1
|
A Glucokinase-linked Sensor in the Taste System Contributes to Glucose Appetite. Mol Metab 2022; 64:101554. [PMID: 35870707 PMCID: PMC9399534 DOI: 10.1016/j.molmet.2022.101554] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/08/2022] [Accepted: 07/15/2022] [Indexed: 01/23/2023] Open
Abstract
Objectives Dietary glucose is a robust elicitor of central reward responses and ingestion, but the key peripheral sensors triggering these orexigenic mechanisms are not entirely known. The objective of this study was to determine whether glucokinase, a phosphorylating enzyme with known glucosensory roles, is also expressed in taste bud cells and contributes to the immediate hedonic appeal of glucose-containing substances. Methods and results Glucokinase (GCK) gene transcripts were localized in murine taste bud cells with RNAScope®, and GCK mRNA was found to be upregulated in the circumvallate taste papillae in response to fasting and after a period of dietary access to added simple sugars in mice, as determined with real time-qPCR. Pharmacological activation of glucokinase with Compound A increased primary taste nerve and licking responses for glucose but did not impact responsivity to fructose in naïve mice. Virogenetic silencing of glucokinase in the major taste fields attenuated glucose-stimulated licking, especially in mice that also lacked sweet receptors, but did not disrupt consummatory behaviors for fructose or the low-calorie sweetener, sucralose in sugar naïve mice. Knockdown of lingual glucokinase weakened the acquired preference for glucose over fructose in sugar-experienced mice in brief access taste tests. Conclusions Collectively, our data establish that glucokinase contributes to glucose appetition at the very first site of nutrient detection, in the oral cavity. The findings expand our understanding of orosensory inputs underlying nutrition, metabolism, and food reward. Glucokinase is expressed in the taste bud cells. Gustatory glucokinase is upregulated by energy deficit and regular consumption of simple sugars. Gustatory glucokinase is required for normal glucose taste detection and contributes to the hedonic appeal of this nutrient.
Collapse
|
2
|
Roth CL, Melhorn SJ, De Leon MRB, Rowland MG, Elfers CT, Huang A, Saelens BE, Schur EA. Impaired Brain Satiety Responses After Weight Loss in Children With Obesity. J Clin Endocrinol Metab 2022; 107:2254-2266. [PMID: 35544121 PMCID: PMC9282278 DOI: 10.1210/clinem/dgac299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT Obesity interventions often result in increased motivation to eat. OBJECTIVE We investigated relationships between obesity outcomes and changes in brain activation by visual food cues and hormone levels in response to obesity intervention by family-based behavioral treatment (FBT). METHODS Neuroimaging and hormone assessments were conducted before and after 24-week FBT intervention in children with obesity (OB, n = 28), or children of healthy weight without intervention (HW, n = 17), all 9- to 11-year-old boys and girls. We evaluated meal-induced changes in neural activation to high- vs low-calorie food cues across appetite-processing brain regions and gut hormones. RESULTS Among children with OB who underwent FBT, greater declines of BMI z-score were associated with lesser reductions after the FBT intervention in meal-induced changes in neural activation to high- vs low-calorie food cues across appetite-processing brain regions (P < 0.05), and the slope of relationship was significantly different compared with children of HW. In children with OB, less reduction in brain responses to a meal from before to after FBT was associated with greater meal-induced reduction in ghrelin and increased meal-induced stimulation in peptide YY and glucagon-like peptide-1 (all P < 0.05). CONCLUSION In response to FBT, adaptations of central satiety responses and peripheral satiety-regulating hormones were noted. After weight loss, changes of peripheral hormone secretion support weight loss, but there was a weaker central satiety response. The findings suggest that even when peripheral satiety responses by gut hormones are intact, the central regulation of satiety is disturbed in children with OB who significantly improve their weight status during FBT, which could favor future weight regain.
Collapse
Affiliation(s)
- Christian L Roth
- Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Susan J Melhorn
- Department of Medicine, Division of General Internal Medicine, University of Washington, Seattle, WA 98109, USA
| | - Mary Rosalynn B De Leon
- Department of Medicine, Division of General Internal Medicine, University of Washington, Seattle, WA 98109, USA
| | - Maya G Rowland
- Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | | | - Alyssa Huang
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Brian E Saelens
- Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Ellen A Schur
- Department of Medicine, Division of General Internal Medicine, University of Washington, Seattle, WA 98109, USA
| |
Collapse
|
3
|
Wortha SM, Wüsten KA, Witte VA, Bössel N, Keßler W, Vogelgesang A, Flöel A. Gastrointestinal Hormones in Healthy Adults: Reliability of Repeated Assessments and Interrelations with Eating Habits and Physical Activity. Nutrients 2021; 13:nu13113809. [PMID: 34836065 PMCID: PMC8624073 DOI: 10.3390/nu13113809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 12/04/2022] Open
Abstract
Background: Gastrointestinal hormones (GIHs) are crucial for the regulation of a variety of physiological functions and have been linked to hunger, satiety, and appetite control. Thus, they might constitute meaningful biomarkers in longitudinal and interventional studies on eating behavior and body weight control. However, little is known about the physiological levels of GIHs, their intra-individual stability over time, and their interaction with other metabolic and lifestyle-related parameters. Therefore, the aim of this pilot study is to investigate the intra-individual stability of GIHs in normal-weight adults over time. Methods: Plasma concentrations of ghrelin, leptin, GLP-1 (glucagon-like-peptide), and PP (pancreatic polypeptide) were assessed by enzyme-linked immunosorbent assay (ELISA) in 17 normal-weight, healthy adults in a longitudinal design at baseline and at follow-up six months later. The reliability of the measurements was estimated using intra-class correlation (ICC). In a second step, we considered the stability of GIH levels after controlling for changes in blood glucose and hemoglobin A1 (HbA1c) as well as self-reported physical activity and dietary habits. Results: We found excellent reliability for ghrelin, good reliability for GLP1 and PP, and moderate reliability for leptin. After considering glucose, HbA1c, physical activity, and dietary habits as co-variates, the reliability of ghrelin, GLP1, and PP did not change significantly; the reliability of leptin changed to poor reliability. Conclusions: The GIHs ghrelin, GLP1, and PP demonstrated good to excellent test–retest reliability in healthy individuals, a finding that was not modified after adjusting for glucose control, physical activity, or dietary habits. Leptin showed only moderate to poor reliability, which might be linked to weight fluctuations, albeit small, between baseline and follow-up assessment in our study sample. Together, these findings support that ghrelin, GLP1, and PP might be further examined as biomarkers in studies on weight control, with GLP1 and PP serving as anorexic markers and ghrelin as an orexigenic marker. Additional reliability studies in obese individuals are necessary to verify or refute our findings for this cohort.
Collapse
Affiliation(s)
- Silke M. Wortha
- Department of Neurology, University Medicine Greifswald, 17475 Greifswald, Germany; (S.M.W.); (K.A.W.); (N.B.); (A.V.)
| | - Katharina A. Wüsten
- Department of Neurology, University Medicine Greifswald, 17475 Greifswald, Germany; (S.M.W.); (K.A.W.); (N.B.); (A.V.)
| | - Veronica A. Witte
- Department of Cognitive Neurology, University of Leipzig Medical Center, 04103 Leipzig, Germany;
- Max Planck Institute for Cognitive and Brain Sciences, 04103 Leipzig, Germany
| | - Nicole Bössel
- Department of Neurology, University Medicine Greifswald, 17475 Greifswald, Germany; (S.M.W.); (K.A.W.); (N.B.); (A.V.)
| | - Wolfram Keßler
- Department of General, Visceral, Thoracic and Vascular Surgery, University Medicine, 17475 Greifswald, Germany;
| | - Antje Vogelgesang
- Department of Neurology, University Medicine Greifswald, 17475 Greifswald, Germany; (S.M.W.); (K.A.W.); (N.B.); (A.V.)
| | - Agnes Flöel
- Department of Neurology, University Medicine Greifswald, 17475 Greifswald, Germany; (S.M.W.); (K.A.W.); (N.B.); (A.V.)
- German Centre for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, 17489 Greifswald, Germany
- Correspondence:
| |
Collapse
|
4
|
Sinha R, Kachru D, Ricchetti RR, Singh-Rambiritch S, Muthukumar KM, Singaravel V, Irudayanathan C, Reddy-Sinha C, Junaid I, Sharma G, Francis-Lyon PA. Leveraging Genomic Associations in Precision Digital Care for Weight Loss: Cohort Study. J Med Internet Res 2021; 23:e25401. [PMID: 33849843 PMCID: PMC8173391 DOI: 10.2196/25401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/18/2020] [Accepted: 04/11/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The COVID-19 pandemic has highlighted the urgency of addressing an epidemic of obesity and associated inflammatory illnesses. Previous studies have demonstrated that interactions between single-nucleotide polymorphisms (SNPs) and lifestyle interventions such as food and exercise may vary metabolic outcomes, contributing to obesity. However, there is a paucity of research relating outcomes from digital therapeutics to the inclusion of genetic data in care interventions. OBJECTIVE This study aims to describe and model the weight loss of participants enrolled in a precision digital weight loss program informed by the machine learning analysis of their data, including genomic data. It was hypothesized that weight loss models would exhibit a better fit when incorporating genomic data versus demographic and engagement variables alone. METHODS A cohort of 393 participants enrolled in Digbi Health's personalized digital care program for 120 days was analyzed retrospectively. The care protocol used participant data to inform precision coaching by mobile app and personal coach. Linear regression models were fit of weight loss (pounds lost and percentage lost) as a function of demographic and behavioral engagement variables. Genomic-enhanced models were built by adding 197 SNPs from participant genomic data as predictors and refitted using Lasso regression on SNPs for variable selection. Success or failure logistic regression models were also fit with and without genomic data. RESULTS Overall, 72.0% (n=283) of the 393 participants in this cohort lost weight, whereas 17.3% (n=68) maintained stable weight. A total of 142 participants lost 5% bodyweight within 120 days. Models described the impact of demographic and clinical factors, behavioral engagement, and genomic risk on weight loss. Incorporating genomic predictors improved the mean squared error of weight loss models (pounds lost and percent) from 70 to 60 and 16 to 13, respectively. The logistic model improved the pseudo R2 value from 0.193 to 0.285. Gender, engagement, and specific SNPs were significantly associated with weight loss. SNPs within genes involved in metabolic pathways processing food and regulating fat storage were associated with weight loss in this cohort: rs17300539_G (insulin resistance and monounsaturated fat metabolism), rs2016520_C (BMI, waist circumference, and cholesterol metabolism), and rs4074995_A (calcium-potassium transport and serum calcium levels). The models described greater average weight loss for participants with more risk alleles. Notably, coaching for dietary modification was personalized to these genetic risks. CONCLUSIONS Including genomic information when modeling outcomes of a digital precision weight loss program greatly enhanced the model accuracy. Interpretable weight loss models indicated the efficacy of coaching informed by participants' genomic risk, accompanied by active engagement of participants in their own success. Although large-scale validation is needed, our study preliminarily supports precision dietary interventions for weight loss using genetic risk, with digitally delivered recommendations alongside health coaching to improve intervention efficacy.
Collapse
Affiliation(s)
| | - Dashyanng Kachru
- Digbi Health, Los Altos, CA, United States
- Health Informatics, University of San Francisco, San Francisco, CA, United States
| | | | | | | | | | | | | | | | | | - Patricia Alice Francis-Lyon
- Digbi Health, Los Altos, CA, United States
- Health Informatics, University of San Francisco, San Francisco, CA, United States
| |
Collapse
|
5
|
Gutierrez Lopez DE, Lashinger LM, Weinstock GM, Bray MS. Circadian rhythms and the gut microbiome synchronize the host's metabolic response to diet. Cell Metab 2021; 33:873-887. [PMID: 33789092 DOI: 10.1016/j.cmet.2021.03.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 01/22/2021] [Accepted: 03/15/2021] [Indexed: 12/14/2022]
Abstract
The molecular circadian clock and symbiotic host-microbe relationships both evolved as mechanisms that enhance metabolic responses to environmental challenges. The gut microbiome benefits the host by breaking down diet-derived nutrients indigestible by the host and generating microbiota-derived metabolites that support host metabolism. Similarly, cellular circadian clocks optimize organismal physiology to the environment by influencing the timing and coordination of metabolic processes. Host-microbe interactions are influenced by dietary quality and timing, as well as daily light/dark cycles that entrain circadian rhythms in the host. Together, the gut microbiome and the molecular circadian clock play a coordinated role in neural processing, metabolism, adipogenesis, inflammation, and disease initiation and progression. This review examines the bidirectional interactions between the circadian clock, gut microbiota, and host metabolic systems and their effects on obesity and energy homeostasis. Directions for future research and the development of therapies that leverage these systems to address metabolic disease are highlighted.
Collapse
Affiliation(s)
- Diana E Gutierrez Lopez
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Laura M Lashinger
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - George M Weinstock
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Storrs, CT 06032, USA
| | - Molly S Bray
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
6
|
Traini C, Idrizaj E, Garella R, Squecco R, Vannucchi MG, Baccari MC. Glucagon-like peptide-2 interferes with the neurally-induced relaxant responses in the mouse gastric strips through VIP release. Neuropeptides 2020; 81:102031. [PMID: 32143816 DOI: 10.1016/j.npep.2020.102031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/20/2020] [Accepted: 02/16/2020] [Indexed: 02/07/2023]
Abstract
Glucagon-like peptide-2 (GLP-2) has been reported to indirectly relax gastric smooth muscle. In the present study we investigated, through a combined mechanical and immunohistochemical approach, whether GLP-2 interferes with the electrical field stimulation (EFS)-induced vipergic relaxant responses and the mechanism through which it occurs. For functional experiments, strips from the mouse gastric fundus were mounted in organ baths for isometric recording of the mechanical activity. Vasoactive intestinal peptide (VIP) immunoreactivity in GLP-2 exposed specimens was also evaluated by immunohistochemistry. In carbachol pre-contracted strips, GLP-2 (20 nM) evoked a tetrodotoxin (TTX)-sensitive relaxation, similar in shape to the TTX-insensitive of 100 nM VIP. In the presence of GLP-2, VIP had no longer effects and no more response to GLP-2 was observed following VIP receptor saturation. EFS (4-16 Hz) induced a fast relaxant response followed, at the higher stimulation frequencies (≥ 8 Hz), by a slow one. This latter was abolished either by GLP-2 or VIP receptor saturation as well as by the VIP receptor antagonist, VIP 6-28 (10 μM). A decrease of VIP-immunoreactive nerve structures in the GLP-2 exposed specimens was observed. These results suggest that, in the mouse gastric fundus, GLP-2 influences the EFS-induced slow relaxant response by promoting neuronal VIP release.
Collapse
Affiliation(s)
- Chiara Traini
- Department of Experimental and Clinical Medicine, Histology and Embryology Research Unit, University of Florence, 50134 Florence, Italy
| | - Eglantina Idrizaj
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134 Florence, Italy
| | - Rachele Garella
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134 Florence, Italy
| | - Roberta Squecco
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134 Florence, Italy
| | - Maria Giuliana Vannucchi
- Department of Experimental and Clinical Medicine, Histology and Embryology Research Unit, University of Florence, 50134 Florence, Italy
| | - Maria Caterina Baccari
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134 Florence, Italy.
| |
Collapse
|
7
|
Le Gall M, Thenet S, Aguanno D, Jarry AC, Genser L, Ribeiro-Parenti L, Joly F, Ledoux S, Bado A, Le Beyec J. Intestinal plasticity in response to nutrition and gastrointestinal surgery. Nutr Rev 2020; 77:129-143. [PMID: 30517714 DOI: 10.1093/nutrit/nuy064] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The plasticity of a material corresponds to its capacity to change its feature under the effect of an external action. Intestinal plasticity could be defined as the ability of the intestine to modify its size or thickness and intestinal cells to modulate their absorption and secretion functions in response to external or internal cues/signals. This review will focus on intestinal adaptation mechanisms in response to diet and nutritional status. These physiological mechanisms allow a fine and rapid adaptation of the gut to promote absorption of ingested food, but they can also lead to obesity in response to overnutrition. This plasticity could thus become a therapeutic target to treat not only undernutrition but also obesity. How the intestine adapts in response to 2 types of surgical remodeling of the digestive tract-extensive bowel resection leading to intestinal failure and surgical treatment of pathological obesity (ie, bariatric surgeries)-will also be reviewed.
Collapse
Affiliation(s)
- Maude Le Gall
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France
| | - Sophie Thenet
- Centre de Recherche des Cordeliers, Sorbonne Université, EPHE, PSL University, Sorbonne Cités, UPD Univ Paris 05, INSERM, CNRS, Paris, France
| | - Doriane Aguanno
- Centre de Recherche des Cordeliers, Sorbonne Université, EPHE, PSL University, Sorbonne Cités, UPD Univ Paris 05, INSERM, CNRS, Paris, France
| | - Anne-Charlotte Jarry
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France
| | - Laurent Genser
- Sorbonne Université, INSERM, Nutriomics Team, Paris, France, and the Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Hepato-Biliary and Pancreatic Surgery, Liver Transplantation, Paris, France
| | - Lara Ribeiro-Parenti
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France.,Department of General and Digestive Surgery, University Hospital Bichat-Claude-Bernard, Paris, France
| | - Francisca Joly
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France.,Department of Gastroenterology, Inflammatory Bowel Diseases, Nutritional Support and Intestinal Transplantation, Paris, France
| | - Séverine Ledoux
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France.,Service des Explorations Fonctionnelles, Centre de référence de prise en charge de l'obésité, GHUPNVS, Hôpital Louis Mourier, Colombes, France
| | - André Bado
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France
| | - Johanne Le Beyec
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France.,Sorbonne Université, AP-HP, Hôpital Pitié-Salpêtrière-Charles Foix, Biochimie Endocrinienne et Oncologique, Paris, France
| |
Collapse
|
8
|
Preserving Duodenal-Jejunal (Foregut) Transit Does Not Impair Glucose Tolerance and Diabetes Remission Following Gastric Bypass in Type 2 Diabetes Sprague-Dawley Rat Model. Obes Surg 2019; 28:1313-1320. [PMID: 29098544 DOI: 10.1007/s11695-017-2985-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Possible mechanisms underlying diabetes remission following Roux-en-Y gastric bypass (RYGB) include eradication of putative factor(s) with duodenal-jejunal bypass. OBJECTIVE The objective of this study is to observe the effects of duodenal-jejunal transit on glucose tolerance and diabetes remission in gastric bypass rat model. METHOD In order to verify the effect of duodenal-jejunal transit on glucose tolerance and diabetes remission in gastric bypass, 22 type 2 diabetes Sprague-Dawley rat models established through high-fat diet and low-dose streptozotocin (STZ) administered intraperitoneally were assigned to one of three groups: gastric bypass with duodenal-jejunal transit (GB-DJT n = 8), gastric bypass without duodenal-jejunal transit (RYGB n = 8), and sham (n = 6). Body weight, food intake, blood glucose, as well as meal-stimulated insulin, and incretin hormone responses were assessed to ascertain the effect of surgery in all groups. Oral glucose tolerance test (OGTT) and insulin tolerance test (ITT) were conducted three and 7 weeks after surgery. RESULTS Comparing our GB-DJT to the RYGB group, we saw no differences in the mean decline in body weight, food intake, and blood glucose 8 weeks after surgery. GB-DJT group exhibited immediate and sustained glucose control throughout the study. Glucagon-like peptide 1 (GLP-1) and gastric inhibitory polypeptide (GIP) levels were also significantly increased from preoperative level in the GB-DJT group (p < 0.05). Insulin and GLP-1 area under curve (AUC) as well as improved glycemic excursion on OGTT did not differ between GB-DJT and RYGB groups. Outcomes with sham operation did not differ from preoperative level. CONCLUSION Preserving duodenal-jejunal transit does not impede glucose tolerance and diabetes remission after gastric bypass in type-2 diabetes Sprague-Dawley rat model.
Collapse
|
9
|
Dolo PR, Shao Y, Li C, Zhu X, Yao L, Wang H. The Effect of Gastric Bypass with a Distal Gastric Pouch on Glucose Tolerance and Diabetes Remission in Type 2 Diabetes Sprague-Dawley Rat Model. Obes Surg 2019; 29:1889-1900. [DOI: 10.1007/s11695-019-03776-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Dolo PR, Li C, Zhu X, Yao L, Meng S, Hong J. The effect of distal-ileal exclusion after Roux-en-Y gastric bypass on glucose tolerance and GLP-1 response in type-2 diabetes Sprague-Dawley rat model. Surg Obes Relat Dis 2018; 14:1552-1560. [PMID: 30122358 DOI: 10.1016/j.soard.2018.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/01/2018] [Accepted: 07/07/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND An increase in glucagon-like peptide-1 (GLP-1) mediating early diabetes remission after Roux-en-Y gastric bypass (RYGB) is believed to be associated with distal-ileal stimulation. OBJECTIVE To observe the effect of distal-ileal exclusion on glucose tolerance and GLP-1 response after RYGB. SETTING Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China. METHODS A type 2 diabetes model was created in 40 Sprague-Dawley rats that were randomly assigned to a RYGB group (n = 32) and a sham group (n = 8). Four weeks after surgery, the RYGB group was further divided into the RYGB control group (n = 8) and the distal-ileal exclusion group (RYGB-IEx, n = 24). Rats in the RYGB-IEx group underwent laparotomy, and the last 20 cm of ileum was excluded. An oral glucose tolerance test, insulin tolerance test, and mixed-meal tolerance test conducted preoperatively were repeated in all groups at 4 and 8 weeks postoperatively. RESULTS Compared with preoperative level, GLP-1 was significantly increased after RYGB. GLP-1 area under the curve recorded after oral gavage at week 4 postoperatively was significantly higher than the preoperative level (P < .05). GLP-1, insulin area under the curve, and improved glucose-excursion on oral glucose tolerance test 4 weeks after gastric bypass were not reversed at week 8 after distal-ileal exclusion in the RYGB-IEx group. Food intake increased significantly after distal-ileal exclusion in the RYGB-IEx group. CONCLUSION These findings suggest that distal-ileal stimulation might not be required for incretin response and diabetes remission after gastric bypass in the type 2 diabetes Sprague-Dawley rat model.
Collapse
Affiliation(s)
- Ponnie Robertlee Dolo
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Jiangsu, P. R. China
| | - Chao Li
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Jiangsu, P. R. China
| | - Xiaocheng Zhu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Jiangsu, P. R. China.
| | - Libin Yao
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Jiangsu, P. R. China
| | - Song Meng
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Jiangsu, P. R. China
| | - Jian Hong
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Jiangsu, P. R. China
| |
Collapse
|
11
|
He X, Lu Z, Ma B, Zhang L, Li J, Jiang Y, Zhou G, Gao F. Chronic Heat Stress Damages Small Intestinal Epithelium Cells Associated with the Adenosine 5'-Monophosphate-Activated Protein Kinase Pathway in Broilers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:7301-7309. [PMID: 29954175 DOI: 10.1021/acs.jafc.8b02145] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Heat-stressed broilers usually reduce their feed intake, leading to energy imbalance and disturbing the homeostasis in the small intestine. This study was aimed to explore heat-stress-mediated physiological features that may be ascribed to impairments in the intestinal tract of broilers. The results revealed that heat exposure increased the activities of trypsin and Na+/K+-ATPase, while it decreased the activities of amylase, lipase, and maltase as well as the proliferating cell nuclear antigen cells in the jejunum after 14 days of heat exposure. Meanwhile, heat stress upregulated the mRNA expressions of AMPKα1, LKB1, and HIF-1α and protein expressions of p-AMPKαThr172 and p-LKB1Thr189 in the small intestine after 7 or 14 days of heat exposure. In conclusion, chronic heat exposure impeded the development of digestive organs, disordered the activities of intestinal digestive enzymes, and impaired the intestinal epithelial cells by increasing the cell apoptosis and declining cell proliferation, which might be correlated with the adenosine 5'-monophosphate-activated protein kinase signaling pathway. Additionally, heat stress upregulated the gene expression of HIF-1α, which indicated that heat stress may disturb the homeostasis in the intestine.
Collapse
Affiliation(s)
- Xiaofang He
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, and Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Zhuang Lu
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, and Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Bingbing Ma
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, and Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Lin Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, and Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Jiaolong Li
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, and Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Yun Jiang
- Ginling College , Nanjing Normal University , Nanjing , Jiangsu 210097 , People's Republic of China
| | - Guanghong Zhou
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, and Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Feng Gao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, and Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| |
Collapse
|
12
|
Garella R, Idrizaj E, Traini C, Squecco R, Vannucchi MG, Baccari MC. Glucagon-like peptide-2 modulates the nitrergic neurotransmission in strips from the mouse gastric fundus. World J Gastroenterol 2017; 23:7211-7220. [PMID: 29142468 PMCID: PMC5677198 DOI: 10.3748/wjg.v23.i40.7211] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/19/2017] [Accepted: 09/26/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate whether glucagon-like peptide-2 (GLP-2) influences the neurally-induced responses in gastric strips from mice, since no data are available.
METHODS For functional experiments, gastric fundal strips were mounted in organ baths containing Krebs-Henseleit solution. Mechanical responses were recorded via force-displacement transducers, which were coupled to a polygraph for continuous recording of isometric tension. Electrical field stimulation (EFS) was applied via two platinum wire rings through which the preparation was threaded. The effects of GLP-2 (2 and 20 nmol/L) were evaluated on the neurally-induced contractile and relaxant responses elicited by EFS. Neuronal nitric oxide synthase (nNOS) enzyme was evaluated by immunohistochemistry.
RESULTS In the functional experiments, electrical field stimulation (EFS, 4-16 Hz) induced tetrodotoxin (TTX)-sensitive contractile responses, which were reduced in amplitude by GLP-2 (P < 0.05). In the presence of the nitric oxide (NO) synthesis inhibitor L-NNA, GLP-2 no longer influenced the neurally-evoked contractile responses (P > 0.05). The direct smooth muscle response to methacholine was not influenced by GLP-2 (P > 0.05). In the presence of guanethidine and carbachol, the addition of GLP-2 to the bath medium evoked TTX-sensitive relaxant responses that were unaffected by L-NNA (P > 0.05). EFS induced a fast NO-mediated relaxation, whose amplitude was enhanced in the presence of the hormone (P < 0.05). Immunohistochemical experiments showed a significant increase (P < 0.05) in nNOS immunoreactivity in the nerve structures after GLP-2 exposure.
CONCLUSION The results demonstrate that in gastric fundal strips, GLP-2 influences the amplitude of neurally-induced responses through the modulation of the nitrergic neurotransmission and increases nNOS expression.
Collapse
Affiliation(s)
- Rachele Garella
- Department of Experimental and Clinical Medicine, Section of Physiology, University of Florence, 50134 Florence, Italy
| | - Eglantina Idrizaj
- Department of Experimental and Clinical Medicine, Section of Physiology, University of Florence, 50134 Florence, Italy
| | - Chiara Traini
- Department of Experimental and Clinical Medicine, Histology and Embryology Research Unit, University of Florence, 50134 Florence, Italy
| | - Roberta Squecco
- Department of Experimental and Clinical Medicine, Section of Physiology, University of Florence, 50134 Florence, Italy
| | - Maria Giuliana Vannucchi
- Department of Experimental and Clinical Medicine, Histology and Embryology Research Unit, University of Florence, 50134 Florence, Italy
| | - Maria Caterina Baccari
- Department of Experimental and Clinical Medicine, Section of Physiology, University of Florence, 50134 Florence, Italy
| |
Collapse
|
13
|
Abstract
OBJECTIVE Emerging preclinical evidence has shown that the bidirectional signaling between the gastrointestinal (GI) tract and the brain, the so-called gut-brain axis, plays an important role in both host metabolism and behavior. In this review, we discuss the potential mechanisms of the brain-gut axis in relation to the pathophysiology of metabolic syndrome. METHODS A selective literature review was conducted to evaluate GI and brain interactions. RESULTS Evidence suggests reduced microbial diversity in obesity and metabolic dysregulation. However, findings of microbiota composition in obese individuals are inconsistent, and the investigation of causality between gut microbiota and energy homeostasis is complex because multiple variables contribute to the gut microbiota composition. The microbial metabolites short chain fatty acids are found to exert numerous physiologic effects, including energy homeostasis through the regulation of GI hormones such as cholecystokinin, glucagon-like peptide 1, peptide tyrosine-tyrosine, and leptin. Preclinical studies show that modifying rodents' microbiota through fecal transplantation results in alterations of these GI hormones and subsequently an altered metabolism and behavior. However, whether and to what extent preclinical findings translate to human metabolism is unclear. CONCLUSIONS One of the major limitations and challenges in this field of research is interindividual variability of the microbiome. Future research needs to combine recent insights gained into tracking the dynamics of the microbiome as well as the metabolic responses. Furthermore, advanced mapping of the human microbiome is required to investigate the metabolic implications of the gut-brain axis to develop targeted interventions for obesity and metabolic syndrome.
Collapse
|
14
|
Farias G, Netto BDM, Bettini SC, Dâmaso AR, de Freitas ACT. Neuroendocrine regulation of energy balance: Implications on the development and surgical treatment of obesity. Nutr Health 2017; 23:131-146. [PMID: 28838280 DOI: 10.1177/0260106017719369] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
INTRODUCTION Obesity, a serious public health problem, occurs mainly when food consumption exceeds energy expenditure. Therefore, energy balance depends on the regulation of the hunger-satiety mechanism, which involves interconnection of the central nervous system and peripheral signals from the adipose tissue, pancreas and gastrointestinal tract, generating responses in short-term food intake and long-term energy balance. Increased body fat alters the gut- and adipose-tissue-derived hormone signaling, which promotes modifications in appetite-regulating hormones, decreasing satiety and increasing hunger senses. With the failure of conventional weight loss interventions (dietary treatment, exercise, drugs and lifestyle modifications), bariatric surgeries are well-accepted tools for the treatment of severe obesity, with long-term and sustained weight loss. Bariatric surgeries may cause weight loss due to restriction/malabsorption of nutrients from the anatomical alteration of the gastrointestinal tract that decreases energy intake, but also by other physiological factors associated with better results of the surgical procedure. OBJECTIVE This review discusses the neuroendocrine regulation of energy balance, with description of the predominant hormones and peptides involved in the control of energy balance in obesity and all currently available bariatric surgeries. CONCLUSIONS According to the findings of our review, bariatric surgeries promote effective and sustained weight loss not only by reducing calorie intake, but also by precipitating changes in appetite control, satiation and satiety, and physiological changes in gut-, neuro- and adipose-tissue-derived hormone signaling.
Collapse
Affiliation(s)
- Gisele Farias
- 1 Department of Surgery, Universidade Federal do Paraná, UFPR, Curitiba-Pr, Brazil
| | | | - Solange Cravo Bettini
- 3 Federal University of Paraná (UFPR), Gastrointestinal Surgery Service of Hospital de Clínicas, Curitiba-PR, Brazil
| | | | | |
Collapse
|
15
|
Peng Z, Chen L, Xiao J, Zhou X, Nüssler AK, Liu L, Liu J, Yang W. Review of mechanisms of deoxynivalenol-induced anorexia: The role of gut microbiota. J Appl Toxicol 2017; 37:1021-1029. [DOI: 10.1002/jat.3475] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 03/13/2017] [Accepted: 03/17/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Zhao Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College; Huazhong University of Science and Technology; Hangkong Road 13 430030 Wuhan China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College; Huazhong University of Science and Technology; Hangkong Road 13 430030 Wuhan China
| | - Liangkai Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College; Huazhong University of Science and Technology; Hangkong Road 13 430030 Wuhan China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College; Huazhong University of Science and Technology; Hangkong Road 13 430030 Wuhan China
| | - Jie Xiao
- Department of Cardiovascular Surgery, Wuhan Union Hospital; Huazhong university of science and technology; Jiefang Road 1277#, Wuhan 430022 China
| | - Xiaoqi Zhou
- Department of Non-Communicable Chronic Disease Prevention and Control; Wuhan Center for Disease Prevention and Control; 24 Jianghan N. Road Wuhan 430015 China
| | - Andreas K. Nüssler
- Department of Traumatology, BG Trauma Center; Eberhard Karls University of Tübingen; Schnarrenbergstr. 95 72076 Tübingen Germany
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College; Huazhong University of Science and Technology; Hangkong Road 13 430030 Wuhan China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College; Huazhong University of Science and Technology; Hangkong Road 13 430030 Wuhan China
| | - Jinping Liu
- Department of Cardiovascular Surgery, Wuhan Union Hospital; Huazhong university of science and technology; Jiefang Road 1277#, Wuhan 430022 China
| | - Wei Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College; Huazhong University of Science and Technology; Hangkong Road 13 430030 Wuhan China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College; Huazhong University of Science and Technology; Hangkong Road 13 430030 Wuhan China
| |
Collapse
|
16
|
Abstract
Malnutrition is the result of an inadequate balance between energy intake and energy expenditure that ultimately leads to either obesity or undernutrition. Several factors are associated with the onset and preservation of malnutrition. One of these factors is the gut microbiota, which has been recognized as an important pathophysiologic factor in the development and sustainment of malnutrition. However, to our knowledge, the extent to which the microbiota influences malnutrition has yet to be elucidated. In this review, we summarize the mechanisms via which the gut microbiota may influence energy homeostasis in relation to malnutrition. In addition, we discuss potential therapeutic modalities to ameliorate obesity or undernutrition.
Collapse
Affiliation(s)
- Nicolien C de Clercq
- Department of Internal and Vascular Medicine, Academic Medical Center, Amsterdam, Netherlands;
| | - Albert K Groen
- Department of Internal and Vascular Medicine, Academic Medical Center, Amsterdam, Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Johannes A Romijn
- Department of Internal and Vascular Medicine, Academic Medical Center, Amsterdam, Netherlands
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Academic Medical Center, Amsterdam, Netherlands
- Department of Internal Medicine, Diabetes Center, VU University Medical Center, Amsterdam, Netherlands; and
- Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
17
|
Backes CF, Lopes E, Tetelbom A, Heineck I. Medication and nutritional supplement use before and after bariatric surgery. SAO PAULO MED J 2016; 134:0. [PMID: 27812597 PMCID: PMC11448729 DOI: 10.1590/1516-3180.2015.0241030516] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 11/23/2015] [Accepted: 05/03/2016] [Indexed: 01/01/2023] Open
Abstract
CONTEXT AND OBJECTIVE: Bariatric surgery has been an effective alternative treatment for morbid obesity and has resulted in decreased mortality, better control over comorbidities and reduced use of drugs. The objective of this study was to analyze the impact of bariatric surgery on medication drug and nutritional supplement use. DESIGN AND SETTING: Longitudinal study of before-and-after type, on 69 morbidly obese patients in a public hospital in Porto Alegre. METHODS: Through interviews, the presence of comorbidities and use of drugs with and without prescription were evaluated. RESULTS: Among the 69 patients interviewed, 85.5% had comorbidities in the preoperative period, with an average of 2.3 (± 1.5) per patient. The main comorbidities reported were hypertension, diabetes and dyslipidemia. 84.1% of the patients were using prescribed drugs in the preoperative period. The mean drug use per patient was 4.8, which decreased to 4.4 after the procedure. The surgery enabled significant reduction in use of most antidiabetic (84%), antilipemic (77%) and antihypertensive drugs (49.5%). On the other hand, there was a significant increase in use of multivitamins and drugs for disorders of the gastrointestinal tract. The dosages of most of the drugs that continued to be prescribed after surgery were decreased, but not significantly. CONCLUSION: After bariatric surgery, there were increases in the use of vitamins, gastric antisecretory drugs and antianemic drugs. Nevertheless, there was an overall reduction in drug use during this period, caused by suspension of drugs or dose reduction.
Collapse
Affiliation(s)
- Charline Fernanda Backes
- Master’s Student in the Postgraduate Pharmaceutical Sciences Program, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Edyane Lopes
- PhD. Pharmacist, School of Public Health, Health Department of the State of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Airton Tetelbom
- MD. Coordinator of the Health Technology Assessment Center, Grupo Hospitalar Conceição; Head Professor of Public Health, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA); Associate Professor of Public Health, Universidade Luterana do Brasil (ULBRA); and Contributing Professor in the Postgraduate Epidemiology Program, Department of Social Medicine, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Isabela Heineck
- PhD. Associate Professor, Postgraduate Pharmaceutical Sciences Program and Postgraduate Pharmaceutical Services, School of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
18
|
Solas M, Milagro FI, Martínez-Urbistondo D, Ramirez MJ, Martínez JA. Precision Obesity Treatments Including Pharmacogenetic and Nutrigenetic Approaches. Trends Pharmacol Sci 2016; 37:575-593. [DOI: 10.1016/j.tips.2016.04.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 04/19/2016] [Accepted: 04/27/2016] [Indexed: 01/04/2023]
|
19
|
Puebla C, Cisterna BA, Salas DP, Delgado-López F, Lampe PD, Sáez JC. Linoleic acid permeabilizes gastric epithelial cells by increasing connexin 43 levels in the cell membrane via a GPR40- and Akt-dependent mechanism. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:439-48. [PMID: 26869446 DOI: 10.1016/j.bbalip.2016.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 01/25/2016] [Accepted: 02/06/2016] [Indexed: 02/08/2023]
Abstract
Linoleic acid (LA) is known to activate G-protein coupled receptors and connexin hemichannels (Cx HCs) but possible interlinks between these two responses remain unexplored. Here, we evaluated the mechanism of action of LA on the membrane permeability mediated by Cx HCs in MKN28 cells. These cells were found to express connexins, GPR40, GPR120, and CD36 receptors. The Cx HC activity of these cells increased after 5 min of treatment with LA or GW9508, an agonist of GPR40/GPR120; or exposure to extracellular divalent cation-free solution (DCFS), known to increase the open probability of Cx HCs, yields an immediate increase in Cx HC activity of similar intensity and additive with LA-induced change. Treatment with a CD36 blocker or transfection with siRNA-GPR120 maintains the LA-induced Cx HC activity. However, cells transfected with siRNA-GPR40 did not show LA-induced Cx HC activity but activity was increased upon exposure to DCFS, confirming the presence of activatable Cx HCs in the cell membrane. Treatment with AKTi (Akt inhibitor) abrogated the LA-induced Cx HC activity. In HeLa cells transfected with Cx43 (HeLa-Cx43), LA induced phosphorylation of surface Cx43 at serine 373 (S373), site for Akt phosphorylation. HeLa-Cx43 but not HeLa-Cx43 cells with a S373A mutation showed a LA-induced Cx HC activity directly related to an increase in cell surface Cx43 levels. Thus, the increase in membrane permeability induced by LA is mediated by an intracellular signaling pathway activated by GPR40 that leads to an increase in membrane levels of Cx43 phosphorylated at serine 373 via Akt.
Collapse
Affiliation(s)
- Carlos Puebla
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Bruno A Cisterna
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituto Milenio, Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Daniela P Salas
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fernando Delgado-López
- Laboratorios de Biomedicina, Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad Católica del Maule, Talca, Chile
| | - Paul D Lampe
- Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, United States
| | - Juan C Sáez
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituto Milenio, Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
20
|
Bray MS, Loos RJF, McCaffery JM, Ling C, Franks PW, Weinstock GM, Snyder MP, Vassy JL, Agurs-Collins T. NIH working group report-using genomic information to guide weight management: From universal to precision treatment. Obesity (Silver Spring) 2016; 24:14-22. [PMID: 26692578 PMCID: PMC4689320 DOI: 10.1002/oby.21381] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 10/16/2015] [Accepted: 10/17/2015] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Precision medicine utilizes genomic and other data to optimize and personalize treatment. Although more than 2,500 genetic tests are currently available, largely for extreme and/or rare phenotypes, the question remains whether this approach can be used for the treatment of common, complex conditions like obesity, inflammation, and insulin resistance, which underlie a host of metabolic diseases. METHODS This review, developed from a Trans-NIH Conference titled "Genes, Behaviors, and Response to Weight Loss Interventions," provides an overview of the state of genetic and genomic research in the area of weight change and identifies key areas for future research. RESULTS Although many loci have been identified that are associated with cross-sectional measures of obesity/body size, relatively little is known regarding the genes/loci that influence dynamic measures of weight change over time. Although successful short-term weight loss has been achieved using many different strategies, sustainable weight loss has proven elusive for many, and there are important gaps in our understanding of energy balance regulation. CONCLUSIONS Elucidating the molecular basis of variability in weight change has the potential to improve treatment outcomes and inform innovative approaches that can simultaneously take into account information from genomic and other sources in devising individualized treatment plans.
Collapse
Affiliation(s)
- Molly S Bray
- Department of Nutritional Sciences, The University of Texas at AustinAustin, Texas, USA
| | - Ruth JF Loos
- Department of Preventive Medicine, The Charles Bronfman Institute for Personalized Medicine, The Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount SinaiNew York City, New York, USA
| | - Jeanne M McCaffery
- Department of Psychiatry and Human Behavior, Weight Control and Diabetes Research Center, The Alpert Medical School of Brown University/The Miriam HospitalProvidence, Rhode Island, USA
| | - Charlotte Ling
- Department of Clinical Sciences, Skåne University HospitalMalmö, Sweden
| | - Paul W Franks
- Department of Clinical Sciences, Skåne University HospitalMalmö, Sweden
| | | | - Michael P Snyder
- Department of Genetics, Stanford University School of MedicineStanford, California, USA
| | - Jason L Vassy
- Division of General Medicine, Brigham and Women's Hospital and Harvard Medical SchoolBoston, Massachusetts, USA
| | - Tanya Agurs-Collins
- Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of HealthBethesda, Maryland, USA.
| | | |
Collapse
|
21
|
Chai J, Zhang G, Liu S, Hu C, Han H, Hu S, Zhang Z. Exclusion of the Distal Ileum Cannot Reverse the Anti-Diabetic Effects of Duodenal-Jejunal Bypass Surgery. Obes Surg 2015; 26:261-8. [DOI: 10.1007/s11695-015-1745-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|