1
|
Lanzaro F, De Biasio D, Cesaro FG, Stampone E, Tartaglione I, Casale M, Bencivenga D, Marzuillo P, Roberti D. Childhood Multiple Endocrine Neoplasia (MEN) Syndromes: Genetics, Clinical Heterogeneity and Modifying Genes. J Clin Med 2024; 13:5510. [PMID: 39336996 PMCID: PMC11432259 DOI: 10.3390/jcm13185510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/15/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Multiple endocrine neoplasia (MEN) syndromes are part of a spectrum of clinically well-defined tumor syndromes ultimately characterized by histologically similar tumors arising in patients and families with mutations in one of the following four genes: MEN1, RET, CDKN1B, and MAX. The high level of genetic and phenotypic heterogeneity has been linked to phenocopies and modifying genes, as well as unknown mechanisms that might be investigated in the future based on preclinical and translational considerations. MEN1, also known as Wermer's syndrome (OMIM *131100), is an autosomal dominant syndrome codifying for the most frequent MEN syndrome showing high penetrance due to mutations in the MEN1 gene; nevertheless, clinical manifestations vary among patients in terms of tumor localization, age of onset, and clinical aggressiveness/severity, even within the same families. This has been linked to the effect of modifying genes, as described in the review. MEN 2-2b-4 and 5 also show remarkable clinical heterogeneity. The traditional view of genetically predisposing monogenic or multifactorial disorders is no longer valid, and mandates a change in scientific focus. Phenotypes are indeed rarely consistent across genetic backgrounds and environments. In the future, understanding factors and genetic variants that control cellular functions and the expression of disease genes should provide insights into fundamental disease processes, providing implications for counseling and therapeutic and prophylactic possibilities.
Collapse
Affiliation(s)
- Francesca Lanzaro
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio 2, 80138 Naples, Italy
| | - Delia De Biasio
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio 2, 80138 Naples, Italy
| | - Francesco Giustino Cesaro
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio 2, 80138 Naples, Italy
| | - Emanuela Stampone
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio, 7, 80138 Naples, Italy
| | - Immacolata Tartaglione
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio 2, 80138 Naples, Italy
| | - Maddalena Casale
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio 2, 80138 Naples, Italy
| | - Debora Bencivenga
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio, 7, 80138 Naples, Italy
| | - Pierluigi Marzuillo
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio 2, 80138 Naples, Italy
| | - Domenico Roberti
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio 2, 80138 Naples, Italy
| |
Collapse
|
2
|
Cetani F, Dinoi E, Pierotti L, Pardi E. Familial states of primary hyperparathyroidism: an update. J Endocrinol Invest 2024; 47:2157-2176. [PMID: 38635114 DOI: 10.1007/s40618-024-02366-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/24/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Familial primary hyperparathyroidism (PHPT) includes syndromic and non-syndromic disorders. The former are characterized by the occurrence of PHPT in association with extra-parathyroid manifestations and includes multiple endocrine neoplasia (MEN) types 1, 2, and 4 syndromes, and hyperparathyroidism-jaw tumor (HPT-JT). The latter consists of familial hypocalciuric hypercalcemia (FHH) types 1, 2 and 3, neonatal severe primary hyperparathyroidism (NSHPT), and familial isolated primary hyperparathyroidism (FIHP). The familial forms of PHPT show different levels of PHPT penetrance, developing earlier and with multiglandular involvement compared to sporadic counterpart. All these diseases exhibit Mendelian inheritance patterns, and for most of them, the genes responsible have been identified. DNA testing for predisposing mutations is helpful in index cases or in individuals with a high suspicion of the disease. Early recognition of hereditary disorders of PHPT is of great importance for the best clinical and surgical approach. Genetic testing is useful in routine clinical practice because it will also involve appropriate screening for extra-parathyroidal manifestations related to the syndrome as well as the identification of asymptomatic carriers of the mutation. PURPOSE The aim of the review is to discuss the current knowledge on the clinical and genetic profile of these disorders along with the importance of genetic testing in clinical practice.
Collapse
Affiliation(s)
- F Cetani
- Endocrine Unit 2, University Hospital of Pisa, Via Paradisa 2, 56124, Pisa, Italy.
| | - E Dinoi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - L Pierotti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - E Pardi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
3
|
Hernández-Ramírez LC, Perez-Rivas LG, Theodoropoulou M, Korbonits M. An Update on the Genetic Drivers of Corticotroph Tumorigenesis. Exp Clin Endocrinol Diabetes 2024. [PMID: 38830604 DOI: 10.1055/a-2337-2265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The genetic landscape of corticotroph tumours of the pituitary gland has dramatically changed over the last 10 years. Somatic changes in the USP8 gene account for the most common genetic defect in corticotrophinomas, especially in females, while variants in TP53 or ATRX are associated with a subset of aggressive tumours. Germline defects have also been identified in patients with Cushing's disease: some are well-established (MEN1, CDKN1B, DICER1), while others are rare and could represent coincidences. In this review, we summarise the current knowledge on the genetic drivers of corticotroph tumorigenesis, their molecular consequences, and their impact on the clinical presentation and prognosis.
Collapse
Affiliation(s)
- Laura C Hernández-Ramírez
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | - Marily Theodoropoulou
- Medizinische Klinik und Poliklinik IV, LMU Klinikum, LMU München, Munich 80336, Germany
| | - Márta Korbonits
- Centre for Endocrinology, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London, UK
| |
Collapse
|
4
|
Chevalier B, Coppin L, Romanet P, Cuny T, Maïza JC, Abeillon J, Forestier J, Walter T, Gilly O, Le Bras M, Smati S, Nunes ML, Geslot A, Grunenwald S, Mouly C, Arnault G, Wagner K, Koumakis E, Cortet-Rudelli C, Merlen É, Jannin A, Espiard S, Morange I, Baudin É, Cavaille M, Tauveron I, Teissier MP, Borson-Chazot F, Mirebeau-Prunier D, Savagner F, Pasmant É, Giraud S, Vantyghem MC, Goudet P, Barlier A, Cardot-Bauters C, Odou MF. Beyond MEN1, When to Think About MEN4? Retrospective Study on 5600 Patients in the French Population and Literature Review. J Clin Endocrinol Metab 2024; 109:e1482-e1493. [PMID: 38288531 DOI: 10.1210/clinem/dgae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/18/2023] [Accepted: 01/25/2024] [Indexed: 03/13/2024]
Abstract
CONTEXT Germline CDKN1B variants predispose patients to multiple endocrine neoplasia type 4 (MEN4), a rare MEN1-like syndrome, with <100 reported cases since its discovery in 2006. Although CDKN1B mutations are frequently suggested to explain cases of genetically negative MEN1, the prevalence and phenotype of MEN4 patients is poorly known, and genetic counseling is unclear. OBJECTIVE To evaluate the prevalence of MEN4 in MEN1-suspected patients and characterize the phenotype of MEN4 patients. DESIGN Retrospective observational nationwide study. Narrative review of literature and variant class reassessment. PATIENTS We included all adult patients with class 3/4/5 CDKN1B variants identified by the laboratories from the French Oncogenetic Network on Neuroendocrine Tumors network between 2015 and 2022 through germline genetic testing for MEN1 suspicion. After class reassessment, we compared the phenotype of symptomatic patients with class 4/5 CDKN1B variants (ie, with genetically confirmed MEN4 diagnosis) in our series and in literature with 66 matched MEN1 patients from the UMD-MEN1 database. RESULTS From 5600 MEN1-suspected patients analyzed, 4 with class 4/5 CDKN1B variant were found (0.07%). They presented with multiple duodenal NET, primary hyperparathyroidism (PHPT) and adrenal nodule, isolated PHPT, PHPT, and pancreatic neuroendocrine tumor. We listed 29 patients with CDKN1B class 4/5 variants from the literature. Compared with matched MEN1 patients, MEN4 patients presented lower NET incidence and older age at PHPT diagnosis. CONCLUSION The prevalence of MEN4 is low. PHPT and pituitary adenoma represent the main associated lesions, NETs are rare. Our results suggest a milder and later phenotype than in MEN1. Our observations will help to improve genetic counseling and management of MEN4 families.
Collapse
Affiliation(s)
- Benjamin Chevalier
- Department of Endocrinology, Diabetology and Metabolism, Lille University Hospital, 59000 Lille, France
- University of Lille, 59000 Lille, France
- Department of Nuclear Medicine, Lille University Hospital, 59000 Lille, France
| | - Lucie Coppin
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer-Heterogeneity Plasticity and Resistance to Therapies, 59000 Lille, France
- CHU Lille, Service de Biochimie et Biologie moléculaire « Hormonologie, Métabolisme-Nutrition, Oncologie, 59000 Lille, France
| | - Pauline Romanet
- Laboratory of Molecular Biology GEnOPé, Biogénopôle, Aix Marseille Univ, APHM, INSERM, UMR1251 MMG, Hôpital de la Timone, 13005 Marseille, France
| | - Thomas Cuny
- Department of Endocrinology, Aix Marseille Univ, APHM, INSERM, UMR1251 MMG, MARMARA Institute, CRMR HYPO, Hôpital de la Conception, 13005 Marseille, France
| | - Jean-Christophe Maïza
- Department of Endocrinology, Diabetes, and Nutrition, GHSR, Centre Hospitalo-Universitaire de la Réunion, 97448 Saint-Pierre, La Réunion, France
| | - Juliette Abeillon
- Hospices Civils de Lyon, Fédération d'Endocrinologie, Université Claude Bernard Lyon 1, 69003 Lyon, France
| | - Julien Forestier
- Service d'Oncologie Médicale et Hépatogastroentérologie, Hospices Civil de Lyon, 69003 Lyon, France
| | - Thomas Walter
- Service d'Oncologie Médicale et Hépatogastroentérologie, Hospices Civil de Lyon, 69003 Lyon, France
- Université de Lyon, 69003 Lyon, France
| | - Olivier Gilly
- Department of Metabolic and Endocrine Disease, CHU Nîmes, Université Montpellier, 30900 Nîmes, France
| | - Maëlle Le Bras
- Service d'endocrinologie, diabétologie, nutrition, Nantes Université, CHU Nantes, l'institut du thorax, F-44000 Nantes, France
| | - Sarra Smati
- Service d'endocrinologie, diabétologie, nutrition, Nantes Université, CHU Nantes, l'institut du thorax, F-44000 Nantes, France
| | - Marie Laure Nunes
- Department of Endocrinology, Diabetes and Nutrition, University Hospital (CHU) and University of Bordeaux, 33404 Bordeaux, France
| | - Aurore Geslot
- Service d'endocrinologie, maladies métaboliques et nutrition, pôle cardio-vasculaire et métabolique, CHU Larrey, 31059 Toulouse cedex, France
| | - Solange Grunenwald
- Service d'endocrinologie, maladies métaboliques et nutrition, pôle cardio-vasculaire et métabolique, CHU Larrey, 31059 Toulouse cedex, France
| | - Céline Mouly
- Service d'endocrinologie, maladies métaboliques et nutrition, pôle cardio-vasculaire et métabolique, CHU Larrey, 31059 Toulouse cedex, France
| | | | - Kathy Wagner
- Department of Pediatrics, CHU-Lenval, 06200 Nice, France
| | - Eugénie Koumakis
- Reference Center for Rare Disorders of Calcium and Phosphate Metabolism, Reference Center for Rare Genetic Bone Disorders, OSCAR Filière, Rheumatology Department, Cochin Hospital, AP-HP Centre-Paris University, INSERM U1160, Institut Imagine, 75014 Paris, France
| | - Christine Cortet-Rudelli
- Department of Endocrinology, Diabetology and Metabolism, Lille University Hospital, 59000 Lille, France
| | - Émilie Merlen
- Department of Endocrinology, Diabetology and Metabolism, Lille University Hospital, 59000 Lille, France
| | - Arnaud Jannin
- Department of Endocrinology, Diabetology and Metabolism, Lille University Hospital, 59000 Lille, France
- University of Lille, 59000 Lille, France
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer-Heterogeneity Plasticity and Resistance to Therapies, 59000 Lille, France
| | - Stéphanie Espiard
- Department of Endocrinology, Diabetology and Metabolism, Lille University Hospital, 59000 Lille, France
- University of Lille, 59000 Lille, France
| | - Isabelle Morange
- Department of Endocrinology, Aix Marseille Univ, APHM, INSERM, UMR1251 MMG, MARMARA Institute, CRMR HYPO, Hôpital de la Conception, 13005 Marseille, France
| | - Éric Baudin
- Department of Endocrine Oncology and Imaging, Gustave Roussy Cancer Campus Grand, 94800 Villejuif, France
| | - Mathias Cavaille
- U1240 Imagerie Moléculaire et Stratégies Théranostiques, INSERM, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
- Département d'Oncogénétique, Centre Jean Perrin, 63000 Clermont Ferrand, France
| | - Igor Tauveron
- Service d'Endocrinologie, Diabétologie et Maladies Métaboliques, CHU Clermont-Ferrand, 63000 Clermont-Ferrand, France
- Laboratoire GReD, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Marie-Pierre Teissier
- Unité INSERM 1094 & IRD, Université de Limoges, 87025 Limoges, France
- Service d'Endocrinologie-Diabétologie et Maladies métaboliques, Centre hospitalier universitaire Dupuytren 2, 87042 Limoges, France
| | - Françoise Borson-Chazot
- Hospices Civils de Lyon, Fédération d'Endocrinologie, Université Claude Bernard Lyon 1, 69003 Lyon, France
| | - Delphine Mirebeau-Prunier
- Unité Mixte de Recherche (UMR) MITOVASC, Laboratoire de Biochimie et Biologie Moléculaire, INSERM U1083, CNRS 6015, Université d'Angers, Centre Hospitalier Universitaire d'Angers, Angers 49933, France
| | - Frédérique Savagner
- Laboratory of Biochemistry and Molecular Biology, IFB-CHU, 31000 Toulouse, France
| | - Éric Pasmant
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, DMU BioPhyGen, Assistance Publique-Hôpitaux de Paris, AP-HP, Centre-Université de Paris, 75014 Paris, France
- Institut Cochin, Cancer Department, Inserm U1016, CNRS UMR8104, Université de Paris, CARPEM, 75014 Paris, France
| | - Sophie Giraud
- Genetics Department, Hospices Civils de LYON (HCL), University Hospital, East Pathology Center, 69029 Bron Cedex, France
| | - Marie-Christine Vantyghem
- Department of Endocrinology, Diabetology and Metabolism, Lille University Hospital, 59000 Lille, France
- University of Lille, 59000 Lille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), European Genomic Institute for Diabetes (EGID), CHU Lille, 59000 Lille, France
| | - Pierre Goudet
- Service de Chirurgie Viscérale et Endocrinienne, Centre Hospitalier Universitaire François Mitterand, 21000 Dijon, France
| | - Anne Barlier
- Laboratory of Molecular Biology GEnOPé, Biogénopôle, Aix Marseille Univ, APHM, INSERM, UMR1251 MMG, Hôpital de la Timone, 13005 Marseille, France
| | - Catherine Cardot-Bauters
- Department of Endocrinology, Diabetology and Metabolism, Lille University Hospital, 59000 Lille, France
| | - Marie Françoise Odou
- CHU Lille, Service de Biochimie et Biologie moléculaire « Hormonologie, Métabolisme-Nutrition, Oncologie, 59000 Lille, France
- University of Lille, Inserm, CHU Lille, U1286-Infinite-Institute for Translational Research in Inflammation, 59000 Lille, France
| |
Collapse
|
5
|
Alnaaim SA, Al-Kuraishy HM, Zailaie MM, Alexiou A, Papadakis M, Saad HM, Batiha GES. The potential link between acromegaly and risk of acute ischemic stroke in patients with pituitary adenoma: a new perspective. Acta Neurol Belg 2024; 124:755-766. [PMID: 37584889 PMCID: PMC11139727 DOI: 10.1007/s13760-023-02354-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/25/2023] [Indexed: 08/17/2023]
Abstract
Acromegaly is an endocrine disorder due to the excess production of growth hormone (GH) from the anterior pituitary gland after closed epiphyseal growth plates. Acromegaly is mainly caused by benign GH-secreting pituitary adenoma. Acute ischemic stroke (AIS) is one of the most common cardiovascular complications. It ranks second after ischemic heart disease (IHD) as a cause of disability and death in high-income countries globally. Thus, this review aimed to elucidate the possible link between acromegaly and the development of AIS. The local effects of acromegaly in the development of AIS are related to the development of pituitary adenoma and associated surgical and radiotherapies. Pituitary adenoma triggers the development of AIS through different mechanisms, particularly aneurysmal formation, associated thrombosis, and alteration of cerebral microcirculation. Cardiovascular complications and mortality were higher in patients with pituitary adenoma. The systemic effect of acromegaly-induced cardio-metabolic disorders may increase the risk for the development of AIS. Additionally, acromegaly contributes to the development of endothelial dysfunction (ED), inflammatory and oxidative stress, and induction of thrombosis that increases the risk for the development of AIS. Moreover, activated signaling pathways, including activator of transcription 3 (STAT3), nuclear factor kappa B (NF-κB), nod-like receptor pyrin 3 (NLRP3) inflammasome, and mitogen-activated protein kinase (MAPK) in acromegaly may induce systemic inflammation with the development of cardiovascular complications mainly AIS. Taken together, acromegaly triggers the development of AIS through local and systemic effects by inducing the formation of a cerebral vessel aneurysm, the release of pro-inflammatory cytokines, the development of oxidative stress, ED, and thrombosis correspondingly.
Collapse
Affiliation(s)
- Saud A Alnaaim
- Clinical Neurosciences Department, College of Medicine, King Faisal University, Hofuf, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Pharmacology, Toxicology and Medicine, Medical Faculty, College of Medicine, Al-Mustansiriyah University, PO Box 14132, Baghdad, Iraq
| | | | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
- AFNP Med, 1030, Vienna, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, 51744, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| |
Collapse
|
6
|
Ramírez-Rentería C, Hernández-Ramírez LC. Genetic diagnosis in acromegaly and gigantism: From research to clinical practice. Best Pract Res Clin Endocrinol Metab 2024; 38:101892. [PMID: 38521632 DOI: 10.1016/j.beem.2024.101892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
It is usually considered that only 5% of all pituitary neuroendocrine tumours are due to inheritable causes. Since this estimate was reported, however, multiple genetic defects driving syndromic and nonsyndromic somatotrophinomas have been unveiled. This heterogeneous genetic background results in overlapping phenotypes of GH excess. Genetic tests should be part of the approach to patients with acromegaly and gigantism because they can refine the clinical diagnoses, opening the possibility to tailor the clinical conduct to each patient. Even more, genetic testing and clinical screening of at-risk individuals have a positive impact on disease outcomes, by allowing for the timely detection and treatment of somatotrophinomas at early stages. Future research should focus on determining the actual frequency of novel genetic drivers of somatotrophinomas in the general population, developing up-to-date disease-specific multi-gene panels for clinical use, and finding strategies to improve access to modern genetic testing worldwide.
Collapse
Affiliation(s)
- Claudia Ramírez-Rentería
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Laura C Hernández-Ramírez
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México, e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.
| |
Collapse
|
7
|
Sada V, Puliani G, Feola T, Pirchio R, Pofi R, Sesti F, De Alcubierre D, Amodeo ME, D'Aniello F, Vincenzi L, Gianfrilli D, Isidori AM, Grossman AB, Sbardella E. Tall stature and gigantism in transition age: clinical and genetic aspects-a literature review and recommendations. J Endocrinol Invest 2024; 47:777-793. [PMID: 37891382 DOI: 10.1007/s40618-023-02223-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023]
Abstract
PURPOSE Tall stature is defined as height greater than the threshold of more than 2 standard deviations above the average population height for age, sex, and ethnicity. Many studies have described the main aspects of this condition during puberty, but an analysis of the characteristics that the physician should consider in the differential diagnosis of gigantism-tall stature secondary to a pituitary tumour-during the transition age (15-25 years) is still lacking. METHODS A comprehensive search of English-language original articles was conducted in the MEDLINE database (December 2021-March 2022). We selected all studies regarding epidemiology, genetic aspects, and the diagnosis of tall stature and gigantism during the transition age. RESULTS Generally, referrals for tall stature are not as frequent as expected because most cases are familial and are usually unreported by parents and patients to endocrinologists. For this reason, lacking such experience of tall stature, familiarity with many rarer overgrowth syndromes is essential. In the transition age, it is important but challenging to distinguish adolescents with high constitutional stature from those with gigantism. Pituitary gigantism is a rare disease in the transition age, but its systemic complications are very relevant for future health. Endocrine evaluation is crucial for identifying conditions that require hormonal treatment so that they can be treated early to improve the quality of life and prevent comorbidities of individual patient in this age range. CONCLUSION The aim of our review is to provide a practical clinical approach to recognise adolescents, potentially affected by gigantism, as early as possible.
Collapse
Affiliation(s)
- V Sada
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - G Puliani
- Oncological Endocrinology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - T Feola
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
- Neuroendocrinology, Neuromed Institute, IRCCS, Pozzilli, Italy
| | - R Pirchio
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Degli Studi di Napoli "Federico II", Naples, Italy
| | - R Pofi
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Churchill Hospital, Oxford University Hospitals, NHS Trust, Oxford, UK
| | - F Sesti
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - D De Alcubierre
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - M E Amodeo
- Dipartimento Pediatrico Universitario Ospedaliero, Bambino Gesù Children Hospital, Rome, Italy
| | - F D'Aniello
- Dipartimento Pediatrico Universitario Ospedaliero, Bambino Gesù Children Hospital, Rome, Italy
| | - L Vincenzi
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - D Gianfrilli
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - A M Isidori
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
- Centre for Rare Diseases (ENDO-ERN Accredited), Policlinico Umberto I, Rome, Italy
| | - A B Grossman
- Green Templeton College, University of Oxford, Oxford, UK
- Centre for Endocrinology, Barts and the London School of Medicine, London, UK
| | - E Sbardella
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy.
| |
Collapse
|
8
|
Ruggeri RM, Benevento E, De Cicco F, Grossrubatscher EM, Hasballa I, Tarsitano MG, Centello R, Isidori AM, Colao A, Pellegata NS, Faggiano A. Multiple endocrine neoplasia type 4 (MEN4): a thorough update on the latest and least known men syndrome. Endocrine 2023; 82:480-490. [PMID: 37632635 DOI: 10.1007/s12020-023-03497-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/14/2023] [Indexed: 08/28/2023]
Abstract
PURPOSE Multiple endocrine neoplasia type 4 (MEN4) is a rare multiglandular endocrine neoplasia syndrome, associated with a wide tumor spectrum but hallmarked by primary hyperparathyroidism, which represents the most common clinical feature, followed by pituitary (functional and non-functional) adenomas, and neuroendocrine tumors. MEN4 clinically overlaps MEN type 1 (MEN1) but differs from it for milder clinical features and an older patient's age at onset. The underlying mutated gene, CDKN1B, encodes the cell cycle regulator p27, implicated in cellular proliferation, motility and apoptosis. Given the paucity of MEN4 cases described in the literature, possible genotype-phenotype correlations have not been thoroughly assessed, and specific clinical recommendations are lacking. The present review provides an extensive overview of molecular genetics and clinical features of MEN4, with the aim of contributing to delineate peculiar strategies for clinical management, screening and follow-up of the last and least known MEN syndrome. METHODS A literature search was performed through online databases like MEDLINE and Scopus. CONCLUSIONS MEN4 is much less common that MEN1, tend to present later in life with a more indolent course, although involving the same primary organs as MEN1. As a consequence, MEN4 patients might need specific diagnostic and therapeutic approaches and a different strategy for screening and follow-up. Further studies are needed to assess the real oncological risk of MEN4 carriers, and to establish a standardized screening protocol. Furthermore, a deeper understanding of molecular genetics of MEN4 is needed in order to explore p27 as a novel therapeutic target.
Collapse
Affiliation(s)
- Rosaria M Ruggeri
- Endocrinology Unit, Department of Human Pathology of Adulthood and Childhood DETEV, University of Messina, 98125, Messina, Italy.
| | - Elio Benevento
- Endocrinology, Diabetology and Andrology Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy
| | | | | | - Iderina Hasballa
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties (DIMI), University of Genova, Genova, Italy
| | | | - Roberta Centello
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Andrea M Isidori
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Annamaria Colao
- Endocrinology, Diabetology and Andrology Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy
- UNESCO Chair "Education for Health and Sustainable Development", Federico II University, Naples, Italy
| | | | - Antongiulio Faggiano
- Endocrinology Unit, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ENETS Center of excellence, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
9
|
Mazarico-Altisent I, Capel I, Baena N, Bella-Cueto MR, Barcons S, Guirao X, Albert L, Cano A, Pareja R, Caixàs A, Rigla M. Novel germline variants of CDKN1B and CDKN2C identified during screening for familial primary hyperparathyroidism. J Endocrinol Invest 2023; 46:829-840. [PMID: 36334246 PMCID: PMC10023768 DOI: 10.1007/s40618-022-01948-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE CDKN1B mutations were established as a cause of multiple endocrine neoplasia 4 (MEN4) syndrome in patients with MEN1 phenotype without a mutation in the MEN1 gene. In addition, variants in other cyclin-dependent kinase inhibitors (CDKIs) were found in some MEN1-like cases without the MEN1 mutation. We aimed to describe novel germline mutations of these genes in patients with primary hyperparathyroidism (PHPT). METHODS During genetic screening for familial hyperparathyroidism, three novel CDKIs germline mutations in three unrelated cases between January 2019 and November 2021 were identified. In this report, we describe clinical features, DNA sequence analysis, and familial segregation studies based on these patients and their relatives. Genome-wide DNA study of loss of heterozygosity (LOH), copy number variation (CNV), and p27/kip immunohistochemistry was performed on tumour samples. RESULTS DNA screening was performed for atypical parathyroid adenomas in cases 1 and 2 and for cystic parathyroid adenoma and young age at diagnosis of PHPT in case 3. Genetic analysis identified likely pathogenic variants of CDKN1B in cases 1 and 2 and a variant of the uncertain significance of CDKN2C, with uniparental disomy in the tumour sample, in case 3. Neoplasm screening of probands showed other non-endocrine tumours in case 1 (colon adenoma with dysplasia and atypical lipomas) and case 2 (aberrant T-cell population) and a non-functional pituitary adenoma in case 3. CONCLUSION Germline mutations in CDKIs should be included in gene panels for genetic testing of primary hyperparathyroidism. New germline variants here described can be added to the current knowledge.
Collapse
Affiliation(s)
- I Mazarico-Altisent
- Endocrinology and Nutrition Department, Parc Taulí University Hospital, Institut d'Investigació i Innovació Parc Taulí (I3PT), Medicine Department, Universitat Autònoma de Barcelona, Parc Taulí 1, 08208, Sabadell, Barcelona, Spain.
| | - I Capel
- Endocrinology and Nutrition Department, Parc Taulí University Hospital, Institut d'Investigació i Innovació Parc Taulí (I3PT), Medicine Department, Universitat Autònoma de Barcelona, Parc Taulí 1, 08208, Sabadell, Barcelona, Spain
| | - N Baena
- Genetic Department, Parc Taulí University Hospital, Institut d'Investigació i Innovació Parc Taulí (I3PT), Medicine Department, Universitat Autònoma de Barcelona, Parc Taulí 1, 08208, Sabadell, Barcelona, Spain
| | - M R Bella-Cueto
- Pathology Department, Parc Taulí University Hospital, Institut d'Investigació i Innovació Parc Taulí (I3PT), Medicine Department, Universitat Autònoma de Barcelona, Parc Taulí 1, 08208, Sabadell, Barcelona, Spain
| | - S Barcons
- Surgery Department, Parc Taulí University Hospital, Institut d'Investigació i Innovació Parc Taulí (I3PT), Medicine Department, Universitat Autònoma de Barcelona, Parc Taulí 1, 08208, Sabadell, Barcelona, Spain
| | - X Guirao
- Surgery Department, Parc Taulí University Hospital, Institut d'Investigació i Innovació Parc Taulí (I3PT), Medicine Department, Universitat Autònoma de Barcelona, Parc Taulí 1, 08208, Sabadell, Barcelona, Spain
| | - L Albert
- Endocrinology and Nutrition Department, Parc Taulí University Hospital, Institut d'Investigació i Innovació Parc Taulí (I3PT), Medicine Department, Universitat Autònoma de Barcelona, Parc Taulí 1, 08208, Sabadell, Barcelona, Spain
| | - A Cano
- Endocrinology and Nutrition Department, Parc Taulí University Hospital, Institut d'Investigació i Innovació Parc Taulí (I3PT), Medicine Department, Universitat Autònoma de Barcelona, Parc Taulí 1, 08208, Sabadell, Barcelona, Spain
| | - R Pareja
- Endocrinology and Nutrition Department, Parc Taulí University Hospital, Institut d'Investigació i Innovació Parc Taulí (I3PT), Medicine Department, Universitat Autònoma de Barcelona, Parc Taulí 1, 08208, Sabadell, Barcelona, Spain
| | - A Caixàs
- Endocrinology and Nutrition Department, Parc Taulí University Hospital, Institut d'Investigació i Innovació Parc Taulí (I3PT), Medicine Department, Universitat Autònoma de Barcelona, Parc Taulí 1, 08208, Sabadell, Barcelona, Spain
| | - M Rigla
- Endocrinology and Nutrition Department, Parc Taulí University Hospital, Institut d'Investigació i Innovació Parc Taulí (I3PT), Medicine Department, Universitat Autònoma de Barcelona, Parc Taulí 1, 08208, Sabadell, Barcelona, Spain
| |
Collapse
|
10
|
Halperin R, Arnon L, Nasirov S, Friedensohn L, Gershinsky M, Telerman A, Friedman E, Bernstein-Molho R, Tirosh A. Germline CDKN1B variant type and site are associated with phenotype in MEN4. Endocr Relat Cancer 2023; 30:ERC-22-0174. [PMID: 36256846 DOI: 10.1530/erc-22-0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
Multiple endocrine neoplasia 4 (MEN4) is a rare multiglandular endocrine neoplasia syndrome clinically hallmarked by primary hyperparathyroidism (PHPT), pituitary adenoma (PitAd), and neuroendocrine tumors (NET), clinically overlapping MEN1. The underlying mutated gene - CDKN1B, encodes for the cell-cycle regulator p27. Possible genotype-phenotype correlations in MEN4 have not been thoroughly assessed. Prompted by the findings in three Israeli MEN4 kindreds, we performed a literature review on published and unpublished data from previously reported MEN4/CDKN1B cases. Univariate analysis analyzed time-dependent risks for developing PHPT, PitAd, or NET by variant type and position along the gene. Overall, 74 MEN4 cases were analyzed. PHPT risk was 53.4% by age 60 years (mean age at diagnosis age 50.6 ± 13.9 years), risk for PitAd was 23.2% and risk for NET was 16.2% (34.4 ± 21.4 and 52.9 ± 13.9 years, respectively). The frameshift variant p.Q107fs was the most common variant identified (4/41 (9.7%) kindreds). Patients with indels had higher risk for PHPT vs point mutations (log-rank, P = 0.029). Variants in codons 94-96 were associated with higher risk for PHPT (P < 0.001) and PitAd (P = 0.031). To conclude, MEN4 is clinically distinct from MEN1, with lower risk and older age for PHPT diagnosis. We report recurrent CDKN1B frameshift variants and possible genotype-phenotype correlations.
Collapse
Affiliation(s)
- Reut Halperin
- ENTIRE Endocrine Neoplasia Translational Research Center, Sheba Medical Center, Tel Hashomer, Israel
- Tel Aviv University Faculty of Medicine, Tel Aviv, Israel
| | - Liat Arnon
- ENTIRE Endocrine Neoplasia Translational Research Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Sapir Nasirov
- ENTIRE Endocrine Neoplasia Translational Research Center, Sheba Medical Center, Tel Hashomer, Israel
- Tel Aviv University Faculty of Medicine, Tel Aviv, Israel
| | - Limor Friedensohn
- ENTIRE Endocrine Neoplasia Translational Research Center, Sheba Medical Center, Tel Hashomer, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michal Gershinsky
- Department of Endocrinology and Diabetes, Lady Davis Carmel Medical Center and Linn Medical Center and Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Alona Telerman
- ENTIRE Endocrine Neoplasia Translational Research Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Eitan Friedman
- Tel Aviv University Faculty of Medicine, Tel Aviv, Israel
- Personalized Preventive Genetics Center, Assuta Medical Center, Tel-Aviv, Israel
| | - Rinat Bernstein-Molho
- Tel Aviv University Faculty of Medicine, Tel Aviv, Israel
- The Susanne Levy Gertner Oncogenetics Unit, Sheba Medical Center, Tel Hashomer, Israel
| | - Amit Tirosh
- ENTIRE Endocrine Neoplasia Translational Research Center, Sheba Medical Center, Tel Hashomer, Israel
- Tel Aviv University Faculty of Medicine, Tel Aviv, Israel
| |
Collapse
|
11
|
Coopmans EC, Korbonits M. Molecular genetic testing in the management of pituitary disease. Clin Endocrinol (Oxf) 2022; 97:424-435. [PMID: 35349723 DOI: 10.1111/cen.14706] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Most pituitary tumours occur sporadically without a genetically identifiable germline abnormality, a small but increasing proportion present with a genetic defect that predisposes to pituitary tumour development, either isolated (e.g., aryl hydrocarbon receptor-interacting protein, AIP) or as part of a tumour-predisposing syndrome (e.g., multiple endocrine neoplasia (MEN) type 1, Carney complex, McCune-Albright syndrome or pituitary tumour and paraganglioma association). Genetic alterations in sporadic pituitary adenomas may include somatic mutations (e.g., GNAS, USP8). In this review, we take a practical approach: which genetic syndromes should be considered in case of different presentation, such as tumour type, family history, age of onset and additional clinical features of the patient. DESIGN Review of the recent literature in the field of genetics of pituitary tumours. RESULTS Genetic testing in the management of pituitary disease is recommended in a significant minority of the cases. Understanding the genetic basis of the disease helps to identify patients and at-risk family members, facilitates early diagnosis and therefore better long-term outcome and opens up new pathways leading to tumorigenesis. CONCLUSION We provide a concise overview of the genetics of pituitary tumours and discuss the current challenges and implications of these genetic findings in clinical practice.
Collapse
Affiliation(s)
- Eva C Coopmans
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Department of Medicine, Division of Endocrinology, Leiden University Medical Centre, Leiden, The Netherlands
- Department of Medicine, Endocrinology section, Pituitary Center Rotterdam, Erasmus University Medical Cente, Rotterdam, The Netherlands
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
12
|
Seabrook A, Wijewardene A, De Sousa S, Wong T, Sheriff N, Gill AJ, Iyer R, Field M, Luxford C, Clifton-Bligh R, McCormack A, Tucker K. MEN4, the MEN1 Mimicker: A Case Series of three Phenotypically Heterogenous Patients With Unique CDKN1B Mutations. J Clin Endocrinol Metab 2022; 107:2339-2349. [PMID: 35323929 PMCID: PMC9282358 DOI: 10.1210/clinem/dgac162] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Indexed: 12/29/2022]
Abstract
CONTEXT Germline CDKN1B pathogenic variants result in multiple endocrine neoplasia type 4 (MEN4), an autosomal dominant hereditary tumor syndrome variably associated with primary hyperparathyroidism, pituitary adenoma, and duodenopancreatic neuroendocrine tumors. OBJECTIVE To report the phenotype of 3 unrelated cases each with a unique germline CDKN1B variant (of which 2 are novel) and compare these cases with those described in the current literature. DESIGN/METHODS Three case studies, including clinical presentation, germline, and tumor genetic analysis and family history. SETTING Two tertiary University Hospitals in Sydney, New South Wales, and 1 tertiary University Hospital in Canberra, Australian Capital Territory, Australia. OUTCOME Phenotype of the 3 cases and their kindred; molecular analysis and tumor p27kip1 immunohistochemistry. RESULTS Family A: The proband developed multiglandular primary hyperparathyroidism, a microprolactinoma and a multifocal nonfunctioning duodenopancreatic neuroendocrine tumor. Family B: The proband was diagnosed with primary hyperparathyroidism from a single parathyroid adenoma. Family C: The proband was diagnosed with a nonfunctioning pituitary microadenoma and ectopic Cushing's syndrome from an atypical thymic carcinoid tumor. Germline sequencing in each patient identified a unique variant in CDKN1B, 2 of which are novel (c.179G > A, p.Trp60*; c.475G > A, p.Asp159Asn) and 1 previously reported (c.374_375delCT, p.Ser125*). CONCLUSIONS Germline CDKN1B pathogenic variants cause the syndrome MEN4. The phenotype resulting from the 3 pathogenic variants described in this series highlights the heterogenous nature of this syndrome, ranging from isolated primary hyperparathyroidism to the full spectrum of endocrine manifestations. We report the first described cases of a prolactinoma and an atypical thymic carcinoid tumor in MEN4.
Collapse
Affiliation(s)
- Amanda Seabrook
- Cancer Genetics Laboratory, Kolling Institute, Royal North Shore Hospital, Sydney, NSW, 2065, Australia
- The University of Sydney, Sydney, NSW, 2006, Australia
| | - Ayanthi Wijewardene
- Cancer Genetics Laboratory, Kolling Institute, Royal North Shore Hospital, Sydney, NSW, 2065, Australia
- The University of Sydney, Sydney, NSW, 2006, Australia
| | - Sunita De Sousa
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA, 5000
- South Australian Adult Genetics Unit, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Tang Wong
- The University of New South Wales, Sydney, NSW, 2052, Australia
- The University of Western Sydney, Sydney, NSW, 2560, Australia
- Department of Endocrinology, Prince of Wales Hospital, Sydney, NSW, 2064, Australia
| | - Nisa Sheriff
- Department of Endocrinology, Hornsby Ku-ring-gai Hospital, Sydney, NSW, 2077, Australia
| | - Anthony J Gill
- The University of Sydney, Sydney, NSW, 2006, Australia
- NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, Sydney, NSW, 2064, Australia
- Cancer Diagnosis and Pathology Group, Kolling Institute, Royal North Shore Hospital, Sydney, NSW, 2064, Australia
| | - Rakesh Iyer
- Calvary Public Hospital, Canberra, ACT, 2617, Australia
| | - Michael Field
- Familial Cancer Service, Royal North Shore Hospital, Sydney, NSW, 2065, Australia
| | - Catherine Luxford
- Cancer Genetics Laboratory, Kolling Institute, Royal North Shore Hospital, Sydney, NSW, 2065, Australia
- The University of Sydney, Sydney, NSW, 2006, Australia
| | | | | | - Katherine Tucker
- Correspondence: Katherine Tucker, MBBS, FRACP, AO, Hereditary Cancer Service Nelune Comprehensive Cancer Centre (Bright Building), 64-66 High St, Randwick, NSW, 2031, Australia.
| |
Collapse
|
13
|
Lavezzi E, Brunetti A, Smiroldo V, Nappo G, Pedicini V, Vitali E, Trivellin G, Mazziotti G, Lania A. Case Report: New CDKN1B Mutation in Multiple Endocrine Neoplasia Type 4 and Brief Literature Review on Clinical Management. Front Endocrinol (Lausanne) 2022; 13:773143. [PMID: 35355569 PMCID: PMC8959648 DOI: 10.3389/fendo.2022.773143] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/25/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The fourth type of multiple endocrine neoplasia (MEN) is known as a rare variant of MEN presenting a MEN1-like phenotype and originating from a germline mutation in CDKN1B. However, due to the small number of cases documented in the literature, the peculiar clinical features of MEN4 are still largely unknown, and clear indications about the clinical management of these patients are currently lacking. In order to widen our knowledge on MEN4 and to better typify the clinical features of this syndrome, we present two more cases of subjects with MEN4, and through a review of the current literature, we provide some possible indications on these patients' management. CASE PRESENTATION The first report is about a man who was diagnosed with a metastatic ileal G2-NET at the age of 34. Genetic analysis revealed the mutation p.I119T (c.356T>C) of exon 1 of CDKN1B, a mutation already reported in the literature in association with early-onset pituitary adenomas. The second report is about a 76-year-old woman with a multifocal pancreatic G1-NET. Genetic analysis identified the CDKN1B mutation c.482C>G (p.S161C), described here for the first time in association with MEN4 and currently classified as a variant of uncertain significance. Both patients underwent biochemical and imaging screening for MEN1-related diseases without any pathological findings. CONCLUSIONS According to the cases reported in the literature, hyperparathyroidism is the most common clinical feature of MEN4, followed by pituitary adenoma and neuroendocrine tumors. However, MEN4 appears to be a variant of MEN with milder clinical features and later onset. Therefore, these patients might need a different and personalized approach in clinical management and a peculiar screening and follow-up strategy.
Collapse
Affiliation(s)
- Elisabetta Lavezzi
- Endocrinology, Diabetology and Andrology Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
- *Correspondence: Elisabetta Lavezzi,
| | - Alessandro Brunetti
- Endocrinology, Diabetology and Andrology Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Valeria Smiroldo
- Oncology Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Gennaro Nappo
- Pancreatic Surgery Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | | | - Eleonora Vitali
- Endocrinology Unit and Laboratory of Cellular and Molecular Endocrinology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Giampaolo Trivellin
- Endocrinology Unit and Laboratory of Cellular and Molecular Endocrinology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Gherardo Mazziotti
- Endocrinology, Diabetology and Andrology Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Andrea Lania
- Endocrinology, Diabetology and Andrology Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| |
Collapse
|
14
|
Genetics of Acromegaly and Gigantism. J Clin Med 2021; 10:jcm10071377. [PMID: 33805450 PMCID: PMC8036715 DOI: 10.3390/jcm10071377] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
Growth hormone (GH)-secreting pituitary tumours represent the most genetically determined pituitary tumour type. This is true both for germline and somatic mutations. Germline mutations occur in several known genes (AIP, PRKAR1A, GPR101, GNAS, MEN1, CDKN1B, SDHx, MAX) as well as familial cases with currently unknown genes, while somatic mutations in GNAS are present in up to 40% of tumours. If the disease starts before the fusion of the epiphysis, then accelerated growth and increased final height, or gigantism, can develop, where a genetic background can be identified in half of the cases. Hereditary GH-secreting pituitary adenoma (PA) can manifest as isolated tumours, familial isolated pituitary adenoma (FIPA) including cases with AIP mutations or GPR101 duplications (X-linked acrogigantism, XLAG) or can be a part of systemic diseases like multiple endocrine neoplasia type 1 or type 4, McCune-Albright syndrome, Carney complex or phaeochromocytoma/paraganglioma-pituitary adenoma association. Family history and a search for associated syndromic manifestations can help to draw attention to genetic causes; many of these are now tested as part of gene panels. Identifying genetic mutations allows appropriate screening of associated comorbidities as well as finding affected family members before the clinical manifestation of the disease. This review focuses on germline and somatic mutations predisposing to acromegaly and gigantism.
Collapse
|
15
|
Abstract
Pituitary adenomas are common intracranial neoplasms, with diverse phenotypes. Most of these tumors occur sporadically and are not part of genetic disorders. Over the last decades numerous genetic studies have led to identification of somatic and germline mutations associated with pituitary tumors, which has advanced the understanding of pituitary tumorigenesis. Exploring the genetic background of pituitary neuroendocrine tumors can lead to early diagnosis associated with better outcomes, and their molecular mechanisms should lead to novel targeted therapies even for sporadic tumors. This article summarizes the genes and the syndromes associated with pituitary tumors.
Collapse
Affiliation(s)
- Sayka Barry
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
16
|
Chasseloup F, Pankratz N, Lane J, Faucz FR, Keil MF, Chittiboina P, Kay DM, Hussein Tayeb T, Stratakis CA, Mills JL, Hernández-Ramírez LC. Germline CDKN1B Loss-of-Function Variants Cause Pediatric Cushing's Disease With or Without an MEN4 Phenotype. J Clin Endocrinol Metab 2020; 105:5813889. [PMID: 32232325 PMCID: PMC7190031 DOI: 10.1210/clinem/dgaa160] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/27/2020] [Indexed: 12/13/2022]
Abstract
CONTEXT Germline loss-of-function CDKN1B gene variants cause the autosomal dominant syndrome of multiple endocrine neoplasia type 4 (MEN4). Even though pituitary neuroendocrine tumors are a well-known component of the syndrome, only 2 cases of Cushing's disease (CD) have so far been described in this setting. AIM To screen a large cohort of CD patients for CDKN1B gene defects and to determine their functional effects. PATIENTS We screened 211 CD patients (94.3% pediatric) by germline whole-exome sequencing (WES) only (n = 157), germline and tumor WES (n = 27), Sanger sequencing (n = 6), and/or germline copy number variant (CNV) analysis (n = 194). Sixty cases were previously unpublished. Variant segregation was investigated in the patients' families, and putative pathogenic variants were functionally characterized. RESULTS Five variants of interest were found in 1 patient each: 1 truncating (p.Q107Rfs*12) and 4 nontruncating variants, including 3 missense changes affecting the CDKN1B protein scatter domain (p.I119T, p.E126Q, and p.D136G) and one 5' untranslated region (UTR) deletion (c.-29_-26delAGAG). No CNVs were found. All cases presented early (10.5 ± 1.3 years) and apparently sporadically. Aside from colon adenocarcinoma in 1 carrier, no additional neoplasms were detected in the probands or their families. In vitro assays demonstrated protein instability and disruption of the scatter domain of CDKN1B for all variants tested. CONCLUSIONS Five patients with CD and germline CDKN1B variants of uncertain significance (n = 2) or pathogenic/likely pathogenic (n = 3) were identified, accounting for 2.6% of the patients screened. Our finding that germline CDKN1B loss-of-function may present as apparently sporadic, isolated pediatric CD has important implications for clinical screening and genetic counselling.
Collapse
Affiliation(s)
- Fanny Chasseloup
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland
- Departmentof Endocrinology, Cochin Hospital, Assistance Publique Hôpitaux de Paris, Institut Cochin, INSERM U1016 CNRS 8104 Paris Descartes University, Paris, France
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - John Lane
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Fabio R Faucz
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland
| | - Margaret F Keil
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland
| | - Prashant Chittiboina
- Neurosurgery Unit for Pituitary and Inheritable Diseases, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland
| | - Denise M Kay
- Newborn Screening Program, Wadsworth Center, New York State Department of Health, Albany, New York
| | - Tara Hussein Tayeb
- College of Medicine, Sulaimani University, Sulaimani, Kurdistan, Iraq
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland
| | - James L Mills
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland
| | - Laura C Hernández-Ramírez
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland
- Correspondence and Reprint Requests: Laura C. Hernández-Ramírez, MD, PhD, Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 10 Center Drive, CRC, Rm 1E-3216, Bethesda, MD 20892-1862, USA. E-mail:
| |
Collapse
|
17
|
The Genetics of Pituitary Adenomas. J Clin Med 2019; 9:jcm9010030. [PMID: 31877737 PMCID: PMC7019860 DOI: 10.3390/jcm9010030] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/12/2019] [Accepted: 12/15/2019] [Indexed: 12/16/2022] Open
Abstract
The genetic landscape of pituitary adenomas (PAs) is diverse and many of the identified cases remain of unclear pathogenetic mechanism. Germline genetic defects account for a small percentage of all patients and may present in the context of relevant family history. Defects in AIP (mutated in Familial Isolated Pituitary Adenoma syndrome or FIPA), MEN1 (coding for menin, mutated in Multiple Endocrine Neoplasia type 1 or MEN 1), PRKAR1A (mutated in Carney complex), GPR101 (involved in X-Linked Acrogigantism or X-LAG), and SDHx (mutated in the so called "3 P association" of PAs with pheochromocytomas and paragangliomas or 3PAs) account for the most common familial syndromes associated with PAs. Tumor genetic defects in USP8, GNAS, USP48 and BRAF are some of the commonly encountered tissue-specific changes and may explain a larger percentage of the developed tumors. Somatic (at the tumor level) genomic changes, copy number variations (CNVs), epigenetic modifications, and differential expression of miRNAs, add to the variable genetic background of PAs.
Collapse
|
18
|
Genetics of Pituitary Tumours. EXPERIENTIA. SUPPLEMENTUM 2019. [PMID: 31588533 DOI: 10.1007/978-3-030-25905-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Pituitary tumours are relatively common in the general population. Most often they occur sporadically, with somatic mutations accounting for a significant minority of somatotroph and corticotroph adenomas. Pituitary tumours can also develop secondary to germline mutations as part of a complex syndrome or as familial isolated pituitary adenomas. Tumours occurring in a familial setting may present at a younger age and can behave more aggressively with resistance to treatment. This chapter will focus on the genetics and molecular pathogenesis of pituitary tumours.
Collapse
|
19
|
Pepe S, Korbonits M, Iacovazzo D. Germline and mosaic mutations causing pituitary tumours: genetic and molecular aspects. J Endocrinol 2019; 240:R21-R45. [PMID: 30530903 DOI: 10.1530/joe-18-0446] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/07/2018] [Indexed: 12/24/2022]
Abstract
While 95% of pituitary adenomas arise sporadically without a known inheritable predisposing mutation, in about 5% of the cases they can arise in a familial setting, either isolated (familial isolated pituitary adenoma or FIPA) or as part of a syndrome. FIPA is caused, in 15-30% of all kindreds, by inactivating mutations in the AIP gene, encoding a co-chaperone with a vast array of interacting partners and causing most commonly growth hormone excess. While the mechanisms linking AIP with pituitary tumorigenesis have not been fully understood, they are likely to involve several pathways, including the cAMP-dependent protein kinase A pathway via defective G inhibitory protein signalling or altered interaction with phosphodiesterases. The cAMP pathway is also affected by other conditions predisposing to pituitary tumours, including X-linked acrogigantism caused by duplications of the GPR101 gene, encoding an orphan G stimulatory protein-coupled receptor. Activating mosaic mutations in the GNAS gene, coding for the Gα stimulatory protein, cause McCune-Albright syndrome, while inactivating mutations in the regulatory type 1α subunit of protein kinase A represent the most frequent genetic cause of Carney complex, a syndromic condition with multi-organ manifestations also involving the pituitary gland. In this review, we discuss the genetic and molecular aspects of isolated and syndromic familial pituitary adenomas due to germline or mosaic mutations, including those secondary to AIP and GPR101 mutations, multiple endocrine neoplasia type 1 and 4, Carney complex, McCune-Albright syndrome, DICER1 syndrome and mutations in the SDHx genes underlying the association of familial paragangliomas and phaeochromocytomas with pituitary adenomas.
Collapse
Affiliation(s)
- Sara Pepe
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK
| | - Donato Iacovazzo
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK
| |
Collapse
|
20
|
Abstract
In the general population, height is determined by a complex interplay between genetic and environmental factors. Pituitary gigantism is a rare but very important subgroup of patients with excessive height, as it has an identifiable and clinically treatable cause. The disease is caused by chronic growth hormone and insulin-like growth factor 1 secretion from a pituitary somatotrope adenoma that forms before the closure of the epiphyses. If not controlled effectively, this hormonal hypersecretion could lead to extremely elevated final adult height. The past 10 years have seen marked advances in the understanding of pituitary gigantism, including the identification of genetic causes in ~50% of cases, such as mutations in the AIP gene or chromosome Xq26.3 duplications in X-linked acrogigantism syndrome. Pituitary gigantism has a male preponderance, and patients usually have large pituitary adenomas. The large tumour size, together with the young age of patients and frequent resistance to medical therapy, makes the management of pituitary gigantism complex. Early diagnosis and rapid referral for effective therapy appear to improve outcomes in patients with pituitary gigantism; therefore, a high level of clinical suspicion and efficient use of diagnostic resources is key to controlling overgrowth and preventing patients from reaching very elevated final adult heights.
Collapse
Affiliation(s)
- Albert Beckers
- Department of Endocrinology, Centre Hospitalier Universitaire de Liège, Liège Université, Liège, Belgium.
| | - Patrick Petrossians
- Department of Endocrinology, Centre Hospitalier Universitaire de Liège, Liège Université, Liège, Belgium
| | - Julien Hanson
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases and Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines, Liège Université, Liège, Belgium
| | - Adrian F Daly
- Department of Endocrinology, Centre Hospitalier Universitaire de Liège, Liège Université, Liège, Belgium
| |
Collapse
|
21
|
Goudie C, Hannah-Shmouni F, Kavak M, Stratakis CA, Foulkes WD. 65 YEARS OF THE DOUBLE HELIX: Endocrine tumour syndromes in children and adolescents. Endocr Relat Cancer 2018; 25:T221-T244. [PMID: 29986924 DOI: 10.1530/erc-18-0160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 05/31/2018] [Indexed: 12/16/2022]
Abstract
As medicine is poised to be transformed by incorporating genetic data in its daily practice, it is essential that clinicians familiarise themselves with the information that is now available from more than 50 years of genetic discoveries that continue unabated and increase by the day. Endocrinology has always stood at the forefront of what is called today 'precision medicine': genetic disorders of the pituitary and the adrenal glands were among the first to be molecularly elucidated in the 1980s. The discovery of two endocrine-related genes, GNAS and RET, both identified in the late 1980s, contributed greatly in the understanding of cancer and its progression. The use of RET mutation testing for the management of medullary thyroid cancer was among the first and one of most successful applications of genetics in informing clinical decisions in an individualised manner, in this case by preventing cancer or guiding the choice of tyrosine kinase inhibitors in cancer treatment. New information emerges every day in the genetics or system biology of endocrine disorders. This review goes over most of these discoveries and the known endocrine tumour syndromes. We cover key genetic developments for each disease and provide information that can be used by the clinician in daily practice.
Collapse
Affiliation(s)
- Catherine Goudie
- Division of Hematology-OncologyDepartment of Pediatrics, The Hospital for Sick Children, Toronto, Canada
| | - Fady Hannah-Shmouni
- Section on Endocrinology and Genetics The Eunice Kennedy Shriver Institute of Child Health and Human DevelopmentNational Institutes of Health, Bethesda, Maryland, USA
| | - Mahmure Kavak
- Department of Pharmacology and ToxicologyUniversity of Toronto, Toronto, Canada
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics The Eunice Kennedy Shriver Institute of Child Health and Human DevelopmentNational Institutes of Health, Bethesda, Maryland, USA
| | - William D Foulkes
- Department of Human GeneticsResearch Institute of the McGill University Health Centre, and Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Canada
| |
Collapse
|
22
|
Cusan M, Mungo G, De Marco Zompit M, Segatto I, Belletti B, Baldassarre G. Landscape of CDKN1B Mutations in Luminal Breast Cancer and Other Hormone-Driven Human Tumors. Front Endocrinol (Lausanne) 2018; 9:393. [PMID: 30065701 PMCID: PMC6056726 DOI: 10.3389/fendo.2018.00393] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/25/2018] [Indexed: 12/15/2022] Open
Abstract
The CDKN1B gene encodes for the p27Kip1 protein, firstly characterized as a cyclin dependent kinase (CDK)-inhibitor. Germline CDKN1B pathogenic variants have been described in hereditary tumors, such as multiple endocrine neoplasia (MEN)-like syndromes and familial prostate cancer. Despite its central role in tumor progression, for a long time it has been proposed that CDKN1B was very rarely somatically mutated in human cancer and that its expression levels were almost exclusively regulated at post-transcriptional level. Yet, the advent of massive parallel sequencing has partially subverted this general understanding demonstrating that, at least in some types of cancer, CDKN1B is mutated in a significant percentage of analyzed samples. Recent works have demonstrated that CDKN1B can be genetically inactivated and this occurs particularly in sporadic luminal breast cancer, prostate cancer and small intestine neuroendocrine tumors. However, a clear picture of the extent and significance of CDKN1B mutations in human malignances is still lacking. To fill this gap, we interrogated the COSMIC, ICGC, cBioPortal, and TRANSFAC data portals and current literature in PubMed, and reviewed the mutational spectrum of CDKN1B in human cancers, interpreting the possible impact of these mutations on p27Kip1 protein function and tumor onset and progression.
Collapse
Affiliation(s)
| | | | | | | | | | - Gustavo Baldassarre
- Division of Molecular Oncology, CRO of Aviano, IRCCS, National Cancer Institute, Aviano, Italy
| |
Collapse
|
23
|
Abstract
The knowledge on the molecular and genetic causes of Cushing's syndrome (CS) has greatly increased in the recent years. Somatic mutations leading to overactive 3',5'-cyclic adenosine monophosphate/protein kinase A and wingless-type MMTV integration site family/beta-catenin pathways are the main molecular mechanisms underlying adrenocortical tumorigenesis. Corticotropinomas are characterized by resistance to glucocorticoid negative feedback, impaired cell cycle control and overexpression of pathways sustaining ACTH secretion. Recognizing the genetic defects behind corticotroph and adrenocortical tumorigenesis proves crucial for tailoring the clinical management of CS patients and for designing strategies for genetic counseling and clinical screening to be applied in routine medical practice.
Collapse
Affiliation(s)
- Laura C Hernández-Ramírez
- Section on Endocrinology and Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 10 Center Drive, CRC, Room 1E-3216, Bethesda, MD 20892-1862, USA
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 10 Center Drive, CRC, Room 1E-3216, Bethesda, MD 20892-1862, USA.
| |
Collapse
|
24
|
Hannah-Shmouni F, Stratakis CA. An update on the genetics of benign pituitary adenomas in children and adolescents. ACTA ACUST UNITED AC 2018; 1:19-24. [PMID: 30555957 DOI: 10.1016/j.coemr.2018.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pituitary adenomas in children and adolescents are rare tumors that often result from a tumor predisposition syndrome. Several inherited causes for pituitary adenomas have been identified in the last few years, including multiple endocrine neoplasia type 1 and 4, Carney's complex, Tuberous sclerosis, DICER1 syndrome, neurofibromatosis type 1, McCune Albright syndrome, familial isolated pituitary adenoma, and pituitary adenoma association due to defects in succinate dehydrogenase genes. Recently, our group discovered X-linked acrogigantism (X-LAG), a new pediatric disorder that is caused by an Xq26.3 genomic duplication (involving the GPR101 gene). Genes that predispose to pediatric Cushing disease, including CABLES1 and USP8, were also recently identified. Genetic screening and counseling of affected or at risk individuals is a key component of their comprehensive care. In this review, we provide an up-to-date discussion on the latest pediatric genetic discoveries associated with pituitary adenomas with a focus on familial syndromes.
Collapse
Affiliation(s)
- Fady Hannah-Shmouni
- Section on Endocrinology & Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Constantine A Stratakis
- Section on Endocrinology & Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| |
Collapse
|
25
|
Trivellin G, Hernández-Ramírez LC, Swan J, Stratakis CA. An orphan G-protein-coupled receptor causes human gigantism and/or acromegaly: Molecular biology and clinical correlations. Best Pract Res Clin Endocrinol Metab 2018; 32:125-140. [PMID: 29678281 DOI: 10.1016/j.beem.2018.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
X-linked acrogigantism (X-LAG) is a recently described form of familial or sporadic pituitary gigantism characterized by very early onset GH and IGF-1 excess, accelerated growth velocity, gigantism and/or acromegaloid features. Germline or somatic microduplications of the Xq26.3 chromosomal region, invariably involving the GPR101 gene, constitute the genetic defect leading to X-LAG. GPR101 encodes a class A G protein-coupled receptor that activates the 3',5'-cyclic adenosine monophosphate signaling pathway. Highly expressed in the central nervous system, the main physiological function and ligand of GPR101 remain unknown, but it seems to play a role in the normal development of the GHRH-GH axis. Early recognition of X-LAG cases is imperative because these patients require clinical management that differs from that of other patients with acromegaly or gigantism. Medical treatment with pegvisomant seems to be the best approach, since X-LAG tumors are resistant to the treatment with somatostatin analogues and dopamine agonists; surgical cure requires near-total hypophysectomy. Currently, the efforts of our research focus on the identification of GPR101 ligands; in addition, the long-term follow-up of X-LAG patients is of extreme interest as this is expected to lead to better understanding of GPR101 effects on human pathophysiology.
Collapse
Affiliation(s)
- Giampaolo Trivellin
- Section on Endocrinology and Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892-1862, USA
| | - Laura C Hernández-Ramírez
- Section on Endocrinology and Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892-1862, USA
| | - Jeremy Swan
- Computer Support Services Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892-1862, USA
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892-1862, USA.
| |
Collapse
|
26
|
Pardi E, Borsari S, Saponaro F, Bogazzi F, Urbani C, Mariotti S, Pigliaru F, Satta C, Pani F, Materazzi G, Miccoli P, Grantaliano L, Marcocci C, Cetani F. Mutational and large deletion study of genes implicated in hereditary forms of primary hyperparathyroidism and correlation with clinical features. PLoS One 2017; 12:e0186485. [PMID: 29036195 PMCID: PMC5643132 DOI: 10.1371/journal.pone.0186485] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 10/01/2017] [Indexed: 12/24/2022] Open
Abstract
The aim of this study was to carry out genetic screening of the MEN1, CDKN1B and AIP genes, both by direct sequencing of the coding region and multiplex ligation-dependent probe amplification (MLPA) assay in the largest monocentric series of Italian patients with Multiple Endocrine Neoplasia type 1 syndrome (MEN1) and Familial Isolated Hyperparathyroidism (FIHP). The study also aimed to describe and compare the clinical features of MEN1 mutation-negative and mutation-positive patients during long-term follow-up and to correlate the specific types and locations of MEN1 gene mutations with onset and aggressiveness of the main MEN1 manifestations. A total of 69 index cases followed at the Endocrinology Unit in Pisa over a period of 19 years, including 54 MEN1 and 15 FIHP kindreds were enrolled. Seven index cases with MEN1 but MEN1 mutation-negative, followed at the University Hospital of Cagliari, were also investigated. FIHP were also tested for CDC73 and CaSR gene alterations. MEN1 germline mutations were identified in 90% of the index cases of familial MEN1 (F-MEN1) and in 23% of sporadic cases (S-MEN1). MEN1 and CDC73 mutations accounted for 13% and 7% of the FIHP cohort, respectively. A CDKN1B mutation was identified in one F-MEN1. Two AIP variants of unknown significance were detected in two MEN1-negative S-MEN1. A MEN1 positive test best predicted the onset of all three major MEN1-related manifestations or parathyroid and gastro-entero-pancreatic tumors during follow-up. A comparison between the clinical characteristics of F and S-MEN1 showed a higher prevalence of a single parathyroid disease and pituitary tumors in sporadic compared to familial MEN1 patients. No significant correlation was found between the type and location of MEN1 mutations and the clinical phenotype. Since all MEN1 mutation-positive sporadic patients had a phenotype resembling that of familial MEN1 (multiglandular parathyroid hyperplasia, a prevalence of gastro-entero-pancreatic tumors and/or the classic triad) we might hypothesize that a subset of the sporadic MEN1 mutation-negative patients could represent an incidental coexistence of sporadic primary hyperparathyroidism and pituitary tumors or a MEN1 phenocopy, in our cohort, as in most cases described in the literature.
Collapse
Affiliation(s)
- Elena Pardi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Simona Borsari
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Federica Saponaro
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Fausto Bogazzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Claudio Urbani
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Stefano Mariotti
- Endocrinology Unit, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Francesca Pigliaru
- Endocrinology Unit, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Chiara Satta
- Endocrinology Unit, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Fabiana Pani
- Endocrinology Unit, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Gabriele Materazzi
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Paolo Miccoli
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Lorena Grantaliano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Department of Medical Sciences, Hospital Villa Albani, Anzio (RM), Italy
| | - Claudio Marcocci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- University Hospital of Pisa, Endocrine Unit 2, Pisa, Italy
| | - Filomena Cetani
- University Hospital of Pisa, Endocrine Unit 2, Pisa, Italy
- * E-mail:
| |
Collapse
|
27
|
Alrezk R, Hannah-Shmouni F, Stratakis CA. MEN4 and CDKN1B mutations: the latest of the MEN syndromes. Endocr Relat Cancer 2017; 24:T195-T208. [PMID: 28824003 PMCID: PMC5623937 DOI: 10.1530/erc-17-0243] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 08/18/2017] [Indexed: 12/14/2022]
Abstract
Multiple endocrine neoplasia (MEN) refers to a group of autosomal dominant disorders with generally high penetrance that lead to the development of a wide spectrum of endocrine and non-endocrine manifestations. The most frequent among these conditions is MEN type 1 (MEN1), which is caused by germline heterozygous loss-of-function mutations in the tumor suppressor gene MEN1 MEN1 is characterized by primary hyperparathyroidism (PHPT) and functional or nonfunctional pancreatic neuroendocrine tumors and pituitary adenomas. Approximately 10% of patients with familial or sporadic MEN1-like phenotype do not have MEN1 mutations or deletions. A novel MEN syndrome was discovered, initially in rats (MENX), and later in humans (MEN4), which is caused by germline mutations in the putative tumor suppressor CDKN1B The most common phenotype of the 19 established cases of MEN4 that have been described to date is PHPT followed by pituitary adenomas. Recently, somatic or germline mutations in CDKN1B were also identified in patients with sporadic PHPT, small intestinal neuroendocrine tumors, lymphoma and breast cancer, demonstrating a novel role for CDKN1B as a tumor susceptibility gene for other neoplasms. In this review, we report on the genetic characterization and clinical features of MEN4.
Collapse
Affiliation(s)
- Rami Alrezk
- The National Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of Health, Bethesda, Maryland, USA
| | - Fady Hannah-Shmouni
- Section on Endocrinology & Geneticsthe Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Constantine A Stratakis
- Section on Endocrinology & Geneticsthe Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| |
Collapse
|
28
|
Bencivenga D, Caldarelli I, Stampone E, Mancini FP, Balestrieri ML, Della Ragione F, Borriello A. p27 Kip1 and human cancers: A reappraisal of a still enigmatic protein. Cancer Lett 2017; 403:354-365. [DOI: 10.1016/j.canlet.2017.06.031] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/23/2017] [Accepted: 06/23/2017] [Indexed: 12/21/2022]
|
29
|
Hernández-Ramírez LC, Gam R, Valdés N, Lodish MB, Pankratz N, Balsalobre A, Gauthier Y, Faucz FR, Trivellin G, Chittiboina P, Lane J, Kay DM, Dimopoulos A, Gaillard S, Neou M, Bertherat J, Assié G, Villa C, Mills JL, Drouin J, Stratakis CA. Loss-of-function mutations in the CABLES1 gene are a novel cause of Cushing's disease. Endocr Relat Cancer 2017; 24:379-392. [PMID: 28533356 PMCID: PMC5510591 DOI: 10.1530/erc-17-0131] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 05/18/2017] [Indexed: 12/11/2022]
Abstract
The CABLES1 cell cycle regulator participates in the adrenal-pituitary negative feedback, and its expression is reduced in corticotropinomas, pituitary tumors with a largely unexplained genetic basis. We investigated the presence of CABLES1 mutations/copy number variations (CNVs) and their associated clinical, histopathological and molecular features in patients with Cushing's disease (CD). Samples from 146 pediatric (118 germline DNA only/28 germline and tumor DNA) and 35 adult (tumor DNA) CD patients were screened for CABLES1 mutations. CNVs were assessed in 116 pediatric CD patients (87 germline DNA only/29 germline and tumor DNA). Four potentially pathogenic missense variants in CABLES1 were identified, two in young adults (c.532G > A, p.E178K and c.718C > T, p.L240F) and two in children (c.935G > A, p.G312D and c.1388A > G, and p.D463G) with CD; no CNVs were found. The four variants affected residues within or close to the predicted cyclin-dependent kinase-3 (CDK3)-binding region of the CABLES1 protein and impaired its ability to block cell growth in a mouse corticotropinoma cell line (AtT20/D16v-F2). The four patients had macroadenomas. We provide evidence for a role of CABLES1 as a novel pituitary tumor-predisposing gene. Its function might link two of the main molecular mechanisms altered in corticotropinomas: the cyclin-dependent kinase/cyclin group of cell cycle regulators and the epidermal growth factor receptor signaling pathway. Further studies are needed to assess the prevalence of CABLES1 mutations among patients with other types of pituitary adenomas and to elucidate the pituitary-specific functions of this gene.
Collapse
Affiliation(s)
- Laura C Hernández-Ramírez
- Section on Endocrinology and GeneticsEunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Ryhem Gam
- Laboratoire de Génétique MoléculaireInstitut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec, Canada
| | - Nuria Valdés
- Section on Endocrinology and GeneticsEunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
- Service of Endocrinology and NutritionHospital Universitario Central de Asturias, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Maya B Lodish
- Section on Endocrinology and GeneticsEunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Nathan Pankratz
- Department of Laboratory Medicine and PathologyUniversity of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Aurelio Balsalobre
- Laboratoire de Génétique MoléculaireInstitut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec, Canada
| | - Yves Gauthier
- Laboratoire de Génétique MoléculaireInstitut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec, Canada
| | - Fabio R Faucz
- Section on Endocrinology and GeneticsEunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Giampaolo Trivellin
- Section on Endocrinology and GeneticsEunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Prashant Chittiboina
- Surgical Neurology BranchNational Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - John Lane
- Department of Laboratory Medicine and PathologyUniversity of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Denise M Kay
- Newborn Screening ProgramWadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Aggeliki Dimopoulos
- Division of Intramural Population Health ResearchEpidemiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Stephan Gaillard
- Institut CochinINSERM U1016, CNRS UMR8104, Université Paris Descartes, Paris, France
- Department of NeurosurgeryHôpital Foch, Suresnes, France
| | - Mario Neou
- Institut CochinINSERM U1016, CNRS UMR8104, Université Paris Descartes, Paris, France
| | - Jérôme Bertherat
- Institut CochinINSERM U1016, CNRS UMR8104, Université Paris Descartes, Paris, France
- Service d'EndocrinologieCochin Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Guillaume Assié
- Institut CochinINSERM U1016, CNRS UMR8104, Université Paris Descartes, Paris, France
- Service d'EndocrinologieCochin Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Chiara Villa
- Institut CochinINSERM U1016, CNRS UMR8104, Université Paris Descartes, Paris, France
- Department of Pathological Cytology and AnatomyHôpital Foch, Suresnes, France
- Department of EndocrinologyCHU de Liège, University of Liège, Liège, Belgium
| | - James L Mills
- Division of Intramural Population Health ResearchEpidemiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Jacques Drouin
- Laboratoire de Génétique MoléculaireInstitut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec, Canada
| | - Constantine A Stratakis
- Section on Endocrinology and GeneticsEunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
30
|
Iacovazzo D, Hernández-Ramírez LC, Korbonits M. Sporadic pituitary adenomas: the role of germline mutations and recommendations for genetic screening. Expert Rev Endocrinol Metab 2017; 12:143-153. [PMID: 30063429 DOI: 10.1080/17446651.2017.1306439] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Although most pituitary adenomas occur sporadically, these common tumors can present in a familial setting in approximately 5% of cases. Germline mutations in several genes with autosomal dominant (AIP, MEN1, CDKN1B, PRKAR1A, SDHx) or X-linked dominant (GPR101) inheritance are causative of familial pituitary adenomas. Due to variable disease penetrance and occurrence of de novo mutations, some patients harboring germline mutations have no family history of pituitary adenomas (simplex cases). Areas covered: We summarize the recent findings on the role of germline mutations associated with familial pituitary adenomas in patients with sporadic clinical presentation. Expert commentary: Up to 12% of patients with young onset pituitary adenomas (age at diagnosis/onset ≤30 years) and up to 25% of simplex patients with gigantism carry mutations in the AIP gene, while most cases of X-linked acrogigantism (XLAG) due to GPR101 duplication are simplex female patients with very early disease onset (<5 years). With regard to the syndromes of multiple endocrine neoplasia (MEN), MEN1 mutations can be identified in a significant proportion of patients with childhood onset prolactinomas. Somatotroph and lactotroph adenomas are the most common pituitary adenomas associated with germline predisposing mutations. Genetic screening should be considered in patients with young onset pituitary adenomas.
Collapse
Affiliation(s)
- D Iacovazzo
- a Centre for Endocrinology, Barts and The London School of Medicine , Queen Mary University of London , London , UK
| | - L C Hernández-Ramírez
- b Section on Endocrinology and Genetics , Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH , Bethesda , MD , USA
| | - M Korbonits
- a Centre for Endocrinology, Barts and The London School of Medicine , Queen Mary University of London , London , UK
| |
Collapse
|
31
|
Borsari S, Pardi E, Pellegata NS, Lee M, Saponaro F, Torregrossa L, Basolo F, Paltrinieri E, Zatelli MC, Materazzi G, Miccoli P, Marcocci C, Cetani F. Loss of p27 expression is associated with MEN1 gene mutations in sporadic parathyroid adenomas. Endocrine 2017; 55:386-397. [PMID: 27038812 DOI: 10.1007/s12020-016-0941-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 03/24/2016] [Indexed: 01/08/2023]
Abstract
MEN1 is the main gene responsible for tumorigenesis of syndromic and sporadic primary hyperparathyroidism (PHPT). Germline mutations of the CDKN1B/p27Kip gene have been associated with multiple endocrine tumors in rats and humans. To evaluate the involvement of the CDKN1B gene and its relationship with MEN1 in sporadic PHPT, we carried out sequencing and loss of heterozygosity analyses of the CDKN1B gene in 147 sporadic parathyroid adenomas. p27 immunohistochemistry and genetic screening of the MEN1 gene were performed in 50 cases. Three germline CDKN1B variants (c.-80C>T, c.-29_-26delAGAG, c.397C>A) were identified in 3/147 patients. Reduction of CDKN1B gene transcription rate was demonstrated in vitro for the novel c.-80C>T and the c.-29_-26delAGAG variants. Loss of p27 expression was detected in the tumor carrying the c.-29_-26delAGAG variant. Two tumors carrying the CDKN1B variants also harbored a MEN1 mutation. Fifty-four percent of 50 CDKN1B mutation-negative tumors had a reduction of p27 nuclear staining. Somatic MEN1 mutations, identified in 15/50 samples, significantly segregated in tumors negative for nuclear and cytoplasmic p27 staining. The germline nature of the CDKN1B mutations suggests that they might predispose to PHPT. The lack of somatic CDKN1B mutations in our samples points to a rare involvement in parathyroid adenomas, despite the frequent loss of nuclear p27 expression. MEN1 biallelic inactivation seems to be directly related to down-regulation of p27 expression through the inhibition of CDKN1B gene transcription.
Collapse
Affiliation(s)
- Simona Borsari
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Elena Pardi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Natalia S Pellegata
- Institute of Pathology, Helmholtz Zentrum Munchen-German Research Center for Environmental Health, Ingolstaedter Landstrasse, Neuherberg, Germany
| | - Misu Lee
- Institute of Pathology, Helmholtz Zentrum Munchen-German Research Center for Environmental Health, Ingolstaedter Landstrasse, Neuherberg, Germany
| | - Federica Saponaro
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Liborio Torregrossa
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Fulvio Basolo
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Elena Paltrinieri
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Department of Clinical Sciences and Community Health, University of Milan IRCCS Foundation Ca' Granda Policlinico Hospital, Milan, Italy
| | - Maria Chiara Zatelli
- Department of Medical Sciences, Section of Endocrinology, University of Ferrara, Ferrara, Italy
| | - Gabriele Materazzi
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Paolo Miccoli
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Claudio Marcocci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Filomena Cetani
- Endocrine Unit 2, University Hospital of Pisa, Via Paradisa, 2, 56124, Pisa, Italy.
| |
Collapse
|
32
|
Abstract
Acromegaly is caused by a somatotropinoma in the vast majority of the cases. These are monoclonal tumors that can occur sporadically or rarely in a familial setting. In the last few years, novel familial syndromes have been described and recent studies explored the landscape of somatic mutations in sporadic somatotropinomas. This short review concentrates on the current knowledge of the genetic basis of both familial and sporadic acromegaly.
Collapse
Affiliation(s)
- Mônica R Gadelha
- Neuroendocrinology Research Center/Endocrine Section and Medical School - Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Neuroendocrine Section - Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria Estadual de Saúde do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leandro Kasuki
- Neuroendocrinology Research Center/Endocrine Section and Medical School - Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Neuroendocrine Section - Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria Estadual de Saúde do Rio de Janeiro, Rio de Janeiro, Brazil
- Endocrine Unit, Hospital Federal de Bonsucesso, Rio de Janeiro, Brazil
| | - Márta Korbonits
- Centre for Endocrinology, Barts and the London School of Medicine, Queen Mary University of London, Charterhouse Square, London, EC1A 6BQ, UK.
| |
Collapse
|
33
|
Caimari F, Korbonits M. Novel Genetic Causes of Pituitary Adenomas. Clin Cancer Res 2016; 22:5030-5042. [DOI: 10.1158/1078-0432.ccr-16-0452] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/24/2016] [Indexed: 11/16/2022]
|
34
|
Hannah-Shmouni F, Trivellin G, Stratakis CA. Genetics of gigantism and acromegaly. Growth Horm IGF Res 2016; 30-31:37-41. [PMID: 27657986 PMCID: PMC5154831 DOI: 10.1016/j.ghir.2016.08.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/28/2016] [Accepted: 08/09/2016] [Indexed: 12/11/2022]
Abstract
Gigantism and acromegaly are rare disorders that are caused by excessive GH secretion and/or high levels of its mediator, IGF-1. Gigantism occurs when excess GH or IGF-1 lead to increased linear growth, before the end of puberty and epiphyseal closure. The majority of cases arise from a benign GH-secreting pituitary adenoma, with an incidence of pituitary gigantism and acromegaly of approximately 8 and 11 per million person-years, respectively. Over the past two decades, our increasing understanding of the molecular and genetic etiologies of pituitary gigantism and acromegaly yielded several genetic causes, including multiple endocrine neoplasia type 1 and 4, McCune-Albright syndrome, Carney complex, familial isolated pituitary adenoma, pituitary adenoma association due to defects in familial succinate dehydrogenase genes, and the recently identified X-linked acrogigantism. The early diagnosis of these conditions helps guide early intervention, screening, and genetic counseling of patients and their family members. In this review, we provide a concise and up-to-date discussion on the genetics of gigantism and acromegaly.
Collapse
Affiliation(s)
- Fady Hannah-Shmouni
- Section on Endocrinology & Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Giampaolo Trivellin
- Section on Endocrinology & Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Constantine A Stratakis
- Section on Endocrinology & Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| |
Collapse
|
35
|
Vandeva S, Elenkova A, Natchev E, Zacharieva S. Epidemiological variations of aggressive growth hormone-secreting adenomas. INTERNATIONAL JOURNAL OF ENDOCRINE ONCOLOGY 2016. [DOI: 10.2217/ije-2015-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Acromegaly is a chronic disorder characterized by increased morbidity and mortality in uncontrolled patients. Growth hormone-secreting pituitary adenoma is the hallmark in the majority of cases, generally considered as benign due to lack of distant metastases. However, clinical behavior in a certain proportion of these adenomas could be quite aggressive, causing difficulties in their management. Aggressive pituitary adenomas have some clinical, radiological, ultrastructural and molecular features in common and they are usually resistant to the standard treatment. In the recent years, efforts have been made to define the most appropriate markers of such adenomas that would allow an early detection and efficient individualized therapeutic strategy. The aim of this review is to give an update on epidemiology and certain markers predicting aggressive behavior of somatotropinomas.
Collapse
Affiliation(s)
- Silvia Vandeva
- Clinical Center of Endocrinology, Medical University, Sofia, Bulgaria
| | - Atanaska Elenkova
- Clinical Center of Endocrinology, Medical University, Sofia, Bulgaria
| | - Emil Natchev
- Clinical Center of Endocrinology, Medical University, Sofia, Bulgaria
| | - Sabina Zacharieva
- Clinical Center of Endocrinology, Medical University, Sofia, Bulgaria
| |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW To provide an update on the mechanisms leading to pituitary gigantism, as well as to familiarize the practitioner with the implication of these genetic findings on treatment decisions. RECENT FINDINGS Prior studies have identified gigantism as a feature of a number of monogenic disorders, including mutations in the aryl hydrocarbon receptor interacting protein gene, multiple endocrine neoplasia types 1 and 4, McCune Albright syndrome, Carney complex, and the paraganglioma, pheochromocytoma, and pituitary adenoma association because of succinate dehydrogenase defects. We recently described a previously uncharacterized form of early-onset pediatric gigantism caused by microduplications on chromosome Xq26.3 and we termed it X-LAG (X-linked acrogigantism). The age of onset of increased growth in X-LAG is significantly younger than other pituitary gigantism cases, and control of growth hormone excess is particularly challenging. SUMMARY Knowledge of the molecular defects that underlie pituitary tumorigenesis is crucial for patient care as they guide early intervention, screening for associated conditions, genetic counseling, surgical approach, and choice of medical management. Recently described microduplications of Xq26.3 account for more than 80% of the cases of early-onset pediatric gigantism. Early recognition of X-LAG may improve outcomes, as successful control of growth hormone excess requires extensive anterior pituitary resection and are difficult to manage with medical therapy alone.
Collapse
Affiliation(s)
- Maya B Lodish
- *Dr Maya B. Lodish and Dr Giampaolo Trivellin contributed equally to the writing of this article. Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | | | | |
Collapse
|
37
|
Naves LA, Daly AF, Dias LA, Yuan B, Zakir JCO, Barra GB, Palmeira L, Villa C, Trivellin G, Júnior AJ, Neto FFC, Liu P, Pellegata NS, Stratakis CA, Lupski JR, Beckers A. Aggressive tumor growth and clinical evolution in a patient with X-linked acro-gigantism syndrome. Endocrine 2016; 51:236-44. [PMID: 26607152 PMCID: PMC5497487 DOI: 10.1007/s12020-015-0804-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/06/2015] [Indexed: 10/22/2022]
Abstract
X-linked acro-gigantism (X-LAG) syndrome is a newly described disease caused by microduplications on chromosome Xq26.3 leading to copy number gain of GPR101. We describe the clinical progress of a sporadic male X-LAG syndrome patient with an Xq26.3 microduplication, highlighting the aggressive natural history of pituitary tumor growth in the absence of treatment. The patient first presented elsewhere aged 5 years 8 months with a history of excessive growth for >2 years. His height was 163 cm, his weight was 36 kg, and he had markedly elevated GH and IGF-1. MRI showed a non-invasive sellar mass measuring 32.5 × 23.9 × 29.1 mm. Treatment was declined and the family was lost to follow-up. At the age of 10 years and 7 months, he presented again with headaches, seizures, and visual disturbance. His height had increased to 197 cm. MRI showed an invasive mass measuring 56.2 × 58.1 × 45.0 mm, with compression of optic chiasma, bilateral cavernous sinus invasion, and hydrocephalus. His thyrotrope, corticotrope, and gonadotrope axes were deficient. Surgery, somatostatin analogs, and cabergoline did not control vertical growth and pegvisomant was added, although vertical growth continues (currently 207 cm at 11 years 7 months of age). X-LAG syndrome is a new genomic disorder in which early-onset pituitary tumorigenesis can lead to marked overgrowth and gigantism. This case illustrates the aggressive nature of tumor evolution and the challenging clinical management in X-LAG syndrome.
Collapse
Affiliation(s)
- Luciana A Naves
- Department of Endocrinology, Faculty of Medicine, University of Brasilia, Brasília, Brazil.
| | - Adrian F Daly
- Departments of Endocrinology, Centre Hospitalier Universitaire de Liège, University of Liège, Domaine Universitaire du Sart-Tilman, 4000, Liège, Belgium
| | - Luiz Augusto Dias
- Department of Neurosurgery, Federal District Base Hospital, Brasília, Brazil
| | - Bo Yuan
- Departments of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | | | - Leonor Palmeira
- Departments of Endocrinology, Centre Hospitalier Universitaire de Liège, University of Liège, Domaine Universitaire du Sart-Tilman, 4000, Liège, Belgium
| | - Chiara Villa
- Departments of Endocrinology, Centre Hospitalier Universitaire de Liège, University of Liège, Domaine Universitaire du Sart-Tilman, 4000, Liège, Belgium
- Department of Pathology, Hopital Foch, Suresnes Cedex, France
| | - Giampaolo Trivellin
- Section on Endocrinology and Genetics, Program on Developmental Endocrinology & Genetics & Pediatric Endocrinology Inter-Institute Training Program, Eunice Kennedy Shriver National Institute of Child Health & Human Development, National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Armindo Jreige Júnior
- Department of Endocrinology, Faculty of Medicine, University of Brasilia, Brasília, Brazil
| | | | - Pengfei Liu
- Departments of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | - Constantine A Stratakis
- Section on Endocrinology and Genetics, Program on Developmental Endocrinology & Genetics & Pediatric Endocrinology Inter-Institute Training Program, Eunice Kennedy Shriver National Institute of Child Health & Human Development, National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - James R Lupski
- Departments of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Albert Beckers
- Departments of Endocrinology, Centre Hospitalier Universitaire de Liège, University of Liège, Domaine Universitaire du Sart-Tilman, 4000, Liège, Belgium.
| |
Collapse
|
38
|
Stratakis CA. A giant? Think of genetics: growth hormone-producing adenomas in the young are almost always the result of genetic defects. Endocrine 2015; 50:272-5. [PMID: 26054904 DOI: 10.1007/s12020-015-0645-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 05/26/2015] [Indexed: 10/23/2022]
Affiliation(s)
- Constantine A Stratakis
- Program on Developmental Endocrinology & Genetics (PDEGEN), Section on Endocrinology & Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), NIH, CRC - Rm 1-3330, East Laboratories, Building 10-CRC, 10 Center Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
39
|
O'Toole SM, Dénes J, Robledo M, Stratakis CA, Korbonits M. 15 YEARS OF PARAGANGLIOMA: The association of pituitary adenomas and phaeochromocytomas or paragangliomas. Endocr Relat Cancer 2015; 22:T105-22. [PMID: 26113600 DOI: 10.1530/erc-15-0241] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/15/2015] [Indexed: 12/26/2022]
Abstract
The combination of pituitary adenomas (PA) and phaeochromocytomas (phaeo) or paragangliomas (PGL) is a rare event. Although these endocrine tumours may occur together by coincidence, there is mounting evidence that, in at least some cases, classical phaeo/PGL-predisposing genes may also play a role in pituitary tumorigenesis. A new condition that we termed '3Pas' for the association of PA with phaeo and/or PGL was recently described in patients with succinate dehydrogenase mutations and PAs. It should also be noted that the classical tumour suppressor gene, MEN1 that is the archetype of the PA-predisposing genes, is also rarely associated with phaeos in both mice and humans with MEN1 defects. In this report, we review the data leading to the discovery of 3PAs, other associations linking PAs with phaeos and/or PGLs, and the corresponding clinical and molecular genetics.
Collapse
Affiliation(s)
- Samuel M O'Toole
- Department of EndocrinologyBarts and the London School of Medicine, Queen Mary University of London, London EC1M 6BQ, UKHereditary Endocrine Cancer GroupSpanish National Cancer Center, Madrid and ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, SpainSection on Endocrinology and Genetics Eunice Kennedy Shriver Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Judit Dénes
- Department of EndocrinologyBarts and the London School of Medicine, Queen Mary University of London, London EC1M 6BQ, UKHereditary Endocrine Cancer GroupSpanish National Cancer Center, Madrid and ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, SpainSection on Endocrinology and Genetics Eunice Kennedy Shriver Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Mercedes Robledo
- Department of EndocrinologyBarts and the London School of Medicine, Queen Mary University of London, London EC1M 6BQ, UKHereditary Endocrine Cancer GroupSpanish National Cancer Center, Madrid and ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, SpainSection on Endocrinology and Genetics Eunice Kennedy Shriver Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Constantine A Stratakis
- Department of EndocrinologyBarts and the London School of Medicine, Queen Mary University of London, London EC1M 6BQ, UKHereditary Endocrine Cancer GroupSpanish National Cancer Center, Madrid and ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, SpainSection on Endocrinology and Genetics Eunice Kennedy Shriver Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Márta Korbonits
- Department of EndocrinologyBarts and the London School of Medicine, Queen Mary University of London, London EC1M 6BQ, UKHereditary Endocrine Cancer GroupSpanish National Cancer Center, Madrid and ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, SpainSection on Endocrinology and Genetics Eunice Kennedy Shriver Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|