P.R. China
| | - Linyun Zhang
- Shanxi Fenyang Prison Hospital, Fenyang, Shanxi 032200, P.R. China
| |
Collapse
|
32
|
Mushtaq F, Zhang J, Li J. miR-144 suppresses cell proliferation and invasion in gastric cancer through downregulation of activating enhancer-binding protein 4. Oncol Lett 2019; 17:5686-5692. [PMID: 31186793 DOI: 10.3892/ol.2019.10214] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 12/11/2018] [Indexed: 12/17/2022] Open
Abstract
Gastric cancer (GC) is the most common malignant disease and its incidence rate is increasing rapidly worldwide. The molecular mechanisms underlying GC tumorigenesis require further investigation. The expression and physiological roles of microRNA-144 (miR-144) have been investigated in numerous types of tumor. However, its biological function in GC remains largely unknown. The reverse transcription- quantitative polymerase chain reaction was used to determine the expression of miR-144 in GC cells and normal gastric epithelial cells. An miR-144 mimic was transfected into HGC-27 cells. In addition, bioinformatics analysis was performed to identify the potential targets of miR-144. Protein expression, luciferase and rescue assays were used to confirm the target of miR-144. It was identified that the expression of miR-144 was significantly downregulated in GC cells compared with in normal gastric epithelial cells. Furthermore, overexpression of miR-144 suppressed HGC-27 cell proliferation, migration and invasion. Additionally, bioinformatics analysis suggested that the activating enhancer-binding protein 4 (AP4) is a target gene of miR-144. In addition, it was determined that miR-144 suppresses the expression of AP4 by binding directly to its 3'-untranslated regions. Furthermore, restoration of AP4 partially attenuated miR-144-induced inhibition of cell proliferation, migration and invasion. Therefore, the results of the present study suggest that miR-144 serves an important role in GC progression.
Collapse
Affiliation(s)
- Faheim Mushtaq
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jinping Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jiansheng Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
33
|
MiR-144 inhibits growth and metastasis in colon cancer by down-regulating SMAD4. Biosci Rep 2019; 39:BSR20181895. [PMID: 30745456 PMCID: PMC6395301 DOI: 10.1042/bsr20181895] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/10/2019] [Accepted: 01/30/2019] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (MiRs) are thought to display regulator action in tumor suppression and oncogenesis. miR-144 plays an important role in the development of various cancers, such as colorectal cancer, breast cancer, and lung cancer, by targetting different molecules potentially involved in many signaling pathways. SMAD4 is a common signaling during tumor progression, and it can inhibit cell proliferation and promote cell motility in most epithelial cells. The present study focused on the effect of miR-144 and SMAD4 on colon cancer in order to find the novel gene therapy target for the treatment of colon cancer. Quantitative real-time polymerase chain reaction was used to assess the expression level of miR-144 in colon cancer tissues and SW620 cells. MTT assay, scratch test, and transwell assay were used to evaluate cell proliferation, migration, and invasion, respectively. Moreover, luciferase assays were utilized to identify the predictive effect of miR-144 on SMAD4. Western blotting was performed to determine the relative expression of protein related to SMAD4. We found miR-144 level was significantly lower in colon cancer tissues and SW620 cells. Moreover, SMAD4 level, both in mRNA and protein, was obviously elevated in colon cancer tissues. Further, miR-144 mimics treatment inhibited cells proliferation, invasion, and migration. Fluorescence intensity of miR-144 mimics group in wild type cells was decreased. MiR-144 mimics repressed the SMAD4 expression both in mRNA and protein. These findings about miR-144/SMAD4 pair provide a novel therapeutic method for colon cancer patients.
Collapse
|
34
|
Xu Y, Chen J, Yang Z, Xu L. Identification of RNA Expression Profiles in Thyroid Cancer to Construct a Competing Endogenous RNA (ceRNA) Network of mRNAs, Long Noncoding RNAs (lncRNAs), and microRNAs (miRNAs). Med Sci Monit 2019; 25:1140-1154. [PMID: 30745559 PMCID: PMC6380385 DOI: 10.12659/msm.912450] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background The aims of this study were to use RNA expression profile bioinformatics data from cases of thyroid cancer from the Cancer Genome Atlas (TCGA), the Kyoto Encyclopedia of Genes and Genomes (KEGG), and the Gene Ontology (GO) databases to construct a competing endogenous RNA (ceRNA) network of mRNAs, long noncoding RNAs (lncRNAs), and microRNAs (miRNAs). Material/Methods TCGA provided RNA profiles from 515 thyroid cancer tissues and 56 normal thyroid tissues. The DESeq R package analyzed high-throughput sequencing data on differentially expressed RNAs. GO and KEGG pathway analysis used the DAVID 6.8 and the ClusterProfile R package. Kaplan-Meier survival statistics and Cox regression analysis were performed. The thyroid cancer ceRNA network was constructed based on the miRDB, miRTarBase, and TargetScan databases. Results There were 1,098 mRNAs associated with thyroid cancer; 101 mRNAs were associated with overall survival (OS). Multivariate analysis developed a risk scoring system that identified seven signature mRNAs, with a discriminative value of 0.88, determined by receiver operating characteristic (ROC) curve analysis. A ceRNA network included 13 mRNAs, 31 lncRNAs, and seven miRNAs. Four out of the 31 lncRNAs and all miRNAs were down-regulated, and the remaining RNAs were upregulated. Two lncRNAs (MIR1281A2HG and OPCML-IT1) and one miRNA (miR-184) were significantly associated with OS in patients with thyroid cancer. Conclusions Differential RNA expression profiling in thyroid cancer was used to construct a ceRNA network of mRNAs, lncRNAs, and miRNAs that showed potential in evaluating prognosis.
Collapse
Affiliation(s)
- Yuanxin Xu
- Department of Endocrinology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Jiuwei Chen
- Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Zhihui Yang
- Department of Public Health Sciences, Stockholm University, Stockholm, Sweden
| | - Lihua Xu
- Department of Nursing, The Hospital of Heilongjiang Province, Harbin, Heilongjiang, China (mainland)
| |
Collapse
|
35
|
Xia F, Wang W, Jiang B, Chen Y, Li X. DNA methylation-mediated silencing of miR-204 is a potential prognostic marker for papillary thyroid carcinoma. Cancer Manag Res 2019; 11:1249-1262. [PMID: 30799952 PMCID: PMC6371936 DOI: 10.2147/cmar.s184566] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Papillary thyroid carcinoma (PTC) is the most common endocrine malignancy and its incidence has increased over the last few decades. The molecular mechanisms underlying PTC tumorigenesis and progression are still unclear. PATIENTS AND METHODS The microRNA (miRNA) expression patterns of PTC were revealed by miRNA microarray analysis and validated with The Cancer Genome Atlas (TCGA) data. Promoter DNA methylation rates of miR-204 were analyzed by Agena Methylation MassAR-RAY analysis and validated with TCGA data. The underlying molecular mechanisms of miR-204 involved in PTC were studied by bioinformatics analyses. RESULTS A total of 181 differentially expressed miRNAs (89 downregulated and 92 upregulated miRNAs) between PTC and normal tissues were detected in this study. We identified miR-204 as one of the most significantly downregulated miRNAs in PTC. Downregulation of miR-204 was related to PTC extrathyroidal extension, high T-stage, lymph metastasis, BRAF V600E mutation, and aggressive tall cell variant. The Agena MassARRAY results indicated that 12 CpG sites located at the promoter of miR-204 were hypermethylated in PTC tissues compared to normal tissues. The promoter methylation rates of miR-204 in PTC were negatively correlated with the expression levels of miR-204 and its host gene TRPM3. Downregulated miR-204 expression was related to several important pathways and mechanisms involved in tumorigenesis and progression. CONCLUSION Promoter DNA methylation-silenced miR-204 could serve as a potential diagnostic biomarker of PTC. Downregulation of miR-204 may play an important role in PTC via its involvement in many tumor-related pathways. Novel target genes and putative mechanisms of miR-204 in PTC need to be further validated.
Collapse
Affiliation(s)
- Fada Xia
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China,
| | - Wenlong Wang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China,
| | - Bo Jiang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China,
| | - Yong Chen
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China,
| | - Xinying Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China,
| |
Collapse
|
36
|
Ramírez-Moya J, Santisteban P. miRNA-Directed Regulation of the Main Signaling Pathways in Thyroid Cancer. Front Endocrinol (Lausanne) 2019; 10:430. [PMID: 31312183 PMCID: PMC6614345 DOI: 10.3389/fendo.2019.00430] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/14/2019] [Indexed: 12/13/2022] Open
Abstract
In the last two decades, great strides have been made in the study of microRNAs in development and in diseases such as cancer, as reflected in the exponential increase in the number of reviews on this topic including those on undifferentiated and well-differentiated thyroid cancer. Nevertheless, few reviews have focused on understanding the functional significance of the most up- or down-regulated miRNAs in thyroid cancer for the main signaling pathways hyperactivated in this tumor type. The aim of this review is to discuss the major miRNAs targeting proteins of the MAPK, PI3K, and TGFβ pathways, to define their mechanisms of action through the 3'UTR regions of their target genes, and to describe how they affect thyroid tumorigenesis through their actions on cell proliferation, migration, and invasion. Given the importance of miRNAs in cancer as diagnostic, prognostic and therapeutic candidates, a better understanding of this cross-talk might shed new light on the biomedical treatment of thyroid cancer.
Collapse
Affiliation(s)
- Julia Ramírez-Moya
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior Investigaciones Científicas and Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Pilar Santisteban
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior Investigaciones Científicas and Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- *Correspondence: Pilar Santisteban
| |
Collapse
|
37
|
Fan W, Li X, Zhang D, Li H, Shen H, Liu Y, Chen G. Detrimental Role of miRNA-144-3p in Intracerebral Hemorrhage Induced Secondary Brain Injury is Mediated by Formyl Peptide Receptor 2 Downregulation Both In Vivo and In Vitro. Cell Transplant 2018; 28:723-738. [PMID: 30511586 PMCID: PMC6686441 DOI: 10.1177/0963689718817219] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Although microRNA-144-3p (miRNA-144-3p) has been shown to suppress tumor proliferation and invasion, its function in intracerebral hemorrhage (ICH)-induced secondary brain injury (SBI) remains unclear. Thus, this study was designed to investigate the role of miRNA-144-3p in ICH. To accomplish this, we used adult male Sprague-Dawley rats to establish an in vivo ICH model by injecting autologous blood, while cultured primary rat cortical neurons were exposed to oxyhemoglobin (OxyHb) to mimic ICH in vitro. To examine the role of miRNA-144-3p in ICH-induced SBI, we used an miRNA-144-3p mimic and inhibitor both in vivo and in vitro. Following ICH induction, we found miRNA-144-3p expression to increase. Additionally, we predicted the formyl peptide receptor 2 (FPR2) to be a potential miRNA-144-3p target, which we validated experimentally, with FPR2 expression downregulated when miRNA-144-3p was upregulated. Furthermore, elevated miRNA-144-3p levels aggravated brain edema and neurobehavioral disorders and induced neuronal apoptosis via the downregulation of FPR2 both in vivo and in vitro. We suspected that these beneficial effects provided by FPR2 were associated with the PI3K/AKT pathway. We validated this finding by overexpressing FPR2 while inhibiting PI3K/AKT in vitro and in vivo. In conclusion, miRNA-144-3p aggravated ICH-induced SBI by targeting and downregulating FPR2, thereby contributing to neurological dysfunction and neural apoptosis via PI3K/AKT pathway activation. These findings suggest that inhibiting miRNA-144-3p may offer an effective approach to attenuating brain damage incurred after ICH and a potential therapy to improve ICH-induced SBI.
Collapse
Affiliation(s)
- Weijian Fan
- 1 Department of Neurosurgery, Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China.,2 Department of Vascular Surgery, Suzhou Hospital Affiliated of Nanjing Traditional Chinese Medicine University, Suzhou, China
| | - Xiang Li
- 1 Department of Neurosurgery, Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Dongping Zhang
- 1 Department of Neurosurgery, Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haiying Li
- 1 Department of Neurosurgery, Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haitao Shen
- 1 Department of Neurosurgery, Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yizhi Liu
- 1 Department of Neurosurgery, Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Gang Chen
- 1 Department of Neurosurgery, Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
38
|
MicroRNA-1270 modulates papillary thyroid cancer cell development by regulating SCAI. Biomed Pharmacother 2018; 109:2357-2364. [PMID: 30551495 DOI: 10.1016/j.biopha.2018.08.150] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/25/2018] [Accepted: 08/28/2018] [Indexed: 11/20/2022] Open
Abstract
PURPOSE We intended to evaluate expression and mechanisms of human microRNA 1270 (hsa-miR-1270) in papillary thyroid cancer (PTC). METHODS In PTC cell lines and human PTC tumors, hsa-miR-1270 expressions were evaluated by qRT-PCR. Hsa-miR-1270 was downregulated in TPC1 and K1 cells via lentiviral transduction. Its effects on PTC cancer cell proliferation, migration and in vivo transplantation were assessed, respectively. Potential targeting of hsa-miR-1270 on downstream gene, Suppressor Of Cancer Cell Invasion (SCAI), was assessed. In hsa-miR-1270-downregulated PTC cells, SCAI was further downregulated to examine its associating role in hsa-miR-1270-mediated regulation on cancer cell proliferation and migration. RESULTS Hsa-miR-1270 was aberrantly upregulated in PTC cell lines and human PTC tumors. In TPC1 and K1 cells, lentivirus-mediated hsa-miR-1270 downregulation suppressed cancer cell proliferation, migration and in vivo transplantation. Hsa-miR-1270 binds SCAI and inversely regulated SCAI gene expression in PTC cells. SCAI downregulation removed the suppressing effects of hsa-miR-1270 downregulation in human PTC cells. CONCLUSION Hsa-miR-1270 downregulation may suppress human PTC cell development both in vitro and in vivo. The regulatory mechanism of hsa-miR-1270 in PTC may be primarily associated with SCAI.
Collapse
|
39
|
Yao Y, Zhou WY, He RX. Down-regulation of JMJD5 suppresses metastasis and induces apoptosis in oral squamous cell carcinoma by regulating p53/NF-κB pathway. Biomed Pharmacother 2018; 109:1994-2004. [PMID: 30551455 DOI: 10.1016/j.biopha.2018.07.144] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 12/25/2022] Open
Abstract
The prognosis of oral squamous cell carcinoma (OSCC) patients remains unclear, and a better understanding of the underlying molecular mechanisms is urgently required. Jumonji-C (JmjC) domain-containing protein 5 (JMJD5), renamed KDM8, has been implicated in tumorigenesis, circadian rhythm modulation, embryological development, and osteoclastogenesis. In the present study, we found that JMJD5 was over-expressed in patients with OSCC by real-time quantitative PCR (qPCR), western blot and immunohistochemical assays. When knockdown using small interfering RNA (siRNA) in OSCCs, JMJD5 was exhibited to be important for sustaining cell migration and invasion. JMJD5-knockdown increased E-cadherin expressions, and decreased N-cadherin and Vimentin expression levels in OSCC cells. Further, apoptosis was induced by JMJD5-silence through both the intrinsic and extrinsic pathways, as evidenced by the increased cleavage of Caspase-8/-9/-3 and PARP. Meanwhile, p53 expression levels were also up-regulated by JMJD5-knockdown. Suppressing p53 expressions with its inhibitor, PFTα, blocked apoptotic response in JMJD5-silenced cells. JMJD5 inhibition-induced decrease of nuclear factor-kappaB (NF-κB) was rescued by pifithrin-α (PFTα) pre-treatment. Consistently, over-expressing JMJD5 decreased p53, cleaved Caspase-3 and poly (ADP-ribose) polymerase-1 (PARP-1), whereas increased nuclear NF-κB expressions in OSCC cell lines. More importantly, targeting JMJD5 reduced xenograft tumor growth in vivo through the same molecular mechanisms evidenced in vitro. Thus, the data supplied mechanistic insights into the effects of JMJD5 on the modulation of OSCC development, illustrating that JMJD5 might be an essential prognostic indicator and therapeutic target against OSCC progression.
Collapse
Affiliation(s)
- Yuan Yao
- Department of Stomatology, Affiliated Hospital of Jiangnan University, Wuxi, 214000, China.
| | - Wen-Ying Zhou
- Laboratory Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Zhongshan, 528400, China
| | - Rui-Xin He
- Clinical Medicine Five-Year Program, West China School of Medicine, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
40
|
Liang C, Liu J, Ge H, Xu Y, Li G, Wu J. The clinicopathological and prognostic value of long non-coding RNA ZEB1-AS1 in solid tumors: A meta-analysis. Clin Chim Acta 2018; 484:91-98. [DOI: 10.1016/j.cca.2018.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/05/2018] [Accepted: 05/07/2018] [Indexed: 12/29/2022]
|
41
|
Liu J, Feng L, Zhang H, Zhang J, Zhang Y, Li S, Qin L, Yang Z, Xiong J. Effects of miR-144 on the sensitivity of human anaplastic thyroid carcinoma cells to cisplatin by autophagy regulation. Cancer Biol Ther 2018; 19:484-496. [PMID: 29504819 DOI: 10.1080/15384047.2018.1433502] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND We investigated the influence of miR-144 on the cisplatin-sensitivity of anaplastic thyroid carcinoma (ATC) cells and explored the internal molecular mechanism of miR-144. METHODS Thyroid cancer cells ARO, TPC1 and normal thyroid cells HT-ori3 were used in this research. Expressions of miR-144 and TGF-α were uncovered by western blot and qRT-PCR. Expressions of autophagy-related protein LC3 II and apoptosis-related protein Caspase-3 and PARP were explored by western blot and immunofluorescence. Cell viability was detected by MTT assay and apoptosis condition was revealed by flow cytometric analysis and TUNEL staining. Dual-luciferase reporter assay was employed to verify the target relationship. Tissue sections were detected by IHC. Xenograft assay was conducted to further verify conclusions in vivo. RESULTS MiR-144, which was low expressed in ATC cells and tissues, could inhibit autophagy activation induced by cisplatin, enhancing the sensitivity of ATC cells to cisplatin, and promoting cell apoptosis. TGF-α was the target of miR-144 and was negatively regulated by it. MiR-144 could improve the sensitivity of ATC cells to cisplatin and inhibit tumor growth by suppressing TGF-α both in vitro and in vivo. CONCLUSION MiR-144 could inhibit autophagy of ATC cells by down-regulating TGF-α, enhancing the cisplatin-sensitivity of ATC cells.
Collapse
Affiliation(s)
- Jing Liu
- a Department of General Surgery , the First Hospital of Shanxi Medical University , Taiyuan , Shanxi , China
| | - Liguo Feng
- b Department of General Surgery , Taiyuan Municipal No.2 People's Hospital , Taiyuan , Shanxi , China
| | - Haitao Zhang
- c Department of General Surgery , Shanxi Medical University , Taiyuan , Shanxi , China
| | - Jin Zhang
- a Department of General Surgery , the First Hospital of Shanxi Medical University , Taiyuan , Shanxi , China
| | - Yanyan Zhang
- a Department of General Surgery , the First Hospital of Shanxi Medical University , Taiyuan , Shanxi , China
| | - Shujing Li
- a Department of General Surgery , the First Hospital of Shanxi Medical University , Taiyuan , Shanxi , China
| | - Long Qin
- c Department of General Surgery , Shanxi Medical University , Taiyuan , Shanxi , China
| | - Ziyao Yang
- c Department of General Surgery , Shanxi Medical University , Taiyuan , Shanxi , China
| | - Jianxia Xiong
- c Department of General Surgery , Shanxi Medical University , Taiyuan , Shanxi , China
| |
Collapse
|
42
|
Pishkari S, Paryan M, Hashemi M, Baldini E, Mohammadi-Yeganeh S. The role of microRNAs in different types of thyroid carcinoma: a comprehensive analysis to find new miRNA supplementary therapies. J Endocrinol Invest 2018; 41:269-283. [PMID: 28762013 DOI: 10.1007/s40618-017-0735-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/19/2017] [Indexed: 12/21/2022]
Abstract
The most common endocrine malignancy is thyroid cancer, and researchers have made a great deal of progress in deciphering its molecular mechanisms in the recent years. Many of molecular changes observed in thyroid cancer can be used as biomarkers for diagnosis, prognosis, and therapeutic targets for treatment. MicroRNAs (miRNAs) are important parts in biological and metabolic pathways such as regulation of developmental stages, signal transduction, cell maintenance, and differentiation. Therefore, their dysregulation can expose individuals to malignancies. It has been proved that miRNA expression is dysregulated in different types of tumors, like thyroid cancers, and can be the cause of tumor initiation and progression. In this paper, we have reviewed the available data on miRNA dysregulation in different thyroid tumors including papillary, follicular, anaplastic, and medullary thyroid carcinomas aiming to introduce the last updates in miRNAs-thyroid cancer relation.
Collapse
Affiliation(s)
- S Pishkari
- Department of Medicine, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - M Paryan
- Department of Research and Development, Production and Research Complex, Pasteur Institute of Iran, Tehran, Iran
| | - M Hashemi
- Department of Medicine, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - E Baldini
- Department of Surgical Sciences, University of Rome, Rome, Italy.
| | - S Mohammadi-Yeganeh
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
43
|
Jahanbani I, Al-Abdallah A, Ali RH, Al-Brahim N, Mojiminiyi O. Discriminatory miRNAs for the Management of Papillary Thyroid Carcinoma and Noninvasive Follicular Thyroid Neoplasms with Papillary-Like Nuclear Features. Thyroid 2018; 28:319-327. [PMID: 29378472 DOI: 10.1089/thy.2017.0127] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Papillary thyroid carcinoma (PTC) variants have several overlapping clinical and pathological features. The World Health Organization recently published a new classification of thyroid tumors containing significant revisions. Encapsulated papillary thyroid carcinoma (EPTC) has been recognized as a distinctive variant of PTC. The noninvasive encapsulated follicular variant of PTC has been reclassified as noninvasive follicular thyroid neoplasms with papillary-like nuclear features (NIFTP). Different neoplasms are associated with different outcomes and require different clinical management. The objective of this study was to explore the miRNA expression patterns specific for classic PTC (cPTC), EPTC, follicular variant of PTC, and NIFTP in order to identify biomarkers of diagnostic and prognostic utility aiming for better clinical decisions. METHODS The expression of 84 miRNAs was determined by quantitative real-time polymerase chain reaction in 113 thyroid tissues of PTC (classic, encapsulated, and follicular), NIFTP, and hyperplasia lesions. Expression of the same miRNAs was tested in pre- and postoperative whole-blood samples. RESULTS Several miRNAs were differentially expressed in the different groups. Expression profile of miRNAs in the tissue was similarly reflected in the circulation. Receiver operating characteristic curve analysis showed that miR-7-5p, miR-222-3p, and miR-146b-5p can discriminate between the different groups with high sensitivity and specificity. Downregulation of miR-144-3p, miR-15a-5p, miR-20a-5p, miR-32-5p miR-142-5p, miR-143-3p, and miR-20b-5p is associated with aggressive behavior in cPTC. Circulating miR-146b-5p, miR-222-3p, miR-155-5p, and miR-378a-3p are potential diagnostic and follow up biomarkers for PTC. CONCLUSION Downregulation of miR-7-5p discriminates NIFTP from hyperplasia. Upregulation of miR-222-3p discriminates follicular variant of PTC from NIFTP. High levels of miR-146b-5p distinctively characterize cPTC. These miRNAs are useful biomarkers in the diagnosis of PTC and NIFTP, and help to avoid unnecessary thyroidectomy and improve clinical management.
Collapse
Affiliation(s)
- Iman Jahanbani
- 1 Department of Pathology, Faculty of Medicine, Kuwait University , Safat, Kuwait
| | - Abeer Al-Abdallah
- 1 Department of Pathology, Faculty of Medicine, Kuwait University , Safat, Kuwait
| | - Rola H Ali
- 1 Department of Pathology, Faculty of Medicine, Kuwait University , Safat, Kuwait
| | - Nabeel Al-Brahim
- 2 Department of Pathology, Farwaniya Hospital , Kuwait City, Kuwait
| | - Olusegun Mojiminiyi
- 1 Department of Pathology, Faculty of Medicine, Kuwait University , Safat, Kuwait
| |
Collapse
|
44
|
Han S, Zhu J, Zhang Y. miR-144 Potentially Suppresses Proliferation and Migration of Ovarian Cancer Cells by Targeting RUNX1. Med Sci Monit Basic Res 2018; 24:40-46. [PMID: 29445078 PMCID: PMC5822934 DOI: 10.12659/msmbr.907333] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Background Ovarian cancer (OC) is one of the most common malignant diseases of the female reproductive system worldwide. Evidence has shown that microRNAs are involved in the development of ovarian cancer. miR-144, one of these microRNAs, has been found have upregulated expression in various human malignancies. The present study aimed to investigate the role miR-144 in ovarian cancer cell lines and to elucidate the mechanism involved. Material/Methods Human ovarian cancer cell lines (SKOV3/OVCAR3) and a normal ovarian cell line (IOSE80) were used to identify the miR-144 expression though qRT-PCR method. SKOV3/OVCAR3 cells were transfected with miR-144 mimics by Lipofectamine, and the proliferation, migration, and invasion ability of these cells were detected by MTT assay, wound healing assay, and Transwell assays, respectively. MMP2 and MMP9 expression were detected at mRNA and protein levels. The results of dual luciferase reporter assay confirmed that miR-144 could down-regulate RUNX1 expression level. Finally, the expression of runt-related transcription factor 1 (RUNX1) was examined using qRT-PCR and Western blot analysis. Results Our results demonstrate that the expression level of miR-144 was downregulated in SKOV3/OVCAR3 compared to IOSE80, and we found that miR-144 suppresses the proliferation and migration of ovarian cancer cells. Moreover, RUNX1 was predicted and confirmed to be a target of miRNA-144. Additionally, after 48-h transfection with miR-144 mimics, the expression of RUNX1 was downregulated in OC cells. Conclusions miR-144 mimics can inhibit the proliferation and migration of ovarian cancer cells though regulating the expression of RUNX1.
Collapse
Affiliation(s)
- Shichao Han
- Department of Gynecology, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China (mainland)
| | - Jinming Zhu
- Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China (mainland)
| | - Yilei Zhang
- Department of Experimental Radiation Oncology, MD Anderson, Houston, TX, USA
| |
Collapse
|
45
|
Chi J, Zheng X, Gao M, Zhao J, Li D, Li J, Dong L, Ruan X. Integrated microRNA-mRNA analyses of distinct expression profiles in follicular thyroid tumors. Oncol Lett 2017; 14:7153-7160. [PMID: 29344146 PMCID: PMC5754833 DOI: 10.3892/ol.2017.7146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/10/2017] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs/miRs) are small non-coding RNAs identified in plants, animals and certain viruses; they function in RNA silencing and post-transcriptional regulation of gene expression. miRNAs also serve an important role in the pathogenesis, diagnosis and treatment of tumors. However, few studies have investigated the role of miRNAs in thyroid tumors. In the present study, the expression of miRNA and mRNA was compared between follicular thyroid carcinoma (FTC) and follicular thyroid adenoma (FA) samples, and then miRNA-mRNA regulatory network analysis was performed. Microarray datasets (GSE29315 and GSE62054) were downloaded from the Gene Expression Omnibus, and profiling data were processed with R software. Differentially expressed miRNAs (DEMs) and differentially expressed genes (DEGs) were determined, and Gene Ontology enrichment analysis was subsequently performed for DEGs using the Database for Annotation, Visualization and Integrated Discovery. The target genes of the DEMs were identified with miRWalk, miRecords and TarMir databases. Network analysis of the DEMs and DEMs-targeted DEGs was performed using Cytoscape software. In GSE62054, 23 downregulated and 9 upregulated miRNAs were identified. In GSE29315, 42 downregulated and 44 upregulated mRNAs were identified. A total of 36 miRNA-gene pairs were also identified. Network analysis indicated a co-regulatory association between miR-296-5p, miR-10a, miR-139-5p, miR-452, miR-493, miR-7, miR-137, miR-144, miR-145 and corresponding targeted mRNAs, including TNF receptor superfamily member 11b, benzodiazepine receptor (peripheral) -associated protein 1, and transforming growth factor β receptor 2. These results suggest that miRNA-mRNAs networks serve an important role in the pathogenesis, diagnosis and treatment of FTC and FA.
Collapse
Affiliation(s)
- Jiadong Chi
- Department of Thyroid and Neck Tumors, Tianjin Medical University Cancer Institute and Hospital, Oncology Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin 300060, P.R. China.,Department of Graduate College, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Xiangqian Zheng
- Department of Thyroid and Neck Tumors, Tianjin Medical University Cancer Institute and Hospital, Oncology Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin 300060, P.R. China
| | - Ming Gao
- Department of Thyroid and Neck Tumors, Tianjin Medical University Cancer Institute and Hospital, Oncology Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin 300060, P.R. China
| | - Jingzhu Zhao
- Department of Thyroid and Neck Tumors, Tianjin Medical University Cancer Institute and Hospital, Oncology Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin 300060, P.R. China
| | - Dapeng Li
- Department of Thyroid and Neck Tumors, Tianjin Medical University Cancer Institute and Hospital, Oncology Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin 300060, P.R. China
| | - Jiansen Li
- Department of Thyroid and Neck Tumors, Tianjin Medical University Cancer Institute and Hospital, Oncology Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin 300060, P.R. China
| | - Li Dong
- Department of Thyroid and Neck Tumors, Tianjin Medical University Cancer Institute and Hospital, Oncology Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin 300060, P.R. China
| | - Xianhui Ruan
- Department of Thyroid and Neck Tumors, Tianjin Medical University Cancer Institute and Hospital, Oncology Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin 300060, P.R. China
| |
Collapse
|
46
|
Kan Q, Su Y, Yang H. MicroRNA-335 is downregulated in papillary thyroid cancer and suppresses cancer cell growth, migration and invasion by directly targeting ZEB2. Oncol Lett 2017; 14:7622-7628. [PMID: 29344210 DOI: 10.3892/ol.2017.7126] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 08/08/2017] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRs) are a group of short, endogenous, non-protein-coding and single-stranded RNAs that regulate gene expression by binding to the 3'-untranslated region (3'UTR) of mRNAs, which results in their degradation or translational repression. The aim of the present study was to investigate the expression and function of miR-335 in human papillary thyroid cancer (PTC). Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed to quantify the relative miR-335 expression levels in PTC tissues and cell lines. The effect of miR-335 on the proliferation, migration and invasion of PTC cells was assessed by an MTT assay, and transwell migration and invasion assays, respectively. Dual-luciferase reporter assays were employed to explore whether miR-335 directly targeted the 3'UTR of the potential target gene zinc finger E-box binding homeobox 2 (ZEB2). RT-qPCR and western blotting were adopted to assess the effect of miR-335 on the mRNA and protein expression of ZEB2. RT-qPCR revealed that miR-335 was downregulated in PTC tissues and cell lines. The MTT assay and transwell migration and invasion assays demonstrated that the overexpression of miR-335 significantly inhibited the proliferation, migration and invasion of PTC cells. ZEB2 was identified as a direct target of miR-335 with computational analysis, which was confirmed with a dual-luciferase reporter assay, RT-qPCR and western blotting. The knockdown of ZEB2 significantly inhibited the proliferation, migration and invasion of PTC cells, indicating that ZEB2 may be a functional target of miR-335. Taken together, these findings suggested that miR-335 functioned as a tumor suppressor and suppressed the growth and metastatic behavior of PTC cells by targeting ZEB2.
Collapse
Affiliation(s)
- Quan'e Kan
- Department of Endocrinology, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Yong Su
- Department of Endocrinology, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Huihui Yang
- Department of Endocrinology, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| |
Collapse
|
47
|
Wu M, Huang C, Huang X, Liang R, Feng Y, Luo X. MicroRNA-144-3p suppresses tumor growth and angiogenesis by targeting SGK3 in hepatocellular carcinoma. Oncol Rep 2017; 38:2173-2181. [PMID: 28849156 PMCID: PMC5652965 DOI: 10.3892/or.2017.5900] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 08/03/2017] [Indexed: 12/27/2022] Open
Abstract
In our previous studies, the Illumine Soledad massively parallel signature sequencing of miRNomes in non-tumor and hepatocellular carcinoma (HCC) tissues revealed that microRNA (miR)-144-3p was significantly downregulated in HCC, but its role in HCC development, especially angiogenesis, remains unclear. In this investigation, we found recovering miR-144-3p expression can significantly suppress the growth, migration and induced angiogenic capacity of HCC cells through both in vivo and in vitro experiments. Moreover, clinical correlation analysis showed that low expression of miR-144-3p was positively correlated to poor disease-free survival (DFS) of HCC patients. Mechanistically, serum and glucocorticoid kinase 3 (SGK3), the putative targets of miR-144-3p, was predicted by Target Scan database and identified to be suppressed by miR-144-3p so that inhibiting the activation of mTOR-VEGF downstream signals was activated by the phosphoinositide 3-kinase (PI3K)-independent pathway. Hence, we concluded that miR-144-3p, which is frequently downregulated in HCC, can inhibit proliferation, migration and repress angiogenesis by regulating SGK3 activation with PI3K independent signal pathway, and acts as a prognostic factor for HCC patients.
Collapse
Affiliation(s)
- Manya Wu
- Research Department, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Chaoyuan Huang
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xinping Huang
- Research Department, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Rong Liang
- First Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yan Feng
- Research Department, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiaoling Luo
- Research Department, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
48
|
Wang Y, Zhang Y, Yang T, Zhao W, Wang N, Li P, Zeng X, Zhang W. Long non-coding RNA MALAT1 for promoting metastasis and proliferation by acting as a ceRNA of miR-144-3p in osteosarcoma cells. Oncotarget 2017; 8:59417-59434. [PMID: 28938647 PMCID: PMC5601743 DOI: 10.18632/oncotarget.19727] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 06/29/2017] [Indexed: 12/30/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are involved in various biological processes and diseases including osteosarcoma. Long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is overly expressed in osteosarcoma. But the function and mechanism it works on in osteosarcoma proliferation and metastasis mediated by Rho associated coiled-coil containing protein kinase 1 (ROCK1) and Rho associated coiled-coil containing protein kinase 2 (ROCK2) remain unclear. In the present study, an elevated MALAT1 was found in osteosarcoma tissues and cell lines, and the elevated MALAT1 was correlated with a poor prognosis in osteosarcoma patients. The functional experiments show that a decreased MALAT1 could remarkably inhibit osteosarcoma cell metastasis and proliferation but induce cell cycle arrest, indicating that MALAT1 functioned as an oncogene in osteosarcoma. Furthermore, we confirmed that MALAT1 and ROCK1/ROCK2 which were targeted by microRNA-144-3p (miR-144-3p) shared the same miR-144-3p combining site. Furthermore, the constructed luciferase assay verified that MALAT1 was a target of miR-144-3p. Additionally, the results of a qRT-PCR demonstrated that MALAT1 and miR-144-3p repressed each other's expression in a reciprocal manner. Finally, we affirmed that an overexpression of MALAT1 inhibited ROCK1/ROCK2 expression and its mediated metastasis and proliferation by working as a competitive endogenous RNA (ceRNA) via miR-144-3p. In summary, the findings of this study based on the ceRNA theory, combining the research foundation of miR-144-3p, ROCK1 and ROCK2, taking MALAT1 as a new point of study, provided new insights into molecular level proliferation reversal and metastasis of osteosarcoma.
Collapse
Affiliation(s)
- Yong Wang
- The 4th Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, P. R. China
| | - Yueyang Zhang
- Department of Pathology, Liaoning Cancer Hospital & Institute, Shenyang, P. R. China
| | - Tao Yang
- Department of Joint Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, P. R. China
| | - Wei Zhao
- The 4th Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, P. R. China
| | - Ningning Wang
- The 2nd Department of Cardiology, Central Hospital Affiliated to Shenyang Medical College, Shenyang, P. R. China
| | - Pengcheng Li
- The 4th Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, P. R. China
| | - Xiandong Zeng
- Department of Surgical Oncology, Central Hospital Affiliated to Shenyang Medical College, Shenyang, P. R. China
| | - Weiguo Zhang
- Department of Joint Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, P. R. China
| |
Collapse
|
49
|
Jin J, Wang Y, Xu Y, Zhou X, Liu Y, Li X, Wang J. MicroRNA-144 regulates cancer cell proliferation and cell-cycle transition in acute lymphoblastic leukemia through the interaction of FMN2. J Gene Med 2017; 19. [PMID: 27556228 DOI: 10.1002/jgm.2898] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/07/2016] [Accepted: 08/21/2016] [Indexed: 01/20/2023] Open
Affiliation(s)
| | | | | | | | | | | | - Jin Wang
- Department of Hematology, Daping Hospital; Third Military Medical University; Chongqing China
| |
Collapse
|
50
|
MicroRNA-Mediated Rescue of Fear Extinction Memory by miR-144-3p in Extinction-Impaired Mice. Biol Psychiatry 2017; 81:979-989. [PMID: 28104225 DOI: 10.1016/j.biopsych.2016.12.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 12/06/2016] [Accepted: 12/13/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND MicroRNA (miRNA)-mediated control of gene expression suggests that miRNAs are interesting targets and/or biomarkers in the treatment of anxiety- and trauma-related disorders, where often memory-associated gene expression is adversely affected. METHODS The role of miRNAs in the rescue of impaired fear extinction was assessed using the 129S1/SvlmJ (S1) mouse model of impaired fear extinction. miRNA microarray analysis, reverse transcription polymerase chain reaction, fluorescent in situ hybridization, lentiviral overexpression, and Luciferase reporter assays were used to gain insight into the mechanisms underlying miRNA-mediated normalization of deficient fear extinction. RESULTS Rescuing impaired fear extinction via dietary zinc restriction was associated with differential expression of miRNAs in the amygdala. One candidate, miR-144-3p, robustly expressed in the basolateral amygdala, showed specific extinction-induced, but not fear-induced, increased expression in both extinction-rescued S1 mice and extinction-intact C57BL/6 (BL6) mice. miR-144-3p upregulation and effects on subsequent behavioral adaption was assessed in S1 and BL6 mice. miR-144-3p overexpression in the basolateral amygdala rescued impaired fear extinction in S1 mice, led to enhanced fear extinction acquisition in BL6 mice, and furthermore protected against fear renewal in BL6 mice. miR-144-3p targets a number of genes implicated in the control of plasticity-associated signaling cascades, including Pten, Spred1, and Notch1. In functional interaction studies, we revealed that the miR-144-3p target, PTEN, colocalized with miR-144-3p in the basolateral amygdala and showed functional downregulation following successful fear extinction in S1 mice. CONCLUSIONS These findings identify a fundamental role of miR-144-3p in the rescue of impaired fear extinction and suggest this miRNA as a viable target in developing novel treatments for posttraumatic stress disorder and related disorders.
Collapse
|